U.S. DEPARTMENT OF COMMERCE # National Bureau of Standards ## Certificate of Analyses ### STANDARD SAMPLE No. 111 NICKEL-MOLYBDENUM STEEL | | С | Mn | P | | S | | Si | Ni | | | | Мо | | | |--------------------|-----------------------------|---|-------------------------------------|--|---|--|---------------------------------------|--------------------------|---|--|------------------------------------|------------------------------|-----------------|---------| | ANALYST* | CARBON
Direct combustion | MANGANESE
I. Bismuthate
(FeSO ₁ -KMnO ₁) | PHOSPHORUS
1. Alkali-molybdate)* | 2. Gravimetric (weighed
as MopP.O; after re-
motal of arsenic) | SULPHUR 1. Gravimetric (direct oxidation and precipitation in reduced solution) | 2. Evolution with HCl-
ZnS - Iodine - (the-
oretical sulphur
titre ^b) | SILICON I. Sulphuric acid dehydration | COPPER
1. HsS-CuS-CuO | NICKEL
Weighed as nickel di-
methylglyoxim? | CHROMYUM
FeSO ₁ -KMnO ₁ titration | У А ЛА ВІ С И | MOLYBDENUM
1. Gravimetric | 2. Colorimetric | ARSENIC | | 1 | 0.197 | 0.660 | 0.024 | 0.023 | 0.019 | 0.018 | 0.296 | 0.123 | 1.74 | 0.275 ° | 0.002 ° | 0.214 d | | 0.014 | | 2 | .201 | .651 e | .022 | .023 | .021 | .018 | .288 f | .133 % | 1.73 | .283 н | .004 i | .220 j | 0.217 | | | 3 | .206 | .666 e | .024 | .023 k | .020 | .017 | .286 f | .120 g | 1.76 | .269 | .005 | .205 ^j |
 | | | 4 | .203 | .660 e | .023 1 |
 | .021 | .020 m | .28 | .13 g | 1.73 n | .28 | - | .216 i | .216 | | | 5 | .20 | .66 | .023 1 | .021 | .019 | .018 | .293 | .11 | 1.76 | .26 ∘ | <.001 ° | .22 d | !
!
! | | | 6 | .202 | .67 ∘ | .021 |

 | | .019 | .291 f | .127 g | 1.76 s | | | .20 d | .20 | | | 7 | .207 Þ | .66 a | .024 |

 | .022 | .022 1 | .290 | .108 ^r | 1.76 ⁿ | .275 | - | .22 s |
 | .017 | | | .206 | .664 ° | .022 |
 | .018 | | .295 | .122 | 1.76 | .269 | | .211 d | .220 | | | 9_, |
 | .659 | | | | | | | 1.76 | | | .216 d |
 | | | 10 | .196 p | .663 | .022 | .022 | .020 | .020 | .300 | ء 122ء | 1.76 g | .273 н | .001 t | .216 i |
 | | | 11 | .205 | .663 | .024 | | .021 | .017 | .286 | .125 | 1.75 | .270 ° | .003 ч | .223 v |
 | | | 12 | .197 | .666 | .022 |
 | | | .306 | | 1.73 | .267 | | .213 ^j | .214 | | | Averages | .202 | .662 | .023 | .022 | .020 | .019 | .292 | .122 | 1.75 | .272 | .003 | .215 | .215 | .015 | | Recommended values | .202 | .662 | .023 | | .020 | | .292 | .122 | 1.75 | .272 | .003 | .215 | | .016 | a Precipitated at 40° C., washed with 1 percent KNO₃ and titrated with alkali standardized by the use of National Bureau of Standards Standard Acid Potassium Phthalate and the 23·1 ratio. b Value obtained by rapid solution in concentrated HCl. Titrating solution standardized against standard sodium oxalate through Na₂S₂O₃ and KMnO₄. c Chromium and vanadium concentrated by hydrolysis with NaHOO₃ and subsequently determined by potentiometric titration. d Precipitated with a-benzoinoxime and weighed as MoO₃. See B.S. Jour. Research, vol. 9 (RP 453) p. 1, 1932. Fersulphate-arsente method. Dehydration with perchloric acid. Finisned by electrolysis. Chromium oxidized with HClO₄. Vanadium precipitated with cupferron, purified by - i Vanadium precipitated with cupferron, purified by precipitations with NaOH and cupferron and determined by reducing with SO₂ and titrating with KMnO₄. i Weighed as PbMoO₄. k Weighed as ammonium phosphomolybdate. l Titrating solution standardized by the use of a standard standard. ard steel. That any solution standards by the use of a standard steel. In Sample annealed by mixing with $K_4Fe(CN)_8$ and heating at 800° C., for 20 minutes. Annealed sample dissolved in concentrated HCl, and H_2S absorbed in a solution of CdCls. In Titrated with KCN. Titrating solution standardized by the use of a standard steel. Bulk of iron salted out as $FeSO_4$ in alcohol. Alcohol removed and Fe, Cr, V precipitated with Na_2VO_3 . Precipitate fused with Na_2VO_3 and charcoal, extracted with H_3O_4 filtered and vanadium determined colorimetrically, after adding H_3O_2 to the acidified filtrate. Pred lead used as an accelerator. a Oxidized with PbO₂ and titrated with sodium arsenite standardized by the use of standard steels. Titrated with KCN after precipitating with H₂S and igniting to oxide. Molybdenum separated with KCNS and cinchonine in reduced solution, ignited to MoO₃, and corrected for copper, cf. Iron Age, vol. 132, no. 2, p. 16 and 17, 1933. Vanadium precipitated by means of NaHCO₃, separated from iron, etc., by electrolysis with a mercury cathode, and estimated colorimetrically after treating with H₃O₂. "Chromium and vanadium concentrated by precipitating with NaHCO₃, oxidized with (NH₃)₂So₃, and itrated potentiometrically with FeSO₄. Vanadium then oxidized at 50 to 60° C. with Ce(SO₄). "Molybdenum precipitated with H₂S and weighed as Ag₂MoO₄. - 1. Ferrous laboratory, National Bureau of Standards, H. A. Bright - in charge; analysis by R. M. Fowler and J. C. Redmond. 2. L. H. James, Reo Motor Car Co., Lansing, Mich. 3. H. J. Jameson and Sidney Partington, The Detroit Testing Laboratories, Detroit, Mich. 4. Chemical Laboratory of the Timken Steel & Tube Co., Cantagord. - L. Chemical Laboratory of the Timken Steel & Tube Co., Canton, Ohio. 5. L. P. Chase, Illinois Steel Co., Chicago, Ill. 6. W. D. Brown, Carnegie Steel Co., Duquesne Works, Duquesne, 2a. - *LIST OF ANALYSTS ds, H. A. Bright C. Redmond. ch. Detroit Testing 7. C. M. Johnson, The Crucible Steel Co. of America, Park Works, Pittsburgh, Pa. 8. J. L. Hague, Norfolk Navy Yard, Portsmouth, Va. 9. E. B. Sandell and B. Moskovitz, University of Minnesota, Minneapolis, Minn. T. Fudge International Nickel Co., New York, N.Y. - T. Fudge, International Nickel Co., New York, N.Y. N. H. Furman, Princeton University, Princeton, N.J. R. H. Rizor, Climax Molybdenum Co. of Michigan, Detroit, Mich. This standard is not recommended for colorimetric carbon determinations, because of uncertainty as to the condition of the carbon. LYMAN J. BRIGGS.