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A Complex System with Myriad Feedbacks

Cloud €2 Aerosol

& Aerosol affects cloud radiative properties, precipitation

& Absorbing aerosol reduces cloud “aerosol absorption effect” (semi-
direct)

— Scavenging by rain
— Aqueous chemistry (inorganic + organic)

Cloud €<= Dynamics
& Convection
— Evaporation, precipitation

Cloud €= Radiation
< Longwave cooling, absorption

—> Indirect Effects @

Aerosol-Cloud-Dynamics-Radiation-Chemistry-Land-surface



What is NOAA ESRL’s Role?

To understand the fundamental processes at the micro-to-cloud scale

(um — 10s km) and to improve representation of aerosol-cloud interactions
in regional scale 2 GCM models

Predictive GCM
Regional/Global scale

! Forcing on regional and global scale
. (GFDL, ESRL)

t 1)

Mesoscale Models
Cloud resolving Models
Regional Models

10s km — 1000s km

Aerosol transport and its effect
on clouds (ESRL)

al : ]
o 3 R
= -y 1
= TRy, |
= % 7
- [ r
[ = l!\ . [ 0
.
BN
L — s ﬁ

Large Eddy Simulations;
microphysical models;

Process Models
~ 10s km

~>  Aerosol €-> cloud interactions
(ESRL)



Work in ESRL

IPCC Feedbacks
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Topics to be addressegxf IPCC Feedbacks
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Remote Sensing of Aerosol-Cloud Interactions: Satellite vs Surface

Satellite Surface
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Surface remote sensing avoids ambiguity of aerosol/cloud interface




Measurements of Aerosol-Cloud Interactions
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Aerosol-Cloud microphysical response and TOA

Radiative Forcing

Satellite remote-sensing
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Aerosol Index

e Some GCMs use satellite-
derived “slope” to represent
aerosol effects on clouds

e Errors in slope yield large
errors in forcing

e Weakest indirect forcing in
IPCC (2007) is associated
with satellite- derived
slopes
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Flux change resulting from CCN changing
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Diurnal average based on 100% cloud cover



Topics to be addressed IPCC Feedbacks
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Higher-order Indirect Effects (IPCC feedback)

More aerosol = more drops = less coalescence = less rain

- higher LWP 2 higher cloud fraction = longer lifetime

A monotonic response...

Cloud fraction
Cloud lifetime
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Higher-order Indirect Effects (IPCC feedback)

More aerosol = more drops = less coalescence = less rain
- higher LWP 9? higher cloud fraction =2 longer lifetime
? : ?

A non monotonic response...

Some satellite observations and our models suggest the sign of these
responses may not always be positive
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Why? Competing Aerosol effects on Cloud Microphysics

- Small droplets do not coalesce efficiently = less rain

VS.

- Small droplets evaporate faster than large ones g o« §
Ratio of timescales for evaporation (clean vs polluted) dt r

may be a factor of 5-10

- Microphysical feedbacks complicate the
simple monotonic response

- Rain, LWP, cloud fraction and lifetime responses
are not simply connected




Absorbing aerosol: the semi-direct effect

Non-monotonic response of

cloud optical depth to increase
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Aerosol-> Cloud—->Radiation: Model-Measurement
Comparisons during Houston 2006

Comparison of 100s of clouds
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Aerosol Effects on Cloud Morphology via Drizzle

Albedo

Garay et al. 2004, MISR
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Summary

Albedo Effect

- Significant improvement in understanding of
processes through observations and modeling;

- GCMs that use remote-sensing estimates of aerosol-
cloud interactions likely underestimate the
albedo effect.

Higher-Order Indirect Effects

- Improved understanding of complexity of feedbacks
in the coupled aerosol-cloud system;

- GCM representation of the higher order indirect
effects is inadequate since it prescribes an increase in
cloud lifetime and cloud fraction responses.




Future

Small Clouds

Further verification that small clouds behave
differently from large clouds

Exploration of Self-Regulation Mechanisms

Mixed-Phase Clouds

Precipitation
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