## **Aerosol-Cloud Interactions**

- Small-scale modeling
- In-situ measurements
- Surface-based remote sensing

**Graham Feingold** 

Hongli Jiang, Allison McComiskey, Hailong Wang Huiwen Xue

Contributions from many divisions in ESRL



## A Complex System with Myriad Feedbacks

#### Cloud $\leftarrow \rightarrow$ Aerosol

- ← Aerosol affects cloud radiative properties, precipitation
- ← Absorbing aerosol reduces cloud "aerosol absorption effect" (semidirect)
- → Scavenging by rain
- → Aqueous chemistry (inorganic + organic)

#### Cloud ← → Dynamics

- ← Convection
- → Evaporation, precipitation

#### Cloud $\leftarrow \rightarrow$ Radiation

- ← Longwave cooling, absorption
- → Indirect Effects



Aerosol-Cloud-Dynamics-Radiation-Chemistry-Land-surface

#### What is NOAA ESRL's Role?

To understand the <u>fundamental processes</u> at the micro-to-cloud scale  $(\mu m - 10s \text{ km})$  and to improve representation of aerosol-cloud interactions in regional scale  $\rightarrow$  GCM models

#### **Predictive GCM**

Regional/Global scale



Mesoscale Models
Cloud resolving Models
Regional Models
10s km - 1000s km





Forcing on regional and global scale (GFDL, ESRL)



Aerosol transport and its effect on clouds (ESRL)



Process Models





Large Eddy Simulations; microphysical models; Aerosol ←→ cloud interactions (ESRL)





## Remote Sensing of Aerosol-Cloud Interactions: Satellite vs Surface



Surface remote sensing avoids ambiguity of aerosol/cloud interface

### **Measurements of Aerosol-Cloud Interactions**





Define slopes as ACI:
<u>Aerosol-Cloud-Interactions</u>

Slope (ACI) is a measure of the magnitude of the cloud response to aerosol

Slope determined by: aerosol number conc., size/composition, updraft, etc.

Important to sort data by liquid water (Twomey)

$$ACI = \frac{\partial \ln \tau_d}{\partial \ln \alpha} \bigg|_{LWP}$$

$$ACI = -\frac{\partial \ln r_e}{\partial \ln \alpha}\Big|_{LWI}$$

$$ACI = \frac{1}{3} \frac{d \ln N_d}{d \ln \alpha}$$

$$\alpha$$
 = aerosol

McComiskey et al. 2008, SCu



0.42

**Aerosol Index** 

# Aerosol-Cloud microphysical response and TOA Radiative Forcing



- Some GCMs use satellitederived "slope" to represent aerosol effects on clouds
- Errors in slope yield large errors in forcing
- Weakest indirect forcing in IPCC (2007) is associated with satellite- derived slopes



Flux change resulting from CCN changing from 100 to 1000 cm<sup>-3</sup>; Diurnal average based on 100% cloud cover



## Higher-order Indirect Effects (IPCC feedback)

More aerosol  $\rightarrow$  more drops  $\rightarrow$  less coalescence  $\rightarrow$  <u>less rain</u>  $\rightarrow$  higher LWP  $\rightarrow$  higher cloud fraction  $\rightarrow$  longer lifetime

A monotonic response...



## Higher-order Indirect Effects (IPCC feedback)

More aerosol  $\rightarrow$  more drops  $\rightarrow$  less coalescence  $\rightarrow$  <u>less rain</u>  $\rightarrow$  higher LWP  $\rightarrow$  higher cloud fraction  $\rightarrow$  longer lifetime ?

A non monotonic response...

Some satellite observations and our models suggest the sign of these responses may not always be positive



## Why? Competing Aerosol effects on Cloud Microphysics

- Small droplets do not coalesce efficiently → less rain

VS.

- Small droplets evaporate faster than large ones Ratio of timescales for evaporation (clean vs polluted) may be a factor of 5-10

$$\frac{dr}{dt} \propto \frac{S}{r}$$

- Microphysical feedbacks complicate the simple monotonic response
- Rain, LWP, cloud fraction and lifetime responses are not simply connected

## Absorbing aerosol: the semi-direct effect

Non-monotonic response of cloud optical depth to increase in smoke aerosol



Aerosol concentration, cm<sup>-3</sup>

Modeling: Jiang and Feingold 2006



Absorbing aerosol suppresses clouds

**Columbia Shuttle** 



Observations: Koren et al. 2008

# Aerosol→Cloud→Radiation: Model-Measurement Comparisons during Houston 2006



- Generally good comparison between LES model and in-situ measurements: LWC, N<sub>d</sub>
- Also good comparison for irradiance (provided aerosol and cloud are included!)





NOAA, CalTech, CIRPAS, Univ. of Colorado collaboration

## **Aerosol Effects on Cloud Morphology via Drizzle**



# Summary

### Albedo Effect

- Significant improvement in understanding of processes through observations and modeling;
- GCMs that use remote-sensing estimates of aerosolcloud interactions likely underestimate the albedo effect.

## Higher-Order Indirect Effects

- Improved understanding of complexity of feedbacks in the coupled aerosol-cloud system;
- GCM representation of the higher order indirect effects is inadequate since it <u>prescribes</u> an increase in cloud lifetime and cloud fraction responses.

#### **Future**

Small Clouds

Further verification that small clouds behave differently from large clouds

Exploration of Self-Regulation Mechanisms

Mixed-Phase Clouds

Precipitation