July 31, 2002

Chemical Warfare Agent (CWA) Simulant Program for Respirator Materials Resistance Testing

CWA simulant agents for testing of respirators and respirator systems are addressed separately for filtration and barrier materials. For filtration, the technologies governing use of simulants, mass transfer and absorbent capacity, are well understood. DMMP (dimethylmethylphosphate) is a good filtration simulant since it is relatively non-toxic, is easily detectable and has a volatility intermediate between GB and HD. Correlations between DMMP and GB or HD are well understood. Reports will be identified and made available to substantiate the use of DMMP as a filtration simulant for GB and HD. Additionally, Carbon Tetrachloride and Cyclohexane can be used as a GB and HD filtration simulant.

For barrier materials, the governing phenomenon relates to the chemical as well as physical interaction of materials. Because of this interaction, each barrier material needs to be considered individually to determine precise agents to simulant correlations. The ever expanding and evolving list of polymers and elastomers used as materials of construction for respirators makes a one on one correlation a never-ending task.

In order to address the requirement to identify simulant agents for test, manufacture and quality assurance uses with respirators, NIOSH has identified the following program activities:

1. Filtration:

- a. DMMP is identified as a test simulant for test and evaluation of filter canisters and cartridges against GB and HD.
- b. Correlation data for GB and HD testing with DMMP will be provided.
- 2. Barrier Materials:

a. A review of research and test information in Department of Defense databases has identified eleven simulants from both current and past work with GB and HD. As a result of the review and additional research, the SBCCOM and NIOSH personnel are considering the following list of candidates to be used as simulants for the GB and HD permeation study:

2-Chloroethyl phenyl sulfide 2-Chloroethyl cyclohexyl sulfide Di-n-butyl sulfide 1,6-Dichlorohexane Bis(4-chlorobutyl) ether Diethyl methanephosphonate Diethyl ethanephosphonate (DEEP) Diisopropyl methylphosphonate (DIMP) Dimethyl methanephosphonate (DMMP) 2,4-Dichlorophenol (DCP) Triethly phosphate (TEP)

Additional simulants may be added or deleted from this list as information evolves from the study. When using these or any other simulants, respirator manufacturers must take into account the toxicity of the simulants.

b. A summary matrix derived from the military database has been developed by the SBCCOM Agent Simulant Knowledge Advisory Office, dated February 20, 2002, identifying various barrier materials versus simulant breakthrough information. The matrix can be used as a screening tool to determine the overall protective characteristics of a barrier material. The matrix is attached as an enclosure.

c. Accessible publications used in compiling the data matrix will be identified for technical review. The publications combined with the matrix will in some cases provide useful information in screening and evaluating relative performance of barrier materials.

d. Specific CWA versus barrier material data, currently with restricted access, will be reviewed with an objective to make the information obtainable for general use. This will provide meaningful data concerning the protective properties of specific barrier materials against GB and HD.

e. A project has been initiated by NIOSH and SBCCOM to identify chemical compounds that can be used as simulants for GB and HD and a corresponding laboratory procedure using simulants that can be used by manufacturers for estimating GB and HD permeation through elastomeric materials. Investigations with military scientists will be continued in an effort to develop additional useable simulant information.

	А	В	С	D	E	
	Reference 1. Permeation Measurements of Chemical Agent Simulants Through Protective Clothing Materials, Taransankar Pal, Guy D. Griffin, Gordon H. Miller, Annetta P. Watson, Mary Lou Daugherty, and Tuan Vo-Dinh, Journal of Hazardous Materials, 33, (1993) 123-141 * Unclassified - unlimited distribution					
2						
3	Material Composition*	HD Simulant*	HD Comments*	GB Simulant*	GB Comments*	
4	Teflon/fiberglass/Teflon (10 mil)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time > 24 hr		MAL > 24hr	
5	Teflon Kevlar Teflon(Force Field) (17 mil)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time > 100 hr	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL > 100hr	DIMP>100hr;
6	THf/Mws/Thf (First Team)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time > 24 hr	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL > 24 hr	DIMP> 24hr;
7			Ref 1: Breakthrough Time > 24 hr	Diisopropylmethyl phosphonate (DIMP);	Ref 1: Breakthrough Time: MAL > 24hr	DIMP> 24hr;
8	Butyl/nylon/butyl (16 mil) (305 B/BA, 306 B/BA)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time > 24 hr	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL >24hr	DIMP> 24hr;
	Duct Tape (10 mil): Special Type For Hazardous Materials	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time > 7 hr	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL > 24hr	DIMP 210 min;
10	Viton polyester/Viton (9 mil) (305 B/BA, 306 B/BA)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time > 100 hr	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL > 100hr	DIMP 140min;
11	Tyvek QC, Polyethylene-coated (6 Mil)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time 30 min	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL 30min	DIMP 105min;
12	Barricade Chemical Barrier Fabric (21 mil)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time 60min	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL 90 min	DIMP 50 min;
13	Butyl Nitrile glove (Pioneer Gatorhide)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time 55min	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL 50 min	DIMP 60min;
14	Tyvek (Saranex-coated) (8 mil)		Ref 1: Breakthrough Time 90min	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL 12 min	DIMP 30 min;
15	Neoprene Plastic Glove		Ref 1: Breakthrough Time 10min	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL 10 min	DIMP 45min;
16	PVC/nylon/PVC (305 PVC/BA) (17 mil)	Dibutyl Sulfide (DBS)	Ref 1: Breakthrough Time 4min	Diisopropylmethyl phosphonate (DIMP); Malathion (MAL)	Ref 1: Breakthrough Time: MAL 3min	DIMP 10min;

	Α	В	С	D	E
17	Reference 2. Chemical Agent Simulants for Testing Transparent Materials, CRDEC-CR- 88069, Lewis, Randall, Liebman, Shirley A., and Isaccson, Louis, Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD 21010-5423, AD A197138 * Unclassified unlimited distribution		Ref 2: Possible problem: the simulant can roll-off the transparent material or evaporate at a non- uniform rate.		
18	Material Composition*	HD Simulant*	HD Comments*	GB Simulant*	GB Comments*
19	Polycarbonates		Ref 2: All caused crazing	Diisopropylmethyl phosphonate (DIMP); DiethylethylPhosphonate(DEEP); DimethylHydrogen Phosphonate(DMHP)	Ref 2: All caused crazing
20	Cast PMMA	2-chloroethyethyl sulfide (CEES), 2-chloroethylmethyl sulfide (CEMS); 1,5dichloropentane		Diisopropylmethyl phosphonate (DIMP); DiethylethylPhosphonate(DEEP); DimethylHydrogen Phosphonate(DMHP)	Ref 2: All caused crazing
21	Stretched PMMA	2-chloroethyethyl sulfide (CEES), 2-chloroethylmethyl sulfide (CEMS); 1,5dichloropentane		Diisopropylmethyl phosphonate (DIMP); DiethylethylPhosphonate(DEEP); DimethylHydrogen Phosphonate(DMHP)	Ref 2: All caused crazing
22	Polyurethane		crazing; 1,5 dichloropentane had no	Diisopropylmethyl phosphonate (DIMP); DiethylethylPhosphonate(DEEP); DimethylHydrogen Phosphonate(DMHP)	Ref 2: DIMP induced crazing: DEEP and DMHP did not induce crazing.
23	Reference 3. Determination of Permeation Breakthrough Times by Droplet and Minicams Testing, Bodnar, Stephen C., Sloan, James M., Gabriel, Karim M. Proceedings of the 1992 ERDEC Scientific Conference on Chemical Defense Research, 17-20 November 1992, AD 269-728, 799-803 * Unclassified- unlimited distribution				
24	Material Composition*	HD Simulant*	HD Comments*		
25	Butyl Rubber	2-chloroethyethyl sulfide (CEES), 2-chloroethylmethyl sulfide (CEMS); 3-	Ref 3: Breakthrough Times of 2- chloroethylmethyl (CEMS) more consistent to that of HD; 2- chloroethylethylsulfide (CEES) slightly shorter than HD; 3-chloropropylthioacetate longer than HD		

	Α	В	С	D	E
26	Reference 4. Interpretations of Simulant Breakthrough Time With Laminates of Rubber Materials, Anthony F. Wilde and Stephen C. Bodner, Proceedings of the 1994 ERDEC Scientific Conference on Chemical Defense Research, 15-18 November 1994, AD 313-080, 311-317. * Unclassified- unlimited distribution				
27	Material Composition*	HD Simulant*	HD Comments*		
28	Silicone/Silicone (45.6 mil avg)	2-chloroethyethyl sulfide (CEES)	Ref 4: Average Breakthrough times: 6.6 min		
29	Butyl/Silicone (44.0 mil avg)	2-chloroethyethyl sulfide (CEES)	Ref 4: Average Breakthrough times: 34.1 min		
30	Butyl/Butyl (33.4 mill avg)	2-chloroethyethyl sulfide (CEES)	Ref 4: Average Breakthrough times: 76.6 min		
31	Nitrile/Butyl (43.1 mil avg)	2-chloroethyethyl sulfide (CEES)	Ref 4: Average Breakthrough times: 106.7 min (3 tests) 88.8 min (7 tests)		
32	Nitrile/Nitrile (41.9 mil avg)	2-chloroethyethyl sulfide (CEES)	Ref 4: Average Breakthrough times: 48.5 min		
33	Reference 5. Prediction of Polymer-Liquid Interaction Based on Polymer Phase Diagrams: Bis(2-Chloroethyl)Sulfide Cohesion Parameter Predictions For Over One Hundred Materials, ERDEC-TR-306, Wendel J. Shuely, Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD 21010-5423, AD A310604* Unclassified- unlimited distribution	Ref 5. Very few commercial polymeric materials are predicted to be HD resistant.			
34	Material Composition*	Predicted Solubility in HD*			
35	Isobutylene Butyl Rubber	insoluble	Ref 5. Interaction of solubility/miscibility; a familiar resistant/protective polymer for HD.		
36	Teflon	insoluble	Ref 5. Interaction of solubility/miscibility; a familiar resistant/protective polymer for HD.		
37	Poly (vinylidene fluoride), TEDLAR	insoluble	Ref 5. Interaction of solubility/miscibility; a familiar resistant/protective polymer for HD.		
38	Polyvinyl Chloride(Vipla KR	not soluble in all proportions	Ref 5. Interaction of solubility/miscibility; tested and prediction affirmed.		
39 40	Nylon, Versamid 930	insoluble	Ref 5. Ref 5. Interaction of solubility/miscibility; tested and		
41	Polyisoprene Cariflex IR305 Chlorosulfonated polyethylene (Hypalon	not soluble in all proportions	prediction affirmed. Ref 5.		

	20,30,40)			
42	93 other materials	soluble in all proportions	Ref 5.	

	Α	В	С	D	E
43	Reference 6. Currently Available Permeability and Breakthrough data characterizing Chemical Warfare Agents and Their simulants in Civilian Protective Clothing Materials, Mary Lou Daugherty, Annetta P. Watson, and Tuan Vo- Dinh, Journal of Hazardous Materials, 30 (1992) 2343-267 open literature		Ref 6. There is a paucity of simulant permeability and breakthrough times data available. It is recommended to obtain this report as a document that gives some agent versus manufacturer trade name material data.		
44	Material Composition*	HD Simulant*	HD Comments*	GB Simulant*	GB Comments*
45	Chemrel			Malathion, 10%	Ref 6. Breakthrough Time; >360 min
46	Chemrel			Malthion, 60%	Ref 6. Breakthrough Time; > 240 min
47	Chemrel			Methyl Parathion,10 %	Ref 6. Breakthrough Time; > 360 min
48	Chemrel			Methyl Parathion,57 %	Ref 6. Breakthrough Time; >120 min
49	Teflon (ChemFAB Challenge 5100)			Naled	Ref 6. Breakthrough Time; >288 min
50	Teflon (ChemFAB Challenge 5100)			Ethion	Ref 6. Breakthrough Time; >204 min
51	Teflon (ChemFAB Challenge 5100)			Parathion	Ref 6. Breakthrough Time; >180 min
52	Natural Rubber (Edmont 36-124) (.51 mm)			Guthion	Ref 6. Breakthrough Time; >190 min
53	Neoprene (Edmont 29-865) (.51 mm)			Guthion	Ref 6. Breakthrough Time; >510 min
54	Nitrile (Edmont 37-175) (.46 mm)			Guthion	Ref 6. Breakthrough Time; >510 min
55	PVC (Edmont Canada)			Guthion	Ref 6. Breakthrough Time; >250 min
	Reference 7. Sorption of Sulfur Mustard and its Oxygen Analog in Black and Nonblack-Filled Butyl Rubber Membranes, Vinita Dubey, N.B.S. Rao, S.N. Maiti, A.K. Gupta, Journal of Applied Polymer Science, 69: 503-511, 1998 open literature				
57	Butyl Rubber Membranes	bis(2-chloroethyl) ether	Ref 7. Gravimetric method for permeation studies.		
58	Reference 8. <i>Diffusion and Sorption of Sulfur</i> <i>Mustard and Bis(2(chloroethyl)ether in</i> <i>Elastomers: A Comparative Study,</i> Vinita Dubey, A. K Gupta, Vinita Dubey,S.N. Maiti,				

	N.B.S. Rao, Journal of Applied Polymer Science, Vol 77, 2472-2479 (2000) open literature			
50			Ref 8. Diffuses faster than sulfur	
5.	Various Elastomers	bis(2-chloroethyl) ether	mustard.	
60)			

	А	В	С	D	E
61	GB Simulant*		HD / GB Simulant*		
	9. Diisopropylfluorophosphonate (DFP) has been used as a vapor simulant for GB.*		10. Methyl Salicylate (MS, MES) has been used as a vapor simulant for HD and GB.*		
63					
64	* Disclaimers and Comments Disclaimer: While the Edgewood Chemical Biological Center, Department of the Army			Comments	
	believes that the data contained herein are factual and the opinions expressed are those of qualified experts regarding the results of the tests conducted, the data is not to be taken as warranty or representation for which the Department of Army or Edgewood Chemical Biological Center assumes legal responsibility. They are offered solely for your consideration, investigation, and verification. Any use of this data and information must be determined by the user to be in accordance with applicable Federal, State, and Local law regulations. The simulant information provided is not to be used as a recommendation of any simulant. The data is for informational use only. The findings are not to be construed as an official Department of the Army position unless so designated by other authorizing documents. We make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability	Center be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if the Department of the Army or Edgewood Chemical Biological Center has been advised of the possibility of	Disclaimer: Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or	agents were tested directly against the materials; and data is available on the effects of HD and GB versus materials.	 d. CEES and CEMS evaporate more quickly than HD. Therefore, if one used CEES or CEMS as a HD liquid droplet simulant, a barrier may be needed to prevent CEES and CEMS evaporation. e. It may be necessary to use more than one simulant for an agent: one simulant for the vapor challenge and another simulant for the liquid challenge.
66					
-	Simulant	CAS Registry Number	Simulant	CAS Registry Number	
68					
	CEES		DIMP	1445-75-6	
_	DBS		MAL	121-75-5	
	DEEP		MS, MES	119-36-8	
	DFP	55-91-4			
73					