UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON

National Bureau of Standards

Certificate of Analyses

Standard Sample 124c Ounce Metal

ANALYST	COPPER Electrolytic	TIN SnCi r KIO3	ZINC ZnS-ZnO	LEAD Weighed as PbO ₂	NICKEL Weighed as nickel dime:hylglyoxime	ANTIMONY	IRON	SULFUR	PHOSPHORUS Colorimetric	SILICON Perchloric acid dehydration
1	a 84. 22	ь 5. 13	4. 93	° 4. 71	0. 60	^a 0. 20	° 0. 105	²0.046	g 0. 024	h 0. 002
2	^{1,1} 84. 23	* 5. 12	4. 91	4. 73	{ · · · · 60 } · · · · 61 }	ⁿ . 20	°. 110	². 045	°. 024	
3	р 84. 21	^q 5. 16	4. 93	4. 76	. 59	r. 20	°. 108	s. 052	t. 023	
4	^u 84. 22	v 5. 12	4. 95	c, w 4. 74	{ 59 m. 60}	n, x. 21	^y . 107	2. 048	°. 024	*1. 002
Average	84. 22	5. 13	4. 93	4. 74	0. 60	0. 20	0. 107	0. 048	0. 024	0. 002

Negram sample dissolved in 55 ml of HNO₂(1+1). Menastannic-acid precipitate filtered off, treated with HNO₂-HClO₂-HBr, and the residual solution added to the first filtrate. Two drops of 0.1 N HCl added, solution diluted to 325 ml and electrolyzed overnight, using a current density of 0.5 amp/dm². HsO₂ added to the electrolyte, solution evaporated to fumes of HsO₃, diluted, and residual copper precipitated as CuS and determined by the diethyldithiocarbamate-colorimetric method. Three-gram sample dissolved in HCl-HNO₃, iron added, and tin precipitated twice with NH₂OH. Precipitated distolved in HCl-HNO₃, iron added, and tin precipitated with pure tin. See ASTM method E54—49, Methods for Chemical Analysis of Metals, p. 267 (1950). American Society for Testing Materials, Philadelphia, Pa.

© Weighed as PbO₄.

d Antimony separated by distillation from a 5-g sample, precipitated with HsO₃, and titrated with KMO₄ as described in J. Research NBS 21, 95 (1938) RP1116. KMnO₄ standardized with NBS standard sodium oxalate 40e.

• SnCl₂-K₄Cr₂O₇ method. • Combustion-iodate method. • Molybdenum-blue photometric method. • Double dehydration with HClO₄ with intervening

Double dehydration with Incloy with intervening filtration.

1 As in footnote (a) except 3-g sample used.

1 Same value obtained by depositing copper in the presence of tin in an HNO₂-HF solution of a 3-g sample.

k Tin reduced with iron in the presence of added antimony and titrated with KIO₂.

1 Nickel precipitated with KiO₃.

2 Dimethylglyoxime-photometric method.

3 Metastannic-acid precipitate separated and digested in H₂SO₄-HNO₂-K₂SO₄. Antimony reduced with tartaric acid and ittrated with KiTO₃.

3 Molydivanadophosphoric-photometric method. See ASTM method E62—50T.

4 Copper deposited in the presence of tin in an HNO₃-

P Copper deposited in the presence of tin in an HNO₃-HF solution.

a Tin reduced with lead in the presence of added antimony and titrated with KIOs.
f Antimony reduced with tartaric acid and titrated with KMnOs.
F Phosphomolybdate-alkalimetric method.
As in footnote (a), except residual copper determined by electrolysis.
Tin reduced with iron and titrated with KIOs.
Same value obtained by the PbCrOs method.
Same value also obtained by the pyridine-iodide colorimetric method.
Iron reduced with SnCls and titrated with KMnOs.

metric method.

y Iron reduced with SnCl₂ and titrated with KMnO₄.
Same value obtained by the KCNS-colorimetric method.

* HBr evolution method; titration with KIO₂. See
ASTM method £54—50T.

*I Molybdisilicic acid-photometric method.
Analyst 2 reported 0.0016 percent aluminum by the aluminon-photometric method, and 0.002 percent arsenic by the KBrO₂ method.

List of Analysts

- 1. Nonferrous Laboratory, National Bureau of Standards, R. K. Bell, in charge. Analysis by E. E. Maczkowske.
- 2. A. B. Shapiro, H. Kramer and Co., Chicago, Ill.

3. Vincent Schwarz, Magnus Metal Division of National Lead Co., Chicago, Ill.
4. John P. Brull, North American Smelting Co., Wilming-

ton, Del.

ASHINGTON, D. C., April 30, 1954.

A. V. ASTIN, Director.