

Epileptogenic Phenotypes in Experimental Model Systems

Asla Pitkänen, MD, PhD

Epilepsy Research Laboratory
A.I.Virtanen Institute for Molecular Sciences
University of Kuopio, Kuopio
Finland

E-mail: asla.pitkanen@uku.fi

An alternative and accessible version of this presentation is available at 2:20 pm in the Videocast of Day One


Financial Disclosure

I do not have significant financial interests related to this conference

Contents

- 1. What kind of models do we have?
- 2. Comparison of phenotypes (SE, TBI, stroke)
 - clinical
 - pathology
- 3. What have we learnt? Implications for applications
- 4. Future challenges

"Ideal" Model for Acquired Epileptogenesis

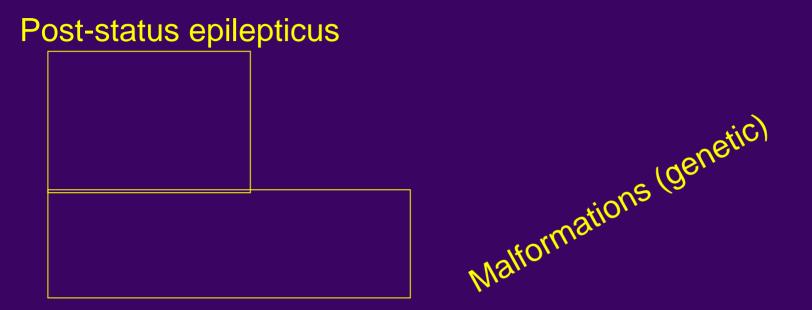
In Vivo Models of Acquired Epileptogenesis Immature Brain

Hypoxia (P10)

Jensen et al. (1992, 2007)

Hypoxia-Ischemia (P7)

• carotid artery ligation + hypoxia


Williams et al. (2004)

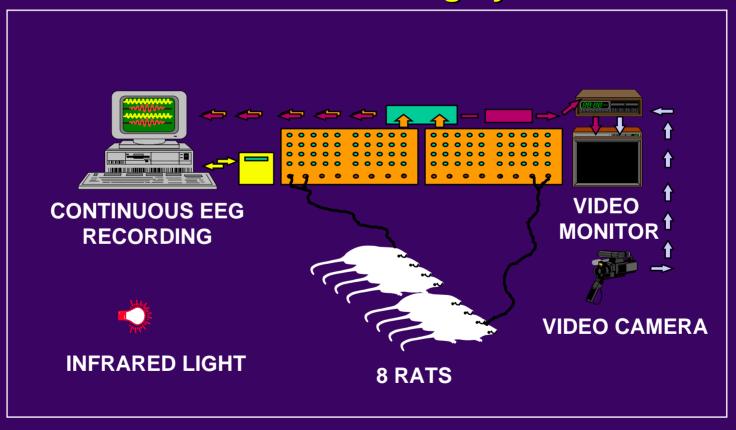
Post-stroke epilepsy (P12, P25)

• intrahippocampal endothelin-1

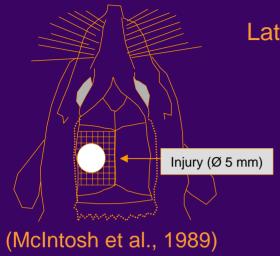
Mateffyova et al. (2006)

In Vivo Models of Acquired Epileptogenesis Adult Brain

Post-traumatic epilepsy


Post-stroke epilepsy

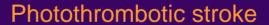
Contents

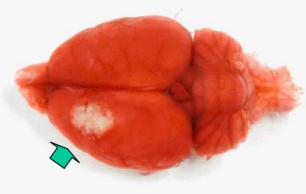

- 1. What kind of models do we have?
- 2. Comparison of phenotypes (SE, TBI, stroke)
 - clinical
 - pathology
- 3. What have we learnt Implications for applications
- 4. Future challenges

SE-induced Epileptogenesis in Rat

Video-EEG Recording System

Post-traumatic epilepsy (Kharatishvili et al., 2006)

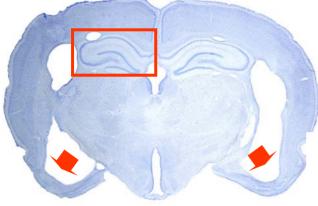



Lateral fluid-percussion brain injury

Post-stroke epilepsy (Kelly et al., 2001)

Epilepsy Phenotype Depends on Etiology

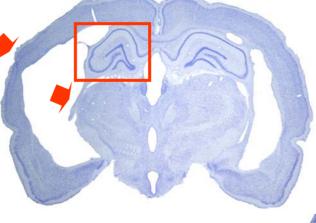
Newly Diagnosed Epilepsy in Rats

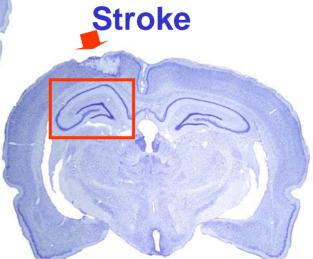

SE	TBI	Stroke
amygdala stimulation	lateral fluid- percussion	cortical photothrombosis

duration of latency
% of rats with seizures
mean seizure frequency
maximal seizure frequency
mean seizure duration
day-night cycle
memory impairment
response to AEDs
drug-refrasctoriness

days -1 mo	several months	several months
40-100%	50%	20%
8/day	0.3/day	0.3/day
up to 30/day	up to 1/day	up to 5/day
49 sec	104 sec	117 sec
57% lights on	44% lights on	42% lights on
yes	yes	no
yes	?	?
yes	?	?

Distribution of Pathology Depends on Etiology


Status Epilepticus


bilateral

• temporal lobe damage

Traumatic Brain Injury

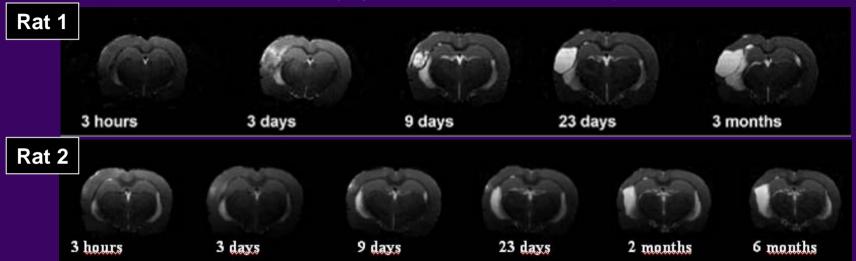
- unilateral
- lesion in cortex
- temporal lobe damage milder

Pitkänen et al. (2007)

Type of Pathology Depends on Etiology

		- -		
	SE	TBI	Stroke	
Hippocampus	amygdala stimulation	lateral fluid- percussion	cortical photothrombosis	
neurodegeneration neurogenesis				
astrogliosis microgliosis				
axonal sprouting axonal damage				
dendritic changes				
neovascularization				

Type of Pathology Depends on Etiology

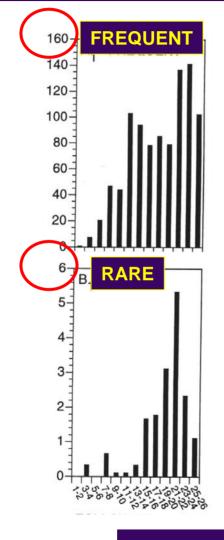

Hippocampus		SE	TBI	Stroke
	amygo	dala stimulation	lateral fluid- percussion	cortical photothrombosis
neurodegeneration		+++	+	+
neurogenesis	,	++	++	+
astrogliosis		+++	+++	+
microgliosis		++ "opiloptor	++	+ "ropoir"
axonal sprouting		"epileptog	yenesis i ++	<u>√s. "repair"</u> (+)
axonal damage		(+)	+++	nd
dendritic changes		+++	(+)	n.s.
neovascularization		+	+	nd

Contents

- 1. What kind of models do we have?
- 2. Comparison of phenotypes (SE, TBI, stroke)
 - clinical
 - pathology
- 3. What have we learnt Implications for applications
- 4. Future challenges

Tailoring Experiments by using MRI

Traumatic brain injury induced with lateral fluid percussion



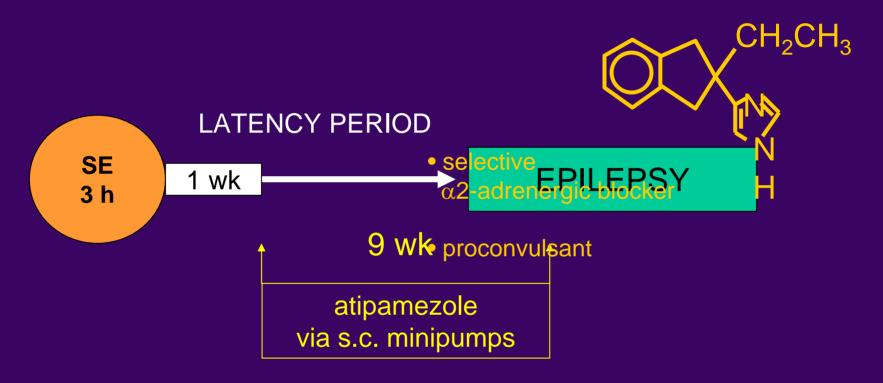
- 1. Adjustment of the severity of insult within the study group
- 2. Subpopulation analysis (mild vs. severe damage)
- 3. Bio/surrogate marker development

More Detailed Analysis of Phenotype

Long-term video-EEG monitoring

Most of the seizures are partial

Implications


- subpopulation analysis
- disease modification

Most of the seizures are secondarily generalized

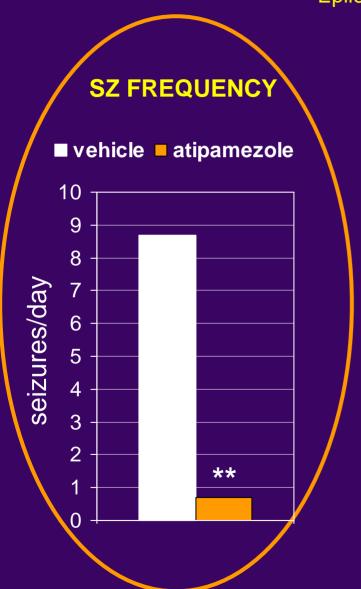
FOLLOW-UP TIME (6 months)

Disease Modification with Atipamezole

Epileptogenesis triggered by SE Pitkänen et al. (2004)

No Effect on Epileptogenesis

vEEG for 2 wk


during treatment

vEEG for 2 wk

after treatment

Disease Modification with Atipamezole

Epileptogenesis triggered by SE Pitkänen et al. (2004)

Proof-of-principle evidence that epileptogenic process can be modified

Where Are We?

- 1. We have models with clinically relevant etiologies
 - to investigate mechanisms of epileptogenesis
- 2. We are learning the "+" and "-" of models
- 3. We have technologies that allow the investigation of models in clinically comparable way
- 4. Study designs "ready for translation to clinic"
 - to find novel therapies
 - to identify bio/surrogate markers

How To Facilitate Ongoing Progress?

1. Model development - "Ideal" Model

- pediatric models
- genetic background
- analysis of clinical relevance

2. Development and use of new technologies in preclinical studies

- MRI, SPECT/CT, PET/CT
- small-size EEG recording systems

3. Surrogate marker development

- prediction of outcome
- efficacy of therapy

4. Development of pre-clinical study designs

- guidelines for preclinical studies
- multicenter preclinical trials
- interaction between basic and clinical scientists

5. New thinking - taking advantage of progress in TBI and stroke fields

• epileptogenesis ~ recovery process

EPILEPSY RESEARCH GROUP

A.I.Virtanen Institute, Kuopio, Finland

Postdocs
Kaisa Kurkinen
Heli Myöhänen
Jari Nissinen
Tamuna Bolkvaze

TechniciansChristine EinulaMerja LukkariJukka RantalaJarmo HartikainenRiikka Koskinen*

PhD-students
Laura Kontula
Irina Kharatishvili
Heli Karhunen
Cagri Yalgin
Xavier Ekolle Ndode-Ekane
Christine Einula
Jukka Rantala
Biikka Koskinon*

NMR Research Group at A.I.Virtanen Institute Olli Gröhn Jaak Nairismägi Riikka Koskinen Gene Transfer
Technology at
A.I.Virtanen Institute
Jarmo Wahlfors

Czech Academy of Sciences Hana Kubova

Funding

- Academy of Finland
- Sigrid Juselius Foundation
- The Finnish Technology Fund
- NIH/NINDS (R21 NS049525)
- EU (EpiCURE) (LSH-CT-2006-037315)
- CURE (USA)