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ABSTRACT

We investigate the behavior of a detector for weak gaseous
plumes in hyperspectral imagery that can be derived in terms
of a generalized likelihood ratio test (GLRT) applied to an
elliptically-contoured (EC) model for the distribution of back-
ground clutter. Two limiting cases of this EC-GLRT detector
are the adaptive matched filter (AMF) and the adaptive coher-
ence estimator (ACE). While the general EC-GLRT detector
does not share the specific optimality or invariance properties
exhibited by these limiting cases, it provides an in-between
model that can be competitive with both of them over a broad
range of scenarios.

Index Terms— hyperspectral imagery, chemical plume,
matched filter, generalized likelihood ratio test, non-Gaussian
distribution

1. INTRODUCTION

The optimal detector for a gaseous plume (of a specific chem-
ical) in a hyperspectral image depends on the statistical dis-
tribution of the background clutter and on the strength of the
plume, if present; when both of these are known, then the
optimal detector can be written in terms of a likelihood ra-
tio test. Specifically, let r € R¢ correspond to the d-channel
spectrum at a single hyperspectral pixel; for a weak plume,
it can be expressed as the sum of the plume-free background
given by x € R? and a plume whose effect is the product of
the scalar plume strength €, and the chemical signature of the
target gas t. That is:

r=x+¢t. (1)

We remark that this formulation neglects a lot of relevant
nonlinear physical phenomena [1, 2, 3, 4], but for a weak
plume, this linearized expression provides a useful approxi-
mation [1, 4]. In Eq. (1), t is known and r is measured; the
background x and plume strength e are both unknown.
While x itself is unknown, we will assume that we know
(or, at least, can adequately estimate) a probability distribu-
tion function P(x). The simple hypothesis testing formula-

tion considers the two hypotheses:

H,: r=x 2
H : r =X+ ¢et, withe = ¢,. 3)

The null hypothesis (H,) is that there is no plume present;
the alternative (H;) is that there is a plume of strength €,. In
this case, the optimal detector can be directly expressed as the
ratio of likelihoods.
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The likelihood ratio test (LRT) compares L(g,;r) with a
threshold #; observations r are labeled on-plume or off-
plume, depending on whether L(e,;r) is greater or less than
1. By adjusting 7, the trade-off can be made between missed
detections and false alarms.

In fact, this optimal detector is sometimes referred to as
the “clairvoyant” detector [5] because it assumes that the sig-
nal strength ¢, for the alternative hypothesis is known.

In practice, however, a composite hypothesis test is more
appropriate; here, the alternative hypothesis

H,: r =x+et,withe >0 (5)

covers a multitude of cases. In general, optimal detectors for
composite hypothesis tests are not available, but a popular
heuristic is the generalized likelihood ratio test (GLRT) [6, 7,
5], which addresses the unknown ¢ by using the maximum
likelihood estimate as if it were the known value.

g(r) = maXﬁ(E;r) — MmaXe>0 P(I‘ _ Et)

e>0 P(r) ©)

It turns out that the GLRT is optimal for Gaussian P(x) [7],
but that is a special case.

In what follows, we can assume without loss of generality
that mean values have been subtracted, so {r) = (x) =
(e) = 0; we will also assume that ¢ is small enough (and
the sample size is large enough) that we can approximate the
covariance K of the clutter x with the sample covariance of
the measurements r; thatis: K ~ (rr” ). The validity of this
approximation is discussed in Ref. [8].
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Fig. 1. Detector boundaries for the AMF, ACE, and EC-GLRT (with v = d + 2) detectors are shown in matched-filter-residual
coordinates. Also shown is the clairvoyant detector, assuming signal strength of 3 sigmas, and an EC-distribution with v = 2.5.
(@) In this plot, the detectors are calibrated to have the same Pg; = 0.05 false alarm rate; data are shown for a three-sigma
signal, and those points above the curves will be detections. Here, AMF exhibits the highest detection rate (fewest missed
detections). (b) In this plot, the detectors are calibrated to have the same Py = 0.5 detection rate for three-sigma signals; the
data shown have no signal at all, so all the points above the curves are false alarms. Here, ACE has the lowest false alarm rate.

These results correspond to the three-sigma points on the curves shown in Fig. 2(c,d).

The class of elliptically-contoured (EC) distributions
has found utility both for radar [9] and hyperspectral im-
agery [10, 11]. These distributions are of the form P(x) =
H(xTK—'x), where xT K~!x is the squared Mahalanobis
distance to the centroid of the data (which is the origin, since
the data have been mean-subtracted), and H : RT — R* is
a monotonically decreasing scalar function. Note that for the
Gaussian distribution, H(z) = (2r)~%/?|K|~1/2e=%/2,

Following Ref. [10], we consider the multivariate ¢-
distribution, given by

()
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P(x) = constant x (1 +

where the constant depends on v, d, and |K]|, but not on x.
In general, we require v > 2, and note that the v — oo limit
leads to the Gaussian distribution.

With this EC model, we can write an expression for the
clairvoyant detector (which requires knowledge of signal
strength ), in terms of a discriminator D which varies mono-
tonically with the likelihood ratio £(e;r) given in Eq. (4),

using the P(x) from Eq. (7):
Deir) = S(w-1) [1-L(gn)2/¢0)]) ®)
_ S((y —1) (2etTK 'r — 27K 't) ) @

(v—2)+rTK-1r

where S(z) = sign(z)+/|z| is the signed square root. To
obtain the EC-GLRT detector, note the ¢ that maximizes this
expression is given by ¢ = tT K~ r/tT K—1t. Thus:

_ v-1) t'K-r
EC-GLRT = \/(V TR e

In the limit v — oo, the distribution in Eq. (7) becomes
Gaussian, and the detector in Eq. (10) becomes the adaptive
matched filter:

(10)

tTK-'r
AMF = —. 11
VETK—1t D
In the limit v — 2, the detector in Eq. (10) becomes the
adaptive coherence estimator [12]:
tTK—!
ACE = r . (12)
VETK-1r)(tTK-1t)
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Fig. 2. Performance of AMF, ACE, and EC-GLRT detectors on a simulated elliptically contoured dataset (simulated with
v = 2.5) with a simulated plume. In panels (a,b), the EC-GLRT detector uses » = 2.5, matching that of the data; in panels

(c,d), the EC-GLRT detector uses v = d + 2 = 226. In panels (e,f), the EC-GLRT detector uses v = 1000.

It is useful to plot data in matched-filter-residual (MFR)
coordinates (introduced in Ref. [13]); here a pixel with value r
is plotted with MF = tT K—1r/+/tT K1t and residual R =
VTTK—1r — (MF)2. The AMF, ACE, EC-GLRT, and the
optimal “clairvoyant” detectors all depend only on MF and
R, and they are shown in these coordinates in Fig. 1.

We have compared the performance of the AMF, ACE,
and EC-GLRT detectors over a range of parameters, using
simulated Gaussian, EC, and actual hyperspectral data. In the
experiment with Gaussian data (not shown), using d = 224
channels, we confirmed that the AMF was optimal, but we
saw nearly identical (and therefore nearly optimal) perfor-
mance for the ACE and EC-GLRT algorithms as well.

The results of an experiment with EC data are shown in
Fig. 2. Here simulated data is a multivariate ¢-distribution
with v = 2.5 (extremely fat-tailed). The simulation is for a
500x500 pixel image with d = 224 spectral channels. If we
use v = 2.5 for our EC-GLRT detector [Fig. 2(a,b)], then its
performance is virtually identical to that of the ACE detector.
Using an EC-GLRT detector with v = d + 2 = 226, we
find a detector whose performance is mid-way between that
of AMF and ACE. With v = 1000; the EC-GLRT detector is
much better than AMF in the low false-alarm rate regime, and
better than ACE in the high detection rate regime.

2. CONCLUSIONS

For Gaussian data, the AMF is known to be the optimal detec-
tor; but it is a fragile optimality because, for high-dimensional
Gaussian data, all of the algorithms give nearly identical per-
formance. For deviations from Gaussianity that can be char-
acterized with an EC distribution, as has been suggested for
hyperspectral data [10], substantial differences between the
algorithms can be observed. Which algorithm is better, how-
ever, depends not so much on the background distribution as
the regime of interest.

In the very low false alarm rate region (with fixed Py =
0.5), the EC-GLRT (with parameter v chosen to match the
clutter distribution) appears to be nearly optimal. For high
dimensional data (d > v), the EC-GLRT detector (with v
matched to that of the distribution) is nearly identical to the
ACE detector. When d is large, but » is also large, then the
distribution is nearly Gaussian and the performance of ACE
and EC-GLRT is nearly identical. Thus, a practical recom-
mendation for high dimensional data in the very low false
alarm rate regime is to use the ACE detector. On the other
hand, in the regime of fixed false alarm (P, = 0.05) and
very high detection rate, the AMF is seen to outperform the
ACE and EC-GLRT detectors by a wide margin.
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Fig. 3. Performance of AMF, ACE, and EC-GLRT detectors on a dataset with a simulated plume on an AVIRIS hyperspectral
image, shown in panel (a). For this image, the AMF is seen in panel (b) to outperform the ACE in a fixed false alarm rate regime,
but those roles are reversed in panel (c) which corresponds to a fixed detection rate regime. It will depend on the operational
scenario which regime is more important. An EC-GLRT detector (using » = 1000) is seen to perform well in both regimes.

We have seen that although the EC-GLRT can be derived
in terms of a specific background distribution, the optimal
EC-GLRT detector is not necessarily the one whose param-
eter v is matched to that distribution. On average, the magni-
tude of r K —1r is roughly equal to d, the number of spectral
channels. By taking the EC-GLRT parameter v to be of order
d, even if the v of corresponding to the distribution P(x) is
much smaller than that, it is possible to use the EC-GLRT to
bridge the performance of the ACE and AMF detectors. This
is seen in Fig. 3. Applied to real data, the EC-GLRT with
v = O(d) is competitive with the better of the ACE and AMF
detectors in both the high detection and low false alarm rate
regimes. In this usage of the EC-GLRT, there is no need to
estimate the actual v for the underlying data.
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