U. S. DEPARTMENT OF COMMERCE

National Bureau of Standards

Certificate of Analyses

STANDARD SAMPLE 115 COPPER-NICKEL-CHROMIUM CAST IRON

	С		Mn	P		S		Si	Cu	Ni	Cr			y in		
ANALYST*	Total	GRAPHITIC►		Gravimetric (Weighed as MgrP1O; after removal of arsenic)	ALKALI-MOLYBDATE	Gravimetric (Direct oxida- tion and final precipita- tion in reduced solution)	Evolution with HCl ZnS- lodine (theoretical sul- phur titre)	Perchloric acid dehydration				VANADIUM	MOLYBDENUM Colorimetric	TITANIUM Defermined colorimetrically in residue after HCl (sp gr 1.10) attack	ARSENIC	COBALT
1	2. 43	1. 83	1. 01 d	0. 111°	0. 113 •	0. 033	0. 030 r	1. 60	6. 44 s	15. 89 в	2. 18 i	0. 009 i	0. 001	0. 021		0. 08 k
2	2. 39	1. 87	1. 03 d		.115 •	. 030 1		1. 61	6. 42 m	15. 90 н	2. 15 i					
3	2. 41	1. 85	1. 00 n		.1150	. 034	.031°	1. 58 p.	6. 44 ^m	15. 90 a	2. 14 r					
4	2. 42	1. 85	1. 01 *		. 108 t		. 031 f	1. 61	6. 43 m	15. 86 ь	2. 18 r	. 008 ս	. 001			
5	2. 44	1. 75	1. 00 ª		.114 °	. 032		1. 61	6. 44 ^m	15. 90 ь	2. 16		! 			
	2. 41	1. 92	1. 01 v		.112。	. 030		1. 60	6. 45 ^m	15. 89	2. 16		. 002			
7	2. 47	1. 93w	1. 01 ª	. 113 •	 	. 031	ļ	1. 60	6. 44 ^m	15. 84 ×	2. 19 r	. 011 y	. 003		0. 007 z	. 08 k
8	2. 45	1. 82	1. 00	. 118		. 032	. 030	1. 60	6. 42	15. 88	2. 18	. 008	. 002		. 007	. 08
9	2. 41	1. 85w	. 99					1. 59		15. 87 ×						
10	2. 41	1. 81	1. 00 ^{z1}		.113 •	. 034	<u></u>	1. 60	6. 45	15. 95 z2	2. 17 ^r				. 007z3	
Averages	2. 42	1.85	1. 01	. 113	.114	. 032	. 031	1. 60	6. 44	15. 89	2. 17	. 009	. 002	. 021	. 007	. 08
Recommend- ed values	2. 42	1.85	1. 01	.1	13		32	1. 60	6. 44	15. 89	2. 17	. 009	. 002	. 021	. 007	. 08

(*) Sample treated with HNO₃ (sp gr 1.20), filtered and washed. Residue digested with HCl (sp gr 1.19), filtered, washed, dried, and burned.
(b) Precipitated at 40° C, washed with 1 percent KNO₃, and titrated with alkali standardized by the use of National Bureau of Standards sadi potassium phthalate and the 23:1 ratio.
(c) Value obtained by standardizing titrating solution by means of sodium oxalate through KMnO₄ and

by means of sodulin oxaate through KMinO₄ and Nas5₂O₅.

(4) Sample dissolved in HNO₃-HCl solution, tumed with HClO₄ and H₂SO₄ and iron and manganese-precipitated with NH₄OH and (NH₄)₂S₂O₅. Precipitate dissolved in dilute HNO₅ and manganese determined by the bisrauthate method.

(e) Sample dissolved in HNO₃-HCl, solution fumed with HClO₅ to obtain complete decomposition of carbides. Silica filtered before precipitation of phosphomolybdate.

(f) Sample annealed by covering with a laver of graphite and the silica filtered before precipitation of phosphomolybdate.

(g) Most of the copper separated by direct electrolysis, remainder precipitated with H₃S. Precipitates combined, purified, and determination finished by electrolysis.

(h) Nickel precipitated with dimethylglyoxime from an aliquot portion of a 4- or 5-g sample. Precipitate filtered, dissolved, copper removed with H₂S, and nickel determined by electrolysis.

(i) Sample dissolved in HNO₃-HCl, solution fumed with HClO₄ and H₂SO₄, and chromium determined by the AgNO₂·(NH₄)₂Si₂O₆ method.

(i) HNO₂ oxidation followed by potentiometric titration

(i) HNO₃ oxidation followed by potentiometric titration.

(*) Cobalt separated from iron and chromium by ether separation followed by double ZnO separation, then precipitated vice with a-nitroso-f-naphthol, and the ignited precipitate either weighed as Co₂O₄ or reduced and weighed as metal.

(i) Sample dissolved in HNO₃ and HClO₄ added. Solution evaporated to dense fumes of HClO₄ before precipitating sulphur as BaSO₄.

(**) H₂S, CuS, CuO; finished by electrolysis.
(**) ZnO separation followed by bismuthate oxidation.
(**) Titrating solution standardized on a standard cast iron.

iron.

(a) Nitrie-sulphuric acid method.

(b) Nickel precipitated with dimethylglyoxime and determined by titration with KCN.

- (*) Perchloric acid oxidation.
 (*) Dissolved in HNO₃-HClO₄, chromium separated as PbCrO₄, and manganese determined by persulphatearsenite method.
- Sente method.

 (1) Precipitation in hot solution and calculation based 125:1 ratio.

 (2) Vanadium gathered in phosphomolybdate pre-
- cipitate.

 (*) Ford-Williams method.

 (*) Ford-Williams method.

 (*) Solution in HNO3 (sp gr 1.20). Residue burned with 1g red lead.

 (*) Weighed as nickel dimethylglyoxime after removal conner.
- titration.

 (z) Direct KCN titration after removal of copper as
- sulfide.

 (23) Arsenic distilled as AsCl₃ and titrated with

*LIST OF ANALYSTS

- Ferrous Laboratory, National Bureau of Standards. H. A. Bright in charge. Analysis by R. M. Fowler and J. W. Knowlton.
- R. Cunningham and H. N. Fry, The Electro Metallurgical Co., New York, N. Y. W. F. Lantz, Bethlehem Steel Co., Bethlehem, Pa.
- W. D. Brown, Carnegie Steel Co., Duquesne Works, Du-
- 5. H. E. Slocum, Jones & Laughlin Steel Corporation, Pitts-
- burgh, Pa.

 6. J. E. Spittle, The Ford Motor Co., Dearborn, Mich.

 7. T. Fudge, International Nickel Co., New York, N. Y.

 8. R. H. Elder and R. Deas, American Cast Iron Pipe Co., Bir-
- mingham, Ala. W. T. Hartley, Ludlum Steel Co., Dunkirk, N. Y.
- C. M. Johnson, Crucible Steel Co. of America, Park Works, Pittsburgh, Pa.

LYMAN J. BRIGGS, Director.