U. S. Department of Commerce John T. Connor, Secretary National Bureau of Standards A. V. Astir, Director

Certificate of Analysis

Standard Reference Material 1154

19 Cr-10 Ni Steel

	C	Mn	P	S	Si	Cu	Ni	Cr	v	Мо
ANALYST	Direct combustion	Persulfate-arsenite	Molybdenum-blue photometric	Combustion-iodate titration	Perchloric acid dehydration		Weizhed as nickel dimethylglyoxime			Photometric
1	0.092	a, b1.75	0.040	°0.029	d1.09	e0.562	10.22	f19.55	g0.062	0.464
2	.096	^h 1.76	1.038	.032	a1.09	¹ .566	10.27	¹ 19.60	k.058	1.468
3	.097	^m 1.74	i.035	.035	^d 1.10		ⁿ 10.25	°19.60	{ P.064 q.059}	.466
4	.096	1.72	.038	.033	1.08	.563	10.21	19.57	.064	.461
5	.089	m1.73	.038	.034	r, d1.08	s.551	10.29	^t 19.59	u.060	v.457
Average	0.094	1.74	0.038	0.033	1.09	0.560	10.25	19.58	0.061	0.463

^a Chromium removed by precipitation with NaHCO₃. ^b Potentiometric titration.

List of Analysts

- 1. E. J. Maienthal, T. W. Freeman, R. K. Bell, B. B. Bendigo, E. R. Deardorff, R. A. Paulson, and J. I. Shultz, Division of Analytical Chemistry, Institute for Materials Research, National Bureau of Stand-
- 2. J. B. Armstrong and R. H. Rouse, Bethlehem Steel Co., Sparrows Point Plant, Sparrows Point, Md.
- 3. J. P. McKaveney, W. J. Raber, C. J. Byrnes, W. T. Murphy, G. L. Vassilaros, F. White, A. Suk, T. S. Friel, A. Geist and P. Byrne, Crucible Steel Company of America, Pittsburgh, Pa.
- 4. D. P. Bartell and P. L. Amschler, Allegheny Ludlum Steel Corp., Brackenridge Works, Brackenridge, Pa.
- 5. A. L. Sloan, E. J. Cramer and J. A. Strauss, Carpenter Steel Co., Reading, Pa.

Size: Samples are disks, 11/4 in. in diameter and 3/4 in. thick.

Preparation and Testing: The material for this standard was melted under an argon cover in a 1000-lb induction furnace in the NBS Foundry, and then cast into a single ingot. The ingot was processed by the Naval Weapons Plant by forging to a slab having one dimension of the cross section four times that of the other dimension. After cropping top and bottom, 15 and 5 percent respectively, the slab was cut lengthwise and the center section corresponding to one-fourth of the original ingot was discarded. The two slab portions were hot rolled to oversize rods and, after annealing, were centerless ground to size.

The homogeneity of the material was established at the National Bureau of Standards and General Motors Corporation by metallographic studies, by optical emission and x-ray spectrochemical analysis, and by chemical analysis.

Samples for chemical analysis were prepared in the form of millings cut from the cross section of the finished samples.

VASHINGTON, D. C. February 9, 1966

W. Wayne Meinke, Chief Office of Standard Reference Materials

b Potentiometric titration.

3 Leg sample burned in oxygen at 1450 °C and sulfur dide absorbed in starch-iodide solution. Iodine is liberated from iodide by titration, during the combustion, with standard KIOs solution. Titer is based on 93 percent of the theoretical factor.

4 Double dehydration with intervening filtration.

6 Diethyldithiocarbamate photometric method. See J. Res. NBS 47, 380 (1951) RP2265.

f Persulfate oxidation, potentiometric titration with fer-

rous ammonium sulfate.

8 Nitric acid oxidation, potentiometric titration with fer-

^{*} Nitric acid oxidation, potentiometric titration rous ammonium sulfate.

h Chromium volatilized as CrO₂Cl₂.

i Alkali-molybdate method.

i H₃S-electrolytic method.

k Ether-cupferron-FeSO₄-(NH₄)₂S₂O₈-KMnO₄.

I H₃S-alpha benzoinoxime-MoO₃ method.

m Periodate photometric method.

n Dimethylglyoxime precipitate titrated with cyanide.
Persulfate oxidation, titration with FeSO₄-KMnO₄.
PESO₄-(NH₄)₂S₄O₈-KMnO₄ method.
Spectrographic method.
Sulfuric acid dehydration.
2,2' biquinoline photometric method.
Persulfate oxidation, titration with FeSO₄-K₂Cr₂O₇.
Nitric acid oxidation, titration with FeSO₄-K₂Cr₂O₇.
Alpha benzoinoxime gravimetric method.

Supplemental Information

Other Elements: In addition to the certified elements, the following are present at the approximate concentrations listed:

Ti	Nb	Та	Al	Zr	Со	Sn	Pb	As	В
0.48a	0.26b	0.04 ₅ c	0.03₅ ^d	0.02 ₂ e	0.12 ^f	0.02 ₃ g	0.01∘ ^h	0.03i	0.000 ₆ j

a Ion-exchange. H_2O_2 photometric method at NBS.

Motors Corp., and spectrographic and polarographic methods at NBS.

h Average of spectrographic methods at General Motors Corp., and NBS; and polarographic method at NBS.

i Average of photometric methods at General Motors Corp., and NBS; and spectrographic method at NBS.

i Distillation-curcumin photometric method at NBS.

Average of spectrographic method and ion-exchange-hydroquinone photometric method at NBS.
 Average of spectrographic methods at American Cast Iron Pipe Co., and NBS; and ion-exchange-pyrogallic acid photometric method at NBS.

^d Average of spectrographic methods at General Motors Corp., and NBS; and polarographic method at NBS. • Ion-exchange. H₂O₂-phosphate gravimetric method.

f Average of photometric methods at General Motors Corp., and NBS; and spectrographic method at NBS. Average of sulfide-iodate volumetric method at General