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ABSTRACT

We present zeus, an algorithm for extracting features from images and time series signals. Zeus is designed to
solve a variety of machine learning problems including time series forecasting, signal classification, image and
pixel classification of multispectral and panchromatic imagery.

An evolutionary approach is used to extract features from a near-infinite space of possible combinations of
nonlinear operators. Each problem type (i.e. signal or image, regression or classification, multiclass or binary)
has its own set of primitive operators. We employ fairly generic operators, but note that the choice of which
operators to use provides an opportunity to consult with a domain expert. Each feature is produced from a
composition of some subset of these primitive operators. The fitness for an evolved set of features is given by
the performance of a back-end classifier (or regressor) on training data.

We demonstrate our multimodal approach to feature extraction on a variety of problems in remote sensing.
The performance of this algorithm will be compared to standard approaches, and the relative benefit of various
aspects of the algorithm will be investigated.

Keywords: machine learning, support vector machines, genetic programming, remote sensing, image processing,
time series analysis, lightning, classification, regression, automated feature extraction

1. INTRODUCTION

In a previous publication,1 we introduced zeus as a pattern recognition tool for time-series signals. Our initial
interest was with the classification of lightning strikes (as measured with a high-speed radio-frequency receiver
on the Forté satellite2), but we have since extended the zeus software in two directions. One extension permits
zeus to be used for images as well as time-series. Also, where the earlier zeus was based on a model in which
the entire time-series was a single (high-dimensional) sample point, the new zeus can be used in a mode that
identifies each time point (or, for the images, each pixel) as a separate sample. This allows zeus to be used
for segmenting different epochs within a long time-series signal, or for producing a pixel-by-pixel classifications
within an image. Thus, zeus is designed for use in four separate modes, as described in Table 1: time series
forecasting, time series classification, image classification, pixel-by-pixel classification within an image. Although
the problems that characterize these modes are quite different in character, many of the same tools are used in
their solution, and zeus provides a framework for incorporating those tools in a way the permits them to be
used for a wide range of applications.

Zeus is part of the Intelligent Searching of Images and Signals3 project at Los Alamos, and follows other
pattern recognition software that has been developed as part of that project, including genie4–6 and afreet.7

The previous generation of zeus was implemented in C++, but the more recent implementation of zeus has
been rewritten with the kernel and interface in Java, and most of the mathematical processing in matlab . We
found that the higher-level language provides the ability to more rapidly prototype new modules and capabilities.
Zeus uses the mfitsio8 package for reading and writing data, and the OSU SVM package9 for the support vector
machine back-end. For more information on the Zeus project, see http://www.zeus.lanl.gov.10
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Signals Images
sample-wise Time series forecasting* Pixel-by-pixel classification
signal-wise Time series classification Image classification*

Table 1. Four modes of operation designed for the zeus software. An asterisk indicates that the mode has not been fully
implemented or tested.
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Figure 1. The basic wrapper architecture of Zeus consists of two phases: front-end feature extraction and back-end
pattern recognition.

2. BACKGROUND INFORMATION

The overall approach of Zeus follows the wrapper pattern shown in the diagram in Figure 1. The basic wrapper
architecture consists of two main processes: front-end feature extraction and back-end pattern recognition. The
wrapper cycle behaves differently for training and exploitation.

• In training, a population of feature extractors is maintained. These feature extractors are programs com-
posed of image and signal processing operations. Their purpose is to produce features from the input data,
which is used to build models for classification or regression. These models are then applied to the feature
patterns to obtain a result and compute a fitness. This fitness measure is then fed back to the front-end
to help the optimizer refine the feature extractors. This cycle continues until some stopping condition is
satisfied—either the desired performance is attained or the maximum number of iterations is exceeded.

• In exploitation, a single feature extractor is applied to the input data and a set of feature patterns is
produced. The back-end model is then applied to these feature patterns to produce a result. No feedback
occurs.

This technique of combining front-end stochastic optimization of feature extractors with back-end pattern
recognition techniques helps automate the tool-building process, which is typically very expensive to achieve
manually. The wrapper technique was chosen for zeus because of its success when employed with the afreet
and genie tools.4–7

All of the zeus classifiers have an “intuit” mode and a “study” mode. The intuit mode applies the back-end
(usually a support vector machine classifier) directly to the raw data; the study mode uses an iterative method
(usually a genetic algorithm) to produce a set of features that are then applied to the back-end. The intuit
mode, in general, is much faster to train than the study mode. And while the study mode can achieve higher
in-sample scores, the no-free-lunch theorem11 assures us that we cannot say with certainty which will produce
higher out-of-sample scores.

2.1. Front-end Feature Extraction

Feature extraction also occurs in the back-end because the pattern recognizer (such as a neural network or
support vector machine) attempts to capture complex relationships in the data by transforming it in a way that
can be discriminated to recognize the patterns of interest.

However, previous techniques found it useful to employ additional feature extraction in front of the back-end
to better define the patterns of interest, and ultimately improve performance.4, 5, 7 Thus, to prevent confusion,
the term feature extraction shall refer to the front-end feature extraction.



2.1.1. Feature Extractor Representation

These feature extractors are programs represented by graph or tree structures. The steps of feature extraction
are operations specific to a particular modality; images or signals. The following example of a feature extractor:
outputs three feature planes; uses morphological, arithmetic, laws texture energy, and moment spatial operators;
is represented by tree structures given the S-expression structure of the program; and since intermediate values
are permitted, is also represented by a graph structure.

(setplane 0 (gslaws (getplane 0 1) ’0.98407 ’0.77694))

(setplane 1 (gslincomb (getplane 1 0) (getplane 1 0) ’0.84629 ’0.56066))

(setplane 2 (gsdivide (getplane 0 0) (getplane 0 0)))

(setplane 0 (gserode (getplane 0 0) (gssel 0.96021 0.89993 0.02082 0.78384)))

(setplane 2 (gsdilate (getplane 0 2) (gssel 0.21138 0.86163 0.50033 0.99005)))

(setplane 2 (gsmean (getplane 0 3) ’0.34806))

The program above transforms the input space into a feature space that will hopefully improve classification
performance. The selection of operators, their parameters, and the order they appear in the program must be
carefully chosen. Since the feature extractors are initially random, they must be refined using some form of
stochastic optimization.

2.1.2. Genetic Programming

In zeus, we used genetic programming (GP) to refine feature extractors. Genetic programming was first formally
introduced and explored by John Koza.12 We briefly describe GP here; however refer the reader to Banzhaf13

for a more in-depth discussion. GP is a form of evolutionary algorithm, where the individuals being evolved are
computer programs, such as the one shown above. Most computer programs such as those written in LISP can
be represented by tree structures. When intermediate values are permitted, the inherent representation of the
program is a graph. Special graph and tree-based mutation and crossover operations are sometimes used.7, 12, 13

The program representation in zeus consists mainly of one edge in the graph per line of code. For ease of
implementation, we use the same element-wise crossover and mutation operators as used previously zeus.1 We
will briefly describe the genetic operators that were used to conduct the experiments for this study:

• Steady State GA A steady state GA is a genetic algorithm which replaces a few chromosomes (typically
only one or two) in a population during each iteration.14 It differs from a generational GA in that it does
not replace the entire population during each generation.

• Selection Before crossover, two parent chromosomes A and B must be chosen from a population of
chromosomes. Tournament Selection involves selecting four chromosomes: two of which are the losers of
two different tournaments and the other two are the winners. The winners are recombined to produce two
offspring which replace the losers in the population. A tournament involves evaluating N chromosomes
where N is the tournament size. The individual with best fitness is the winner and the one of the worst
fitness is the loser.

• Crossover A crossover operator combines two parent chromosomes A and B together to produce a single
offspring C. Uniform Crossover involves replacing the genes at each position in the chromosome C with
the corresponding genes in either A or B, chosen with equal probability. The genes themselves are simply
copied and are not modified in any way.

• Mutation Each new offspring has a probability pm of mutation. Gene randomization involves choosing a
gene (line-of-code) at random, discarding it, and replacing it with an entirely new line-of-code.

2.1.3. Data Types

There are eleven data types available in the zeus system, each having their own unique identifier (UID): scalar
(1), series (2), image (3), msi (4), void (5), bounds (6), time series (7), spectral series (8), index (9),
pyramid (10), and struct element (11).



2.1.4. Primitive Operators

Each primitive operator: is defined in a separate M-file, has a return type, and has a type for each of its input
parameters. Primitive operators that do not return any values (mutators, for example) have a return type of
void. In building each line of code, the parameter types are matched with the types of input expressions to
ensure invalid programs are not produced. Table 2 below lists all the operators that are available in the zeus

system.

Signature Description

image absdiff(image im1, image im2) Absolute value of two images subtracted.

image add(image im1, image im2) Image addition.

image addc(image im, scalar c) Adds a scalar constant to each pixel.

image close(image im, struct elem e) Morphological closing.

image dilate(image im, struct elem e) Morphological dilation.

image divide(image im, image im) Divides two images pixel-by-pixel.

image erode(image im, struct elem e) Morphological erosion.

image gauss(image im, scalar khs, scalar kvs) Smooths by convolution with a Gaussian.

image getplane(scalar num, scalar type) Retrieves a data plane or scratch plane.

image laplacian(image im, scalar type) Laplacian edge detect.

image laws(image im, scalar type1, scalar type2) Laws texture energy measure.

image lincomb(scalar a, image b, scalar c, image d) Linear combination of planes.

image mean(image im, scalar nsize) Neighborhood average.

image median(image im, scalar nsize) Neighborhood median.

image mexhat17(image im, scalar type) Mexican hat filter of size 17.

image mexhat5(image im, scalar type) Mexican hat filter of size 5.

image mexhat9(image im, scalar type) Mexican hat filter of size 9.

image open(image im, scalar type) Morphological opening.

image prewitt(image im, scalar type) Prewitt compass operators.

image prewittgrad(image im, scalar type) Prewitt with absolute gradient magnitude.

struct elem sel(scalar a, ..., scalar d) Constructs a structuring element.

void setplane(scalar num, image img) Sets a scratch plane.

image sobel(image im, scalar type) Sobel edge detection.

image sobeldir(image im, scalar type) Directional sobel edge detection.

image subtract(image a, image b) Image subtraction.

image subtractc(image im, scalar c) Image subtraction with scalar constant.

image unsharp(image im, scalar sigma) Image unsharpening.

Table 2. Primitive Image Domain Operators in Zeus

Programs for both signal and image domains are built in zeus line-by-line. In the case of images, the user
gives a multispectral image as input and specifies the number of scratch planes to output. The program builder
then writes a program which takes input from both the data planes and scratch planes, and outputs to scratch
planes. This approach is very similar to the one taken in genie.4, 5 The operator pool and the implementation
of operators differs than that of genie and afreet however.7



2.2. Back-end Pattern Recognizer

The back-end is a traditional machine learning classifier. It finds the function, from the function class of interest,
that optimizes the fit of the features to the marked up truth.

Currently, the main back-end is a support vector machine classifier. However, it can also employ a Fisher
discriminant back-end, which is generally faster to compute than the support vector machine solution, but is
optimal only if the two classes exhibit a common Gaussian distribution.

The back-end is also the part of the classifier that would be used for multi-class classification and/or regression
which was not investigated in this study.

2.2.1. Support Vector Machines

The support vector machine is a linear classifier which optimizes a sum of two terms:15 one is a quadratic
term that discourages large coefficients in the linear classifier, and one is a piecewise linear term that penalizes
misclassifications.

1

2
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complexity penalty
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∑
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]
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misclassification penalty

(1)

Taken together the two terms are convex in the linear classifier coefficients; the optimization is a quadratic
programming problem, and polynomial-time algorithms can be proven to exist.16 Since their introduction in the
mid-1990’s by Vapnik et al.,17, 18 a number of algorithms especially designed for the support vector machine have
been developed. The choice of the piecewise linear penalty function for the misclassification terms represents a
compromise between quadratic penalties (whose derivatives are linear, and whose solutions involve only linear
algebra, but which are more sensitive to outliers) and piecewise constant penalty functions (which is even more
robust to outliers and matches more directly to the desired outcome which is to minimize the number of errors,
not their magnitude, but which are not convex, and therefore exhibit many local minima).

As well as the computational advantages of this penalty function, there is a mathematical advantage as well,
in the form of guaranteed bounds on the generalization error in terms of the in-sample error.

In addition to generalization error bounds, Support Vector Machines are able to control overfitting by maxi-
mizing the margin, characterized by the region from the nearest training point to the discriminant surface.

Kernels Finally, it is important to remark that support vector machines also permit the use of kernels. With
kernels, nonlinearity is attained by implicitly projecting the input space into a higher dimension. A kernel function
K is defined as K(x,y) = φ(x)φ(y)T where φ(u) : Rp → Rp′ and p′ À p.15 The dimension p′ is typically much

larger than p and may theoretically be infinite as is the case with the radial basis function K(x,y) = e
−‖x−y‖2

2σ2 .
Finding φ(u) is unnecessary—a function K(x,y) is a kernel if it obeys the Mercer condition.19

For more information on kernels, see Schölkopf and Smola’s book19 for an excellent treatment, but note that
they enable support vector machines to produce nonlinear classifiers with the same mathematical advantages as
the linear classifiers.

The afreet7 package was developed as part of the ISIS project for applying support vector machines to pixel-
by-pixel classification in multispectral images. The afreet software also provides both “intuit” and “study”
modes.

2.2.2. Scoring

The purpose of the back-end is to find the function which optimally classifies the training data. This optimization
is expressed in terms of a score, which is a problem-dependent quantity. For binary classification, it is usually
expressed in terms of a detection rate and a false alarm rate – following the scheme used by genie, we typically
use a linear combination that assigns 500 points to each. That is:

score = 500 (detectionRate + (1− falseAlarmRate)) . (2)



This equation has to be modified for multi-class classification and for regression problems. It is sometimes
useful to include some kind of penalty in the score that inhibits more complex solutions, and therefore produces
solutions that are more likely to generalize well. In previous work, we investigated variants that use cross-
validation score for fitness and multi-class classification.1, 20

3. SAMPLING AND COMPUTATIONAL ISSUES

One issue with using remotely sensed imagery is that the number of samples is typically large. It is not uncommon
for an image to have several hundred thousand marked-up pixels. The computational burden of quadratic
programming may increase quadratically as the number of training points increases. An alternative is to train
on a small sample of the training points but this also is problematic because there is a danger of choosing an
unrepresentative sample. Afreet resamples every N iterations to ensure that eventually most, if not all, of
the data is used in training. This may require that all candidate solutions in a population be re-evaluated.
Resampling may also adversely effect front-end optimization performance. We found that bagging was a good
way to make effective use of as much training data as possible and reduce significantly the computation needed
by the quadratic program.

3.1. Bagging

Although “bagging” was first introduced21 as a variance-reduction technique for improving generalization ability
of classifiers, we use it here for two reasons. One is variance-reduction, but the other is that it enables us to
make separate runs with small subsets of the data; this reduces the computational burden, both in terms of
computational effort (which often scales superlinearly with data set size) and computer memory (which is often
fixed on any given machine).

In traditional bagging, a data set of size N is resampled with replacement to produce a new data set of size
N . For each resampled data set, a separate classifier is trained. These classifiers are combined by majority vote.
In our variant, the original data set of size N is resampled to produce a much smaller data set, with n¿ N data
points. As before, separate classifiers are trained on the smaller data sets, and again the classifiers are combined
by majority vote.

In experimenting with zeus with bagging turned on, it was not uncommon to choose a bagging arrangement
with j bags of size k points where jk ≥ N . The advantage is that most of the training data is used while
the computation time is considerably less than when training a single Support Vector Machine (SVM) with a
sample size of jk. The flip-side is the technique may result in a solution which overall is less accurate than
a solution obtained by training a SVM once on a large training set. In adjusting the bagging parameters, a
trade-off between computational efficiency and accuracy should be considered. While undoubtedly there are
computational benefits in bagged SVMs, more research is needed to determine how the bagging parameters
effect generalization performance.

One advantage of using linear kernels K(x,y) = xyT when bagging is that the decision function f(x) : Rp →

{−1, 1} can be expressed in terms of a weight vector u =
∑M

m=1 αiyihm

f(x) = sgn(xuT − b) (3)

where hm are the support vectors, αm are the Lagrange coefficients, yi ∈ {−1, 1} are the labels of the support
vectors, and b is the bias. The model may be applied to each point with just a single dot product or a set of
points by doing just matrix multiplication. Thus, our approach uses bagging to generate piecewise linear models
to lessen the computational burden of training and exploitation.

In addition, ensuring there are an equal number of patterns from each class in each bag may help accommodate
an unbalanced data set while maximizing the use of as much training data as possible.

Currently, bagging is the only ensemble-based method that is implemented. Future plans include a boosting
mode,22, 23 and a weighted order statistic classifier mode.24



3.2. Fast Polynomial Kernel Evaluation Using the Support Scalar Technique

The function K(x,y) = (γxy + c)d is known as a polynomial kernel, and when used with an SVM, it permits
more complex models to be produced than a linear SVM. Evaluating models with polynomial kernels can be
very expensive in both training and testing if there are a large number of support vectors. It is not uncommon
to exploit a model on a remotely sensed image with millions of pixels. Exploitation, can therefore, be extremely
slow when using non-linear SVM models with a large number of support vectors.

We found that explicitly expanding polynomial kernels may be more efficient, in some scenarios, than using
the kernel trick. It has been suggested that such cases are only useful for “toy” examples.19 However, we found
explicit expansions useful in select cases.

Many satellite imagery data sets are represented by a few bands. Landsat-7 imagery, for example, is rep-
resented by seven spectral channels, and the images explored in this study consisted of only ten bands. Thus,
the dimensionality of the pixel inputs for many satellite data sets is modest. If a model could be produced
that achieves adequate performance with a low degree then explicit expansions might reduce the computational
burden of exploiting complex SVM models (i.e. models with large numbers of support vectors.)

We describe an efficient algorithm for exploiting a Support Vector Machine model with a polynomial kernel
and suggest conditions for its efficiency. It involves explicitly performing binomial expansions to evaluate the
kernel.

The decision function of a support vector machine with a polynomial kernel is

fp(x) =

M∑

m=1

αmym(γxhT
m + c)d (4)

where c is the “coefficient” of the kernel and γ is a constant multiplier, αm are the non-zero Lagrange multipliers,
ym are the labels of the support vectors, hm are the support vectors, the signum of fp(x) is the predicted label
of the point to exploit x, and M is the total number of support vectors.

Our algorithm is inspired from the binomial expansion of the polynomial kernel. We thus define the decision
function with its kernel expressed in terms of such an expansion:

g(x) =

M∑
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αmym(γxhT
i + c)d =

M∑

m=1
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(
d∑
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(
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n
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)

. (5)

We augment the point-to-exploit x ← [x|1] and each support vector hm ← [hm|c] to account for the additive
coefficient which may be ignored when it is zero. We define a

(
p+d
d−1

)
×d matrix B = [bT

1 ,b
T
2 , . . . ,b

T
n ]

T of exponent
specifications bi,

b1 = [0, 1, . . . , d] and bi ∈ {0, 1, . . . , d}
p+1 (6)

subject to the constraints that there are no duplicate row vectors in B and the sum of the exponent specifications
for each row vector equals the degree of the polynomial,

∀j, 1 < j < i,bi 6= bj and

p+1
∑

j=1

bij = d. (7)

The binomial expansion of the decision function is rearranged and reduced,
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and is known as a support scalar and is calculated independently of x. The polynomial is exploited using the
support scalar method in approximately O(

(
p+d
d−1

)
(p+1)) time. The model of the classifier consists of the exponent

matrix B, the support scalars s =
{

s1, s2, . . . , s(p+dd−1)

}

, and the bias b. The number of support scalars Ns =
(
p+d
d−1

)

is independent of the number of data points or support vectors. Thus, given sufficiently small input dimension,
small degree, and model complexity; this approach may be more efficient than the kernel trick.

The computation of B and si is greatly optimized by using matlab’s vectorization constructs. We recommend
looking at our source code to better visualize such optimization. The source code for this approach to kernel
evaluation is available for download, http://nis-www.lanl.gov/∼eads/fpoly.

4. EXPERIMENTAL DESIGN

4.1. Experimental Design

We tested zeus on a pixel classification task that was first addressed by Harvey et al.6 This consisted of twelve
images – three images for each of four classes. The classes were: roads, golf courses, urban areas, and clouds. The
task was to identify the parts of the images in which these features were present. For the in-sample investigation,
single images were used, and the reported in-sample scores are the averages over the three images considered.
The overall average was the average over each of the four tasks. For out-of-sample score, these were obtained
by training on single images, and testing on the other two. Again, the reported score was the average over the
three ways this could be done.

To do this comparison, we used zeus in two modes: intuit, and intuit with bagging. We also used afreet

in intuit mode, genie, and a suite of classifiers that are available as part of the ENVI package..25 We also
considered a straight Fisher discriminant, and a Fisher discriminant with ridge regularization.

Each of the experiments below was conducted using each of the twelve input images. A model is produced
for every image and classification method.

Experiment 1: Zeus Intuit Mode The following parameters were used:

• error penalty (C values) set: R = {10i|i ∈ {−2,−1, 0, 1, . . . , 5}},

• kernel set: S = (linear,RBF), and

• parameter set: P = R× S.

A sample of 5000 marked pixels from each class was chosen without replacement from the training image. If the
number of pixels for a particular class was less than 5000 pixels, all of the pixels were chosen. This approach
was taken to avoid class weighting to account for unbalanced datasets. It also reduces the computational burden
of cross validation. Three-fold cross validation was performed on a SVM using each element in the parameter
set P . The final kernel and error penalty is chosen according to the best three-fold cross validation score found.
Finally, a SVM is trained using the final parameters, and a final model is produced for further testing.

Experiment 2: Zeus Intuit Bagging Mode The following parameters were used:

• error penalty (C values) set: R = {10i|i ∈ {−2,−1, 0, 1, . . . , 5}},

• kernel set: S = (linear),

• bag size set: Bs = {2i|i ∈ {2, 3, . . . , 14}},

• bag count set: Bn = {2i|i ∈ {2, 3, . . . , 14}},

• bagging parameter set: B = Bs ×Bn, and



• SVM parameter set: P = S ×R

In this experiment, we used bagging with an equal number of samples from each class. As mentioned in
section 3.1, bagging was employed to: reduce the computational burden of training a single model on a large
number of points, make effective use of as much training data as possible, and to account for unbalanced data
sets.

For each bagging parameter in the set B, the C value is adjusted based on the three-fold cross validation
score of the bagged SVM. The C values are global to all bags although adjusting the C values local to each bag
deserves further investigation. The final model is chosen according to the best out-of-sample score.

Experiment 3: Zeus Study Mode For zeus study, we prepared several configuration files, choosing pa-
rameters based on problem difficulty. Problems with images of varying difficulty had two to three parameter
sets. It is important to note that the number of parameters tried for Experiment 3 is significantly less than in
Experiment 2. Table 3 lists the parameters used.

Problem C Bag Sizes Bag Count Depth Pop. Size Iterations

Roads 1000 512, 5000 16 bags 3 planes 20 chr.’s 200

Golf 100, 1000 512 16, 32 bags 3 planes 20 chr.’s 200

Urban 100, 1000 2000, 5000 8, 32 bags 3 planes 20 chr.’s 500

Clouds 1000 512 16 bags 3 planes 20 chr.’s 200

Table 3. Zeus Study Parameters: The parameters used for each of the problems, chosen arbitrarily.

Experiment 4: Afreet Intuit Mode Afreet Intuit was trained using the default parameters: linear kernel
and a C value of 100). Unlike experiment 1, no adjustment of parameters is made and all labeled input pixels
are used for training.

Experiment 5: Genie Refer to Harvey et al for a comprehensive explanation of the genie software and the
experiments performed on this data set.6

Experiment 6: Fisher Discriminant A Fisher discriminant was computed for each of the training sets
using a straight Fisher discriminant and a Fisher discriminant with ridge regularization. The effect of the ridge
regularization is to replace the covariance matrix K with a version K′ = K + εI where ε is a small scalar
regularization parameter, and I is the identity matrix. This effectively penalizes complexity of the solution.

Experiment 7: ENVI In Harvey et al, several built-in envi classifiers were compared against genie using
this data set.6 They include: Spectral Angle Mapper, Minimum Distance, Fisher Discriminant, Maximum
Likelihood, Binary Encoding, and Mahalanobis Distance.

5. RESULTS

5.1. In-sample Performance Comparison

We see that on average, genie scored the best in-sample despite being fourth in the out-of-sample rankings. This
could be due to overfitting or convergence to a solution. Interestingly, despite performing the best out-of-sample,
zeus Intuit with bagging is the second worst performer in-sample.



Learner Roads Golf Urban Clouds Average

Zeus Study Mode 931.6 (3) 971.9 (3) 971.0 (3) 999.3 (2) 968.5 (3)

Zeus Intuit Mode 956.4 (2) 977.3 (2) 972.9 (2) 998.3 (3) 976.3 (2)

Zeus Intuit Bagging Mode 912.2 (4) 959.8 (6) 908.5 (7) 985.4 (7) 941.5 (6)

genie 963.3 (1) 998.3 (1) 998.9 (1) 999.9 (1) 990.0 (1)

afreet, Intuit Mode 886.6 (5) 960.4 (5) 951.6 (5) 997.0 (4) 948.9 (4)

Fisher Discriminant 883.3 (6) 965.4 (4) 953.7 (4) 987.9 (6) 947.6 (5)

Fisher with Ridge Regularization 876.7 (7) 951.7 (7) 942.9 (6) 992.4 (5) 940.9 (7)

Table 4. In-Sample Performance: The average in-sample performance and rank for each learner is listed for all of the
four problem types. The average performance is obtained by averaging the in-sample fitnesses for each problem.

5.2. Out-of-sample Performance

We see that on average, zeus intuit with bagging performed better out-of-sample than any of the other al-
ter1natives. One reason for this is that the parameters for the bagging technique were carefully chosen. Un-
expectedly, zeus study performed worse than zeus intuit with bagging. However, it should be noted that the
parameters were rarely, if at all, adjusted for the zeus study experiments.

Afreet intuit performs better than zeus intuit but worse than zeus intuit bagging. One reason is the
sample it trains with includes all labeled points rather than a small subset of them.

Learner Roads Golf Urban Clouds Average

Zeus Study Mode 746.7 (3) 888.1 (1) 685.0 (5) 993.1 (2) 828.2 (2)

Zeus Intuit Mode 638.5 (6) 783.6 (6) 623.0 (7) 808.4 (6) 713.4 (6)

Zeus Intuit Bagging Mode 835.4 (1) 882.1 (2) 744.6 (4) 976.8 (5) 859.7 (1)

genie 763.2 (2) 739.8 (7) 813.5 (1) 978.0 (4) 823.6 (4)

afreet Intuit Mode 730.8 (4) 820.6 (4) 764.1 (2) 993.6 (1) 827.3 (3)

Fisher Discriminant 541.5 (7) 800.4 (5) 641.7 (6) 704.3 (7) 672.0 (7)

Fisher with Ridge Regularization 696.0 (5) 828.0 (3) 745.4 (3) 986.7 (3) 814.0 (5)

Table 5. Out-of-Sample Performance: The out-of-sample performance and rank for each learner is listed for all of the
four problem types.

6. CONCLUSIONS AND FUTURE WORK

We presented a multimodal approach to feature extraction for image and signal learning problems. Our extension
of zeus to the pixel classifier domain was compared against other approaches such as genie, afreet, and envi.
We considered techniques such as bagging and fast polynomial kernel evaluation to improve the computational
efficiency of the pixel classifier while making effective use of as much training data as possible.

In the future, we will continue to investigate the use of ensemble techniques with Support Vector Machines to
improve computational performance and accuracy. The image classification and time series forecasting modules
will be implemented in the hope of further demonstrating the flexibility of our architecture.
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Out-of-Sample Rank In-Sample Rank

1. Zeus Intuit Bagging Mode (859) 1. genie (990)

2. Zeus Study Mode (828) 2. Zeus Intuit Mode (976)

3. afreet Intuit Mode (827) 3. Zeus Study Mode (969)

4. genie (823) 4. Maximum Likelihood* (962)

5. Fisher with Ridge Regularization (814) 5. afreet Intuit Mode (948)

6. Zeus Intuit Mode (713) 6. Fisher (947)

7. Spectral Angle Mapper* (684) 7. Zeus Intuit Bagging Mode (941)

8. Minimum Distance* (684) 8. Fisher with Ridge Regularization (940)

9. Fisher Discriminant (672) 9. Mahalanobis Distance* (905)

10. Maximum Likelihood* (608) 10. Minimum Distance* (849)

11. Binary Encoding* (602) 11. Spectral Angle Mapper* (833)

12. Mahalanobis Distance* (536) 12. Binary Encoding* (703)

Table 6. Classifier Rankings: The in-sample and out-of-sample ranks are listed in ascending order. genie performed the
best in-sample while zeus Intuit Bagging mode was the best performer out-of-sample. (An asterisk indicates the result
was obtained using a built-in ENVI classifier.)
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