
Parallel Random Number Generators for Sequences
Uniformly Distributed Over Any Range of Integers

Richard Kuehnel

Headquarters
US European Command

Unit 30400
APO, AE 09131

James Theiler
Space and Remote Sensing

Sciences Group
Los Alamos National

Laboratory
Los Alamos, NM 87545

Yuke Wang
Department of Computer

Science
Erik Jonsson School of

Engineering and Computer
Science

Box 830688, MS EC 31
University of Texas at Dallas
Richardson, TX 75083-0688

ABSTRACT

 A VLSI design methodology is proposed for the efficient generation of multiple pseudo-random

number sequences based on a simplification of Cauwenberghs’ counter-propagation technique. We

demonstrate that the counter-propagation of two sequences can be replaced by one propagating and

one non-propagating sequence, requiring as few as half the number of flipflops, while still allowing

new circuits to be added to the system without additional calculations – there is no need to keep

track of random starting values, tap combinations, or time shifts. Moreover we extend our method

from multiple bit sequences to multiple random number sequences that are uniformly distributed

over any range of integers. In particular we address the more general problem of generating

sequences over the range , where],0[K 1+K is any desired integer, including a power of two or a

prime number. To this end we demonstrate that the simple concatenation of random bits to form

random bytes is a special case of a more general concept whereby random integers distributed over

prime number ranges are concatenated to form random integers distributed over any range. We find

that the proposed design compares favorably with design strategies based on cellular automata, both

in terms of statistical properties and implementation efficiencies.

Index: random number generator, PRNG, uniform sequence, VLSI circuit, stochastic computing,

stochastic processing, cellular automata

 1

1 INTRODUCTION

 Inserting small random number generators into hardware has a wide variety of potential

applications, such as the computational elements of artificial neural networks [1][2]. The

methodology presented in this paper was originally developed for stochastic computing, a technique

that provides very low computation hardware area, fault tolerance, and efficient hardware

implementations for high clock rates. Consider a generalized digital-to-stochastic converter

consisting of a register containing the input , a pseudo-random number generator producing ,

and a comparator, as described in [3][4][5] and shown in Fig. 1.

nX nR

nX

nR
nY+

-

Fig. 1. In a digital-to-stochastic converter the digital input is compared to a uniformly distributed sequence to generate a

Bernoulli sequence.

If is restricted to and is uniformly distributed over the same range, then is a

Bernoulli random variable with

nX KX n ≤≤0 nR nY

KXYP nn == }1{ . The Bernoulli sequence thus represents

the value of

}{ nY

KX n as a stochastic code, where the constant K is an important designer-specified

parameter. In IIR filters, for example, the range of the random number distribution controls

the width of the passband [6].

],0[K

 Stochastic computing has been successfully applied to artificial neural networks by using large

numbers of these relatively simple computing elements [1]. Multiple circuits, each with an

independent source of random numbers, are used to create a massively parallel system. This often

requires separate pseudo-random number generators (PRNGs) for each circuit, so that a large

amount of silicon area is consumed by random number production. Moreover, to ensure that the

numbers are statistically uncorrelated, each PRNG must be designed using a different algorithm or a

different starting value. This adds complexity to the design and increases the size of hardware

implementations.

 Where the numbers being produced are uniformly distributed over a range , where],0[K 1+K

is a power of two, Hortensius et al. have shown that a cellular automata-based approach has far

better randomness characteristics than using the bits of a single linear feedback shift register (LFSR)

 2

in parallel [7]. According to this method, numbers are represented as collections of single-bit cells.

A cell’s value is determined by its previous value and the previous values of nearby cells.

 Alspector et al. propose an alternative, LFSR-based approach [1]. Also called Tausworthe

generators, linear feedback shift registers have been shown to have useful theoretical properties [8]

and combined LFSR generators have additional advantages [9]. In particular they have very long

periods. Alspector et al. create multiple random bit sequences from a single LFSR by tapping into

the shift register. Three taps are added together modulo-2 to produce identical sequences shifted in

time by an amount that can be calculated, with different tap combinations resulting in different time

shifts. Although the resulting bit patterns are the same, the time shifts between them are designed to

be long enough so that they are effectively uncorrelated. In accordance with their methodology, the

designer solves a set of equations to determine the time shift produced by each possible combination

of 3 taps. A set of tap combinations is then selected to ensure that the time shifts between bit

sequences are sufficient.

 Alspector’s method enables the system to use only one random bit generator, but numerous taps

must be routed throughout the system, resulting in circuits that are difficult to interconnect

efficiently in VLSI. Moreover, the requirement to compute and select the time shift for each

individual circuit is administratively tedious - the designer must choose a new time shift whenever a

new circuit is added to the system. Saarinen et al. review other methods of generating time-shifted

sequences, but note that an optimum method of dealing with the complexity of the problem has not

yet been developed [10].

 Cauwenberghs developed a simplified scheme using counter-propagating linear feedback shift

registers. The generated bit sequences are obtained from the XOR of the parallel outputs of two

counter-propagating shift registers driven by different primitive polynomials. This technique

drastically reduces the implementation complexity and routing requirements of Alspector’s

approach and has been used successfully in analog neural networks [2].

 In this paper we propose a methodology based on a simplification of Cauwenberghs’ technique.

We demonstrate that the counter-propagation of two sequences can be replaced by one propagating

and one non-propagating sequence, requiring as few as half the number of flipflops, depending on

fanout constraints, while still allowing new circuits to be added to the system without additional

calculations – there is no need to keep track of random starting values, tap combinations, or time

shifts. Moreover we extend our method from multiple bit sequences to multiple random number

sequences that are uniformly distributed over any range of integers. In particular we address the

more general problem of generating sequences over the range , where],0[K 1+K is any desired

 3

integer, including a power of two or a prime number. To this end we demonstrate that the simple

concatenation of random bits to form random bytes is a special case of a more general concept

whereby random integers distributed over prime number ranges are concatenated to form random

integers distributed over any range.

 The paper is organized as follows. In Section 2 we describe the mathematical basis for our

methodology. In Section 3 the generation of parallel bit sequences is presented. Section 4 extends

these techniques to the generation of parallel sequences uniformly distributed over any integer

range. Section 5 computes the number of logic gates needed by the system as a function of the

desired distribution range as compared to other methods. Experimental results are presented in

Section 6. Section 7 concludes this work.

2 MATHEMATICAL PRELIMINARIES

In this section we prove two theorems that will be used in later sections to propose a memory-

efficient alternative to counter-propagation. These theorems, which are an extension of the concepts

introduced by Fillmore and Marx [11], apply to the generation of random numbers over a range

, where],0[K 1+K is a prime number, including random bit generation where 21=+K . In this

section we also introduce a third theorem that will be used to extend the design methodology to

random numbers uniformly distributed over any range of integers.

DEFINITION 1. A sequence , composed of elements is called a linear recursive

sequence over the field

v ,...,, 210 vvv

F if there exist in mccc ,...,, 21 F such that

 (2.1) ∑
=

−++ =
m

i
imnimn vcv

1

for every integer . 0≥n

DEFINITION 2. The shift operator σ is defined for the sequence v by wv =σ , where 1+= nn vw

for . 0≥n

We will use to denote applications of the shift operator so that if then kσ k wvk =σ knn vw += .

We will use as a notation for . wvk =−σ vwk =σ

 4

DEFINITION 3. A characteristic polynomial in x over F is defined as

 (2.2) ∑
=

−−≡
m

i

im
i

m xcxxf
1

)(

In this context is called the degree of . The sequence m)(xf v is said to satisfy the recursion

associated with .)(xf

PROPOSITION 1. A linear recursive sequence v satisfies if and only if)(xf 0)(=vf σ .

Proof: If the linear recursive sequence satisfies the characteristic polynomial corresponding

to

v)(xf

 (2.3) ∑
=

−++ =
m

i
imnimn vcv

1

then

 (2.4) 0
1

=−∑
=

−++

m

i
imnimn vcv

and thus

 (2.5)

vf

vc

vcv

m

i

im
i

m

m

i

im
i

m

)(

0

1

1

σ

σσ

σσ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−=

∑

∑

=

−

=

−

The reverse of these steps is also true, so we conclude that the linear recursive sequence v satisfies

the characteristic polynomial if and only if)(xf 0)(=vf σ .

PROPOSITION 2. If , where wvu km σσ += v and satisfy the polynomials and ,

respectively, then u satisfies .

w)(xf)(xg

)()(xgxf

Proof: Let , then since operations are always commutative in a field we can write wvu km σσ +=

 5

 (2.6)
0

)()()()(

)()()()()()(

=
+=

+=

wgfvfg

wgfvgfugf
km

km

σσσσσσ

σσσσσσσσ

Thus 0)()(=ugf σσ and u satisfies by Proposition 1.)()(xgxf

DEFINITION 4. A polynomial is called irreducible if its only divisor is itself and the unit

polynomial .

)(xf

1)(=xg

DEFINITION 5. An irreducible polynomial of degree over the finite field)(xf m F of

elements is called primitive if the period of the sequence it generates is equal to . The

resulting sequence is known as an m-sequence.

q

1−mq

PROPOSITION 3. Suppose v and are non-zero linear recursive sequences with periods w M and

, respectively. If the polynomials of the recursions of these sequences are relatively prime, then

 has a period equal to the least common multiple of

N

wvu +≡ M and . (A proof of this

proposition is found in [11].)

N

LEMMA 1: Let v and be non-zero linear recursive sequences and let the polynomials of the

recursions of these sequences be different and primitive. Then

w

wvu +≡ has a period equal to the

least common multiple of and , where and are the degrees of the polynomials of 1−mq 1−nq m n

v and , respectively. w

Proof: This is a direct result of Definition 5 and Proposition 3.

THEOREM 1. For the finite field F of elements let and be linear recursive sequences

satisfying the different primitive polynomials and of degrees and . Then, for any

time shift , the sequence is periodic with a period equal to the least common multiple

of and .

q v w

)(xf)(xg m n

k wvu kσ+≡

1−mq 1−nq

 6

Proof: If is a non-zero linear recursive sequence that satisfies a polynomial that is primitive, then

the sequence satisfies the same polynomial. Therefore, as a direct result of Lemma 1,

 has a period equal to the least common multiple of and for any

integer .

w

wkσ

wvu kσ+≡ 1−mq 1−nq

k

THEOREM 2. For the finite field F of elements let and be non-zero linear recursive

sequences satisfying the different primitive polynomials and of degrees and

where and . Let

q v w

)(xf)(xg 1m 2m

11 >m 12 >m M be the period of v and be the period of and let N w M and

 be relatively prime. Consider the two sequences and , where

. Then , where

N wvu k1)1(σ+≡ wvu k2)2(σ+≡

NMkk <<−≤ ||1 21)2()1(uu pσ= Mp ≥ .

Proof: According to Proposition 2, the sequences and both satisfy , which is of

degree . Let

)1(u)2(u)()(xgxf

21 mmm +=

 (2.7) ∑
=

−−=
m

i

im
i

m xcxxgxf
1

)()(

Then

 (2.8) ∑
=

−++ =
m

i
imnimn ucu

1
)1()1(

and

 (2.9) ∑
=

−++ =
m

i
imnimn ucu

1
)2()2(

It is clear from the summations that all of the subsequent elements of a sequence can be determined

by any m consecutive elements the sequence. If there exists even one value of such that

 for all ,

n

pimni− =mn uu +−++)1()2(i mi ≤≤1 then

 (2.10) ∑
=

+−++ =
m

i
pimnimn ucu

1
)1()2(

i.e. is the sequence shifted by)2(u)1(u p . Both and are of length)1(u)2(u ()()11 21 −− mm qq . If

none of the m-length subsequences in and are the same then there exist at least)1(u)2(u

 7

()()112 21 −− mm qq unique m-length subsequences. But only unique m-length subsequences

exist. Since

1−mq

()() 1112 21 −>−− mmm qqq then at least one of the m-length subsequences of is

identical to a subsequence in so that a value of

)1(u

)2(u p exists such that . This means

. From this we infer that and and therefore

conclude

)2()1(uu pσ=

wvwv kppk 21 ++=+ σσσ vv pσ= ww kpk 21 += σσ

 (2.11) 0mod =Mp

(We use to denote “ modulo b ”, i.e. the remainder resulting from the integer division of

 by b .) It also means

ba mod a

a Nk2 . Thus since 21 kk ≠ then pNk mod)(mod1 +=

 (2.12) 0≠p

From (2.11) and (2.12) we conclude that Mp ≥ . Therefore and will be the same

sequence shifted by an amount greater than or equal to

)1(u)2(u

M .

 Another way to view these concepts is to consider wv + to be a sequence with period . This

represents a concatenation of different subsequences of length

MN

N M . Then all the different

sequences of the form correspond to these different subsequenceswvu kσ+= .

 The next theorem will later be used to demonstrate that the concatenation of random bits to form

numbers distributed over ranges equal to a power of two represents a special case of a more

generalized approach in which the range can be any positive integer.

THEOREM 3. For every integer 1>K there exists a set of prime numbers , unique except

for order, where , such that if is uniformly distributed over the set of integers

 for all , , then the sum

Mqq ,...,1

1...21 += Kqqq M ir

}1,...,0{ −iq i Mi ≤≤1

 121213121 −++++= MM qqqrqqrqrrρ (2.13)

is uniformly distributed over the set of integers . (A proof of this theorem is found in [12].) },...0{ K

3 GENERATING SEQUENCES DISTRIBUTED OVER A PRIME RANGE

 Using the methodology of the proof to Theorem 2 we can show that one of the propagating

sequences of the counter-propagation method, as shown in Fig. 2, can be replaced by a non-

propagating sequence with negligible effect on the guaranteed time shift between output sequences.

This cuts in half the number of flipflops required.

 8

 When both sequences propagate, moving from one output sequence to another results in a

positive time shift of one input sequence and a negative time shift of the other. Let wvu +≡)1(and

 represent two output sequences separated by . The signs of the shift operator

reflect that the input sequences are counter-propagating. Without loss of generality, let

, where

wvu kk σσ +≡ −)2(k

NMk <<< 20 M and are the periods of N v and , respectively. Since

 then by Theorem 2, where . This means

 where . Therefore and will be the same sequence shifted

by an amount greater than or equal to

w

wvu kk 2)2(σσ +=)1()2(uu pk σσ = Mp ≥||

)1()2(uu kp−=σ kMkp −≥− ||)1(u)2(u

kM − .

1−Z 1−Z

1−Z1−Z1−Z

+)1(u +)2(u+

1−Z
w

v

Fig. 2. The counter-propagation of two input sequences creates output sequences that are identical to each other but shifted

substantially in time.

 Our system for generating random sequences uniformly distributed over a prime-number range

using only half the number of flipflops (excluding fanout considerations) is depicted in Fig. 3. This

is the second of L circuits needing random sequences, as shown in Fig. 4. A non-propagating

sequence R is generated with characteristic polynomial and period)(xf R M . A second,

propagating sequence is generated with characteristic polynomial and period . The

polynomials are different and primitive. The designer assumes an upper bound on the total

number of random sequences that the system may need, taking into account any additional circuits

that may be added in the future. Then the characteristic polynomials are selected so that

. Good randomness properties dictate that, even for very large systems,

S)(xf S N

maxN

maxNMN >> M and

will generally be orders of magnitude larger than and, as will be shown, the circuit area per

random number generator increases at a rate of only

N

maxN

)(log)(log NOMO + .

 9

1−Z

+ +)(21 ∆+∆b+

R

1−Z1−Z

)1(1 +∆b)2(1 +∆b

21 ∆+∆bydelayedS1∆bydelayedS

Fig. 3. Each client circuit generates as many random sequences as it needs from the propagating and non-propagating

input sequences and passes the propagating input sequence to the next circuit.

R

S

1∆bydelayedS

121 ... −∆++∆+∆ LbydelayedS

21 ∆+∆bydelayedS

Fig. 4. Sequences generated by two LFSRs are used to drive a daisy chain of client circuits, each internally generating its

own random sequences from the two inputs.

Each circuit delays the propagating sequence by one clock cycle for every random sequence

 that it needs, where identifies the particular sequence. It generates these sequences by

the modulo- addition (an XOR gate for

S

{ nmb)(} m

q 2=q) of and , where the latter is delayed by one

clock cycle from where it was used to generate the previous sequence.

nR mnS −

 The system is therefore characterized by two pseudo-random sequence generators that supply a

daisy chain of client circuits. Circuits can be added to the system by inserting them anywhere in the

daisy chain. Moreover, an individual circuit can be modified in a way that demands a greater

number of random sequences without having to modify the system architecture.

4 GENERATING SEQUENCES OVER AN ARBITRARY RANGE

 Linear feedback shift registers used to generate random bits are commonly known. A more

general LFSR for any prime range is shown in Fig. 5.

 10

1−Z 1−Z 1−Z 1−Z

+

a b

Fig. 5. A linear feedback shift register (LFSR) with two taps can be used to generate pseudo-random sequences uniformly

distributed over a range [0,q-1], where q is any prime number.

Each signal denotes a sufficient number of bits to represent the sequence’s maximum value 1−q .

Both the output and the input to the shift register result from the mod- addition q

 (4.1) rbrar L λσσ −− ⊕=

where is the length of the shift register and L λ is a fixed tap such that L<≤ λ1 . The coefficients

 and b are determined by a primitive polynomial. More than two taps can also be used. As was

the case for random bit generation, a list of appropriate polynomials is widely available and found,

for example, in [13]and [14]. For

a

2=q the tap coefficients are 1== ba . Otherwise qba <≤ ,1

according to the selected polynomial. Moreover, and b are not necessarily the same as the

polynomial coefficients. A procedure for computing the tap coefficients from the characteristic

polynomial when is described in [12].

a

2>q

 Relying on Theorem 3, we create a random sequence ρ that is uniformly distributed over

, where],0[K K is any integer greater than one, by factoring 1+K into its unique primes

. We then generate MqqK ...1 1=+ M independent, random sequences uniformly distributed over

, , and concatenate them by relation (2.13). Two LFSR circuits for each unique

value of are needed for the entire system, each having a different random sequence length. They

generate the two input sequences shown in Fig. 4.

ir

ii qr <≤0 Mi ≤≤1

iq

 The input sequences are not used directly. Instead a new random sequence is generated by their

modulo- addition, where one input sequence is delayed by 1 clock cycle from where it was last

used. The sequence thus refers to an independent sequence uniformly distributed over

iq

ir]1,0[−iq

that is used at only one location in the circuit.

 11

 The desired sequence ρ is generated by (2.13). One can observe that multiplication by occurs

in

1q

1−M terms, whereas multiplication by never occurs. Since a multiplication by a power of

two can be efficiently implemented in VLSI, we choose to order the prime factors such that

. If

Mq

Mqqq ≤≤≤ ...21 1+K is equal to a power of two, then 2...1 === Mqq and equation (2.13)

reduces to

 (4.2) ∑
=

−=
M

i

i
ir

1

1)2(ρ

where each is an independent random bit sequence. Note that if the periods of the bit sequences

are identical then

ir ir

ρ has this same period. The summation is achieved without logic by simply

ordering the random bits from the least significant to the most significant. Thus the well-known

technique of concatenating random bits to form random numbers is a special case of the more

generalized method used here. The summation can also be performed without additional logic if

() M
M qK 121 −=+ , where . In this case equation (4.2) remains unchanged. If, on the other

hand,

2>Mq

() MM
M qqK 1

221 −
−=+ , where MM qq ≤< −12 , then

 (4.3)

 1
2

1

1

1)2()2(−
−

−

=

− += ∑ M
M

M

M

i

i
i qrrρ

The multiplication by , fortunately a constant value, requires additional logic. Obviously if

many of the prime number factors are not equal to 2, then significant additional circuitry may be

required.

1−Mq

 As an illustrative example, Fig. 6 shows a gaming system comprised of multiple circuits, each

selecting playing cards at random from a deck of 52 cards. Every clock cycle each circuit selects a

new card (pseudo-) independently of the cards it selected previously and independently of its

neighboring circuits. Since , there are only two unique primes: 2 and 13.)13)(2)(2(52 =

 12

}12,...,2,1,0{)1(=R

}1,0{)2(=R

}12,...,2,1,0{)1(=S

}1,0{)2(=S

cardapick cardapick

cardapick

Fig. 6. A system of pseudo-independent circuits, each randomly selecting one of 52 cards, is constructed using only 4

LFSRs.

Thus only 4 LFSRs are required for the entire system, two that generate the random number

sequences and , each uniformly distributed over the range , and two that generate

the random bit sequences and . Fig. 7 shows how an individual circuit creates the desired

output sequence uniformly distributed over

)1(R)1(S]12,0[

)2(R)2(S

]51,0[.

From the input sequences it generates two shifted bit sequences and one shifted sequence

distributed over the range . These sequences are concatenated according to equation (2.13),

where . Because only the largest prime

]12,0[

221 == qq 133 =q is not equal to two, the concatenation for

this case is trivial and requires no circuit logic. It merely assigns the random bits to the least

significant bits of the result and assigns the bits of the sequence distributed over to the most

significant bits of the result.

]12,0[

 13

1−Z)1(S

1−Z1−Z

+

+

+

)2(S

)2(R)1(R

4

4

44
bitstsignificanmost

bitleastnext

bittsignificanleast

Pick-a-card circuit

Fig. 7. A number uniformly distributed over the range [0,51] is constructed from the concatenation of a random number

distributed over [0,12] and two random bits. The “next least bit” refers to the bit next to the least significant bit.

5 CIRCUIT SIZE

 In stochastic computing applications the number of logic gates consumed by random number

generation can easily exceed the number of gates used in arithmetic operations. It is important,

therefore, to be able to quantify the size of random number generation at the circuit level.

 The number of logic gates needed to create a random sequence varies depending on the range of

the sequence. The least number of logic gates are required when as many of the prime factors as

possible are equal to 2. To generate a sequence over , for example, requires only eight XOR

gates and eight flipflops. This compares to eight XOR gates and 16 flipflops for Cauwenberghs’

technique and 24 XOR gates but zero flipflops for Alspector’s. (While we include Alspector’s

technique here for size comparison, it has significant additional routing and implementation

constraints, as noted in Section 1.) More generally, to create an independent pseudo-random

sequence that is uniformly distributed over , where

]255,0[

],0[K MqqK ...1 1=+ , requires a modulo-

adder for each . The total number of flipflops needed is

iq

,i Mi ≤≤1

 (5.1) ⎡∑
=

M

i
iq

1
2)(log ⎤

This compares to the same number of adders but twice the number of flipflops for Cauwenberghs’

method [2], triple the number of adders but zero flipflops for Alspector’s [1].

 14

 For sequences uniformly distributed over ranges that are not a power of two, additional logic

elements for multiplication are required if , for any 2>iq Mi < . For example, if 31 =−Mq and

 then we need to compute the product where 5=Mq Mr3 }4,...,1,0{=Mr . Since the coefficient is

a fixed value, this multiplication would require only a lookup table with a 3-bit input to represent

 and a 4-bit output to represent the product. These additional logic elements would also be

needed to extend the Cauwenberghs and Alspector techniques to the generation of random integers

over ranges that are not powers of two.

3

Mr

 In addition to the circuit elements required for each independent random sequence, a pair of linear

feedback shift registers is needed for each prime factor that is unique to the overall system. In

contrast, Alspector’s technique requires only one LFSR per prime factor. For large systems,

however, the number of logic gates used for these shift registers becomes insignificant compared to

the total used to generate each independent random sequence.

An n-bit modulo m addition for ⎡ ⎤mn 2log= can be viewed as a modulo m operation performed

after the addition is done. Thus the modulo m addition follows:

⎩
⎨
⎧

−+
+

=+=
,

,
mod)(

21

21
21 mxx

xx
mxxy

mxxif
mxxif

≥+
<+

21

21 (5.2)

Generally, two methods can be used to complete the above computation: 1) Compute the results of

both and , then select the correct result of modulo m addition from them. 2) Use

a correction table to correct the addition

21 xx + mxx −+ 21

21 xx + to the result mxx mod)(21 + .

In the first method, two n-bit adders are used; the first adder computes , while the

second adder computes . The carry bit generated from the second adder indicates whether or

not is greater than m (Fig. 8). A multiplexer, controlled by the carry, selects the correct

output.

mxx −+ 21

21 xx +

21 xx +

ADD

ADD

MUX

carry

n
n

n n

nn

n

n

Fig. 8. A modulo adder can be constructed from two adders and a multiplexer.

 15

In the second method, a lookup table is used to replace the first n-bit adder and the multiplexer in

the first method (Fig. 9). When the lookup table in the ROM is small, i.e. when the modulus m is

small, the second method can have better performance than the first method for fast table lookup.

ADD ROM

n

n n1+n

12...11...210 −+− mmmmAddress

1...101...210 −− mmData

Fig. 9. A lookup table can be used when the modulus is small.

However, for an n-bit modulo addition the second method requires a 2n-entry ROM with n bits for

each entry. The hardware consumption for the lookup table is thus much greater than the first

method when the size of the modulus is large. When this is the case the first method is the preferred

implementation.

 The ultimate circuit size achieved in practice will also depend on fanout considerations that affect

the non-propagating sequence. As with any circuit affected by fanout, the traditional solution is to

divide the circuit into smaller subcircuits and connect them together. If, for example, a non-

propagating bit sequence needs to be divided into two subsequences because of fanout limitations,

then two additional flipflops would be connected to the output of the non-propagating sequence’s

LFSR. Their outputs would separately drive the two subcircuits.

 In a cellular automaton (CA) the next value of a cell is determined by its current value and the

current values of its neighbors. If the output of every cell is used then the number of flipflops

needed is the same as for our propagating LFSR technique. Often, however, CA sites are skipped to

improve statistical performance, increasing the number of flipflops required. For a CA rule 90 cell

the next value is the modulo-2 sum of two of its neighbors, which requires the same number of

adders as for the propagating LFSR. A system made solely of rule 90 cells has poor statistical

properties, however [7]. A rule 30 cell requires an additional OR gate and a rule 150 cell requires an

additional modulo-2 adder. (Rules 30, 90, and 150 are explained in Section 6.) By their nature

circuits based on cellular automata do not suffer from fanout constraints.

 16

6 ASSESSING THE RANDOMNESS OF THE BITS

For an ideal ensemble of random bit generators in a circuit, every bit should be independent, both

of the bits that came before it and of the bits produced by the other generators. While it is impossible

to exhaustively identify whether sequences are truly random (indeed, we know that they are not),

statistical tests have been developed to assess the relative irregularity of sequences of numbers or

bits [15][16][17]. We have performed statistical tests to show that the bit generators proposed here

are approximately random and to provide some comparisons with alternative random bit generators,

including cellular automata [7] and counter-propagating LFSR sequences [2]. Our aim is not so

much to tease out the most subtle correlations which are inevitably present with small generators, as

it is to demonstrate that it is practical to obtain many simultaneous bitstreams, each of which is

(approximately) random and all of which are (approximately) independent each other.

6.1 Statistical tests of randomness

In what follows, let denote the bit sequence from the mth generator, with the nth bit

in that sequence. Many of the tests involve blocks of M×N bits. The block at time t is the set of bits

 where and

)(mb nmb)(

nmb)(10 −≤≤ Mm 1−+≤≤ Ntnt . In general we do not use overlapping blocks

in these tests. If the blocks are independent, the statistics are more straightforward.

Equidistribution: The simplest requirement for a random bit generator is that the same number of

0’s and 1’s are generated, on average. The Eq-M×N test computes a histogram of the number of 1’s

observed in a sequence of M×N blocks, and performs a chi-squared test comparing that histogram to

what is expected [17].

Correlation: A basic requirement for most applications is that random bit sequences p and q be

uncorrelated: that is, the correlation ∑
=

−−=
T

n
nn qp

T
qpC

1
2
1

2
1]][[41},{ should be statistically

indistinguishable from zero. For truly uncorrelated sequences, C is distributed with mean zero and

variance . We will test for three kinds of correlations: Corr-1×N is based on the autocorrelation

from a single bit generator; that is, and for

T/1

)0(b)0(btσ 11 −≤≤ Nt . Corr-M×1 corresponds to

“spatial correlation” between the sequences and for)0(b)(mb 11 −≤≤ Mm , and Corr-M×N is

the “spatio-temporal” correlation between sequences and for)0(b)(mbtσ 10 −≤≤ Nt and

 but not . 10 −≤≤ Mm 0== mt

Approximate Entropy: An important measure of randomness is the predictability of a bit, given the

bits that preceded it. The ApEn-M×N statistic provides a measure of that predictability by

 17

estimating the entropy difference between a block of M×N bits and an augmented block of M×N+1

bits. The extra bit is spatially in the center of the block and temporally just after it. If that extra bit is

truly random, then the entropy of the augmented block should be log(2) larger than the entropy of

the m bits. For a block of M×N bits, there are patterns. If MN2 iπ indicates the frequency of

occurrence for the ith pattern, then is the negative entropy associated with

that block, and

∑
−

=

=Φ
12

0

log)(
MN

i
iim ππ

[2log)1()(]−+Φ−Φ mmn is a statistic which indicates whether the last bit is

random with respect to the previous m bits [17][18].

Runs: A “run” of bits is a subsequence in which all the bits have the same value. In the sequence

000110111, for example, there are four runs: 000, 11, 0, and 111. The runs statistic compares the

number of runs in a long sequence with the expected number [17]. We apply the statistic to M

simultaneous sequences (M odd) by combining the sequences to a single bit sequence. Runs-M

refers to the same test applied to a bit sequence obtained by adding the M sequences b(0), …, b(M-

1), where M is odd, and taking a 0 if the sum is less than M/2 and 1 if the sum is greater than M/2.

Rank: The rank test is based on the rank of a square matrix produced from the bits of the

generator. The rank is equal to the number of linearly independent columns in the matrix, where the

linear operators are defined in the modulo 2 algebra. For example the 3x3 matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
011
101

has rank two, because the first two columns are linearly independent, but the third column is the sum

of the first two. Rank-M×N arranges the MN bits in the M×N block into a square k×k matrix where

MNk = . In each case the number of matrices with rank k, k-1, and less than k-1, are tabulated

and used in a statistic [17].

6.2 Pseudorandom bit generators

We will use the above tests to investigate the randomness of a few variants of our proposed random

number generation scheme, as well as several random bit generators that have been proposed

previously. We will in particular compare our generation method to four of the most successful CA

based generators [7] and to the counter-propagating LFSR [2]. We did not consider the generators

given by Alspector et al. [1] since each generator has to be hand-designed and large arrays of

 18

simultaneous bitstreams are thus impractical. In general, we used small generators – both the CA-

based and the LFSR-based random generators improve if larger variants are used.

In our proposed scheme, each generated bitstream is an XOR combination of two different LFSR

generators. For our LFSR-prop we used two base generators associated with the primitive

polynomials and , so that ,

, and the bitstream b(m) is given by . Here R is the nonpropagating

and S is the propagating generator. The counter-propagating LFSR-counterprop method that was

introduced by Cawerberghs [2] differs from LFSR-prop in that the mth bitstream is given by

.

1)(115 ++= xxxf 1)(317 ++= xxxf RRR 11515 +−− ⊕= σσ

SSS 31717 +−− ⊕= σσ SR mσ+

SRmb mm σσ += −)(

Cellular automata methods have been investigated by Hortensius et al. [7]. Here the next bit of a

bitstream is given by a function of the three current bits 1)(+tmb tmb)1(− , , and tmb)(tmb)1(+ .

CA-30 is a 30-bit wide CA based on CA rule 30, given by

(tttt mbmbmbmb)1()()1()(1)+∪⊕−=+ . To alleviate the local correlations, a “site spacing”

scheme was introduced in Hortensius et al. [7]. Here, some numberγ of sites are skipped for each

output bitstream. For the 4=γ variant of CA-30, which only has 30 sites to begin with, this leaves

only six output bitstreams. In a hybrid CA, different bitstreams m employ different rules. The hybrid

CA’s generally produce better random bits than the pure CA’s, but they require much more careful

design. The CA-hybrid we investigate is the preferred hybrid in [7]. It uses rule 90, given by

, and rule 150, given by ttt mbmbmb)1()1()(1 +⊕−=+ tttt mbmbmbmb)1()()1()(1 +⊕⊕−=+ .

In a hybrid CA, the pattern of alternation between the two rules must be determined in advance. For

a CA with 28 bits, it turns out that the optimal pattern is simple alternation. We also consider CA-

hybrid-B29, which is the same alternating rule but with 29 bits. Simple alternation is not the best

pattern for a 29 bit wide CA, and we find that this bit generator fails many of the tests. We also

consider a 1=γ version of the hybrid CA.

In all cases, we generated sequences of two million time-steps, but only kept the last million bits

for testing. This represents the performance of bit generators after they have had a chance to “warm

up.” We used three different random number seeds, and based on those seeds employed the minimal

standard random number generator of Park and Miller [19] to initialize the various bit generators.

Since our aim was to identify specific flaws in the generators, we considered a generator to fail a test

only if failed two out of three runs. In practice we found that most of the time a generator would

either pass all runs or fail all runs. Occasionally there would be one failure for a given test; which

 19

could be due to a subtle weakness in the generator or because of an inevitable random fluctuation

that will happen when so many different tests are applied.

Table 1 shows that none of the random bit generators passed all of the tests, and in particular the

rank tests were most stringent. In short runs, without a “warm up” period, the CA-30 generator

actually did better, but after a long transient time a trajectory was reached in which the statistical

properties of the bits was poor. Experiments with larger CA-30 generators also showed better

performance (results not shown).

We see that the CA generators, in general, have trouble with the ApEn tests and the Runs tests,

although the 1=γ variant of the hybrid CA did pass the Runs tests. The sensitivity of the hybrid

CA to the details of its design is evident in the performance of the CA-hybrid-B29 generators, which

was terrible. Adding another cell to an existing hybrid CA generator generally requires the

reconstruction of the rule sequence for the entire system [7]. The propagating LFSR and non-hybrid

CA generators have no such restriction, making them more suitable for systems that are designed as

independent modules or that are frequently modified.

The LFSR tests were more robust to the ApEn and Runs tests, though the counter-propagating

LFSR failed the ApEn-3x3 test.

 20

C
A

-3
0

C
A

-3
0,

 γ
=4

C
A

-h
yb

ri
d

C
A

-h
yb

ri
d,

 γ
=1

C
A

-h
yb

ri
d-

B
29

C
A

-h
yb

ri
d-

B
29

, γ
=1

LF
SR

-c
ou

nt
er

pr
op

LF
SR

-p
ro

p

Eq-1x1

Eq-1x25 F F F*

Eq-25x1 F -- -- F* --

Eq-5x5 F F F

Corr-1x100 F F F* F

Corr-100x1 -- -- -- -- -- --

Corr-10x10 F -- F F

ApEn-1x5 F F F F

ApEn-5x1 F F F F F

ApEn-3x3 F F F F F F F

ApEn-5x2 F F F F F F F

Rank-1x25 F F F F

Rank-25x1 F -- -- F -- F*

Rank-3x3 F F F F F F F F

Rank-5x5 F F F F F F F F

Runs-1 F F F F

Runs-3 F F F F F

Runs-7 F -- F F F

Table 1. Results of the application of a suite of statistical tests applied to a variety of random bit generators. The
tests and the generators are described in the text. An ‘F’ indicates that the generator failed all three instances of
the test, an ‘F*’ indicates failure in two out of three instances. The dash ‘—’ indicates that for the particular
generator there are an insufficient number of bitstreams to perform the test.

7 CONCLUSIONS

 In this paper we described a methodology for the generation of multiple random bit sequences

that simplifies and generalizes Cauwenberghs’ counter-propagation algorithm [2]. We demonstrated

 21

that the propagation of both sequences can be replaced by one propagating and one non-propagating

sequence, thereby cutting the number of flipflops in half. Like counter-propagation, the proposed

method reduces the routing requirements to only two 1-bit signals. It preserves the ability for new

client circuits to be added to the system without additional calculations – there is no need to keep

track of random starting values, tap combinations, or time shifts. The methodology was also

extended to random number sequences uniformly distributed over the range of integers ,

where

],0[K

1+K need not be either prime or a power of two.

8 REFERENCES

[1] J. Alspector, J. Gannett, S. Haber, M. Parker, and R. Chu, “Generating Multiple Analog Noise

Sources from a Single Linear Feedback Shift Register with Neural Network Applications,” in

Proc. IEEE Int. Symp. on Circuits and Systems, 1990, vol. 2, pp. 1058-1061.

[2] G. Cauwenberghs, “An Analog VLSI Recurrent Neural Network Learning a Continous-Time

Trajectory,” IEEE Trans. on Neural Networks, vol. 7, no. 2, pp. 346-361, Mar. 1996.

[3] J. Ortega, C. Janer, J. Quero, L. Franquelo, J. Pinilla, and J. Serrano, “Analog to Digital and

Digital to Analog Conversion Based on Stochastic Logic,” in Proc. IEEE Int. Conf. on

Industrial Electronics, Control, and Instrumentation, 1995, vol. 2, pp. 995-999.

[4] J. Quero, S. Toral, J. Ortega, and L. Franquelo, “Continuous Time Filter Using Stochastic

Logic,” in Proc. Midwest Symp. on Circuits and Systems, 2000, vol. 1, pp. 113-116.

[5] B. Gaines, “Stochastic Computing Systems,” Advances in Information Systems Science, J. Tou,

ed., vol. 2, New York: Plenum Press, 1969, pp. 37-172.

[6] R. Kuehnel, “Binomial Logic: Extending Stochastic Computing to High-Bandwidth Signals,” in

Proc. Asilomar Conf. on Signals, Systems, and Computers, 2002, vol. 2, pp. 1089-1093.

[7] P. Hortensius, R. McLeod, and H. Card, “Parallel Random Number Generation for VLSI

Systems Using Cellular Automata,” IEEE Trans. on Computers, vol. 38, no. 10, pp. 1466-1473,

Oct. 1989.

[8] J. P. R. Toothill, W. D. Robinson, and A. G. Adams, “The Runs Up-and-Down Performance of

Tausworthe Pseudo-Random Number Generators,” Journal of the ACM, 1971, vol. 18, pp. 381-

399.

[9] S. Tezuka and P. L’Ecuyer, “Efficient and Portable Combined Tausworthe Random Number

Generators,” ACM Trans. On Modeling and Computer Simulation, 1991, vol. 1, pp. 99-112.

 22

[10] J. Saarinen, J. Tomberg, L. Vehmanen, K. Kaski, “VLSI Implementation of Tausworthe

Random Number Generator for Parallel Processing Environment,” IEE Proceedings-E, 1991,

vol. 138, no. 3, pp. 138-146.

[11] J. Fillmore and M. Marx, “Linear Recursive Sequences,” SIAM Review, 1968, vol. 10, no. 3, pp.

342-353.

[12] R. Kuehnel and Y. Wang, “A Method of Generating Uniformly Distributed Sequences over

[0,K], where K+1 is not a Power of Two,” Proc. IEEE Int. Conf. On Acoustics, Speech, and

Signal Processing, 2003, vol. 2, pp. 801-804.

[13] http://fchabaud.free.fr/English

[14] V. Yarmolik and S. Demidenko, Generation and Application of Pseudorandom Sequences for

Random Testing, New York: John Wiley and Sons, 1988.

[15] G. Marsaglia, “Diehard Battery Tests of Randomness,” http://stat.fsu.edu/pub/diehard.

[16] P. L’Ecuyer, “Testing Random Number Generators,” Proc. 1992 Winter Simulation

Conference, pp. 305-313.

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D.

Banks, A. Heckert, J. Dray, S. Vo, “A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications,” NIST Special Publication 800-22.

http://csrc.nist.gov/rng/.

[18] A. L. Rukhin, “Approximate Entropy for Testing Randomness,” Journal of Applied

Probability, 2000, vol. 37, pp. 88-100.

[19] S. Park and K. Miller, “Random Number Generators: Good Ones are Hard to Find,”

Communications of the ACM, 1988, vol. 31, pp. 1192-1201.

 23

Reviewers' and Associate Editor's Comments
==

Recommendation

Resubmit after Minor Revision for Review as a Regular Paper

Comments to the Author

This paper will be rejected if the authors do not revise their manuscript
according to reviewer's comment carefully, especially compare their result
with those of published papers.

Review Number 1.

Does the revision adequately address the concerns expressed in the
original review?

Yes.

Comments to the Author

On page 12 of the revised paper, line 4 from above, states that if K+1 is
equal to a power of two, then equation (4.3) reduces to equation (4.4).
However, the authors have removed equation (4.3) and refer back to
equation (2.13) in the revised paper. Therefore, "equation (4.3)" should
be replaced by "equation (2.13)". Moreover, since (4.2) and (4.3) have
been removed, (4.4) and (4.5) should be renumbered to (4.2) and (4.3).

Oops! We thank the reviewer for catching these errors. We have made
these changes and carefully reviewed the equation numbering in all
of the sections.

Review Number 2.

Does the revision adequately address the concerns expressed in the
original review?

No.

Comments to the Author

Please make comparisons with other works, otherwise I cannot see the
significance of this work.

We have completely rewritten Section 6 to include statistical
comparisons of our approach to several CA-based generators, as well
as to the counter-propagating LFSR. The new section includes a
suite of statistical tests (previously we only considered pairwise
correlation), and a table showing how each generator fared with each

 24

test. The tests were sufficiently rigorous that no generator passed
all of them.

Although our original aim was just to show that our generator did
not have any glaring correlations, we think that the more careful
comparative study does improve the paper, and we thank the reviewer
for suggesting the comparisons.

Review Number 3.

Comments to the Author

This paper presents a design methodology for the efficient generation of
multiple pseudo-random number sequences that are statistically
uncorrelated. The contribution is to propose the simple methodology of
generating a uniform random number between the range [0,K] for any integer
number K. Theorem2 can be the generalization of the counter-propagation
method illustrated in Fig.2. However, based on theorem2, a random number
over a prime-number range is also proposed as Fig.3. It allows replacing
one propagation-input by a non-propatation input in Cauwenberghs'
algorithm. But according to the definition of the two sequences u(1) and
u(2) in page 7, it is not intuitive to apply theorem 2 to Fig.2 directly.
Therefore, this paper is little difficult to read.

The reviewer's point is well-taken. We were a little loose in our
application of Theorem 2 (which, as stated, really only applies to
the system in Fig 3) to the counterpropagating system in Fig. 2. We
have reworked the explanation at the beginning of Section 3 so that
Theorem 2 is applied more appropriately. The result is the same, but
we hope this clarifies the argument and makes this part of the paper
a little easier to read.

Correction:
a) There is no equation (4.3) in the description on page12. Besides,
equations (4.2) and (4.3) seem to be missing in section 4.

Thanks – our numbering was incorrect and we have fixed it.

b) In Fig.7, does the term "next least bit" refer to the bit next to the
least significant bit? (If the 6 bits correspond to the card selected)

The reviewer is correct and to make this clearer in the paper we
have added this explanation to the text that describes the figure.

 25

