National Bureau of Standards

Certificate of Analyses

STANDARD SAMPLE 121A 18 CHROMIUM-10 NICKEL STEEL

(TITANIUM-BEARING)

ANALYST*	c	Mn	P		S			Si		dimethyl-	Cr				Ti			
	Direct combustion 1,300° to 1,375° C.	Persulfate-Arsenite	Gravimetric (veighed as Mg ₂ P ₂ O ₁ after removal of arsenic	Alkali-Molybdate"	Gravimetric (direct oxida- tion and final precipita- tion after reduction of iron)	Combustion	Evolution (HCl sp gr 1.18- ZnS-iodine theoretical sulfur titer) ^b	Perchloric acid dehydra- tion	COPPER H1S-CuS-CuO	NICKEL Weighed as nickel dime glyoxime	FeSO,-KMnO, titration	VANADIUM	MOLYBBENUM (Colorimetric)	COBALT	Gravimetric	Colorimetric	NITROGEN	
1	0.071	°1.27	0.023	^d 0.025	0.010		0.004	°0.518	0.082	10.60	f18.68	≥0.035	0.019	h0.090	i0.360	0.363	^j 0.013	
2	.073	k1.29	.021	.022	.008	0.007	.004	.514		10.55	118.64	m.039	.025	n.10		.38	۰.014	
3	₽.074	q1.28		r.024	.011	*.012	 	°.514	t.082	u10.56	18.68		.019		₹.353	.35		
4	.071	q1.26		.026	.011		.006	.511	w.084	10.58	18.67		.021		.364	.366		
5	₽.075	q1.28		.022		≭ .013		°.524	y. 09 0	10.56	18.74	z.034	.017	z1.093		.362		
6	₽.070	z21.28		.024			7.004ء	e.525	.089	u10.60	118.70	z3.030	.022	n.08		.358	24.011	
	.077	1.28		.022	.013		.006	.540	.080	10.56	18.72	.04				.35		
	P.070	1.27	.024	r.024	.009	×.009		e.520	.086	10.63	18.64	≈5.03	.018	n.085		.369	z6.014	
9	27.072	q1.28		r.022			.005	°.547		10.59	18.73					.376		
10	.073	²⁸ 1.27		.023		*.010		.514	₩.086	10.54	18.73	z3.040	.020	⁸⁹ .093		.353	•.016	
Averages	0.073	1.28	0.023	0.023	0.010	0.010	0.005	0.523	0.085	10.58	18.69	0.035	0.020	0.090	0.359	0.363	0.014	
General average	0.073	1.28	0.023		0.010			0.523	0.085	10.58	18.69	0.035	0.020	0.090	0.361		0.014	

a Precipitated at 40° C, washed with a 1-percent solution of KNO₃ and titrated with alkali standardized by the use of National Bureau of Standards acid notassium phthalate and the ratio 23NaO Hi P.

b Value obtained by standardizing the titrating solution by means of sodium oxalate through KMnO₄ and Na₂S₂O₃, and the use of the ratio 21:18.

c Bismuthate (FeSO₄-KMnO₄) method after separation of chromium with ZrO.

d Molybdenum-blue colorimetric method. See J. Research NBs 26, 405 (1941) RP1386.
c Double dehydration.
f Persulfate oxidation and potentiometric titration with ferrous ammonium sulfate solution standardized with recrystallized potassium dichromate.
k Nitric acid oxidation and potentiometric titration with ferrous ammonium sulfate solution.
b Ether separation ZnO-α-nitrosoβ-naphthol method on a 10-g sample.
110-g sample dissolved in diluted H₂SO₄, and titanium precipitated with cupferron. Ignited precipitate treated with HclO₄-HF, reignited and fused in Na₂S₂O₂. Melt dissolved in tartaric-sulfuric acid solution, and the H₂S oron removed. Residual iron removed as sulfide in dissolved in tartaric-sulfuric acid solution, and the H₂S group removed. Residual iron removed as sulfide in

ammoniacal-tartrate solution. Filtrate acidified, and titanium precipitated with cupferron. Ignited precipitate corrected for V₂O₅.

1 Determination made by M. Marie Cron, by the vacuum-fusion method. See BS J. Research 7, 375 (1931) RP346.

k Chromium removed by precipitation with NaHCO₅.

1 Perchloric acid oxidation.

To Vanadium separated by NaOH, precipitated with

Perchloric acid oxidation.
 Vanadium separated by NaOH, precipitated with Pb(NO₃)₂, reduced with HCl, and titrated with KMnO₄.
 Zinc oxide-e-nitroso-β-naphthol method.
 Solution in HCl. Residue filtered and digested in HClO₂-H₂SO₄. Distillation-titration method. See Iron Age. 134, p 11, July 26 (1934).
 Burned with tin at 1100° C-1300° C.
 Chromium precipitated with ZnO.
 Titrating solution standardized by use of a standard steel.

- steel. $^{\circ}$ Sulfur gases absorbed in acidified starch-iodine solution, and titrated with KIO₃ solution standardized with standard steels. $^{\circ}$ H₁S- $^{\circ}$ -benzoinoxime-CuO method. $^{\circ}$ Glyoxime precipitate titrated with standard KCN solution.
- * Cupferron-mercury cathode-cupferron method. Ignited precipitate corrected for iron and vanadium.

 * K.I-Nas-0.0 titration.

 * Sulfur gases absorbed in NaOH-H₂O₂ solution, and excess NaOH titrated with H₂SO₄.

 * Finished by electrolysis.

 * Cupferron, phosphotungstovanadate colorimetric method.

- *Cupierron, phosphotungstovanadate colorimetric method.

 *i Ether separation-ZnO-α-nitroso-β-naphthol method. Finished colorimetrically as cobaltioxalate complex.

 *i Chromium separated by precipitation as PbCrO₄.

 *is Chromium separated as PbCrO₄. Vanadium determined by differential titration with Fe6V₄-KMnO₄ using o-phenanthroline indicator.

 *id Dissolved in H₂SO₄-H₃PO₄. Selenium added and solution fumed. Distillation-titration method.

 *is Ether-cupierron concentration. H₂O₂-HF colorimetric method.

 *id Schution in HCl. Residue filtered and Kjeldahl digestion. Distillation-titration method.

 *if Burned with red lead.

 *if Chromium volatilized as CrO₂Cl₂.

 *if Ether-CrO₂Cl₂-ZnO₄-α-nitroso₂-β-naphthol method. Cobalt weighed as CoSO₄.

*LISTS OF ANALYSTS

- Ferrous Laboratory, National Bureau of Standards. John L. Hague in charge. Analysis by John P. Hewlett, Jr., and
- W. Chorney.

 2. M. A. Frost, Vanadium-Alloys Steel Co., Latrobe, Pa.

 3. R. F. Lab and R. A. Sergi, Copperweld Steel Co., Warren, Ohio.

 4. W. L. Davies, Allegheny Ludlum Steel Corporation, Watervliet,
 - N. Y. R. S. Gibbs and F. B. Clardy, Norfolk Navy Yard, Portsmouth,
- Va. D. Brown, Carnegie-Illinois Steel Corporation, Duquesne Norks, Duquesne, Pa.
- 7. C. E. Nesbitt, Carnegie-Innicia Thomson Works, Braddock, Pa. E. Nesbitt, Carnegie-Illinois Steel Corporation, Edgar
- 8. L. P. Chase, Carnegie-Illinois Steel Corporation, South Works, Chicago, Ill.
- 9. W. Teitel, Transue and Williams Steel Forging Corporation, Alliance, Ohio.
- 10. ARMCO Research Laboratories, Middletown, Ohio. A. H. Thomas in charge.

The steel for the preparation of this standard was furnished by the Carnegie-Illinois Steel Corporation.