U. S. DEPARTMENT OF COMMERCE

National Bureau of Standards

Certificate of Analyses

STANDARD SAMPLE 159 CHROMIUM-MOLYBDENUM-SILVER STEEL

	C	M	Mn		P		S				dimethyl-	Cr		Мо		Ag	
ANALYST*	Direct combustion	Bismuthate (FeSO ₁ - KMnO ₄)	Persulfate-Arsen	Gravimetric (weighed as MgrP ₁ O ₁ after removal of arsenic)	Alkali-Mo!ybdate a	Gravimetric (direct oxida- tion and precipitation after reduction of iron)	Combustion	Evolution with HCl(sp. gr. 1.18) ZnS-lodine (theoretical sulfur titre) ^b	Perchloric acid dehydra- tion	COPPER H ₁ S-CuS-CuO	NICKEL Weighed as nickel dime glyoxime	FeSO ₄ -KMnO ₄ titration	VANADIUM	Gravimetric	Colorimetric		
1	0. 520	°0. 812	0. 814	0. 035		0. 026	[₫] 0. 025	0. 027	° 0. 258	† 0. 180	0. 137	ε 1. 00	ь0. 051	i 0. 411	0. 42	i 0. 090	
2	. 52		. 80		. 037			į			. 15	. 99	k. 06		. 41	¹. 10	
3	. 53	≖. 805			ъ. 039	. 028			. 254		. 134	1. 00	h. 053	i. 405		°. 085	
4	. 513		. 80		. 038				p.e. 258	a. 19	r. 13	1. 00	•. 06	t. 419		¹ . 08	
5	. 521		. 816	. 033	. 034	. 026	^u . 026	v. 025	e. 260	₩. 180	. 132	1. 00	×. 046	у. 420	. 417	1. 089	
6	. 524		m. 80		. 037		². 027	 	. 265	z1. 173	r. 136	1. 03	* . 052		. 41	¹. 098	
Averages	0. 521	0. 809	0.806	0. 034	0. 037	0. 027	0. 026	0. 026	0. 258	0. 181	0. 137	1.00	0. 054	0.414	0. 414	0.090	
General averages.	0. 521 0. 807		0. 036		0. 027			0. 258	0. 181	0. 137	1. 00	0. 054	0. 4	114	0. 090		

 $^{^{\}rm a}$ Precipitated at 40° C, washed with a 1-percent solution of KNOs and titrated with alkali standardized by the use of acid potassium phthalate and the ratio 23NaOH:1P.

- NasyUs and the ratio 21:18.

 Chromium removed by selective precipitation with sodium bicarbonate.

 It sample burned in oxygen at 1400° C, and sulfur dioxide absorbed in starch-iodine solution. The iodine was liberated from loddie by titration, during the combustion, with standard KIOs solution based on 93 percent of the theoretical factor.
 - Double dehydration with intervening filtration.
- f Copper-ammonia complex photometric method.

- ε Persulfate oxidation and potentiometric titration with ferrous ammonium sulfate.

 h Vanadium separated from the bulk of iron in a 5-g sample by selective precipitation with sodium bicarbonate, then oxidized with HNO3 and titrated potentiometrically with ferrous ammonium sulfate.

 i Silver removed as AgBr and molybdenum determined by the α-benzoinoxime method.

 i Silver separated from a 10-g sample by double precipitation with H₂S, precipitated twice as chloride, and weighed as AgCl.

- weighed as AgCl.

 * Persulfate oxidation method.

 * Persulfate oxidation method.

 Silver precipitated and weighed as AgCl.

 Chromium removed by ZnO precipitation.

 Molybdenum-blue photometric method.

 AgCl precipitation, KCN titration method.

 Nitric-sulfuric acid dehydration.

- 9 H2S precipitation, KCN titration.
- Glyoxime precipitation, KCN titration.

 KMnO4 oxidation, ferrous ammonium sulfate titra-

tion.

t H₂S-PbMoO₄ method.

"Sulfur gases absorbed in NaOH-H₂O₂ and excess NaOH titrated with H₂SO₄.

Absorbed in ammoniacal CdCl₂.

- * Silver removed as AgCl. Copper determined electrolytically.

 * Ferrous sulfate-persulfate-permanganate titration method.
- σ a-Benzoinoxime method, silver removed as AgCl.
- * As in (d), except burned at 1320° C, and KIO₃ solution standardized on standard steels.

 *I Finished by electrolysis.

*LIST OF ANALYSTS

- Ferrous Laboratory, National Bureau of Standards, John L. Hague in charge. Analysis by John L. Hague, J. I. Shultz, Hague in charge. and R. A. Watson.
- G. F. Wagner, Heppenstall Co., Pittsburgh, Pa.
 L. E. Harper, Vanadium Corp. of America, Bridgeville, Pa.
 E. A. Lucas, Molybdenum Corp. of America, Washington,
- 5. R. H. Maurer and H. Trapp, Climax Molybdenum Co., De-
- Edward Snyder, Carnegie-Illinois Steel Corp., Homestead Steel Works, Munhall, Pa.

The steel for the preparation of this standard was furnished by the Heppenstall Co.

b Value obtained by standardizing the titrating solution by means of sodium oxalate through KMnO₄ and Na₂S₂O₃ and the ratio 2I:1S.