Climate Friendly Technologies

FutureGen

- Multiple products
 - Electricity
 - Fuels/Chemicals
 - H2 for transportation
 - Process Heat
- Multiple benefits
 - Higher efficiency
 - Near ZeroEmissions
 - Enhanced EnergySecurity

FutureGen Report to Congress

FutureGen:

 \$1Billion Cost-shared, Coal-Based, Zero-Emission Electricity and Hydrogen Production Power Plant,
 275 MW Nominal Capacity

Objectives:

- Establish Technical Feasibility and Economic
 Viability of Producing Electricity & Hydrogen from
 Coal with Near-Zero Emissions
- Verify Sustained Operation with Carbon Sequestration
- Verify Effectiveness, Safety and Performance of Carbon Sequestration
- Establish Standardized Technologies for MMV
- Gain Acceptance by Stakeholders for the Concept

http://www.fossil.energy.gov/programs/powersystems/futuregen/futuregen_report_march_04.pdf 3

Clean Coal Awards

- 10-year, \$2 Billion Clean Coal Power Initiative.
 - Pegasus Project: Advanced Multi-pollutant Controls
 - \$6.1 Million From DOE to Support the Proposed \$12.2 Million Project.
 - Mesaba Project: Next Generation of IGCC Power Plants
 - Construct and Operate the 531-MW Mesaba Energy Project
 - \$36 Million in DOE Funds for Support of a \$1.18 Billion Project
 - Florida Clean Coal Plant: Air-blown IGCC Power Plant
 - Construct a 285-MW Coal-based
 - DOE Will Contribute \$235 Million to the \$557 Million Demonstration Project
 - Peabody Mustang Clean Coal Project
 - Demonstration of the Advanced Scrubber and Fertilizer Production Systems
 - DOE Will Provide \$19.7 Million for the \$79 Million Project
- FY 2005 Budget Request includes \$328 Million for Clean Coal Research including FutureGen

4

Sequestration

Carbon Sequestration Roadmap

- Sequestration Program Encompasses
 All Areas of Carbon Sequestration
 - CO₂ Capture
 - Sequestration/ Storage
 - Monitoring, Mitigation, & Verification
 - Breakthrough Concepts
 - Non-CO₂ GHGs
 - Infrastructure Development
- Carbon Sequestration Planned to Play a Major Role in Future GHG Emissions Reduction Needs

http://www.fe.doe.gov/programs/sequestration/publications/programplans/2004/SequestrationRoadmap 4-29-04.pdf

Regional Carbon Sequestration Partnerships and the CSLF

- 7 Regional Partnerships
- Validating and Demonstrating Sequestration Technologies
- Studying Sequestration Approaches Best Suited for Specific U.S Regions
- Studying Regulatory and Infrastructure Requirements

 16 Int'l CSLF Partners + EU Will Share in Results

Carbon Sequestration Awards

- DOE Selects Eight Innovative Projects to Capture and Store Carbon Dioxide from Power Plants
 - Projects Have a Total Cost of Nearly \$4.6 Million Over Three Years
 - Four Projects Will Focus on Advanced Separation Techniques to Capture Carbon Dioxide and Hydrogen From Fossil-Fueled Power Plants.
 - Three Will Focus on Advanced Separation Techniques, and Geochemical Methods for Sequestering Carbon
 - One Will Investigate Novel Concepts Involving CO2 Recycling and Products
- FY 2005 Budget Request includes \$87 Million for Carbon Capture and Sequestration Research

Hydrogen Fuel Initiative

Hydrogen Posture Plan

- Hydrogen R&D Activities --Focused Hydrogen Program
 - Will Integrate Technology for:
 - Hydrogen Production
 - From Fossil, Nuclear, and Renewable Resources
 - Infrastructure Development
 - Including Delivery and Storage
 - Fuel Cells for Stationary and Transportation Applications
- Technical Milestones on the Road to a Hydrogen Economy

http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen posture plan.pdf

Hydrogen Program Awards

- Award of \$350 Million in Hydrogen Research Projects
 - Nearly One-Third of the President's \$1.2 Billion Commitment to Hydrogen and Fuel Cell Technology Research
 - Exploratory Research in Hydrogen Storage: Three "Centers of Excellence" \$ 150 Million
 - Vehicle and Infrastructure "Learning Demonstrations": DOE Share Is \$190 Million over 5 Years, Private Cost Share of Approximately \$190 Million.
 - Fuel Cell Research Projects: the DOE Share Is \$13 Million Dollars over 3 Years. Private Cost Share of Approximately \$10 Million.
 - Hydrogen Technology Education Projects to Broaden Awareness of Hydrogen's Benefits Among the General Public.
- FY 2005 Budget Request includes \$344 Million for Hydrogen and Fuel Cell Research including Deployment

Energy Efficiency – Largest Investment Area

- DOE RDD&D EE Investments:
 - \$ 346 M RD&D *
 - \$ 453 M Deployment
- Other Federal EE Investments:
 - EPA \$ 110 M
 - NASA \$ 209 M
 - DOT \$ 2 M
 - USAID \$ 154 M
- Investment Tax Incentives:
 - \$ 384 M (Mostly Transportation)
- Total = \$ 1,658 M
- Largest Category of CCTP Investments

Zero Net Emission Buildings

Compact Florescent Light Bulbs

Hybrid Vehicles

12

* \$77.5M Fuel Cell RD&D Not Included – Included in Hydrogen Area

Energy Efficiency Awards

- DOE and States to Spend \$17 Million on Joint **Energy-Efficient Projects**
 - 13 Projects:
 - Managed by National Association of State Energy Officials
 - Under DOE's Innovative State Technologies Advancement **Collaborative (STAC)**
 - Effort Involves Participants From 31 States
 - Example Projects:
 - Development of a Strategy for Increasing Efficiency in **HVAC** Systems in the Northeast;
 - Development of a Total Energy Assessment Audit Protocol for the Chemical Industry; And
 - **Demonstration of Truck Stop Electrification for Reducing Idling From Heavy-duty Vehicles**

Renew. Energy – 2nd Largest Investment Area

- DOE RDD&D RE Investments:
 - \$ 250 M RD&D
 - \$ 30 M Deployment
- Other Federal RE Investments:
 - USDA \$ 33 M
 - NSF \$ 4 M
- Investment Tax Incentives:
 - \$ 365 M (Mostly Wind)
- Total = \$ 682 M
- Next Largest Category of CCTP Investments

^{** \$4.5}M Hydrogen Deployment Not Included – Included in Hydrogen Area

^{* \$90.8}M Hydrogen RD&D Not Included – Included in Hydrogen Area

Renewable Energy Awards

- DOE Announces Industry Partnerships to Expand Wind Energy Potential
 - GE Energy Receives \$1.3 Billion in U.S. Wind Turbine Orders
- DOE Supports Seven States in Effort to Install 1000 MW of <u>Concentrating Solar Power</u> Systems.
- DOE and USDA Award \$25 Million in Joint <u>Biomass</u> Research and Development Initiative to 22 Selected Projects

Nuclear Energy

Generation I

Early Prototype Reactors

- Shippingport
- Dresden, Fermi
- Magnox

Generation II

Commercial Power Reactors

- LWR-PWR, BWR
- CANDU
- VVER/RBMK
- AGR

Generation III

Advanced LWRs

- ABWR
- System 80+
- AP600
- EPR

Generation III+

The Evolution of Nuclear Power

Generation III
Evolutionary
Designs Offering
Improved
Economics

Generation IV

- Highly Economical
- Enhanced Safety
- Minimize
 Wastes
- Proliferation Resistant

http://gen-iv.ne.doe.gov/

Nuclear Power Awards

- Awards to Two Nuclear Utility-led Consortia Under the Nuclear Power 2010 Program
 - DOE will begin the first phase of Nuclear Plant Licensing Demonstration projects with industry teams led by
 - Dominion (Virginia) Advanced CANDU Reactor (ACR-700)
 - NuStart Energy (Pennsylvania) Westinghouse Advanced Passive Pressurized Water Reactor (AP-1000)
 - Demonstrate the Nuclear Regulatory Commission (NRC)
 Process for Licensing the Construction and Operation of New Generation III+ Nuclear Power Plants
- FY 2005 Budget Request includes \$313 Million for Nuclear Fission Energy Research including Deployment

Fusion Energy

ITER

- Negotiations On-Going Over Site
 - Rokkasho or Cadareche
- US Rejoined ITER in January 2003
 - ITER FY05 Request \$38M
- Goals
 - 500 MW for 500-2,500 Seconds
 - Commercialization by 2050

Fusion Science

- Demonstrate Burning Plasmas
- Understand Plasma Behavior
- Determine Approaches and Configurations
- Develop New Materials

Stellarator, **Princeton Plasma Physics Laboratory** http://www.pppl.gov/

Fusion Energy Awards

- DOE Funds Fusion Science Centers at University of Maryland/UCLA, and at University of Rochester
 - Universities Will Establish Academic Centers of Excellence That Will Focus on Fundamental Issues in Fusion Plasma Science, Including:
 - Research in Areas of Such Wide Scope and Complexity Not Feasible for Individual or Small Groups of Researchers.
 - Strengthen the Connection Between the Fusion Research Community and the Broader Scientific Community.
 - Education and Training.
 - Total DOE Funding for the Two Centers over Their Five-year Duration Is Expected to be Nearly \$12 Million.
- DOE Also Funds Princeton, MIT, and Gen. Atomics
- FY 2005 Budget Request includes \$264 Million for Fusion Energy Research, including \$38 M for ITER

UNFCCC Signatories Have A Unique S&T Opportunity ...

- Engage in Cooperative S&T Action, Guided by a Long-View
- The 20th Century Evidenced An Outstanding Historical Record of Technological Achievement, Often on a Grand Scale:
 - From Agricultural Production to the Industrial Revolution
 - From Exploration of Space to the Curing of Diseases
- Key Challenges for the 21st Century -- Water, Food, Health, Economic Development, *including* Climate Change -- Will Find Energy and Related S&T as Powerful & Enabling Means for Goal Achievement
- Sustained Leadership in S&T Can Enable the World To:
 - Bring on the Technologies Required to Meet These Challenges
 - Do So Within Reasonable Means, and at Lower Costs
 - Sustain Economic Growth and Human Development, and
 - Move Toward Near Net-Zero Emissions in the 21st Century
- U.S. is Investing Seriously, With a Deliberate Strategy, But Needs Help

