UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON 25, D. C.

National Bureau of Standards Certificate of Analyses

Standard Sample 130A Steel

(Lead-Bearing)

	C	Mn	Mn P		S			Si	Cu	Ni	Cr	v	Мо	Pb	N
ANAL.YST	Direct combustion	Persulfate-Arsenite	Gravimetric (weighed as Mg2P2O ₇ after removal of arsenic)	Alkeli-Molybdate *	Gravimetric (direct oxidation and precipitation after reduction of ircn)	Combustion Icdate titration	Evolution with HCl (1-1) ZnS-Iodine (theoretical sulfur titer) b	Perchloric acid dehydration	Photometric	Weighed as nickel dimethyl-glyoxime	FcSO4-KMnO4 titration		Photometric	H ₂ S-PbMoO ₄	Distillation-titration
1	0.177	° 0.758	0.014	₫ 0.015	0.018	e 0.018	0.019	f 0.172	\$ 0.027 h .026	0.009	i 0.012	i 0.001	0.003	0.229 h 0.227	k 0.007
2	.184	.745	.015	015]. [015] a	.018		.019	f .174	.027	.010	1.012	。.002	.004	.229	≖.009
3	.179	ո .757	· .017	.017		n.019	.018	f .170	₽.029	{ a .009} .007}	i,n .011	j.n .001	.004	.228	≖ .009
4	.184	.747	.016	n.016	.018	- .019		£ .178	ь .024	012	.011	0.002 و	.002	.223	.009
5	.179	n.752	.015	.016	.018	° .019	.018	f .173	t .028	.008	.013	< .001	.004	.225	.008
<i>G</i>	.185	[n .755] [a .753]	.015	.016	.020	и .019	.021	{ f.176} ▼.176}	w .026	010. ه	1 .013	× .001	.005	.231	k .008
7	.188	□ .752		.016		.019		f .175	ь .024	.009	.010	у .002	.004	ь.229	.008
8	.177	.759	.014	.016	.020	.021	.021	1.169 2,f.168	t .032	{ .011 { 0.010. p	.010	< z1 .001	.002	.227	™ .007
Average	0.182	0.753	0.015	0.016	0.019	0.019	0.019	0.173	0.027	0.010	0.012	0.001	0.004	0.228	0.008
General average	0.182	0.753	0.0)16		0.019		0.173	0.027	0.010	0.012	0.001	0.004	0.228	0.008

- ^a Precipitated at 40° C, washed with a I-percent solution of KNO₃, and titrated with alkali standardized by the use of acid potassium phthalate and the ratio 23 NaOH:1P.

 ^b Value obtained by standardizing the titrating solution with sodium oxalate through KMnO₄ and Na₂S₂O₃ and the use of the ratio 2I:1S.

 ^e Potentiometric titration.
- ^d Molybdenum-blue photometric method. See J. Research NBS 26, 405 (1941) RP1386.
- *1-g sample burned in oxygen at 1,425° C and sulfur dioxide absorbed in starch-iodide solution. Iodine liberated from iodide by titration, during the combustion, with standard KIOs solution. Titer based on 93 percent of the theoretical factor.
- Double dehydration with intervening filtration.
- s Diethyldithiocarbamate-photometric method. See J. Research NBS 47, 380 (1951) RP2265.

 h H₃S-electrolytic method.
- ¹Chromium separated from the bulk of the iron by hydrolytic precipitation with NaHCO₃, oxidized with persulfate, and titrated potentiometrically with ferrous ammonium sulfate.

 ¹Vanadium separated as in (i), oxidized with HNO₃, and titrated potentiometrically with ferrous ammonium sulfate.

 ²Vanadium separated as in (i), oxidized with HNO₃, and titrated potentiometrically with ferrous ammonium sulfate.
- and titrated potentiometrically with terrous ammonium sulfate.

 k Sulfuric acid digestion for 4 hr of a 0.5-g sample. See J. Research NBS 43, 201 (1949) RP2021.

 Diphenylcarbazide-colorimetric method.

 m Semimicro distillation—Nessler photometric method. See Ind. Eng. Chem. Anal. Ed., 14, 137 (1942).

 Titrating solution standardized with a standard steel.

 Weighed as ammonium phosphomolybdate.

 Copper-ammonia complex photometric method.

 Photometric method.

 Dimethylglyoxime precipitate titrated with cyanide.

 Sulfur gases absorbed in H₂O₂, and H₃SO₄ titrated with standard NaOH using bromcresol-green indicator.

- t H₂S-CuO. Copper reprecipitated with $N_{\rm H_2}S_{\rm 2}O_{\rm 2}$ and titrated with KI-Na₂S₂O₃. u Sulfur gases absorbed in neutral H₂O₂ and titrated with sodium borate.
- v Silicomolybdate photometric method. See Anal-Chem., 21, 589 (1949).
- w Copper separated as the sulfide from a 10-g sample and determined by the diethyldithiocarbamate-photometric method.
- * Vanadium precipitated with cupferron and determined by the phosphotungstovanadate-photometric method.
- r NaHCOs hydrolysis of a 10-g sample followed by mercury cathode separation. Vanadium titrated with 0.02N FeSO₄.
- Sulfuric acid dehydration.
- al Ether-cupferron separations on a 10-g sample. Vanadium titrated by the FeSO₄-(NH₄)₂S₂O₈-KMnO₄ method.

List of Analysts

- 1. Ferrous Laboratory, National Bureau of Standards, J. I. Shultz in charge. Analysis by E. June Maienthal, R. E. McIntyre, J. R. Spann, A. Skapars.

 2. D. J. Hallisey, Jones and Laughlin Steel Corporation, Aliquippa Works, Aliquippa, Pa.
- 3. C. A. Trathowen, Jones and Laughlin Steel Corporation, Pittsburgh Works, Pittsburgh, Pa.

 4. H. A. Patterson, United States Steel Corporation, South Works, Chicago, Ill.
- 5. O. W. Baldwin, United States Steel Corporation, Gary Steel Works, Gary, Ind.
- 6. R. W. Bley, Inland Steel Co., Indiana Harbor Works, East Chicago, Ind.
- 7. S. Partington, The Detroit Testing Laboratory, Inc., Detroit, Michigan.
- 8. J. B. Armstrong, Bethlehem Steel Co., Sparrows Point Plant, Sparrows Point, Md.

The steel for the preparation of this standard was furnished by the Jones and Laughlin Steel Corporation.

Washington, D. C., September 10, 1957.

A. V. ASTIN, Director.