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Virtually all remotely sensed thermal IR pixels are, to some degree, mixtures of different materials or 

temperatures: real pixels are rarely thermally homogeneous. As sensors improve and spectral thermal IR 

remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate.  

Quantitative thermal IR remote sensors measure radiance. Planck’s Law defines a relationship between 

temperature and radiance that is more complex than linear proportionality and is strongly wavelength 

dependent. As a result, the area averaged temperature of a pixel is not the same as the temperature derived 

from the average radiance or radiance spectra, even for blackbodies: this difference is often an error in 

temperature retrieval from radiance measurements. This paper uses simple linear mixing of pixel elements 

(subpixels) to examine the impacts of pixel mixtures on temperature retrieval and ground leaving radiance. 

The results show that for a single material with one temperature distribution and with a subpixel temperature 

standard deviation of 6K (daytime images), the effects of subpixel temperature variability are small but can 

exceed 0.5K in the 3-5µm band and about a third of that in the 8-12µm band. For pixels with a 50:50 mixture 

of materials (two temperature distributions with different means) the impact of subpixel radiance variability 
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on temperature retrieval can exceed 6K in the 3-5µm band and 2K in the 8-12µm ban. Temperature 

distributions obtained from high resolution thermal images as well as specified distributions of temperature 

are used as inputs to the model. The model results are compared to broadband thermal images of plowed soil 

and senesced barley. In addition, a theoretical framework for quantifying the effect of non-homogeneous 

temperature distributions for the case of a binary combination of mixed pixels is derived, with results shown 

to be valid for the range of standard deviations and temperature differences examined herein. 

Keywords: Thermal infrared; Linear mixing; Planck function; Mixed pixels; Surface temperature

1 INTRODUCTION

1.1 Background

The retrieval of land surface temperature is an objective for many quantitative earth observing satellite 

systems. Retrieval on the order of 1K seems achievable, but validation studies are generally and logically 

performed in areas of nearly uniform surfaces. Complexities arising from mixed pixels are usually neglected 

although they have long been known to be a problem for quantitative retrievals. Regardless of the spatial 

scale, variations of real surfaces nearly always exist. Even when the surface materials can be considered 

uniform, variations of subpixel surface geometry, weathering, shadows and micro-shadows etc. are generally 

present to some degree. If more than one material is present, even if they have the same emissivity, it is 

unlikely that they will have the same surface temperature. Subpixel radiance variations in the thermal infrared 

can arise from having emissivity variations (different materials) in the pixel and from the materials having 

different temperatures: typically both occur. Thermal emittance observations are impacted by both emissivity 

and temperature through the Planck’s function, B(T,λ):
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                      M = ε λλ
λ

λ

dTB s ),(
2

1

∫ (1)

where M is the emittance of a surface (W/m2) for a spectral band from wavelength λ1 to λ2, ε is the band 

emissivity, and B (Ts,λ) is the blackbody emittance at the surface temperature, Ts. The classical challenge in 

quantitative thermal IR remote sensing is in separating Ts and ε (temperature-emissivity separation, TES) ,  

thereby retrieving temperature and emissivity. TES is difficult even for uniform pixels because the separation 

is mathematically underspecified: a priori knowledge of either temperature or emissivity or an assumption is 

needed. The problem becomes more complicated with mixed pixels: the combined radiance not only depends 

on the proportions of surface materials but also on the temperature distributions of each of those materials.

Sources of variations within pixels are complex and they can interact in non-linear ways. They include the 

presence on multiple material types with different emissivity, but even a single material type may have 

varying emissivity due to small scale variations of composition and surface conditions. Surface roughness at 

scales much larger than the measuring wavelengths creates non-linear interactions between surface facets that 

drive the emissivity toward a blackbody. It also results in directional variations of radiance even if the 

emissivity is locally non-directional. Surface temperatures are the result of non-linear, three dimensional 

energy transfers that are themselves time dependent and a function of the surface and subsurface thermal 

properties of the materials, the atmospheric boundary layer meteorology, and thermal history. Coherent 

boundary layer turbulence can lead to spatial/temporal fluctuations of temperature that can be important at 

high resolutions. Research has been initiated to develop a forward model of spectral ground leaving radiance 

for realistic pixels integrating these effects. The work presented here represents the completion of the first 

phase of this modeling: linear mixing of radiance from pixel sub-components.

Sources of small scale emissivity and temperature variation have long been known qualitatively. The 

development of well calibrated high spatial resolution broadband, multi-spectral and hyper-spectral thermal 
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IR sensors, has lead to increased capabilities and expectations for quantitative thermal IR remote sensing. A 

number of studies have been published aimed at quantifying these capabilities. There is a long history of 

studying effects of angular variation in the ground leaving radiance of heterogeneous surfaces, mostly for 

vegetation canopies, including Fuchs et al. (1967), Kimes et al. (1980), Balick and Hutchison (1986), Smith et

al. (1997), Sobrino and Cuenca (1999), Lagouarde et al. (2000), Chebouni et al. (2001), Su et al. (2003), Coret 

et al. (2004) and Cuenca and Sobrino (2004). Because of this work in vegetation and the fact that the 

geometry in vegetation-soil complexes is a volume emission problem, vegetated surfaces are not the focus of 

this particular investigation. More general studies of the angular variation of emissivity and radiance that 

include the solid ground surface include Snyder and Wan (1998), McAtee et al. (2003) and Chen et al. (2004) 

among others. Zhang et al. (2004) looked at emissivity scaling issues with mixed solid surface pixels. Small 

scale time dependence (minutes) of surface temperature was studied quantitatively by Katul et al. (1998), 

Balick et al. (2002), Jeffery et al. (2002), and Kustas et al. (2002). Problems in validating land surface 

temperature retrieval algorithms with ground measurements due to temporal and spatial thermal variability 

have been demonstrated by Sobrino et al. (2006).

1.2 Objectives

The broad objective of this paper is to describe the impact of mixed pixels on broadband temperature retrieval 

using a linear mixing model. The purpose of calibrated broadband sensors is primarily temperature retrieval: 

they do not normally provide emissivity information. Results are shown for the mid IR (3-5µm) and longwave 

IR (8-12µm). The work is mainly aimed at small pixels that might be obtained by airborne sensors, on the 

order of one to a few square meters, but it is relevant to mixing within larger pixels. Arbitrary materials, 

proportions, and temperature distributions are used in the model to examine the impact of mixed pixels on 

temperature retrievals and the sensitivity of temperature retrieval to model inputs. Then we apply the model to 
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two high resolution images (~ 2mm) as a reality check, if not validation. Finally, we briefly examine the 

implications of mixed pixels on spectral thermal IR measurements.

2 METHOD

2.1 Linear mixing model

The model assumes that a pixel is comprised of an ensemble of subpixels of one or more material. Each 

material is defined by an emissivity value and a temperature distribution: the temperature distribution is 

specified with a mean, standard deviation and a number of subpixels. The impact of mixtures on the 

difference between average temperature and the temperature retrieved from the average radiance (or ensemble 

radiant temperature from Norman and Becker, 1995) is examined as a function of temperature distribution 

properties and material proportions. Here, calculations are done for the 3-5µm and 8-12µm bands and assume 

an emissivity of 1.0. Pixels are considered to be on the order of meters in dimension, as might be obtained by 

airborne sensors. Temperature distributions obtained from high resolution thermal images as well as specified 

distributions of temperature are used as inputs to the model. The specified distributions are assumed to be 

normally distributed, which while not strictly true in reality, is a close enough approximation so as to be 

useful for studying model sensitivity. The effects of downwelling radiance and atmospheric transmittance are 

not considered here but the impact of spatial-temporal fluctuation of skin temperature on skin temperature 

variability will be discussed.   

We recognize that the model is a highly simplified representation of reality. We use it to demonstrate the 

impact of omnipresent pixel heterogeneity on ground leaving radiance from flat, solid surfaces and 

subsequently on temperature retrieval. More challenging than creating the model is providing it with sound, 

realistic inputs and with an understanding of how they vary in reality. Also, variations that occur on a scale of 

about 1 mm or less are not considered here for several reasons. First, as the scale of the wavelength is 
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approached, particle scattering effects become important (Vincent and Hunt, 1968; Conel, 1969; and Kirkland 

et al. 2002). Modeling of this nonlinear process (Mie scattering) has not been comprehensively accomplished 

for solids. Second, characterizing the constituents for most natural solids at this scale, including its variability, 

is difficult to impossible, except for a limited number of samples. Third, retrieving temperature or identifying 

materials at this scale is of limited interest in most remote sensing applications.

The linear mixing model is a model of radiance, not temperature. To convert results to temperature, look-up 

tables were generated containing the integrated Planck’s function radiance as a function of temperature in the 

3-5µm and 8-12µm bands (a square wave response function is assumed). High order polynomial equations 

were then fit to these data to describe temperature as a function of band radiance, and band radiance as a 

function of temperature. 

Table A1. Coefficients for polynomial of form F = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 where F is either determining 
radiance from temperature (L < T) or temperature from radiance (T < L). b0 terms describe a function of the same form as F but 
supply the inverse relationship. Coefficients were determined over the defined spectral ranges listed below and are valid in the 

temperature range 270-330K. The polynomial relationship are also used in Appendix A to approximate first and second derivatives 
of the Planck function.

L < T 3-5µm 8-12µm T < L 3-5µm 8-12µm

a0 131.48301 -122.34352 b0 247.08160 195.17938

a1 -1.8776691 2.2885058 b1 16.903204 1.6173606

a2 0.0086870284 -0.013790340 b2 -2.2102338 -0.011610265

a3 -6.0438050x10-6 1.6008487 x10-5 b3 0.20261292 6.9150957 x10-5 

a4 -5.9776185 x10-8 1.0603946 x10-7 b4 -0.011101128 -2.6325984 x10-7 

a5 1.3562350 x10-10 -2.5368796 x10-10 b5 0.00032681341 5.6673097 x10-10

a6 -3.6142202 x10-14 1.6898693 x10-13 b6 -3.9649400 x10-6 -5.2399755 x10-13

The first set of results to be presented was generated by assigning a normal distribution of temperature 

(n=1000 subpixels) to a single material and varying the standard deviation. The difference between the mean 

temperature of the subpixels and the ensemble temperature retrieved from the mean radiance (∆T) is plotted 

against the standard deviation. ∆T is the error that results from assuming that the temperature retrieved from 

the total mixed pixel radiance equals the mean temperature of the subpixels. The second set of results is 
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produced by sampling normal temperature distributions for each of two materials, then mixing (averaging) the 

radiance in equal proportion (50:50 mixture), and retrieving temperature. One of the materials is kept at a 

constant mean temperature (290K) while the other is increased in steps of 5K from 295K to 330K. ∆T is 

plotted against the difference between the mean temperatures of each material. While both materials have the 

same standard deviations, different curves are produced for a range of standard deviations. The third set of 

results is similar to the second except that the materials have a 90:10 proportion with the 10% being warmer 

than the 90%. Next, the change of ∆T is shown where two materials are mixed in equal proportion but the 

emissivity of one of the materials is reduced in steps of 0.2. Finally, we show the results of using a 

temperature distribution taken from real images of a single material at high spatial resolution (< 2mm).

3  RESULTS

3.1  Single material temperature distribution

Recall that ∆T is the difference between the mean temperature of the subpixels and the temperature retrieved 

from the pixel radiance. To look at the impact of the standard deviation of subpixel temperature, ∆T is plotted 

against the standard deviation of the temperature distribution for one material in Figure 1a (3-5µm) and Figure 

1b (8-12µm). The standard deviation varies between 0K and 12K: a standard deviation of 5K or 6K is 

probably on the high side for a pixel of uniform material at the meter scale, but it has been observed for 

materials such as plowed soil and rocky terrain on sunny days. Larger pixels may encounter more variability. 

For standard deviations likely to be encountered at the meter scale, the impact of varying subpixel temperature 

on retrievals is minor: less than 0.5K in the mid-IR and less than 0.2K in the longwave IR. When the standard 

deviation is very large (on the order of 10K), a ∆T of nearly 1.5K in the 3-5µm band and about a third of that 

in the 8-12µm band is modeled. The apparent outliers in the 3-5µm plot are the result of Gaussian samples 
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with an unusual number of pixels in the upper tail of the distribution: the 3-5mm band is more sensitive to 

high values of temperature and it is more likely to occur when the standard deviations are very large. Whether 

these magnitudes of retrieval errors are important or not depend on the sensor and application, but they can 

exceed the signal to noise levels of most modern sensors. 

3.2 Binary mixtures

Figures 2a (3-5µm) and 2b (8-12µm) show the change of ∆T as the difference of the mean of the temperature 

distributions of two materials (t), mixed in equal proportions, increasing from 5K to 40K. The standard 

deviation of the two temperature distributions are kept the same. A mean temperature difference of 40K 

between materials in a pixel is large at the meter scale but not unreasonable, especially as scales increase. 

With no temperature variation within materials (standard deviation = 0), ∆T reaches nearly 6K in the 3-5µm 

band and about a third of that in the 8-12µm band. However, at more modest differences between the means 

of the temperature distributions the effect is much reduced. When the mean temperatures are 10K apart and 

the standard deviation is 0K, ∆T is about 0.5K in the 3-5µm band and on the order of 0.1K in the 8-12µm 

band. Indeed, when the means differ by 10K or less, the effect of having a standard deviation of about 2.5K is 

larger than the effect of having different mean temperatures. As expected, the effect of increasing the standard 

deviation is nearly independent of the difference between means. 

A 50:50 mixture represents the largest mixture effect for two materials in a pixel. Figure 3a (3-5µm) and

Figure 3b (8-12µm) contain plots similar to Figure 2a and Figure 2b except that the mixture is 90:10 with the 

10% portion being the warmer or variable temperature component. This is analogous to having a warm, 

subpixel object in the pixel that composes 10% of the pixel area. ∆T in this case is slightly less than half of the 

50:50 mixture when the standard deviation is zero.
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In Figures 1-3 it appears that ∆T varies quadratically with the standard deviation and the difference of 

temperature distribution means. In fact, it can be shown that for binary mixtures, variation in ∆T can be 

approximated by:                 

( )2
2

2
1

2 )p1(pt)p1(pcT σ−+σ+−=∆ (2)

where σ1 and σ2 are the standard deviations, p the proportion of one of the materials, t is the difference in the 

mean temperature distributions, and c is a function of the first and second derivatives of the Planck’s function 

at the mean temperature, integrated over the wavelengths of interest. The equation is fully derived in

Appendix A. For the cases shown in Figure 2 and Figure 3, the value of c for a representative temperature of 

290K (c varies with mean temperature To) is approximated as 0.016098 K-1 in the 3-5µm band and 

0.005444 K-1 in the 8-12µm band. It should be noted that Eq. 2 is only formally valid for blackbodies in the

small σ and t regime, as can be observed in Figures 2 and 3, but the expression generally provides a good 

approximation for the temperature ranges used here.

3.3 Emissivity changes

Figure 4 shows the variation of ∆T for two materials in equal proportions and at the same temperature, but the 

emissivity of the second material is reduced in steps of 0.2. The 3-5µm band shows a temperature decrease of 

1.4K when the emissivity of one of the materials is 0.9 and 1.0 for the other. If there were only a single 

material, the change of temperature (∆T) between an emissivity of 1.0 and 0.9 would be twice that of the 

mixture, or -2.7K. The same calculations for the 8-12µm band show that ∆T for the mixture with one of the 

materials at an emissivity of 0.9 is 2.9K. For a single material, that change in emissivity results in a ∆T of -

5.8K. The greater sensitivity of temperature retrieval to emissivity at longer wavelengths shows one of the 

few advantages in temperature retrieval of the 3-5µm band: temperature retrieval is about half as sensitive to 

errors in emissivity estimation as for the 8-12µm band (Mushkin et al., 2005).
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3.4 High resolution thermal images

Figures 5 and 6 show high resolution thermal images taken with a microbolometer thermal infrared imager 

near Barrax, Spain. The detector is a 320 x 240 array with precision less than 0.1K. The image was taken at 

nadir and the area of the images is about 0.4m x 0.6m and pixel separation distance is less than 2mm. The 

spectral response of the sensor is not known but it is given by the manufacturer as 8-14µm. Figure 5 is an 

image of plowed soil and has a mean, standard deviation, range, and skewness of 314.6K, 3.6K, 24.2K, and -

0.4K3 respectively. ∆T for this image in the 8-14µm band is 0.05K and is consistent with the model. If we 

assume that the temperature reported by the camera is the true kinetic temperature, and if the image data were 

taken in the 3-5µm band, ∆T would be 0.18K. Figure 6 is an image of senesced barley with imaging geometry 

similar to Figure 5. It is neither a flat surface nor uniform material but the material below the grain heads is 

largely dry leaves so the emissivity is probably nearly uniform. The mean, standard deviation, range, and 

skewness of this image is 306.9K, 2.5K, 16.0K and 0.8K3 respectively. ∆T for this image in the 8-14µm band 

is 0.03K, essentially in the noise but consistent with the model. If it were obtained in the 3-5µm band, ∆T is 

calculated to be 0.08K.

4  DISCUSSION AND CONCLUSION

The work presented her focuses on estimating ∆T – the difference between the mean temperature and the 

temperature retrieved from the radiance of mixed pixel. The simplest form of subpixel variation is when there 

is one material with varying temperature. In this case, ∆T is quite small under modest levels of subpixel 

variation at meter scales: a few tenths of a degree. However, it can become more significant (on the order of 

1K) for cases where the variability is quite large. For binary mixed pixels, two materials with different 

temperature distribution means, ∆T is still rather small for most conditions, at least for the longer 

wavelengths: ∆T stays below 1K until the mean temperature difference reaches roughly 25K. ∆T can become 
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large when subpixels of materials with considerably different mean temperatures are present. At a difference 

of 40K, ∆T is about 6K in the 3-5µm band and 2K in the 8-12µm band. Roughly, model calculations of ∆T 

are three times larger in the 3-5µm band than the 8-12µm band when subpixel variability is the same.  

These results lead to a conclusion that the effect of subpixel mixing is small for small pixels under a wide 

range of realistic circumstances. However, errors of temperature retrievals can become large under conditions 

of large but realistic subpixel temperature variation such as when subpixel heat sources are present in the 

pixel, especially in the 3-5µm band. Field observations indicate that temporal fluctuations at a point during the 

day often fluctuate by several degrees: in-situ field measurements have observed fluctuations of 9 or 10K on 

several surfaces. If these occur at pixel or subpixel scales, these fluctuations would add significantly to the 

variability of temperature in the pixel. Indeed, the temperature variability encountered by real sensors would 

depend strongly on spatial scales. It can be expected that temperature variation in large pixels is usually 

greater than variability of small pixels, but the spatial scaling of temperature or emissivity is a complex 

problem. Temperatures are commonly retrieved from satellite sensors at 1km resolution. What temperature or 

material variations exist within that 1km2 area?  What scales of variation are important? Can a 90m x 90m 

pixel effectively define subpixel temperature variation? Is 10m GSD adequate, 1m, or even 1 mm? To an 

extent the answer lies in what is in a particular pixel but the issue is a general one.

Exercising a simple model is a simple task: much more difficult is in knowing what realistic inputs to the 

model are. Linear mixing applies to flat surfaces, but realistic surfaces are rarely flat. In the two examples 

given in Figures 4 and 5 the surfaces are far from flat: the soil heights vary by 10 cm (roughly) and the barley 

canopy is really a volume emitter 40cm to 50cm deep. Eventually, this model will be integrated with a model 

of the effects of solid surface roughness, at which point the mode then becomes non-linear. The early stages 

of this model are described by Danilina et al. 2006. Ultimately, a model of turbulence induced 

spatial/temporal skin temperature fluctuations will be added (Balick et. al,. 2006).
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Finally, a comment about temperature retrieval from mixed pixels using hyperspectral thermal data is 

appropriate. A common approach uses what is sometimes called “Planck’s function draping” in which the best 

fit of the Planck’s function to the radiance spectra continuum (excluding spectral features) determines the 

temperature. This technique has a problem for mixed pixels because the sum of two Planck’s functions is not 

a Planck’s function. For a blackbody pixel that has an average temperature of 300K but has a mixture with 

half at 285K and half at 315K, ∆T is about 2K in the mid-IR and nearly 1K in the longwave IR. If the mixture 

is at temperatures of 280K and 320K, ∆T increases to about 6K in the 3.5µm band and 2K in the 8-12µm 

band. These numbers are similar to the broadband results presented in this paper: any advantage to using 

spectral data would come from improved knowledge of emissivity.
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APPENDIX A

If B(T) is the total pixel radiance over the band of interest due to a pixel at temperature T, and if h(T) is the 

distribution of temperatures in the pixel of interest, then we can write;

∫
∫
=

=

dT)T(h.TT

dT)T(h1

o

A1

Where To is the mean temperature in the pixel, and

∫= dT)T(h)T(BR pix A2

is the pixel radiance. Further, we can write:

[ ]∫−= dT)T(h)T(BBT 1
B A3

where B-1 is the inverse of the Planck function and TB is the brightness temperature of the pixel i.e. it is the 

temperature that will be retrieved from a measurement of radiance over a given waveband. Then 

oB TTT −=∆ is the error we make in estimating the mean temperature To from the radiance Rpix. To estimate 

the magnitude of this error, we begin with a Taylor series expansion on A2 about z = T-To. Considering only 

the leading 2 orders leads, we obtain:

...dT)T(hzT''B
2

1
dT)T(ThdT)T(zhT'BdT)T(h)T(BR 2

ooopix ++++= ∫ ∫ ∫  A4

Using the properties of h(T) defined in A1, this simplifies to:

2
effo

''
o

2

oo
''

opix )T(B
2

1
)T(BdT)T(h)TT()T(B

2

1
)T(BR σ+=−+= ∫ A5

where 2
effσ = 2

o )TT( − describes the temperature variance in the pixel. Now, writing )T(BR oo = as the 

radiance that would be observed in a pixel of uniform temperature To, then:
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)T('B

RR

)T('B

)T(B)T(B
TTT

o

opix

o

oB
oB

−
=

−
≈−=∆ A6

Substituting values for Rpix and Ro defined above yields:

)T('B

)T(''B
2

1

)T('B

)T(B)T(''B
2

1
)T(B

)T('B

RR
T

o

2
effo

o

o
2
effoo

o

opix
σ

=
−σ+

=
−

=∆ A7

In terms of defining the temperature variance within a pixel, if we are given two temperatures, T1 and T2, the 

variance about the mean temperature To can be expressed:

2
o2

2
o1

2
o )TT)(p1()TT(p)TT( −−+−=− A8

where T1 and T2 are the temperatures of each area and 21o T)p1(pTT −+= is the average temperature, 

straightforward algebraic manipulation leads to:

22
o t)p1(p)TT( −=− A9

where t = T2 - T1. In the more general case that there is variation in each of the areal components, such that 

these areas have mean temperatures T1 and T2, and variances σ1 and σ2, it can be shown that:

2
2

2
1

22
o )p1(pt)p1(p)TT( σ−+σ+−=− A10

which gives an estimate of 2
o )TT( − , or the effective standard deviation of a binary mixture, in terms of 

pixel proportion and difference in mean temperature. Therefore, taking our result from A7 for the first and 

second differentials of the Planck function, and combining with knowledge of the variance of the temperature 

distributions ( 2
effσ ), we can define the general expression for the difference in temperature ∆T as:

( )2
2

2
1

2

o
'

o
"

2
o

2
eff )p1(pt)p1(p

)T(B

)T(B
2

1

)TT(ccT σ−+σ+−=−=σ=∆ A11
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Figure 1. ∆T for one material as a function of its standard deviation of subpixel temperature in the 
a) 3-5µm band and b) 8-12µm.
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Figure 2. ∆T as a function of the difference between mean temperatures in a 50:50 mixture for different 
standard deviations in the a) 3-5µm band and b) 8-12µm. The upward progression of curves represent 

increasing standard deviations of 0, 2.5, 5 and 10 (solid lines). Approximations for ∆T as a function of the 
difference in the temperature means and material proportions as derived in Appendix A are also included 

for comparison, for standard deviations greater than 0 (dashed lines). 
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Figure 3. ∆T as a function of the difference between mean temperatures in a 90:10 (warm) mixture and for 
different standard deviations in the a) 3-5µm band and b) 8-12µm. The upward progression of curves 
represent increasing standard deviations of 0, 2.5, 5 and 10 (solid lines). Approximations for ∆T as a 

function of the difference in the temperature means and material proportions as derived in Appendix A are 
also included for comparison, for standard deviations greater than 0 (dashed lines).
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Figure 4. ∆T of a 50:50 mixture of two materials with the same temperature distributions, except the 
emissivity of one of the materials is varied for the 3-5µm (dotted) and 8-12µm (dashed) spectral range.
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Figure 5. High resolution (< 2mm) thermal IR image of plowed soil (nominally 8-14µm).
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Figure 6. High resolution (< 2mm) thermal IR image of senesced barley (nominally 8-14µm).

Page 25 of 25

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


