

Grand Challenges in Climate Change Research

Grand Challenges in Science for Guiding Climate Change Mitigation and Adaptation

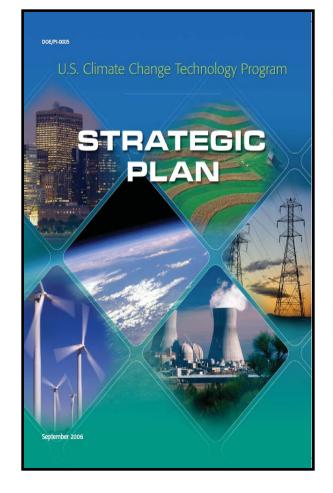
Dr. Robert C. Marlay Deputy Director, U.S. Climate Change Technology Program Office of Policy and International Affairs U.S. Department of Energy robert.marlay@hq.doe.gov

For Workshop of Leading Experts Organized by the Biological and Environmental Research Advisory Committee (BERAC)

> 25 - 27 March 2008 Washington, DC

Overview

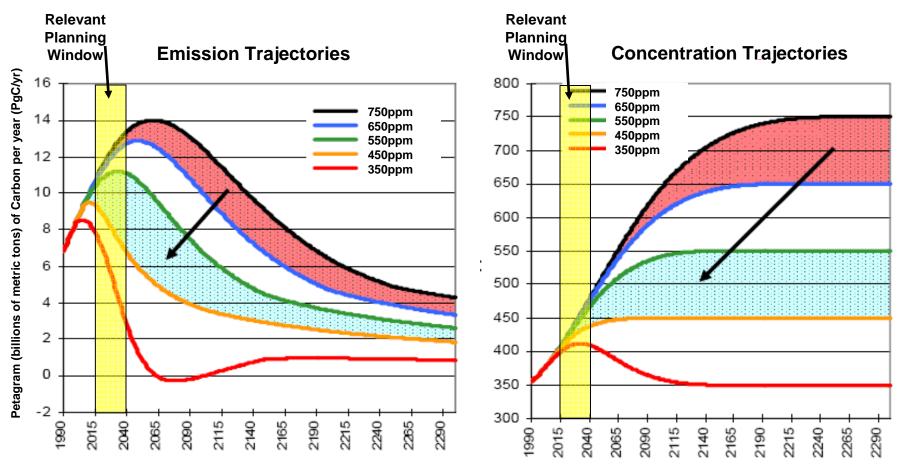
- U.S. Climate Change Technology Program
- Interfaces Between CCTP and CCSP
- CCTP Grand Challenges
 - 1. Inform the Pace of Technology Development & Deployment
 - 2. Illuminate Trade-Offs Among Response Strategies
 - 3. Inform Decision-Making at Appropriate Levels of Governance
 - 4. Identify Key Interactions Between Natural and Human Systems
 - 5. Organize Integrated Systems Architecture for Measurement & Verification
 - 6. Explore the Means and Consequences of "Back-Stop" Options
- Summary: CCTP Grand Challenges Mapped onto Workshop Breakouts


U.S. Climate Change Technology Program

U.S. Climate Change Technology Program

- Mission Accelerate RD&D on Adv. CC Techs
- Scope Ten Federal R&D Agencies
- Budget -- \$4.4 Billion Requested for FY'09
- Activities Coord. RD&D Planning & Budgeting

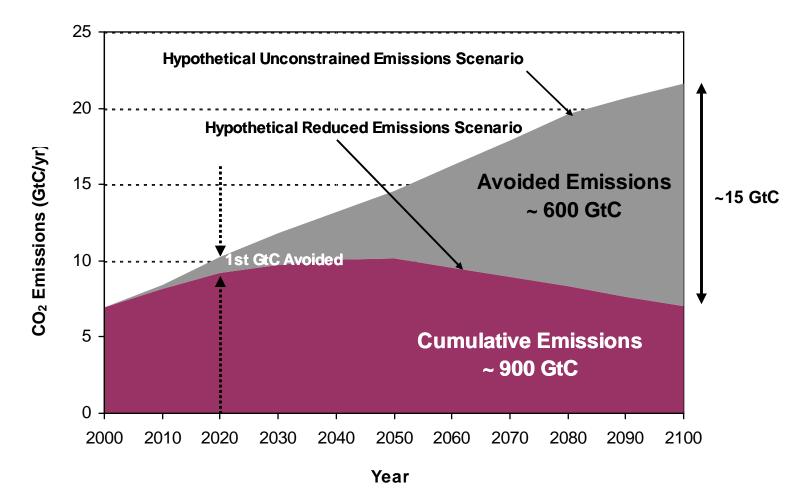
Goals:


- Four emissions-related strategic goals:
 - Reduce emissions from energy end use & infrastructure;
 - ✓ Reduce emissions from energy supply;
 - ✓ capture & sequester CO_2 ; and
 - ✓ Reduce emissions from non-CO₂ gases.
- Two cross-cutting, supporting strategic goals:
 - Improve capabilities to measure & monitor GHGs; and
 - ✓ Bolster basic science and strategic research.
- > CCTP Authorized in *EPAct2005,* Led by DOE

www.climatetechnology.gov

Long-Term Goals Require Near-Term Actions

Emission and concentration trajectories based on current funding profile for technology investments

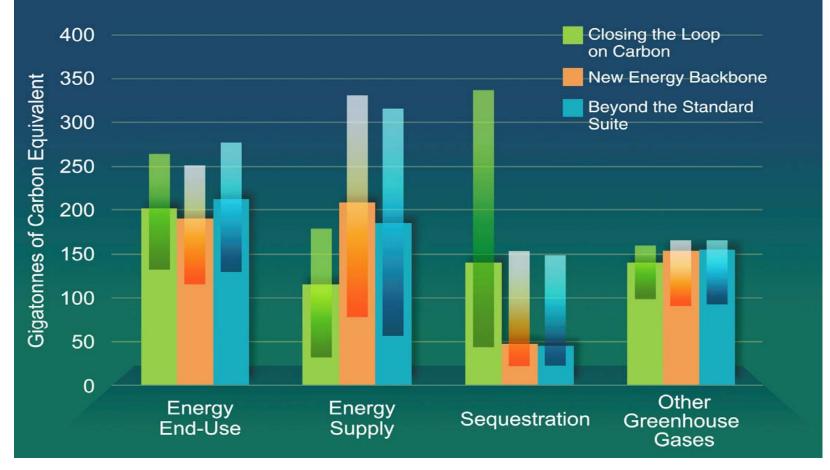


Potential carbon reductions based on proposed technology investments

Action period to influence longer-term outcomes

Mid-Range Example of A Reduced GHG Emissions Future

GtC = Giga-Tonnes Carbon Giga-Tonne = Billion (10⁹) Metric-Tonnes (1000 Kilograms)


How Big is a Gigaton? Using U.S. Technology,* These Actions Can Cut Emissions by 1 GtC/Year

Today's Technology	Actions that Provide 1 Gigaton / Year of Mitigation		
Coal-Fired Power Plants Build 1,200 "zero-emission" 500-MW coal-fired power plants (in lieu of coal-fired plant CO ₂ capture and storage) (73% CF)			
Geologic Sequestration	Install 3,700 sequestration sites like Norway's Sliepner project (0.27 MtC/year)		
Nuclear	Build 500 new nuclear power plants, each 1 GW in size (in lieu of new coal-fired power plants without CO_2 capture and storage) (90% CF)		
Electricity from Landfill Gas Projects	Install 28,000 "typical" landfill gas electricity projects (3 MW projects at non-regulated landfills) that collect landfill methane emissions and use them as fuel for electric generation.		
Efficiency Deploy 1 billion new cars at 40 miles per gallon (mpg), instead of new cars at 20 mpg (a 12,000 miles per year per car)			
Wind Energy	Install 650,000 wind turbines (1.5 MW each, operating at 0.45 capacity factor) in lieu of coal-fired power plants without CO_2 capture and storage.		
Solar Photovoltaics	Install 6 million acres of solar photovoltaics to supplant coal-fired power plants without CO_2 capture and storage (10% cell DC eff'cy; 1700 kWh/m2 solar radiance; 90% DC-AC conv. eff'cy).		
Biomass fuels from plantations	Convert to biomass crop production a barren area about 20 times the total land area of Iowa (about 700 million acres)		
CO ₂ Storage in New Forest.	Convert to new forest a barren area about 9 times the total land area of the State of Washington (nearly 400 million acres) (Assumes Douglas Fir on Pacific Coast)		

Integrated Results

Potential Contributions to Emissions Reduction

Source: Placet M; Humphreys, KK; Mahasenan, NM. Climate Change Technology Scenarios: Energy, Emissions and Economic Implications. Pacific Northwest Nation Laboratory, PNL-14800, August 2004. Available at: http://www.pnl.gov/energy/climatetechnology.stm. Image updated: April 2006

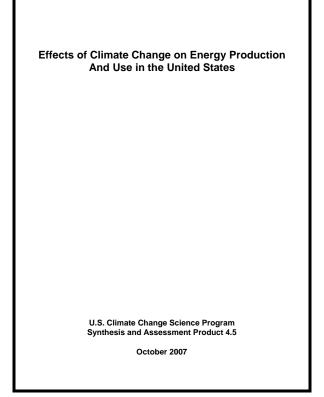
Roadmap for CC Technology Development

	NEAR-TERM	MID-TERM	LONG-TERM
GOAL #1 Energy End-Use & Infrastructure	 Hybrid & Plug-In Hybrid Electric Vehicles Engineered Urban Designs High-Performance Integrated Homes High Efficiency Appliances High Efficiency Boilers & Combustion Systems High-Temperature Superconductivity Demonstrations 	 Fuel Cell Vehicles and H₂ Fuels Low Emission Aircraft Solid-State Lighting Ultra-Efficient HVACR "Smart" Buildings Transformational Technologies for Energy-Intensive Industries Energy Storage for Load Leveling 	 Widespread Use of Engineered Urban Designs & Regional Planning Energy Managed Communities Integration of Industrial Heat, Power, Process, and Techniques Superconducting Transmission and Equipment
GOAL #2 Energy Supply	 IGCC Commercialization Stationary H₂ Fuel Cells Cost-Competitive Solar PV Demonstrations of Cellulosic Ethanol Distributed Electric Generation Advanced Fission Reactor and Fuel Cycle Technology 	 FutureGen Scale-Up H₂ Co-Production from Coal/Biomass Low Wind Speed Turbines Advanced Biorefineries Community-Scale Solar Gen IV Nuclear Plants Fusion Pilot Plant Demonstration 	 Zero-Emission Fossil Energy H₂ & Electric Economy Widespread Renewable Energy Bio-Inspired Energy & Fuels Widespread Nuclear Power Fusion Power Plants
GOAL #3 Capture, Storage & Sequestration	 CSLF & CSRP Post Combustion Capture Oxy-Fuel Combustion Enhanced Hydrocarbon Recovery Geologic Reservoir Characterization Soils Conservation Dilution of Direct Injected CO₂ 	 Geologic Storage Proven Safe CO₂ Transport Infrastructure Soils Uptake & Land Use Ocean CO₂ Biological Impacts Addressed 	 Track Record of Successful CO₂ Storage Experience Large-Scale Sequestration Carbon & CO₂ Based Products & Materials Safe Long-Term Ocean Storage
GOAL #4 Other Gases	 Methane to Markets Precision Agriculture Advanced Refrigeration Technologies PM Control Technologies for Vehicles 	 Advanced Landfill Gas Utilization Soil Microbial Processes Substitutes for SF₆ Catalysts That Reduce N₂O to Elemental Nitrogen in Diesel Engines 	 Integrated Waste Management System with Automated Sorting, Processing & Recycle Zero-Emission Agriculture Solid-State Refrigeration/AC Systems
GOAL #5 Measure & Monitor	Low-Cost Sensors and Communications	 Large Scale, Secure Data Storage System Direct Measurement to Replace Proxies and Estimators 	• Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)

Interfaces Between CCTP and CCSP

Interface Between CCTP and CCSP

CCTP-CCSP Issues Intersect


- Informing the Pace of Technology Development
- Linking GHG Emission Rates to the Timing of Impacts & Vulnerabilities
- Identifying Effects of Climate Variability and Change on Energy Production and Use
- Science of Carbon Sequestration Options
- Integrated Systems Architecture for Measuring, Reporting, and Verification
- Characterizing Regional Impacts in the U.S.
- Adaptation/Infrastructure Planning
- Ecological and Environmental Impacts of Mitigation & Adaptation Technologies
- Ocean Acidification
- Geo-Engineering
- Support Joint Mechanism to Aid Coordination Between CCTP & CCSP

Effects of Climate Change on Energy Production and Use in the United States*

- End-Use (Effects Differ by Region)
 - Reductions in Energy Demand for Space Heating in Buildings
 - Increases in Energy Demand for Space Cooling in Buildings
 - Lower net Energy Requirements for Buildings in net Heating Areas
 - Higher net Energy Requirements for Buildings in net Cooling Areas
- Production and Supply (Effects Differ by Region)
 - Changes in Water Availability will Affect Power Plants
 - Temperature Increases will decrease Overall Generation Efficiency
 - Energy Production and Delivery are Vulnerable to Effects of sea

Level Rise and Extreme Weather Events

http://www.climatescience.gov/Library/ sap/sap4-5/final-report/default.htm

* Synthesis and Assessment Product 4.5, Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, October 2007

Grand Challenge #1 --

Inform the Pace of Technology Development & Deployment

Technology Strategy

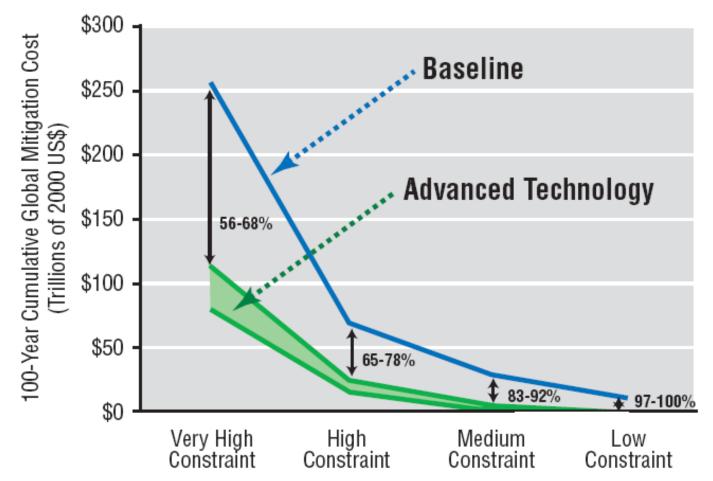
"Energy security and climate change are two of the great challenges of our time. These challenges share a common solution: technology."

President George W. Bush Major Economies Meeting September 28, 2007

- Key Technology Elements
 - Coal -- De-Carbonize the Grid
 - » Nuclear Power
 - » Low-Emission Coal Power
 - » Renewable Power
 - Cars -- Transform Cars/Trucks Toward New Fuels
 - » Hybrid & Electric Vehicles
 - » Alternative Fuel Vehicles & Bio-Based Fuels
 - » Alternatives, including Other Modes
 - Efficiency (All Sectors)
 - Other GHGs
 - Enablers
 - » CO₂ Capture and Storage
 - » Modernized Grid
 - » Energy Storage, Large and Small Scale
 - » Strategic and Exploratory Research
- Supporting Policies to Promote Deployment
 - Financial Incentives
 - Fuel Mandates
 - Codes, Standards, Labeling
 - Transparent System for Measuring Progress
- Via U.S. Climate Change Technology Program
 - Strengthen Federal R&D Portfolio
 - Prioritize Investments
- Expand R&D Cooperation with non-Federal Entities

Timing

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	2010 - 2020	2030 - 2040	2030 - 2050	2040 - 2060
Goal #2: Reduce Emissions from Energy Supply	2020 - 2040	2040 - 2060	2050 - 2070	2060 – 2100
Goal #3: Capture and Sequester Carbon Dioxide	2020 - 2050	2040 or Later	2060 or Later	Beyond 2100
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	2020 - 2030	2050 - 2060	2050 - 2060	2070 - 2080


Estimated timing of advanced technology market penetrations, as indicated by the first GtC-eq./year of incremental emissions mitigation, by strategic goal, across a range of hypothesized GHG emissions constraints.

Source:: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

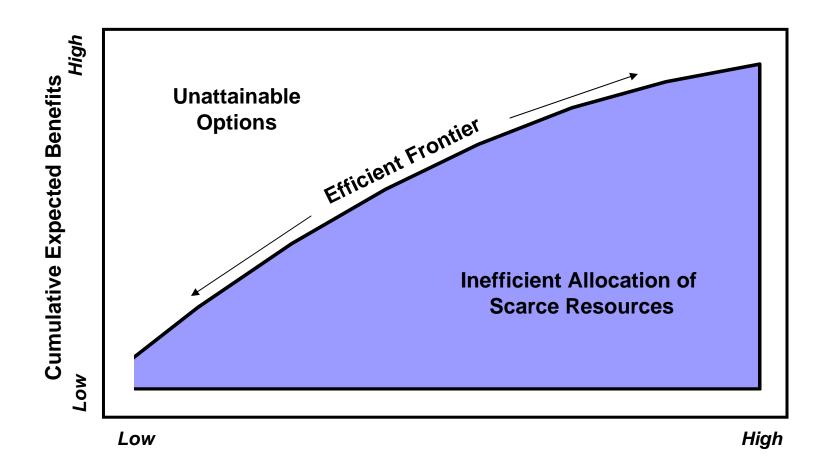
Cost – 100-Year Reductions

Comparative Analysis of Estimated Cumulative Costs Over the 21st Century of GHG Mitigation, With and Without Advanced Technology, Across a Range of Hypothesized GHG Emissions Constraints.

Historical Perspective on DOE Spending

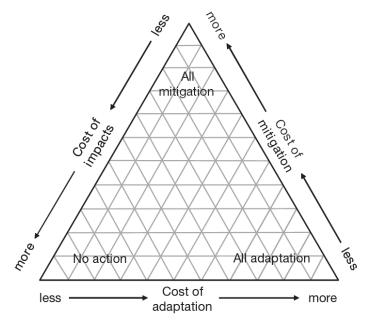
Grand Challenge #2 --

Illuminate the Trade-Offs Among Response Strategies


Response Strategies -- Cost-Benefit Trade-Offs

Cost of Mitigation & Adaptation

Framework for Assessing Marginal Benefits of Damage Avoidance or Risk Reduction



Cumulative Costs of Mitigation & Adaption Strategies

Response Strategies

- Mitigation¹
- Adaptation²
- Impacts -- Some Suffer; Some Benefit
- Trade-Offs Among These Options are Poorly Informed by Science, Economics or Analysis
- Grand Challenge: Illuminating the Efficacies and Trade-Offs Among Mitigation, Adaptation and Impacts
- Need Work on Framework for Assessing Marginal Benefits of Damage Avoidance³

A schematic overview of inter-relationships between adaptation, mitigation and impacts, based on Holdridge's life-zone classification scheme (Holdridge, 1947, 1967; M.L. Parry, personal communication)

¹ Mitigation: An anthropogenic intervention to reduce the sources or enhance the sinks of greenhouse gases (IPCC, 2001a)

² Adaptation: Adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities (IPCC, 2001a

³ See Chapter 18, Working Group II, IPCC Fourth Assessment Report

Grand Challenge #3 --

Inform Decision-Making at Appropriate Levels of Governance

Governance Levels

Response Strategy	Participation	Effects*	Costs	
Mitigation Global		Global	Local	
Adaptation	Local	Local	Local	
No Action	Local	Local	Local	

Global: International agreements and ensuing National public policy, possibly complemented by unilateral and/or voluntary actions at regional, State or local levels Local: Private actions of affected entities Including individual households, farmers and private firms, and public arrangements of local, state, and regionally impacted communities possibly complemented by National policies.

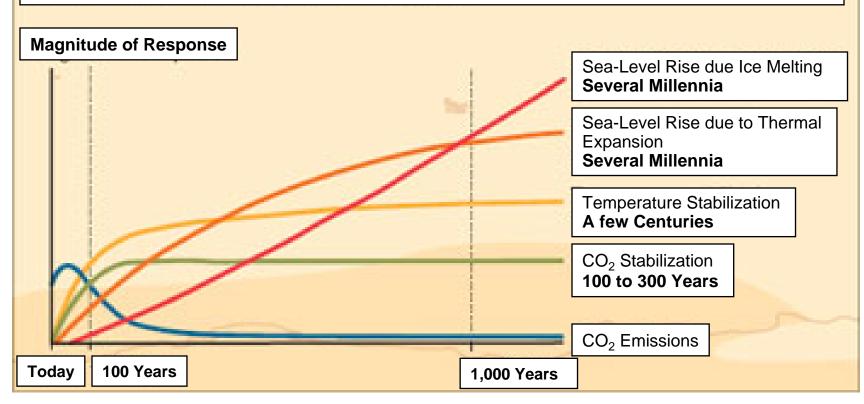
* Benefits of Avoided Damage of Reduced Risks & Other Effects

Risk Management *

- Historical Approach:
 - Past as a Guide for the Future
- Approach Needed to Address Climate Change Impacts
 - Future will no Longer Resemble the Past
 - New Strategies for Developing Resilience to Climate Variability and Extreme Weather Events Needed
 - Well-Considered Assumptions About Regional Conditions Should be Incorporated into Regional Planning
 - Studying Different Regions with Different Conditions will Provide Insights and Methods for Assessing Other Regions
- Need to Inform Local Decision-Making
- Need for Capacity to Provide Technical Assistance to States, and Local, Regional, and Intergovernmental Organizations

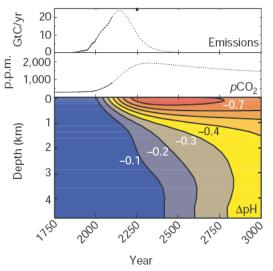
^{* &}quot;Regional Impacts of Climate Change," Pew Center on Climate Change, December 2007

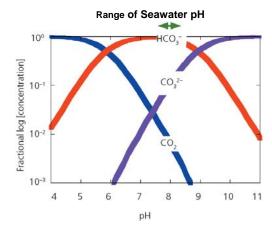
Grand Challenge #4 --


Identify Key Interactions Between Natural and Human Systems

Time to Equilibrium

Time to Equilibrium


Climate-change experts predict that even when GHG emissions are curtailed, their effects on the environment will continue to be felt for hundreds, if not thousands, of years.



Ecosystem Interface --Ocean Acidification as one Example

- Authoritative Works Indicate:
 - Oceans are Absorbing CO₂ Produced From Human Activities and Causing Chemical Changes Which Make Them More Acidic
 - Reduction in Ocean pH will Negatively Impact Marine
 Organisms and Ecosystems and Associated Food Chains
 That Depend Upon Them
 - Chemical Effects of CO₂ on The Marine Environment may be as Great a Cause for Concern as Radiative Effects of CO₂ on Earth's Climate and Surface Environment
 - At This Time Reducing the Scale of Future Changes to the Chemistry and Acidity of the Oceans is Only Possible by Preventing the Accumulation of CO₂ In Atmosphere.
 - Ocean Acidification is a Compelling Reason, in Addition to Climate Change, for Reducing Global CO₂ Emissions.
- What Other "Compelling" Reasons are Most Important for Consideration ?

"Anthropogenic carbon and ocean pH" Caldeira and Wickett, LLNL, "Nature," 2003

"Ocean acidification due to increasing atmospheric carbon dioxide," The Royal Society, London, UK, 2005

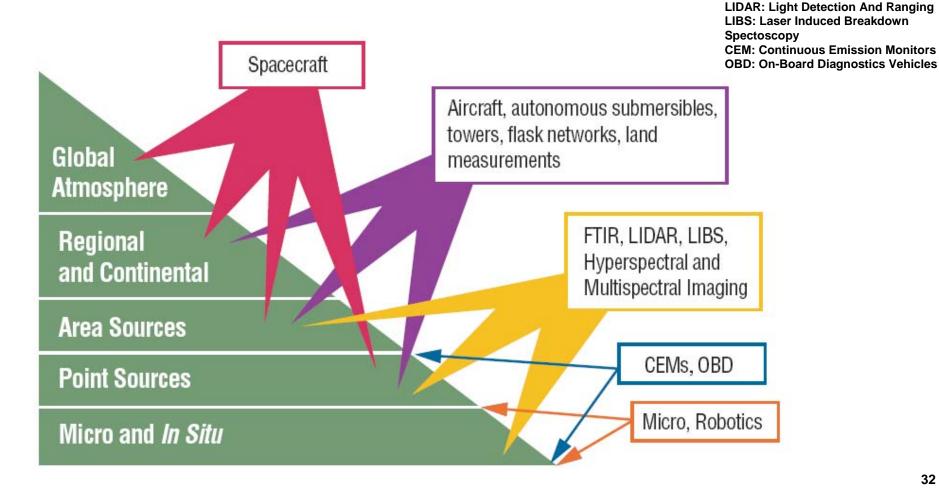
Grand Challenge #5 --

Organize Integrated Systems Architecture for Measurement & Verification

Enhancing Capabilities to Measure and Monitor Greenhouse Gases

- Measurement and Monitoring (M&M) Systems Will Be Needed to:
 - Assess Efficacy and Sustainability of Important Strategies
 - Guide Future Research and Enhancements
 - Lend Confidence to Implementing Agreements and Commitments
- Such Systems Can Provide:
 - Accurate Characterizations Of GHG Emissions From Both Existing and Advanced Technologies
 - Enable Increased Understanding Of Performance
 - Guide Further Research
 - Reduce Costs and
 - Improve Effectiveness
- Research and Development of These Systems Is Required To:
 - Increase Capabilities
 - Make Best Use of Data
 - Provide Integrated Insights
 - Facilitate Progress on Decision-Making Tools
 - Accelerate Adoption of Mitigation and Adaption Strategies

Technologies for Goal #5: Improve Capabilities to Measure and Monitor GHG Emissions


	NEAR-TERM	MID-TERM	LONG-TERM
Energy Production & Efficiency Technologies	 M&M Specifications and Performance Standards Low-Cost Sensors and Communications Samplings, Inventories, & Estimates 	 Sensor Networks Remote Sensing Prototype Direct Measurement to Replace Proxies and Estimates 	 Fully Operational Sensor and Satellite Networks that Feed the Integrated Architecture
Carbon Capture, Storage, & Sequestration	 M&M Specifications and Performance Standards Low-Cost Sensors and Communications Samplings, Inventories, & Estimates Ability to Assess the Integrity of Geologic Reservoirs Improved Leak Detection from Capture and Pipelines 	 Sensor Networks Remote Sensing Prototype 	 Fully Operational Sensor and Satellite Networks that Feed the Integrated Architecture
Other GHGs	 M&M Specifications and Performance Standards Low-Cost Sensors and Communications Samplings, Inventories, & Estimates 	 Sensor Networks Remote Sensing Prototype M&M Techniques for Agricultural Sources 	 Fully Operational Sensor and Satellite Networks that Feed the Integrated Architecture
Integrated M&M Systems Architecture	 Identification of Metrics, Criteria, Sources, and Requirements for Measurements Comprehensive Vision of Integrated Systems Architecture and Technology Needs 	 Model and Data Specification Large Scale, Secure Data Storage System Data Visualization Tools M&M Processes Incorporated into Design of Climate Change Technologies 	 Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)

FTIR: Fourier Infared Spectrometer

Measurement and Monitoring

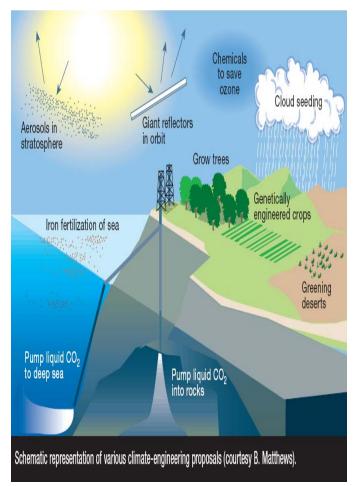
Hierarchical Inter-Temperal Layers of Spatial Observation Technologies and Capabilities **Unified by GIS Interface**

Near-Term Opportunities

- 1. Incorporating Transportation M&M Sensors into the Onboard Diagnostic and Control Systems of Production Vehicles;
- 2. Preparing Geologic Sequestration M&M Technologies for Deployment with Planned Demonstration Projects;
- 3. Exploiting Observations and Measurements from Current and Planned Earth Observing Systems to Measure Atmospheric Concentrations and Profiles of GHGs from Planned Satellites;
- 4. Undertaking Designs and Deploying the Foundation Components for a National, Multi-Tiered Monitoring System with Optimized Measuring, Monitoring, and Verification Systems;
- 5. Deploying Sounding Instruments, Biological and Chemical Markers (Either Isotopic or Fluorescence), and Ocean Sensors on a Global Basis to Monitor Changes in Ocean Chemistry;
- 6. Maintaining In-Situ Observing Systems to Characterize Local-Scale Dynamics of the Carbon Cycle Under Changing Climatic Conditions; and
- 7. Maintaining In-Situ Observing Systems to Monitor the Effectiveness and Stability of CO₂ Sequestration Activities.

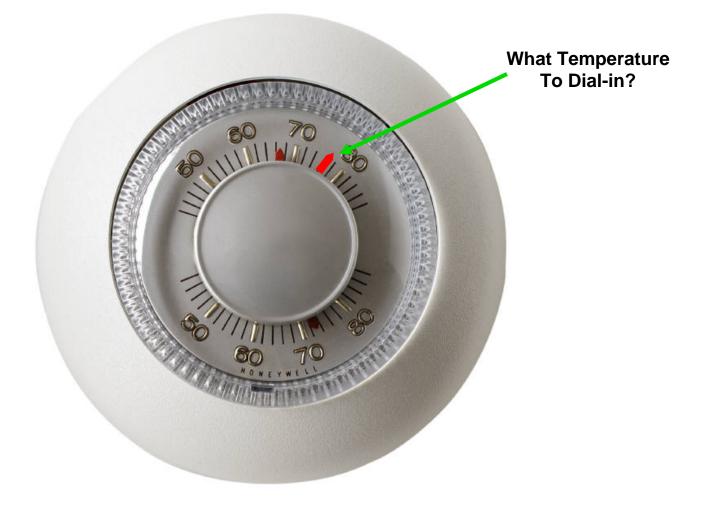
Long-Term Goals

- 1. Enhance Ability to Model Emissions Based on a Dynamic Combination of Human Activity Patterns, Source Procedures, Energy Sources, and Chemical Processing;
- 2. Develop Process-Based Models that Reproduce the Atmospheric Physical and Chemical Processes (Including Transport and Transformation Pathways) that Lead to The Observed Vertical Profiles of GHG Concentrations due to Surface Emissions;
- 3. Determine to what Degree Natural Exchanges with the Surface Affect the net National Emissions of GHGs;
- 4. Develop a Combination of Space-Borne, Airborne, and Surface-Based Scanning and Remote-Sensing Technologies to Produce 3D, Real-Time Mapping of Atmospheric GHG Concentrations;
- 5. Develop Specific Technologies for Sensing of Global Methane "Surface" Emissions with Resolution of 10 Km;
- 6. Develop Remote-Sensing Methods to Determine Spatially Resolved Vertical GHG Profiles, Rather than Column-Averaged Profiles; and
- 7. Develop Space-Borne and Airborne Monitoring for Soil Moisture at Resolutions Suitable for M&M Activities.


Grand Challenge #6 ---

Explore the Means and Consequences of "Back-Stop" Options

Back-Stop Options -- One Example: Geo-Engineering


- Geo-Engineering
 - Technical Options
 - » Space-Based Reflectors
 - Lagrange Points Reflectors
 - Orbiting Small Reflectors
 - » Aerosols in Stratosphere
 - Northern Latitude Dispersion
 - Potential Benefits:
 - » Slow or Reverse Run-Away Temperature Increase
 - » 2 or 3 Orders of Magnitude Cheaper (\$1-3 B/year)
 - Risks:
 - » Unknown Consequences of Potentially Global Scale
 - » Potentially Un-manageable Socio-Political Reverberations
- Other Back-Stop Options (See Figure)
- Grand-Challenge: Explore the Means and Consequences of Back-Stop Options

D. Keith, Insight Feature: Geo-engineering, Nature 409, 420 (18 January 2001)

Geo-Engineering Thermostat

March 25, 2008

Summary

Mapping CCTP GC's Onto Workshop Breakouts

	CCTP Grand Challenge	Variability & Forcing	Projections	Ecosystems	Observations to Improve Models
1	Informing the Pace of Tech. Development & Deployment		x		X
2	Illuminate Trade-Offs Among Response Strategies	X	X	X	X
3	Inform Decision-Making at Appropriate Levels of Governance		X		x
4	Identify Key Interactions Between Natural and Human Systems		X	X	х
5	Organize Integrated Systems Architecture for Measurement & Verification	X	x	X	x
6	Explore "Back-Stop" Options	X	X	X	