MAR 2 3 1993

A' Brief. History of the Tower Shielding Facility and Programs

- Tower Shielding Facility
- Hoisting Equipment and Handling Pool
- Tower Shielding Reactor
- TSR-II Assembly and Outer Reflector
- Reactor Suspension System
- TSF-SNAP Reactor
- Big Beam Shield
- Experimental Programs
- Cask Drop Tests
- Conduct of Experiments
- Equipment and Material Used for Experiments
- Waste Generation and Disposal
- Future

TOWER SHIELDING FACILITY

α	Rui	lt 19:	51
()	ВШ	II 19:	า4

- O Purpose to enable studies of asymmetric shield configuration for the Aircraft Nuclear Propulsion Project
- O Requirements: Research in region *free* from ground and structure scattering of radiation *from* reactor.
- O Guyed steel structure 315 feet high
- O Conform to AISC specifications for steel buildings (1953)
- O Towers form a 100- by 200-ft rectangle
- O Unit weight of towers less than 400 lb/ft gives minimal safety factor for maximum load (1.7)
- O Maximum load 105 mph wind or 55 ton reactor shield raised 200 ft with 80 mph wind
- O Two-inch plow steel guys (16) stressed to 75,000 lbs each to minimize tower movement as loads are raised
- O Towers and guys electrically shielded by means of wire grounding net
- 0 Underground Control Building

HOISTING EQUIPMENT AND HANDLING POOL

- *O* 2 hoist control stations
- *O* 6 hoists:
 - 2 for reactor could raise 55 tons to 200 ft
 - 4 to move crew compartment to same elevation with different separation distance
- O Hoists in building away from towers
- 0 Pool for storing reactor in its 12-ft-diam tank is 20 ft x 20 ft x 25 ft
- O KTAM (Architech Engineer) defied operating limits of hoisting equipment
- 0 ORNL Quality Department developed testing methods and procedures
- O Two of the tower hoists were subsequently used in a Cask Drop Test Program for testing irradiated fuel shipping casks

Test pad Armour plate impact surface
71 tons ribar steel
600 tons cc ncrete

TOWER SHIELDING REACTOR

- 0 BSR in tank of water, power 100 kW
- 0 Position variable in tank
- O Capable of being operated suspended
- 0 Used for many experiments in a variety of shields
- 0 Raised power to 500 kW, pumped water from pool to cool reactor
- Needed higher reactor power and a radiation source that was closer to that from proposed Aircraft Nuclear Propulsion designs
- O Convair ASTR was brought to TSF and operated at elevated positions in 1958 to obtain radiation scattering data close to ground

TSF REACTOR AND J-57 JET ENGINE IN OPERATING POSITION.

TSR-II ASSEMBLY FABRICATED BY ORNL

- *O* Three region core (internal reflector, fuel annulus, and outer reflector)
- 0 Located in lower section of cylindrical aluminum tank with hemispherical bottom
- O Core supported by a central cylinder
- 0 Two pass cooling in core
- 0 Tank 8 ft long, 37 inch diameter, 3/4-inch-thick wall
- O Tank designed to ASME Boiler and, Pressure Vessel, I956 edition, Section VII, "Unfired Pressure Vessels"

OUTER REFLECTOR

- O Region surrounding fuel annulus but inside reactor tank
- O Presently consists of 3/4-in-thick aluminum shell 1/2 inch outside fuel elements followed by water
- O Gamma-ray shielding above upper central fuel elements is a permanent 2ft layer of lead shot and water penetrated by 133 helical tubes - for reactor cooling water flow
- O Shield plugs above annular elements made to match shield outside vessel
- O Shield and reflector descriptions and reactivity worths addended

Fig. 4.2. TSR-II elements assembled in a quarter sphere [a, inside view; b, external view).

Figure 4.3. Control Mechanism Housing

REACTOR SUSPENSION SYSTEM

- 0 Reactor support frame with rotating collar fitted with bayonnet connections
- O Platform, hoses, and cables suspended from tower hoists I and II
- O Collar can be rotated to pick up bare reactor tank or reactor tank and shield, and in one case, two nested shields (COOL I and COOL II)
- O Various shields provided different reactor spectrum
- O Shields inside pressure vessel also could be changed
- Used during 1960 with a spherical beam shield, Pratt and Whitney Asymmetric Shield, the COOL Shields, and the bare reactor tank
- 0 TSF SNAP Reactor also operated from 1964-1968

Fig. 3.5. Shield configuration.

©

Figure 11. Shield Handling Float

TSF Snap Reactor

- Designed by Atomics International (Al)
- Highly-enriched (approximately 93%) ²³⁵U fuel
- ZrH moderator alloyed with fuel
- Beryllium-reflected and controlled
- NaK-cooled
- Nominal power 10 kW (th)
- Fast leakage flux (>0.1MeV) 1 x 1 0¹⁵ n/cm² x 5 sec
- LiH SNAP-2 shield
- Critical experiment by TSF staff
- Assembly by ORNL
- NaK loading by TSF staff with Al adviser
- Operated alternately with TSR-II by TSF staff
- Reactor intact with NaK is at Y-12 with Be reflector and controls at the TSF

TSF -SNAP Reactor for Shielding Research.

:

Facilities Arrangement

BIG BEAM SHIELD

- O Completed in 1973
- O Shield is concrete 14 ft wide and 13 ft high, with an inner stainless steel tank filled with water and stainless steel slabs
- O Truncated shield leaves one side open for experimental purpose
- Track mounted lead shutter can be placed in *front of* reactor or moved to place a concrete slab with 30-in diam collimator opening in front of reactor
- O Shield has penetrations for control chambers
- O Aerial hoses disconnected and replaced with fixed ground mounted pipes and hoses
- O Sheet metal shed has been added to cover top of shield and reactor
- 0 Leakage flux outside collimator at 1 MW is $2 \times 10^{11} \text{ n/cm}^2/\text{s}$

Fig. 4.18. Top view of Tower Shielding Facility Reactor and Large beam collimator geometry.

Experimental Programs

- Tower Shielding Reactor
 - Basic ANP design data, for divided shield with detector in tank of water 5 ft, cube and reactor radiation as a function of azimuthal beam.
 - Two pi shield studies reactor & crew compartment.
 - GE-reactor shields test designed shield.
 - Compartmentalized shield.
 - SNAP mockup studies.

Convair ASTR

 Determine effectiveness of reactor and crew compartment shield from ground level to 200 ft.

Experimental Programs - Continued

TSF SNAP

- Measure leakage radiation.
- Eliminate scattered radiation and determine effectiveness of LiH shield.

. TSR-II

- Check design of P&W reactor crew shield and Boeing Crew Shield.
- Basic shield design studies of scattering and reflection.
- Determine effectiveness of Civil Defense Shelters.
- Determine effectiveness of NASA Silo Shields.
- Do parameter studies of Battle Vehicles for U.S. Army Ordnance Corp - COOL.

Experimental Programs - Continued

- Parameter studies for Gas Cooled Reactors.
- Parameter studies for Liquid metal Reactor latest being JASPER Program.
- Parameter studies for Naval vessels.

Cutaway View of Hole-Tunnel Configuration.

4 4 4 7 191

Figure 12. Schematic of SM1 plus shield configuration for Item IVM. Note: Lithiated paraffin covers lateral sides of configuration.

Cask Drop Tests

- Part of test facilities for Radioactive Material Transport Packages.
- Impact Pad (2nd)
 - 70 tons Rebar Steel
 - 600 tons concrete
 - Armour plate surface 8 ft x 20 ft.
- Punch Tests
 - 5 in. diam., steel punch welded to pad
- Lifting Capability
 - 35 ton (have dropped 23 tons 30 ft.) Could be doubled with modifications.
- Restricted to New Clean Casks.

Cask Drop Tests - Continued

- Have made 41 tests at TSF.
- DOE stopped testing in 1988 because of concern about shock damage to reactor.
- Testing may again be allowed since the reactor operation has been stopped.

OKNL PHOTO 5821-77

Fig. 3.3. Impact pad of the ORNL Drop Test Facility.

Impact of a 23 ton UF₆ package during a 9-m drop test. Results will serve as a basis for the Safety Analysis Report for Packaging (SARP).

Conduct of Experiments

- Experiments always conducted at the lowest power and in the shortest time possible to obtain data.
- Limitation were placed on the integrated dose reaching the perimeter fence:
 - Shall be minimum practical.
 - Shall be within DOE Radiation Protection Guidelines 5480.11.
 - Shall not exceed 100 mrem in any consecutive days.
- Even with no shielding around the elevated TSR-II tank, the above limits were not restrictive.
- Since 1973, operation of the TSR-II has been in the Big Beam Shield.
- Improved data taking equipment has greatly reduced operating power and time requirements.

Conduct of Experiments - Continued

- With reactor at maximum power of 1 MW and with beam fully open the dose rate at the west gate in the 600 ft. fence is only 20 mrem/hr.
- With a shielding experiment in place and the reactor operated at the power necessary to obtain data, the neutron dose rate at the edge of the configuration for a Bonner Ball measurement ran 230 mrem/hr, and for a Hornyak Button detector, 43.6 rem/hr.

Equipment and Material Used for Experiments and Maintenance

- Radioactive Calibration Sources
- Fuel elements (enriched U)
 - in reactor,
 - in experimental configurations,
 - in storage.
- Uranium
 - Depleted for experiments.
 - Normal for experiments.
- Iron and Stainless Steel
 - Induced activity in shielding material.
- Mixed Material
 - Control mechanisms.

Equipment and Material Used for Experiments and Maintenance - Continued

- Hazardous Material
 - Sodium Reuse 5' x 5' x I', 1 I'D x 5', 1 I'D x 2%
 - Lithium Hydride Reuse
 - Nak Y-12

Gasoline - Truck Use

- RCRA Materials
 - Lead
 - Cadmium

Waste Generation and Disposal

Liquid

- Demineralizer-regenerates
 - Drained to storage tank.
 - Trucked to laboratory for treatment.
 - Now use commercial vendor to supply resin and do not regenerate.

Solid Materials

- Metal
 - (AI-W) ~ 5' x 5' slabs are used over and over again.
 - Special shields partially radioactive storage for eventual disposal (aluminum, iron, lead, stainless steel).
- Concrete
 - Many configuration stored for reuse.

Waste Generation and Disposal

- Miscellaneous
 - Hoses
 - Paraffin
- Disposal
 - Minor disposal of material before 1985.
 - Between 1987 and 1991, 50 truckloads removed. Program now must fund disposal of items used.
- Fuel Elements
 - TSR elements returned for reprocessing.
 - Convair ASTR returned to Convair.
 - TSF SNAP stored at Y-12.
 - TSR-II Being maintained in reactor and in silo. Will be sent for reprocessing or to storage facility.
- Experimental Fuel
 - Return to suppliers in past what is on hand will be returned for disposal.

Future

- DOE ordered facility shut down in October 1992. Change of future operation low.
- Develop a Shutdown Plan by June 1993.
- When plans are formalized and funds available, remove fuel from facility.
- Characterize maintenance requirements and turn facility over to DOE for decommissioning.
- Comply with all regulations:
 - Federal
 - State
 - MMES
 - ORNL
 - Research Reactors Division