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Estimating fractal dimension
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Fractals arise from a variety of sources and have been observed in nature and on computer screens. One of the
exceptional characteristics of fractals is that they can be described by a noninteger dimension. The geometry of
fractals and the mathematics of fractal dimension have provided useful tools for a variety of scientific disciplines,
among which is chaos. Chaotic dynamical systems exhibit trajectories in their phase space that converge to a
strange attractor. The fractal dimension of this attractor counts the effective number of degrees of freedom in the
dynamical system and thus quantifies its complexity. Inrecent years, numerical methods have been developed for
estimating the dimension directly from the observed behavior of the physical system. The purpose of this paper is
to survey briefly the kinds of fractals that appear in scientific research, to discuss the application of fractals to
nonlinear dynamical systems, and finally to review more comprehensively the state of the art in numerical methods
for estimating the fractal dimension of a strange attractor.

Confusion is a word we have invented for an order
which is not understood.
—Henry Miller, “Interlude,”
Tropic of Capricorn

Numerical coincidence is a common path to intellectu-
al perdition in our quest for meaning. We delight in
catalogs of disparate items united by the same number,
and often feel in our gut that some unity must underlie
it all.
—Stephen Jay Gould, “The Rule of Five,”
The Flamingo’s Smile

INTRODUCTION

Fractals are crinkly objects that defy conventional mea-
sures, such as length and area, and are most often character-
ized by their fractional dimension. This paper will arbi-
trarily categorize fractals into two main types: solid objects
and strange attractors.

Of the first type, coastlines and clouds are typical exam-
ples. Further examples include electrochemical deposi-
tion,2 viscous fingering,3 and dielectric breakdown? as well
as porous rocks® and spleenwort ferns.® These are physical
objects that exist in ordinary physical space. Percolation
clusters,” diffusion-limited aggregates,® and iterated func-
tion systems® provide mathematical models of fractals that
correspond to these physical objects. An overview of many
of these topics can be found in Ref, 10, and a recent bibliog-
raphy has been compiled in Ref, 11.

Strange attractors, by contrast, are conceptual objects
that exist in the state space of chaotic dynamical systems.
The emphasis of this paper will be on strange-attractor di-
mensions, although some of what is discussed can also be
applied to solid fractal objects.

Self-Similarity and Self-Affinity

Fractal objects, as Kadanoff notes, “contain structures nest-
ed within one another like Chinese boxes or Russian
dolls.” 12 This self-similar structure is perhaps the main
reason for the striking beauty of so many fractals. Self-
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similarity also implies a scale-invariant property. There are
crinkles upon crinkles and therefore no natural or preferred
-crinkle size. A set is strictly self-similar if it can be ex-
pressed as a union of sets, each of which is a reduced copy of
(is geometrically similar to) the full set. See Fig. 1(a).
However most fractal-looking objects in nature do not dis-
play quite this precise form. In a coastline, for instance,
there is an irregular nesting of gulfs, bays, harbors, coves,
and inlets that are observed over a broad range of spatial
scales. See Fig. 1(b). A magnified view of one part of the
coastline will not precisely reproduce the full picture, but it
will have the same qualitative appearance. A coastline dis-
plays the kind of fractal behavior that is called statistical
self-similarity.
A fractal is self-affine if it can be decomposed into subsets
that can be linearly mapped into the full figure. If this
linear map involves only rotation, translation, and (isotro-
pic) dilation, then the figure is self-similar. For a self-affine
map, the contraction in one direction may differ from the
contraction in another direction. The class of self-affine
fractals therefore includes the class of self-similar fractals.
(A visually impressive collection of self-affine fractals, and a
method of generating them that goes under the name “the
"chaos game,” can be found in Refs. 6and 9.) The distinction
between self-similar and self-affine fractals is not always
made in practice. The concept is most useful in cases for
which there are preferred global directions: in fractal sur-
faces,® for example, or for fractal profiles [these are continu-
ous nowhere-differentiable functions f(x) for which the
graph (x, f(x)) is a set of fractal dimension!314],

Quantifying Fractals
Stanley!0 has outlined the program of the practicing scien-
tist who wants to study fractals:

If you are an experimentalist, you try to measure
the fractal dimension of things in nature. If you
are a theorist, you try to calculate the fractal di-
mension of models chosen to describe experimental
situations; if there is no agreement then you try
another model.

© 1990 Optical Society of America
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Fig.1. Self-similar fractals. (a) The Sierpinski gasket. Here, the
inner triangles are small copies of the full figure. (b) Prince William
Sound. The sound has been darkened to highlight the fractal ap-
pearance of the coastline.

This pithy advice applies to strange attractors as well as to
solid fractal objects: Fractal dimension provides the bench-
mark against which theories are compared with experi-
ments. In the case of strange attractors, however, there are
further reasons for wanting to know the dimension.

CHAOS AND STRANGE ATTRACTORS

Why Quantify Chaos?: A Manifesto

Chaos is the irregular behavior of simple equations, and
irregular behavior is ubiquitous in nature. A primary moti-
vation for studying chaos is this: Given an observation of
irregular behavior, is there a simple explanation that can
account for it? And if so, how simple? There is a growing
consensus that a useful understanding of the physical world
will require more than finally uncovering the fundamental
laws of physics. Simple systems, which obey simple laws,
can nonetheless exhibit exotic and unexpected behavior.
Nature is filled with surprises that turn out to be direct
consequences of Newton’s laws.

James Theiler

One usually measures the complexity of a physical system
by the number of degrees of freedom that the system pos-
sesses. However, it is useful to distinguish nominal degrees
of freedom from effective (or active) degrees of freedom.
Although there may be many nominal degrees of freedom
available, the physics of the system may organize the motion
into only a few effective degrees of freedom. This collective
behavior, which can be observed in the laminar flow of a
fluid or in the spiral arms of a galaxy, is often termed self-
organization. (Much of the interest in the principle of self-
organization has been stimulated by the writings of Haken,'5
an early and enthusiastic advocate.) Self-organization is
interesting because the laws of thermodynamics seem to
forbid it: A self-organizing system decreases its own entro-
py. (For real physical systems, this apparent decrease in
entropy is achieved by dissipation to an external bath. In
this case the total entropy—of the system and of the bath—
does increase, and the second law of thermodynamics is
satisfied.)

Self-organization arises in dissipative dynamical systems
whose posttransient behavior involves fewer degrees of free-
dom than are nominally available. The system is attracted
to a lower-dimensional phase space, and the dimension of
this reduced phase space represents the number of active
degrees of freedom in the self-organized system. A system
that is nominally complex may in fact relax to a state of
chaotic but low-dimensional motion. Distinguishing behav-
ior that is irregular but low dimensional from behavior that
is irregular because it is essentially stochastic (many effec-
tive degrees of freedom) is the motivation for quantifying
chaos. Estimating dimension from a time series is one way
to detect and quantify the self-organizational properties of
natural and artificial complex systems.

Strange Attractors

Strange attractors arise from nonlinear dynamical systems.
Physically, a dynamical system is anything that moves.
(And if it does not move, then it is a dynamical system at a
fixed point.) Mathematically, a dynamical system is de-
fined by a state space RM (also called phase space) that
describes the instantaneous states available to the system
and an evolution operator ¢ that tells how the state of the
system changes in time. (One usually thinks of ¢ as the
physics of the system.) An element X ¢ R of the state
space specifies the current state of the system, and M char-
acterizes the number of degrees of freedom in the system.
For a particle in space, X might represent the three coordi-
nates of the particle’s position, and the three coordinates of
its momentum, for a total of M = 6 degrees of freedom. The
evolution operator is a family of functions ¢;:R¥ — RM that
map the current state of the system into its future state at a
time ¢ units later. The operator ¢; satisfies ¢o(X) = X and
O1+5(X) = ¢¢[¢s(X)]. The dynamical system is nonlinear if,
in general, ¢;(c1X1 + ¢2Xo) # c10:(X1) + c20:(Xo).

The function ¢; can be defined either as a discrete map or
in terms of a set of ordinary differential equations, although
partial differential equations and differential delay equa-
tions have also been studied (in these last two cases, M is
infinite).

Dissipative Dynamics
Although conservative dynamical systems can also exhibit
chaos,’® only dissipative dynamical systems have strange
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attractors. A system is dissipative if the volume of a fiducial
chunk of phase space tends to zero as¢t — . In other words,
if B is a bounded subset of RM with (Lebesque) volume
nL(B), then '

lim iy [4/(B)] = 0. o)

Usually the dissipation is exponential (at least on the aver-
age for along time): u[¢:(B)] ~ ur(B)e~A%, with the rate of
dissipation A.

Informally the attractor A of a dynamical system is the
subset of phase space toward which the system evolves. An
initial condition X, that is sufficiently near the attractor will
evolve in time so that ¢;(X,) comes arbitrarily close to the set
A ast — «, If the set A is a fractal, then the attractor is
said to be strange. A more formal treatment of strange
attractors in dynamical systems can be found in Ref. 17.

Natural Invariant Measure
Equation (1) implies that the phase-space volume of the
attractor uz(A) is zero. To quantify the dynamics on the
attractor requires first the introduction of a new measure p
that is concentrated on the attractor. A measure u is de-
fined on the set A if the subsets B of the set A can be
associated with real values u(8) that represent how much of
A is contained in B. The measure that is defined on a set
reflects the varying density over the set and can intuitively
beregarded as amass. See Fig. 2. The reader is referred to
Ref. 20 for a more rigorous discussion of measure in the
context of fractal sets.

A useful measure u should be invariant under time evolu-
tion: The proper way to define this is to write

#(B) = ulo_(B)], 2

where ¢-:(B) = {X € RM:¢,(X) € B]. In general, Eq. (2) is
not enough to define uniquely the measure for a dynamical
system; for instance, a measure that is concentrated on an
unstable fixed point satisfies Eq. (2) but has little to do with
the generic posttransient motion of the system.

The physically relevant measure for a dynamical attractor
counts how often and for how long a typical trajectory visits
various parts of the set. A constructive definition is given
by

.1 (T
W(B) = lim 1 jo 1,06,(X,)dt, ®

where X is a typical initial condition and I13(X) is the indica-
tor function for B: Itisunityif X € B and is zero otherwise.
The natural invariant measure is given by Eq. (3) for almost
all X;. An alternative definition that avoids the notion of
typical trajectories by adding infinitesimal noise to the dy-
namics is mentioned in Ref. 21.

- Sensitivity to Initial Conditions
The hallmark of a chaotic system is its sensitivity to initial
conditions. This sensitivity is usually quantified in terms of
the Lyapunov exponents and the Kolmogorov entropy. The
Lyapunov exponents measure the rate of exponential diver-
gence of nearby trajectories, and the Kolmogorov entropy
measures the rate of information flow in the dynamical sys-
tem.
Long-term predictions of chaotic systems are virtually
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Fig. 2. Two strange attractors. (a) The Ikeda map. The complex
map, z,+1 = @ + Rz, expli[¢ — p/(1 + |z,})]}, which derives from a
model of the plane-wave interactivity field in an optical ring laser,18
is iterated many times, and the points [Re(z,), Im(z,)] are plotted
for n = 1000. Here,a = 1.0, R = 0.9, ¢ = 0.4, p = 6. The fractal
dimension of this attractor is approximately 1.7. (b) The Hénon
map.!® This map, %,+1 = 1.0 — ax,? + yu; Yn+1 = bx,, witha = 1.4
and b = 0.3, gives an attractor with fractal dimension of approxi-
mately 1.3. Note how much thinner the attractor of lower dimen-
sion appears.

impossible, even if the physics (that is, ¢;) is known com-
pletely, because errors in measurement of the initial state
propagate exponentially fast.

Consider two nearly initial conditions, X and X, + ¢, and
evolve both forward in time. A Taylor-series expansion
gives

3:(Xo + €) = ¢,(Xp) + J(t) e + 0(|€|2), 4)

where J(t) is the Jacobian matrix given by the linearization
of ¢, about the point X:

36Xy _ aX()

Jit) = .
(&) 3X, aX(0)" (5)
The ij element of this matrix is
X, (t)
Jii(t) = w5 6)

axX,(0)’
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where X;(¢) is the ith component of the state vector X at time
t. Thus an initial small separation ¢ is magnified to J(t)e.
The determinant of the J(¢) describes the overall contrac-
tion of phase-space volume (dissipation), and the eigenva-
lues describe the divergence of nearby trajectories. The
Lyapunov exponents quantify the average rate of expansion
of these eigenvalues:

A, = lim % log Inth eigenvalue of J(t)|. (7

t—ro
Conventionally the Lyapunov exponents are indexed in de-
scending order: A; = A = .... The largest Lyapunov
exponent is the clearly most important since, if the differ-
ence between a pair of initial conditions has a nonzero com-
ponent in the eigendirection associated with the largest ei-
genvalue, then that rate of divergence will dominate. If the
largest Lyapunov exponent is positive, then chaotic motion
is ensured. (Otherwise, trajectories will collapse to a fixed
point, a limit cycle, or a limit torus.) The sum of all the
exponents A; + ...+ Ay = —A is negative for a dissipative
dynamical system and defines the rate A of phase-space
contractions.

If the state X(t) of the system is known at time ¢ to an
accuracy ¢, then the future can be predicted by X(t + At) =
#a:[X ()] but to an accuracy that is usually worse than e
Thus to observe (or measure) the state of the system again at
time ¢ + At to the original accuracy e is to learn information
that was previously unavailable. The system is in this sense
creating information. (Some authors prefer to say that the
system is losing information since the initial accuracy is lost;
this choice is largely a matter of taste, since the numerical
results are the same.) The average rate of information gain
(or loss) is quantified by the Kolmogorov entropy, which is
given by the sum of the positive Lyapunov exponents.?!

The numerical estimation of Lyapunov exponents and
Kolmogorov entropy from a time series is discussed in Refs.
22-24. A method for estimating Kolmogorov entropy that is
related to the correlation dimension is developed in Refs. 25
and 26. The notion of a generalized entropy K, is discussed
in Refs. 27 and 28.

Delay-Time Embedding

An experimentalist, confronted with a physical system, mea-
sures at regular and discrete intervals of time the value of
some state variable (voltage, say) and records the time series:
x(to), x(£1), x(ts), . . . ,withx(t;}) € Rand t; = to +iAt. [This
section discusses a stroboscopic time discretization of a con-
tinuous flow. The method of Poincaré section (see Ref. 17
or any textbook) is another way to time discretize a flow, but
it is a method that is rarely available to the experimentalist.]
The measurement x () represents a projection

=RM —>R )]

from the full state vector X(t) ¢ RM. A time series is
manifestly one dimensional and, as such, provides an incom-
plete description of the system in its time evolution. On the
other hand, many properties of the system can be inferred
from the time series.

Packard et al.2® devised a delay scheme to reconstruct the
state space by embedding the time series into a higher-
dimensional space. From time-delayed values of the scalar
time series, vectors X € R™ are created:

James Theiler

x(t) = [x(t)’ x(t - T)’ seey x(t - (m - 1)7)]T’ (9)

where the delay time 7 and the embedding dimension m are
parameters of the embedding procedure. (The superscript
T denotes the transpose.) Here X(t) represents a more
comprehensive description of the state of the system at time
t than does x(¢) and can be thought of as a map of

7™ RM — R™ (10)

from the full state X(¢) to the reconstructed state X(t).

Takens®® and Mafié3! have provided often-cited proofs
that this procedure does (almost always) reconstruct the
original state space of a dynamical system, as long as the
embedding dimension m > 2D + 1, where D is the fractal
dimension of the attractor. That is, #(™), restricted to A, isa
smooth one-to-one map from the original attractor to the
reconstructed attractor. It should be noted, however, that as
long as m > D, the reconstructed set will almost always have
the same dimension as the attractor.2!

The delay-time embedding procedure is a powerful tool.
If one believes that the brain (say) is a deterministic system,
then it may be possible to study the brain by looking at the
electrical output of a single neuron. This example is an
ambitious one, but the point is that the delay-time embed-
ding makes it possible for one to analyze the self-organizing
behavior of a complex dynamical system without knowing
the full state at any given time.

Although almost any delay time 7 and embedding dimen-
sion m > D will in principle work (with unlimited, infinitely
precise data), it is nontrivial to choose the embedding pa-
rameters in an optimal way. For instance, if the product (m
— 1)r is too large, then the components x(t) and x[t + (m —
1)7] of the reconstructed vector X will be effectively decorre-
lated, and this result will be an inflated estimate of dimen-
sion. By the same token, if (m — 1)7 is too small, then the
components x(), ..., x[t + (m — 1)7] will all be nearly
equal, and the reconstructed attractor will look like one long
diagonal line. Itisalso inefficient to take = too small, even if
m is large, since x(t) =~ x(¢ + 7) means that successive compo-
nents in the reconstructed vector become effectively redun-
dant.

In general, one wants 7 to be not too much less than, and
(m — 1)7 not too much greater than, some characteristic
decorrelation time. The (linear) autocorrelation time is one
such characteristic, although Fraser and Swinney32 have in-
troduced a more sophisticated rule based on the mutual
information time. A topological rule, based on maintaining
nearest-neighborhood relations as embedding dimension is
increased, has recently been suggested.33

Typically, having chosen , one performs the dimension
analysis for increasing values of m and looks for a plateau in
the plot of D versus m. Some authors choose to increase m
and decrease 7 in such a way as to preserve (m — 1)7 as a
constant.3435

As a preprocessing step, linear transforms of the time-
delayed variables have been suggested. One class of such
transforms is based on a principal-value decomposition of
the autocorrelation function.?%36:37 (Engineers will recog-
nize this decomposition as a Karhunen-Loéve expansion.)
However, it has been argued that the information available
in the (linear) autocorrelation function is not necessarily
relevant to optimal processing of a time series that arise from
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nonlinear systems.383% A transformation called relevance
weighting was suggested by Farmer and Sidorowich.# In
their scheme,

X)) ={x@),ext-7), ...,
exp[— h(m — 1)7]x[t — (m — 1)7]}T. (11)

The idea behind this embedding procedure is that the state
X(t) depends most significantly on measurements that are
taken most recently in time.

DEFINITIONS OF DIMENSION: FORMAL AND
INFORMAL

A completely rigorous definition of dimension was given in
1919 by Hausdorff,*! but it is a definition that does not lend
itself to numerical estimation. Much interest in the past
decade has focused on numerical estimates of dimension,
and it is natural to consider more operational definitions of
dimension, i.e., those that can be more readily translated
into algorithms for estimating dimension from a finite sam-
ple of points.

This section will describe various definitions of fractal
dimension, with some discussion of how they are related to
one another and to Hausdorff’s original definition and how
they can be extended to generalized dimension. An algo-
rithm based on box counting will also be presented as a way
to illustrate some of the notions. The next section will then
take a more thorough look at the various algorithms that
have been suggested for the practical estimation of fractal
dimension. :

In what follows, three different ways of thinking about
dimension will be pursued. First, dimension will be defined
intuitively as a scaling of bulk with size. Then, a more
formal definition, which involves coarse-grained volumes,
will be given. Finally, the notion of counting degrees of
freedom will be related to the information dimension. Each
approach yields equivalent definitions for dimension and for
generalized dimension, but each attempts to provide a dif-
ferent intuition for understanding what the dimension
means.

Local Scaling Comparison of Bulk with Size

A geometrically intuitive notion of dimension is as an expo-
nent that expresses the scaling of an object’s bulk with its
size:

bulk ~ sizedimension (12)

Here bulk may correspond to a volume, a mass, or even a
measure of information content, and size is a linear distance.
For example, the area (bulk) of a plane figure scales quadrat-
ically with its diameter (size), and so it is two dimensional.
The definition of dimension is usually cast as an equation of
the form

dimension = lim M (13)

size—0 log size’
where the limit of small size is taken to ensure invariance
over smooth coordinate changes. This small-size limit also
implies that dimension is a local quantity and that any
global definition of fractal dimension will require some kind
of averaging.
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The obvious relevant measure of bulk for a subset B of a
dynamical attractor is its natural invariant measure u(B8),
although other notions of bulk are also possible and will be
discussed. A good quantity for the size of a set is its radius
or its diameter, the latter of which is defined by

8(8B) = sup{|X - Y[:X, Y € B}, (14)

where sup is the supremum, or maximum, and | X — Y| is the
distance between X and Y. How this distance is calculated
depends on the norm of the embedding space. If X; is the
ith component of the vector X € R™, then the L; norm gives
distance according to

m 1/s
IX-Y[= (Z Ix; - Y,~|3> , (15)

i=1

where || is the absolute value. The most useful of these
norms are L, the Euclidean norm, which gives distances
that are rotation invariant; L, the taxicab norm, which is
easy to compute; and L., the maximum norm, which is also
easy to compute. It is not difficult to show that fractal
dimension is invariant to choice of norm.

Pointwise Dimension

The pointwise dimension is a local measure of the dimension
of the fractal set at a point on the attractor. Let Bx(r)
denote the ball of radius r centered at the point X. (Wheth-
er this ball is a hypersphere or a hypercube will depend on
the norm L;.) Define the pointwise mass function Bx(r) as
the measure

By(r) = p[Bx(r)]. (16)

The scaling of the mass function at X with the radius r
defines the pointwise d_imension at X (Ref. 42):
. log Bx(r)
D,(X) = lim ——2—. 17
—o0 logr
The pointwise dimension is a local quantity, but one can
define the average pointwise dimension to be a global quan-
tity:

D,= L D,(X)du(X). (18)

Coarse-Grained Volume and Hausdorff Dimension
Although Hausdorff’s rigorous definition of dimension does
not immediately lead to numerical estimates, it does provide
a framework from which dimension-estimation algorithms
can be derived.

The Hausdorff dimension is purely a description of the
geometry of the fractal set and makes no reference to the a
priori measure u that may be defined on the attractor. In
fact, the Hausdorff definition begins by defining its own
measure I', which corresponds to uniform density over the
fractal set.

Suppose that A is the fractal whose dimension one wishes
to calculate. Let C(r, A) = {B1, Bo, ..., Br} be a finite
covering of A into sets whose diameters are less than r.
That is, A C U;=1"B;, and the diameter of each set satisfies
0; = 8(B;) <r. Then the function
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T(A,D,r) = inf 82, (19)
e(r,A) 7

where inf is the infimum (or minimum) over all coverings
satisfying §; < r, defines a kind of coarse-grained measure for
the set A. For example, if D = 1, then I'(A, D, r) gives the
length of the set A as measured with a ruler of length r, and,
as r — 0, T' approaches the actual length of A. For most
values of D, the r — 0 limit leads to a degenerate measure:
either I' = 0 or I' — «, That is not surprising: A figure
with finite length will have zero area, and a finite area is
covered by a curve of infinite length. Something that is
similar to a coastline will have infinite length and zero area.
One can think of I'(A, D) as the D-dimensional volume of
the set A. In fact, since I'(A, D, r) is a function that
decreases monotonically with D, there is a unique transition
point Dy that defines the Hausdorff dimension:

. D o forD <Dy
I(A, D) =limsup 1A, D, 1) =10 ¢ s s

(20)
so that Dy = inf{D:I'(A, D) = 0} defines the Hausdorff
dimension.

For instance, the fractal coastline may have a one-dimen-
sional volume (length) of infinity and a two-dimensional
volume (area) of zero, but there is a D between 1 and 2 at
which the D volume crosses over from « to 0, and that value
of D is the Hausdorff dimension of the coastline.

The coarse-grained measure defined in Eq. (19) typically
exhibits the scaling I'(A, D, r) ~ rP-DH, which gives another
way to estimate dimension. For instance, taking D = 1, one
can estimate I'(A, D, r) for a coastline, say, by measuring its
length with rulers of ever-decreasing length r. The mea-
sured length will be ever increasing at a rate L(r) ~ rl=Dx,
which gives Dy

Having defined the Hausdorff dimension Dy, we give the
Hausdorff measure on the set A by I'(A, Dy). The Haus-
dorff measure of a subset B of A is given by I'(8, Dy) =
lim sup,—.oinf@(r, B)Y; 8, and this measure is one way to
describe the bulk of the set B. This equation suggests that
I(B, D) ~ 6(B)PH, which echoes the form of Eq. (12) and
more prominently displays the role of the Hausdorff dimen-
sion as a local scaling exponent.

Definition of Box-Counting Dimension

The difficulty with implementing the Hausdorff dimension
numerically is the infimum over all coverings that is taken in
Eq. (19). If this requirement is relaxed and instead one
chooses a covering that is simply a fixed-size grid, one ob-
tains an upper bound on the Hausdorff dimension that has
been variously referred to as the capacity, the box-counting
dimension, and the fractal dimension. The last term, how-
ever, has come to be used in a generic sense for any dimen-
sion that may be nonintegral. For most fractal sets of inter-
est, the capacity and the Hausdorff dimension are equal.*2

With the grid size r, Eq. (19) becomes

I'(A,D,r) = z 8P = Z r? = n(r)r?o, (21)

13

where n(r) is the number of nonempty grid boxes. The box-
counting dimension is the value of D on the transition be-
tween I' =0 and I' — «. Here I'(A, Dy, r) ~ 1 implies that
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n(r) ~rPx (22)
or, more formally, that
Dy, = lim 1281/2(0], (23)
—0 logr

Here the local notion of bulk is replaced with a global one:
1/n(r) is the average bulk of each nonempty box, since each
box contains, on average, 1/n(r) of the whole fractal.

Generalized Dimension

In computing the box-counting dimension, one either counts
or does not count a box according to whether there are some
points or no points in the box. No provision is made for
weighting the box count according to how many points are
inside a box. In other words, the geometrical structure of
the fractal set is analyzed but the underlying measure is
ignored.

The generalized dimension that was introduced in Ref. 43,
and independently in Ref. 44, does take into account the
number of points in the box. Let B; denote the ith box, and
let P; = u(B:)/u(A) be the normalized measure of this box.
Equivalently, it is the probability for a randomly chosen
point on the attractor to be in B;, and it is usually estimated
by counting the number of points that are in the ith box and
dividing by the total number of points.

The generalized dimension is defined by

1 .. i
li
q—1r—l:% logr

D, =

(24)
Writing the sum of P9 as a weighted average Y ; P¢ =
3 P;(PA~1) = (P41}, one can associate bulk with the gener-
alized average probability per box ({P;9-1))/¢~1) and identi-
fy D, as a scaling of bulk with size. For g = 2 the generalized
average is the ordinary arithmetic average, and for ¢ = 3 it is
aroot mean square. Itisnot hard to show that the limit ¢ —
1leads to a geometric average. Finally, itis noted thatq =0
corresponds to the plain box-counting dimension defined
above.

For a uniform fractal, with all P; equal, one obtains a
generalized dimension D, that does not vary with g. For a
nonuniform fractal, however, the variation of D, with g
quantifies the nonuniformity. For instance,

log<mgx P,-)
D, =lim ———~% (25)
r—0 logr
log(mjn P,-)
D_, =lim ———~ (26)
r—0 logr

It is clear from Eq. (24) that D, decreases with increasing gq.
From this fact and the above equations, it is clear that the
maximum dimension D_., is associated with the least-dense
points on the fractal and the minimum dimension D., corre-
sponds to the most-dense points. This should not be sur-
prising: The densest set possible is a point, which has di-
mension zero.

The notion of generalized dimension first arose out of a
need to understand why various algorithms gave different
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answers for dimension. A further motivation came from the
need to characterize more fully fractals with nonuniform
measure. These sets are sometimes called multifractals and
are characterized by an a priori measure u that differs from
the Hausdorff measure I'.  An extensive review of multifrac-
tals in a variety of physical contexts (this includes solid
fractal objects as well as strange attractors) can be found in
Ref. 45. The point is that, rather than measure just one
dimension, one can compute the full spectrum of generalized
dimensions from D_., to D..
The formalism of coarse-grained measure introduced in
Hausdorff’s definition of dimension can be generalized. In-

stead of Eq. (19), one can write

r,(A,D,r) = Z 1,%,479D, (@7)

where u; = u(B;) is the a priori measure of the ith element of
the covering. Properly the sum in the above equation is
preceeded by either an inf or a sup over all coverings, accord-
ing to whether g is less than or greater than one.
As before, the r — 0 limit gives I'q(A, D) — 0 for (1 — q)D
<1 - q)Dyand To(A, D) = « for (1 — ¢)D > (1 — ¢q)D,.
And the transition between I' — 0 and I' — « defines the

generalized dimension:
inf{(1 — ¢)D :lim T (A, D, r) = 0}. (28)

s 10

q 1-— q
The advantage of Eqs. (27) and (28) is that they provide a
definition of generalized dimension without requiring fixed-

size boxes.

Spectrum of Scaling Indices: f(c)
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= f n(a, Hri*da (33)

~ f rfertedy ~rf, (34)

where 8 = min {go ~ f(c)} since the integral will be dominat-
ed by the smallest exponent of r when r — 0. Comparing
this to the definition of generalized dimension in Eq. (24),
which gives 3_; P4 ~ r@DDq, one obtains (g — 1)D, =
min,{ga — f(a)}, which is the formula given in Eq. (32).

From this formula, Egs. (29)-(31) follow. See Fig. 3.
This scaling n(a, r) ~ r~f® suggests interpreting f(«) as

the Hausdorff dimension of the points with scaling index «
[compare with formula (22)]. Indeed, the scaling index « is
associated with the pointwise dimension D, and the set

S, ={Xe A:D,(X) =a}

1.0 : i
N,
\

08}
0.6}

Se——

0.2+t
7 AN

(35)

0

Halsey et al.“6 introduced a change of variables that provides
anew interpretation of generalized dimension. Letr = (g —
1)D, and take a Legendre transformation from the variables

(g, 7) into a new set of variables (c, f):
=3 foag-r 29)

dq
and
q=§§ T=aq—f. (30)
In case either 7(q) or f(«) is not differentiable, a more robust

formulation is given by
fle) = mqiniqa - 7(@)} (81)
7(q) = min{ga — f(a)}. (32)

The authors of Ref. 46 interpret f(a) as a “spectrum of
scaling indices.” The variable « is the scaling index: u; =
;% defines the local scaling at the ith element of the cover.
Then, the number n(a, r) of cover elements with scaling
index between « and « + A« scales as n(a, ) ~ r/@Aa.
To see that this interpretation leads to Egs. (29)-(32),
The number of

consider the fixed-box-size sum > ; PJ.
terms in this sum for which P; = r is given by n(a, r). Thus

-30
(@)

1.0 T r T
e

0.8

0.6+

(o)

0.4+

02} P

g=-

1.0

0.8

O 1
0 0.2
(b) o
(a) D, as a function of q for a

Fig. 3. Generalized dimension.
typical multifractal. Also shown are both f and « as a function of ¢

for the same multifractal. (b) f as a function of . The curve is
always convex upward, and the peak of the curve occursatg =0. At
this point f is equal to the fractal dimension Dy. Also, the f(a) curve
is tangent to the curve f = «, and the point of tangency occurs at ¢ =
1. In general, the left-hand branch corresponds to ¢ > 0 and the

right-hand branch to g <0.
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is the set of all points in A for which the pointwise dimen-
sionis «. The Hausdorff dimension of the set S, is given by
f(a).

The reader who is hoping for a dramatic picture of this
fractal set S,, will probably be disappointed. As Sakar?’ and
others have pointed out, S, is not necessarily a closed set and
may even be dense in the original fractal A. Thus, although
the set S, may have a lower Hausdorff dimension than A4, it
is possible for the box-counting dimension to be the same.
And a picture of S, would look just like the picture of the
original set A.

The f(a) formalism provides a tool for testing the notion of
universality, which states that a wide variety of dynamical
systems should behave in a similar way and should leave the
same characteristic signatures. Indeed, several research-
ers?8-50 have found physical systems whose f(«) curves pre-
cisely matched the f(«) associated with a theoretical model
of a circle map undergoing a transition from quasi-periodici-
ty to chaos.

Discussions of f(«) from the viewpoint of a thermodynam-
ic formalism can be found in Refs. 51-54. Here the authors
attempt to work backward by constructing a dynamical sys-
tem that exhibits the desired f(a) structure.

Information Dimension

As an alternative to the scaling of mass with size, one can also
think of the dimension of a set in terms of how many real
numbers are needed to specify a point on that set. For
instance, the position of a point on a line can be labeled by a
single real number, the position on a plane by two Cartesian
coordinates, and the position in ordinary (three-dimension-
al) space by three coordinates. Here, dimension is some-
thing that counts the number of degrees of freedom. For
sets more complicated than lines, surfaces, and volumes,
however, this informal definition of dimension needs to be
extended.

One way to extend this definition is to determine not how
many real numbers but how many bits of information are
needed to specify a point to a given accuracy. On a line
segment of unit length, & bits are needed to specify the
position of a point to within r = 27%, For a unit square, 2k
bits are needed to achieve the same accuracy (% bits for each
of the two coordinates specified). And similarly, 3% bits are
needed for a three-dimensional cube. In general, S(r) = —d
logs(r) bits of information are needed to specify the position
of a unit d-dimensional hypercube to an accuracy of r. This
example leads to a natural definition for the information
dimension of a set; it is given by the small r limit of —S(r)/
loga(r), where S(r) is the information (in bits) needed to
specify a point on the set to an accuracy r. If S(r) is the
entropy, then 250 is the total number of available states,
and 2750 can then be interpreted as the average bulk of each
state. This interpretation permits one to express the infor-
mation dimension as a scaling of bulk with size.

Consider partitioning the fractal into boxes B; of size r.
To specify the position of a point to an accuracy r requires
that one specify in which box the point is. The average
information needed to specify one box is given by Shannon’s
formula:

S(r) =~ Z P;log, P, (36)
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where P; is the probability measure of the ith box: P; =
w(Bi)/u(A). This relation leads directly to an expression
for the information dimension of the attractor:

.. =S(r)
Dy ]rl—r-% log, r (87)
Z P;log, P;
=lim—+——, (38)

=0 log, r

Renyi® has defined a generalized information measure:

_ 1
S,(r) = py log Z P3, (39)

which reduces to Shannon’s formula in the limit ¢ — 1. The
generalized information dimension associated with the
Renyi entropy is just the generalized dimension that has
been defined above by another approach. Thus

log » PS?
T N Z
D, =lim =

im
? >0 logr gq—1r>0 logr

s (40)

which is the same as Eq. (24).

$

ALGORITHMS FOR ESTIMATING DIMENSION

It is emphasized that numerical techniques can only esti-
mate the dimension of a fractal. Practical estimation of
dimension begins with a finite description of the fractal
object. This description may be a digitized photograph with
finite resolution, an aggregation with a finite number of
aggregrates, or a finite sample of points from the trajectory
of a dynamical system. In any case, what is sought is the
dimension not of the finite description but of the underlying
set.

In the previous section an algorithm based on box count-
ing was introduced. However, the box-counting algorithm
has a number of practical limitations, particularly at a high
embedding dimension, and so a variety of other algorithms
have also been developed.

The most popular way to compute dimension is to use the
correlation algorithm, which estimates dimension based on
the statistics of pairwise distances. The box-counting algo-
rithm and the correlation algorithm are both in the class of
fixed-size algorithms because they are based on the scaling
of mass with size for fixed-sized balls (or grids). An alterna-
tive approach uses fixed-mass balls, usually by looking at the
statistics of distances to kth nearest neighbors. Both fixed-
size and fixed-mass algorithms can be applied to estimation
of generalized dimension Dy, although fixed-size algorithms
do not work well for g < 1.57

Also discussed are methods that directly involve the dy-
namical properties of the strange attractor. The Kaplan-
Yorke conjecture, for example, relates dimension to the Lya-
punov exponents. Recently interest has focused on trying
to determine the unstable periodic orbits (these compose the
“Cheshire set” 58) of the attractor. The most direct use of
the dynamics is to make predictions of the future of the time
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series. Successful predictions provide a reliable indication
that the dynamics is deterministic and low dimensional.

Finally the notion of intrinsic dimension is introduced.
This is an integer dimension that provides an upper bound
on the fractal dimension of the attractor by looking for the
lowest-dimensional manifold that can (at least locally) con-
fine the data.

A number of these algorithms can be used to compute
generalized dimension, but from the point of view of practi-
cal estimation it bears remarking that this application is not
always useful. A generalized dimension is useful for quanti-
fying the nonuniformity of the fractal or, in general, for
characterizing its multifractal properties. And this use is
important if one wants to compare an exact and predictive
theory with an experimental result. On the other hand, the
goal of dimension estimation is often more qualitative in
nature. One wants to know only whether the number of
degrees of freedom is large or reasonably small. To answer
the question “Is it chaos or is it noise?” a robust estimate of
dimension is more important than a precise estimate. In
these cases the subtle distinction between information di-
mension at ¢ = 1 and correlation dimension at ¢ = 2, say,
may not be so important as the more basic issues that arise
from experimental noise, finite samples, or even computa-
tional efficiency.

Average Pointwise Mass Algorithms

Recall the definition of the pointwise mass function in Eq.
(16): Bx(r) = u[Bx(r)], where Bx(r) is the ball of radius r
about the point X.

The scaling of Bx(r) with r is what defines the pointwise
dimension at X. If this scaling is the same for all X, then the
fractal is uniform, and it follows that D, is a constant inde-
pendent of ¢ and has the value of the pointwise dimension.
For most fractals, however, pointwise dimension is not a
global quantity, and some averaging is necessary for the
quantity to be made global.

From the point of view of practical computation, it is
possible to compute the pointwise dimension at a sample of
points on the attractor and then to average these values to
obtain an estimate of the dimension of the attractor. This
average is one that in principle gives the information dimen-
sion D;. This approach has been advocated, for example, in
Ref. 59.

However, it is probably more efficient to estimate dimen-
sion by averaging the mass function before the limit in Eq.
(17) is taken. It is in this way that the statistics of the
interpoint distances can be most effectively exploited.

Correlation Dimension

The most natural such averaging strategy was introduced by
Grassberger and Procaccia®%6! and independently by Ta-
kens.52 Here, a direct arithmetic average of the pointwise
mass function gives what Grassberger and Procaccia call the
correlation integral:

C(r) = (Bx(r)). (41)
From this, the correlation dimension » is defined:

v =lim M. (42)
—o logr
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Here, B xj(r) can be approximated from a finite data set of
size N by

#1Xzi = jand [ X; - X, < 1}
N-1

ij(") ~

N
1
“N-1 Z, or— X, - X;), 43)

]

where O is the Heaviside step function: O(x) is zero for x <0
and one for x = 0. The importance of excluding i = j has
been overlooked by some authors, although Grassberger has
stressed this point.®3 In fact, the case is made in Ref. 64 for
excluding all values of i for which |i — jl < Wwith W> 1. It
is now straightforward to approximate C(r) with a finite data
set:

1 N
C(N,r) =N E BXj(r)
j=1

_ 1 I T
—N(N—1);je(" 1X; = X;0). (44)

In words,

# of distances less thanr

C(N,r) = # of distances altogether’

(45)

Thus the correlation algorithm provides an estimate of di-
mension based purely on the statistics of pairwise distances.
Not only is this a particularly elegant formulation but it has
the substantial advantage that the function C(r) is approxi-
mated even for r as small as the minimum interpoint dis-
tance. For N points, C(N, r) has a dynamic range of O(N?).
Logarithmically speaking, this range is twice that available
to A(N, r) in the box-counting method. It is also twice the
range available in an estimate of the pointwise mass function
Bx(r) for a single point X. This greater range is the one
advantage that the correlation integral has over the average
pointwise dimension.

Generalized Dimension from Averaged Pointwise Mass
A more general average than the direct arithmetic average
used above is given by

G,(r) = [(Bx(r)T~ )]V, (48)

The scaling of this average with r gives the generalized di-
mension: Gy(r) ~rPqor

log G
D, =lim _og—q(rl.

—0 logr (47)

Note that ¢ = 2 gives the direct arithmetic average that
defines the correlation dimension and that the ¢ = 1 average
(which is associated with the information dimension),

G,(r) = lilr; G,(r) = exp(log Bx(r)), (48)
—

is a geometric average of the pointwise mass function.
From a finite set of points, Gq(V, r) can be approximated
by$5
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G,(N, )

1 N 1 N g—1Y 1/(g—1)
T, S

=
v i

This formula is easiest to evaluate when g = 2, in which
case it reduces to the simple form given in Eq. (44).

Algorithms based on this equation for the general case g >
2 have been pursued in Refs. 35, 65, and 66. This approach
does not work well for ¢ < 1 since the term that is raised to
the power of ¢ — 1 can be zero for r much larger than the
smallest interpoint distance. The formula ought to work
well for large positive values of g, however.

g-Point Correlation

Grassberger#* suggested a g-point correlation integral de-
fined by counting g-tuples of points that have the property
that every pair of points in the g-tuple is separated by a
distance of less than r:

tq

C (N, ) = # #X, o XX, X <

foralln,me {i;, ..., i} (50)

which has the scaling behavior Cy(r) ~ r@=DDy, Thus

log C.(N, r
lim lim 28 G@V:0)

51
g—1r+0N—= logr 6D

D,=

This equation can in principle be applied to all integers ¢ =
2, although its implementation is awkward for g = 3, since
the number of g-tuples N grows so rapidly with N.

k-Nearest-Neighbor (Fixed-Mass) Algorithms

In contrast to the average pointwise mass functions de-
scribed above, in which the variation of mass inside fixed-
size balls is considered, the nearest-neighbor algorithms
consider the scaling of sizes in fixed-mass balls.

An early implementation of this notion in a chaotic-dy-
namics context was suggested in Ref. 67. (Guckenheimer
and Buzyna® used a method like this one on experimental
data.) Here one computes (ry), which is the average dis-
tance to the kth nearest neighbor, as a function of k. Let
R(X;, k) denote the distance between point X; and its kth
nearest neighbor. [By convention, the Oth nearest neighbor
is the point itself, so R(X, 0) = 0 for all X.] The average is
computed:

N
_1
() =% Zl R(X;, k). (52)

The scaling (ry) ~ kD defines the dimension. (Actually,
what was computed in Ref. 67 was {(r32), since for Euclidean
distances this equation is computationally more efficient.
And the scaling was taken to be (r;2) ~ k22) The authors
conjectured that they had estimated the Hausdorff dimen-
sion, although this statement was corrected by Badii and
Politi® and by Grassberger.’0

Badii and Politi®® consider moments of the average dis-
tance to the kth nearest neighbor and recommend keeping k&
fixed and computing a dimension function from the scaling
of average moments of r, with the total number of points N:

James Theiler

(ryY) ~ (R/NYYP™, (53)

This dimension function D(y) is related to the generalized
dimension by the implicit formulas

vy=(@—-1)D, D(y)=D, (54)

Grassberger™ derived Eqs. (54) independently and fur-
ther provided a small & correction to the scaling of (r;¥) with
k:

) ~[%l](k/wm. (55)

Further pursuit of the dimension function can be found in
Ref. 71. Further corrections and discussions of efficient
implementation are provided in Ref. 72; see also Ref. 73.
Applications of nearest-neighbor methods for estimating in-
trinsic dimension can be traced back to Ref. 74 (see the
cross-disciplinary review in Ref. 75), but these do not give a
fractal dimension and were not applied to chaotic systems.

Algorithms That Use Dynamical Information

Recurrence Time

Let T'x,(r) be the r-recurrence time of an initial condition X.
This is the minimum amount of time necessary for the tra-
jectory of Xy to come back to within r of X;. The inverse
recurrence time provides an estimate of the pointwise mass
function, and one expects

1
———~B .
T~ 50 o
Thus the scaling of the average recurrence time with r can be
related to the generalized dimension*448;

KT DI ~ (BT Y0P (aT)

Lyapunov Dimension
The Kaplan—-Yorke conjecture™ 7 relates the fractal dimen-
sion of a strange attractor to the Lyapunov exponents. The
conjectured formula defines what has come to be called the
Lyapunov dimension:

DY Py
dy=j+ ,A‘ K (58)
i+
where {Ay, ..., Ay} are the Lyapunov exponents in decreas-

ing order and j is given by

k
j= sup{kzz A > 0}.
i=1

The conjecture is that the Lyapunov dimension corresponds
to the information dimension D, with g = 1.

Farmer has used this method to achieve dimension esti-
mates of as many as 20. Matsumoto™ studies a model of
optical turbulence that leads to an attractor with an estimat-
ed Lyapunov dimension of approximately 45. Such num-
bers are far too large to be estimated by conventional tech-
niques. Badii and Politi® used Lyapunov scaling to obtain
extremely precise measurements of generalized dimension
for constant Jacobian maps. In each of these cases, howev-
er, the equations of motion themselves were required.
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When the equations of motion are available, computation of
Lyapunov exponents, and therefore of Lyapunov dimension,
is much easier.

Unstable Periodic Orbits

It has been suggested®! that the natural invariant measure p
(and from this, the fractal dimension) of a chaotic attractor
can be systematically approximated by sets of unstable peri-
odic orbits. This tool is a powerful analytical one and shows
promise computationally, as well. See Refs. 82-85 for fur-
ther discussion.

Prediction Methods

In discussing algorithms for predicting the future of time
series, Farmer and Sidorowich®® suggested several ways in
which these prediction algorithms might be used to make
more accurate and reliable dimension estimates. One
promising possibility is to use bootstrapping: Here a short
time series of length N is extrapolated far into the future,
and the longer time series is used in a conventional dimen-
sion algorithm. This method is appropriate when the data
set is small and computation time is not the limiting factor.
A second possibility is to use the scaling of prediction error
with N, the number of points from which the prediction is
made. This scaling can be related to the dimension, and it
has the desirable property that if it is observed, that is, if the
prediction error is noticably reduced with increasing N, then
the system can be reliably considered low dimensional.

Intrinsic Dimension

Unlike the algorithms discussed above, which seek to com-
pute dimension as accurately as possible from the given
data, the algorithms in this section seek only to bound the
fractal dimension with an integer. The estimate is coarser
but, it is hoped, more reliable than the previous estimates.

As Somorjai’s review’ points out, the notion of local in-
trinsic dimension was first discussed by Fukunaga and Ol-
sen.®® The approach was first applied to dynamical systems
by Froehling et al.3” Here the authors attempt to find D
dimensional hyperplanes that confine the data in a local
region.

A variety of similar approaches have been considered.
Broomhead et al.® use principal-value decomposition to
make the fit to the D dimensional hyperplane. An approach
more closely related to the correlation dimension is de-
scribed in Ref. 89. Another approach based on topological
considerations is described in Ref. 33. An algorithm that
averages the local intrinsic dimension is discussed in Ref. 90.
Although intrinsic dimension is necessarily an integer quan-
tity, the averaging in this algorithm gives a noninteger result
that the authors conjecture to be related to the fractal di-
mension. Brock et al. have developed a statistic based on
the delay-time embedding procedure and the correlation
integral for distinguishing m-dimensional deterministic
time series from uncorrelated noise.”! An analog electronic
estimation of intrinsic dimension is described in Ref. 92. An
anecdotal comparison of an intrinsic dimension estimator
and the correlation dimension estimator can be found in Ref.
93.

The prediction algorithms of Farmer and Sidorowich?0.%4
can also be used to estimate intrinsic dimension. Basically,
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the smallest embedding dimension for which good predic-
tions can be made is a reliable upper bound on the number of
degrees of freedom in the time series.

IMPLEMENTATION OF BOX-COUNTING
ALGORITHMS

Some of the first numerical estimates of fractal dimension
were obtained with the box-counting method.% In this sec-
tion some of the practical issues that arise in the implemen-
tation of box-counting algorithms are discussed. The next
section will discuss some of the same issues for the more
popular correlation dimension.

To compute the box-counting dimension, break up the
embedding space R™ into a grid of boxes of sizer. Count the
number of boxes n(r) inside which at least one point from the
attractor lies. The scaling n(r) ~ r~Do defines the box-
counting dimension, which is formally defined by the limit in
Eq. (23). There are some obstacles, however, in applying
Eq. (23) directly to an experimentally observed fractal.

Finite Resolution

For a solid fractal object, only a finite resolution is available,
so the limit » — 0 cannot be taken. A natural and direct
approximation is just to apply Eq. (23) directly but with the
smallest r available. That is,

D~ log[1/n(r)'].

59
0 logr (59)

The problem with this approximation is that it converges
with logarithmic slowness in . For instance, n(r) = nor=2o
gives
log[(l/no)rD°] _ Dylogr+ log(1/n,)
logr - logr

slow to vanish asr —~0
log(1/ny) =~ D, (60)
log r

=D0+

Instead, log n(r) versus log r is usually plotted. The nega-
tive slope of this curve will give Dy for small r:

~ ~Allog n(r)]

Dy~ A(logr) (61)

The criterion for choosing the best slope is not immediately
obvious. Itis clear that the greater the range (the larger the
lever arm) the better, but this range is limited on one end by
finite resolution and on the other end by the fractal’s own
finite size.

Finite N

For a dynamical attractor, although the points may be
known to a high precision, only a finite sample of N points is
available. The natural approximation in this case is to esti-
mate n(r) with A(N, r), the number of boxes inside which at
least one of the sample points lies. Here, although A(N, r)
clearly underestimates n(r), it is expected to be a good ap-
proximation for large NN since for fixed r:

n(r) = 131im AN, ). (62)
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Returning to the formal definition in Eq. (23), we find that

Dy = lim lim 108l/AW, O] (63)
0 Nerwo logr
The order of the limits is crucial. For finite N, A(N, r) is
bounded by N (there can be no more nonempty boxes than
there are things to put in the boxes), and r — 0 gives a
dimension of zero. In a formal sense, this result is not
surprising: A finite set of points does have dimension zero.
But what is wanted is the dimension of the underlying at-
tractor, not the dimension of the finite sample of points.
The finite sample is a serious limitation because, particu-
larly for multifractal attractors that are nonuniformly popu-
lated with points, the limit in Eq. (62) converges slowly.
Grassberger® has fitted the form

n(r) — AN, r) ~r*N-* (64)

and used the fit to accelerate the convergence. A similar
approach appears in Ref. 97. Caswell and Yorke% point out
that one way to increase the speed of convergence is to use
spheres instead of boxes.

Application to Generalized Dimension

The box-counting algorithm is one of a class of algorithms
based on fixed size and as such is not so well suited as the so-
called fixed-mass algorithms for estimation of generalized
dimension of D, when g <1. Since the box-counting dimen-
sion corresponds to ¢ = 0, the box-counting algorithm is a
poor way to estimate the box-counting dimension. The
modification of the box-counting algorithm for generalized
dimension will achieve better performance if ¢ > 1.

Indeed, the current interest in multifractals and their f(c)
characterization has led to a revival of the box-counting
algorithm for estimation of generalized dimension. For ex-
ample, Chhabra and Jensen® use box counting to compute
f(@) and a(q) directly for experimental data. Their ap-
proach avoids the problem of having to evaluate the deriva-
tive in Eqgs. (29) numerically by analytically differentiating
Eq. (24) for the generalized dimension.

Computational Efficiency

Depending on the details of the computer program that
implements the box-counting algorithm, either one must
keep track of a large number of empty boxes, which can be a
severe memory burden (in the small r limit almost all the
boxes will be empty), or else one must maintain a list of
nonempty boxes. The latter case can be computationally
expensive since, for each point, the program has to check
whether the point belongs in any of the nonempty boxes on
the list. An efficient compromise for low-dimensional em-
bedding spaces is discussed in Ref. 96.

One can always compute n(N, r) in O(N log N) time by
first discretizing the input points to the nearest integer mul-
tiple of r (this effectively converts the point’s position to the
position of the appropriate box), then sorting the discretized
list (which is the same as sorting the list of boxes—a lexico-
graphic or dictionary ordering is useful here), and finally
counting the number of unique elements in the sorted list
(the number of boxes).
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IMPLEMENTATION OF THE CORRELATION
ALGORITHM

One reason for the popularity of the correlation algorithm is
that it is easy to implement. One computes the correlation
integral C(N, r) merely by counting distances. Another and
more fundamental advantage is that the correlation algo-
rithm treats all distances equally, so one can probe to dis-
tance scales that are limited only by the smallest interpoint
distance (which will be of the order of N~2/0), Most other
algorithms are limited by the average distance to the nearest
neighbor (which is of the order of N-12), That is, the
correlation integral C(V, r) has a dynamic range of O(N?);
this compares, for instance, with the O(N) range of the func-
tion A(N, r) that appears in the box-counting algorithm.
Recall Eq. (45), which defines C(V, r) as the fraction of
distances less than r. Then, the correlation dimension is
given by

» = lim lim 228C@%1)

(65)
r—0 N—o  logr

However, there are a variety of practical issues and potential
pitfalls that come with making an estimate from finite data.

Extraction of the Slope
Extracting dimension directly from the correlation integral
according to Eq. (65) is extremely inefficient, since the con-
vergence to v as r — 0 is logarithmically slow. See relation
(60) for the equivalent situation in the box-counting algo-
rithm.
Taking a slope solves this problem. Either one can take
the local slope:
f;(r) = M
dlogr
_dow, r)/dr
CWN,n/r’

or one can fit a chord through two points on the curve:
_ AlogC(N, 1)
Alogr
log C(N, ry) — log C(N, ry)
- log ro — log ry )

(66)

p(r)

(67)

However, to implement this strategy requires the choice of
two length scales. The larger scale is limited by the size of
the attractor, and the smaller scale is limited by the smallest
interpoint distance. The expression usually converges in
the limit as r;, and ry both go to zero, and convergence is
guaranteed as long as the ratio r1/rs also goes to zero.

The direct difference in Eq. (67) fails to take full advan-
tage of the information available in C(J, r) for values of r
between r; and ro. It is natural to attempt to fit a slope by
some kind of least-squares method, but this approach is
problematic. An unweighted, least-squares method is par-
ticularly poor, since the estimate of C(r) by C(V, r) is usually
much better for large r than for small r. Weighted fits can
compensate for this effect, but there is still a problem be-
cause successive values of C(N, r) are not independent.
Since C(N, r + Ar) is equal to C(N, r) plus the fraction of the
distances between r and r + Ar, it is a mistake to assume that
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C(N, r + Ar) is independent of C(NN, r). An estimate of
dimension will depend on whether C(N, r) is sampled at
logarithmic intervals r = (0.001, 0.01, 0.1, etc.) or at uniform
intervals r = (0.001, 0.002, 0.003, etc.). Furthermore, the
error estimate that the least-squares fit naturally provides
will have little to do with the actual error in the dimension
estimate.

Takens!% has shown how this intermediate distance infor-
mation can be incorporated in a consistent way. Using the
theory of best estimators, Takens derived an estimator for »
that makes optimal use of the information in the interpoint
distances r;;. Infact, the method uses all distances less than
an upper bound ry, so that a lower cutoff distance need not
be specified:

-1
(log(r;/re))’
where the angle brackets here refer to an average over all

distances r;; that are less than ro. In terms of the correlation
integral, this can be written!! ag

p(ry) = (68)

,';(ro) = roc(—rl)) (69)
j [C(r)/rldr
0
J " [dC(r)/drldr
= O—ro———. (70)
j [C(r)/r]dr
0

The slightly more unwieldy form that is given in Eq. (70) is
meant to be compared with Eq. (66) for the local slope.

The Takens estimator not only provides an efficient
means to squeeze an optimal estimate out of the correlation
integral but also provides an estimate of the statistical error,
namely, o, = »/\/N*, where N* is the number of distances less
thanro. However this error estimate makes the assumption
that all those N* distances are statistically independent. It
is argued in Ref. 102 that this assumption is valid only if N*
< N because there cannot be N? statistically independent
quantities derived from only N independent points. This
argument implies, for instance, that even for small dimen-
sions one cannot expect to get a precision of better than 1%
with fewer than 10,000 points. (Accuracy is an entirely
separate issue. The variety of sources of systematic error is
vast. Some of these errors will be discussed in later sec-
tions.)

In Ref. 108 the Takens estimator is compared with the
local slope for a typical strange attractor. Ellner!%4 extends
the Takens estimator to a generalized dimension Dy, though
in a way that works only for integer ¢ > 2 and efficiently only
for ¢ = 2. He also introduces a so-called local estimator
based on the same principle. In Ref. 105 it is pointed out
that even though the Takens estimator uses all distances less
than rg, and therefore has in effect an arbitrarily long lever
arm, it is still sensitive to oscillations in the correlation
integral.

Computation
Although there are O(N?) interpoint distances to be consid-
ered in a time series of N points, most of these distances are
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large: of the same order as the size of the attractor. Since it
is the short distances that are most important, and since
there are so few of them, it would be advantageous to orga-
nize the points on the attractor so that only the short dis-
tances are computed. The algorithm in Ref. 106 provides a
way to compute the O(NN) shortest distances with only O(N
log N) effort by placing the points into boxes of size ryp. An
alternative approach is to use multidimensional trees,107
such as were introduced by Farmer and Sidorowich® for
nonlinear prediction. Such an organization of points would
also be useful for the & nearest-neighbor algorithms that
were discussed above. Hunt and Sullivan!®® have also ar-
gued for the importance of efficient data organization.

Franaszek!%® has suggested an algorithm that computes
the correlation integral for a range of embedding dimensions
simultaneously. A massively parallel analog optical compu-
tation of the correlation integral was performed by Lee and
Moon.110

Comparison with Filtered Noise

It is a common and well-advised tactic to compare the corre-
lation dimension computed for a given time series against a
set of test data whose properties are known in advance. For
example, if the given time series has a significantly larger
C(N, r) at small r than does white noise, then one can rule out
the null hypothesis that the original time series is white
noise. However, one cannot rule out the possibility that the
original time series is simply autocorrelated or colored noise.
A more stringent test is to create a time series with the same
Fourier spectra as the original time series (for instance, one
could take a Fourier transform, randomize the phases, and
then invert the transform). Ifthe C(N,r) obtained from this
time series is significantly different from that of the original
time series, then a stronger statement can be made: Not
only is the original time series not white noise, it could not
have been produced by any linear filter of white noise. A
simple version of this more stringent test was applied by
Grassberger!!! in rejecting earlier claims of low-dimensional
chaos in a climatic time series.

Osborne and Provenzale!!2 recently made the striking ob-
servation that stochastic systems with 1/f* power-law spec-
tra can exhibit a finite correlation dimension when o > 1.
This observation is not an artifact of finite N approximation
but is a fundamental property of power-law correlation.
This observation makes it all the more imperative that sto-
chastic analogs of the original time series be created and
tested.

Sources of Error
There are two fundamental sources of error in the estimation
of dimension from a time series: statistical imprecision and
systematic bias. The first arises directly from the finite
sampling of the data (and as such is reasonably tractable);
the second comes from a wide variety of sources. Indeed, it
is this wide variety that has led to so much difficulty in the
field of verifying results as reliable.

Computing fractal dimension is a tricky business. In the
words of Brandstater and Swinney,!13

It is not difficult to develop an algorithm that will
yield numbers that can be called dimension, but it
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is far more difficult to be confident that those num-
bers truly represent the dynamics of the system.

Here is an incomplete survey of the kinds of problems that
may arise, usually in the computation of correlation dimen-
sion. In some cases, remedies are suggested. Figure 4
shows what the ideal correlation integral curves look like and
how they are distorted by the various sources of error.

Finite Sampling and Statistical Error

Ultimately, what limits most estimates of dimension is that
there are a limited number of points sampling the attractor.
Many of the systematic effects discussed below can be elimi-
nated in the N — « limit.

First, a finite sample of N points limits the range over
which interpoint distances can scale. The correlation inte-
gral itself varies from 2/N2 to 1, so that any fit to a slope has
only this range. In particular, any fit over a range R of
distances (R is the ratio of largest to smallest distance scales)
requires that N2/2 > RD, so that at least N = y2RP points are
required. This scaling, however, is an absolute lower bound.
The minimum number of points necessary to get a reason-
able estimate of dimension for a D-dimensional fractal is
probably given by a formula of the form

Nmin = NoeD, (71)

although it is difficult to provide generically good values for
Njp and ©. Experience indicates that © should be of the
order of 10, but experience also indicates the need for more
experience. See Refs. 114-116 for other points of view.

The statistical error in an estimate of dimension typically
scales as O(1/yN), although the coefficient of that scaling
can be surprisingly small; in some special cases, O(1/N)
scaling is observed.!92 Reference 102 also discusses the
trade-off between statistical and systematic error and its
implications in the context of Eq. (71).

Noise

Noise, the ultimate corrupter of measurements, is usually
the first concern of the experimentalist. In the case of
dimension estimation, however, the effect of low-amplitude
noise is often not so significant as other effects.

Although the particular trajectory of an initial condition is
extremely sensitive to noise, the global structure of the
strange attractor is robust. Noise will perturb the trajectory
away from the strange attractor, but the dynamics will al-
ways pull it back toward the attractor. Fractal scaling (of
bulk with size) will break down only at length scales equal to
the noise amplitude. Thus, at relatively high signal-to-
noise ratios, there is still a good range over which fractal
scales may be observed.

Because the noise often possesses a much higher charac-
teristic frequency than the deterministic attractor, it is
tempting to low-pass filter the signal to reduce the effects of
noise. As a rule this is not recommended. As was pointed
out in Refs. 117 and 118, linear filtering can artifically raise
the measured dimension of the time series. On the other
hand, nonlinear filtering techniques have been successfully
employed by Kostelich and Yorke!** to reduce the noise in
the time-series characterization of a strange attractor. Sim-
ilar methods have been proposed in Ref. 40.
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Discretization
Discretized time series are of the form x; = k;e, where k; is an
integer and e is the discretization level. Such discretization
is a natural artifact of digital measuring devices. (In fact,
many algorithms work much faster with integer input than
real input, so that it may be computationally wise to convert.
Usually this involves multiplication by some large factor,
followed by rounding to the nearest integer. The multipli-
cative factor obviously does not affect the slope of a log-log
plot, but the rounding to an integer is equivalent to a discre-
tization.) It follows that distances between pairs of discre-
tized points will themselves be discrete multiples of e. This
effect is most prominent at small »—indeed, pairs of points
with r = 0 occur with finite probability, and a log C(r) versus
log r plot must deal with the r = 0 points. A model of points
on an m-dimensional lattice, with lattice points separated by
¢, leads to a scaling of C(r) ~ (r + ¢/2)™ to leading order in
.10 This suggests that an appropriate plot for a general
discretized time series is log C(r) versus log(r + ¢/2).

An alternative approach!? is deliberately to add noise of
amplitude ¢ (this is called dithering) to the original time
series.

Edges and Finite Size

The finite size of a compact fractal object limits the range
over which C(r) scales as . For r > §,, where §, is the
diameter of the attractor, the correlation integral saturates
at C(r) = 1. This finite size effect is not necessarily a prob-
lem in dimension calculations. As long as the effect is con-
fined to length scales that are larger than some ry = &y, then
accurate estimates of dimension can still be obtained from
the slope of a log C(r) versus log r plot in the r < rg regime.

The real problem stems from the edges that all finite-sized
objects in R™ have. The neighborhoods around points near
the edge have different scaling from neighborhoods farther
into the interior.

Any model of edge effect will depend on the shape of the
fractal, but a tractible and reasonably generic model is that
the fractal is a uniform hypercube of length 1 and dimension’
m. The correlation integral can be derived exactly in that
case: C(N,r)= (2r—r?)m. Thelocalslope at r of the log-log
curve is given by

dC/dr - m(2—2r) ~ m(l _ L)
c/r 2—r ’

(r) = (72)

so that the relative error is [v(r) — ml/m ~ r/2. Since C(N, r)
varies from 2/N? to 1, a natural choice of r for the local slope
is that value for which C(N, r) = 1/N. This gives r~ N(-1/m)/
2, and the relative error p in the dimension estimate becomes
p =NCUm/4  Thuys, for a given accuracy to be achieved, p
requires at least N = (4p)~™ points. For example, for 5%
error the minimum number of points needed is

N, min — 5™, (73)

If one were to use a value of r for which C(N, r) were of the
order of 1/N? and if one employed the Takens best estimator
instead of the local slope, the minimum number of points
needed for 5% error would be Ny, = (1.25)™. It is possible
to reduce this value even further if one’s model for the
strange attractor is, instead of an m-dimensional hypercube,
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Fig.4. Sources of error in the correlation integral. (a) Ideally, the correlation integral C(N, r) scales as r™ for m <», and as r* for m > v over a
range from C(N, r) = 2/N? to saturation at C(IV,r) = 1. Here the dimension is somewhere between 2 and 3. This idealization, however, is only
approximated by correlation integrals computed from actual samples of time series data. (b) An actual correlation integral for a two-
dimensional chaotic attractor is shown here, with embedding dimensions m = 1 through m = 6. The finite sample size leads to poor statistics at
small r, and the finite size of the attractor (the edge effect) limits the scaling at large r. Nonetheless, the slopes are more or less constant over a
range of C(N, r) of the order of N2. (c) The effect of noise. With ¢ the amplitude of the noise, one sees that, for r « o, a slope that approaches
the embedding dimension m is observed. For r > ¢, the effect of the noise is unimportant. (d) The effect of discretization is to introduce a
stair step into the correlation integral (solid curve). The steps are all of equal width, but the log-log plot magnifies those at small ». The effect
is minimized if one plots log C(N, r) versus log 7 for r = (k + Y¢), where k is an integer and e is the level of discretization (dashed-dotted curve).
(e) Lacunarity leads to an intrinsic oscillation in the correlation integral that inhibits accurate determinations of slope. The example here is
the correlation integral of the middle-thirds Cantor set. (f) Autocorrelation in the time-series data can lead to an anomalous shoulder in the
correlation integral. This effect is most highly pronounced for high-dimensional attractors. In this case the input time series was autocorre-
lated Gaussian noise, and the correlation integral was computed for various (large) embedding dimensions of m = 4 to m = 32. Equation (75)
corrects for this effect. (g) If the time-series data arise from a nonchaotic attractor, then the scaling of C(N, r) as r* begins to break down for
C(N,r) <1/N. The dotted—dashed curve here has a slope of 2, corresponding to the two-dimensional quasi-periodic input data.
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an m torus. Indeed, for some fractals, such as the middle-
thirds Cantor set, there is no edge effect at all.

On the other hand, the edge effect can be even stronger
than this, if the edge is singularly sharp. An example of this
effect is the edge of the attractor that arises from the logistic
map x,+1 = 4x,(1 — x,). The square-root singularity of this
edge makes numerical computation of dimension even slow-
er than was predicted by the uniform-measure model.5!

Smith!?! has used the uniform-measure model to argue
that an estimate within 5% of the correct value requires a
minimum of Ny, = 42™ data points. This value is quite a
bit different from that given in Eq. (73), which points to the
sensitivity of these kinds of estimate to the assumptions in
the model. Itisnot at all clear that the edge effect is a good
model for making a priori estimates of errors that arise from
dimension-estimation methods.

Cawley and Licht1% have considered an algorithm that
computes correlation dimension with a truncated data set
that attempts to sidestep the edge effect by deliberately
avoiding points that are far from the centroid of the data
points.

Lacunarity
Dimension is not the only way to gauge the fractal-like ap-
pearance of a set. Mandelbrot!22 has pointed to lacunarity
as another measure: He comments that for two fractals
having the same dimension, the one having the greater la-
cunarity is more textured and appears more fractallike.
Further discussion of lacunarity as a means of characterizing
fractals can be found in Refs. 123-125.

From the point of view of dimension computation, lacun-
arity has the effect of introducing an intrinsic oscillation into
‘the correlation integral.!26127 If the lever arm over which
the slope is estimated is long enough to encompass several
periods of these oscillations, then the effect of the oscillation
will be minimized; but if attempts to compute dimension are
based on the local slope of the correlation integral, lacunar-
ity can prevent convergence of the dimension estimator.
For further discussion of lacunarity as.an impediment to
good dimension calculations, see Refs. 105 and 128.

On the other hand, it has been argued in Refs. 63 and 129
that the amplitudes of these oscillations generically damp
out in the limit r — 0.

Nonchaotic Attractors

The correlation algorithm does not efficiently compute di-
mension when the attractor is nonchaotic. Such attractors
(limit cycles and limit tori) typically have integer dimension
and a Fourier spectrum that is not broadband.

The problem with using the correlation algorithm is that
the trajectories of nonchaotic dynamical systems are too
regular, and the points that sample the attractor are not
even approximately independent. The observed effect is
that the correlation integral C(IV, r) scales as r* from C(N, r)
= 0(1/N) to C(N, r) = O(1) for nonchaotic attractors, where-
as the scaling is complete [from O(1/N2) to O(1)] for chaotic
attractors. For further discussion of this effect, see Ref. 101.

Autocorrelation

Autocorrelation is inevitable in time-series data. For con-
tinuous signals x(t), there is always some time 7 over which
x(t) and x(t + 7) are strongly correlated. If this autocorrela-
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tion time 7 is long compared with the sampling time, then an
anomalous shoulder can appear in the correlation integral
and can lead to inaccurate and possibly spurious estimates of
dimension.5*

One approach is to increase the sampling time,!30 although
this may introduce other problems: It can further limit the
available data and can also affect the delay-time embedding
strategy. However, there is a more effective solution. Re-
write the definition of the correlation integral:

2
N+1-WN-W)
N-1 N-1-n

X zv:V Zﬂ o(r— IX; - X, ). (714

C(W,N,r) =

Note that W = 1 is just the standard algorithm. This algo-
rithm computes distances between all pairs of points except
for those that are closer together in time than W sampling
units. Eliminating this small selection of offending pairs
eliminates the anomalous shoulder without sacrificing the
statistics of O(N?) distance calculations.

The definition, in words, of correlation integral in Eq. (45)
is now adjusted to

C(W,N,r)

# of distances less than r except for those
_ from pairs of points closer together in time than W
# of distances altogether ’

(75)

REVIEWS

The reader is referred to Gleick’s best-seller Chaos!3! as the
easiest and undoubtedly the most enjoyable book from
which to start learning about chaos, fractals, and the dynam-
ic personalities of scientists in the field. Mandelbrot’s
book!?2 thoroughly discusses the topic of fractals qua frac-
tals. This “indispensible, encyclopedic, exasperating”
(Gleick’s words) volume contains many nice pictures and
technical and historical information. Other books with
good pictures include Refs. 6, 132, and 133; these books also
provide significant technical discussion of fractals.

A recent tutorial on nonlinear dynamics aimed at the
engineer can be found in Ref. 184. This includes a discus-
sion of dimension and Lyapunov exponents and has recently
been expanded into a book.135 Also see Ref. 136 for a simi-
larly motivated paper aimed at optical scientists.

Reviews of chaos in general abound: A small sample in-
cludes Refs. 21 and 137-140. A recommended text with
many references is Ref. 141. Reprint books provide more
advanced references that are taken directly from the re-
search literature.16.142143 Reviews of dimension aind its cal-
culation can be found in Refs. 59, 101, and 144; a particularly
rich (and not outdated) source is the workshop proceedings
edited by Mayer-Kress.1¥5 See Ref. 146 for an early review
of experimental observations of chaos.
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