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Abstract— We describe a modification of the standard support
vector machine (SVM) classifier that exploits the tendency for
spatially contiguous pixels to be similarly classified. A quadratic
term characterizing the spatial correlations in a multispectral
image is added into the standard SVM optimization criterion.
The mathematical structure of the SVM programming problem
is retained, and the solution can be expressed in terms of the
ordinary SVM solution with a modified dot product. The spatial
correlations are characterized by a “contiguity matrix” Ψ whose
computation does not require labeled data; thus, the method
provides a way to use a mix of labeled and unlabeled data. We
present numerical comparisons of classification performance for
this contiguity-enhanced SVM against a standard SVM for two
multispectral data sets.

I. INTRODUCTION

In remote sensing imagery, what is of interest on the
ground – especially for broad terrain categories, like lakes,
forests, beaches, vegetation canopies, agricultural fields, etc.
– is often much larger than a single pixel element size. As
a consequence, two pixels that are close to each other are
more likely to yield similar classifier outputs than are two
pixels chosen at random from the image. While there are other
spatial cues that can be exploited in classifying multispectral
imagery, such as texture and shape, this tendency for nearby
pixels to be classified alike is almost universal in images. In
this paper, we present a methodology for incorporating this
domain knowledge into the design of the classifier.

In particular, we describe an approach for incorporating
contiguity into the regularization term of the loss function,
and although this can be applied in a number of different
classifiers, we will investigate its use in the linear support
vector machine. We will show that the contiguity term can
be expressed as a conventional support vector machine with a
slightly modified kernel.

Given a limited supply of training data (and in real-world
settings, this supply is always limited), it is easy to find models
that overfit the data – that is, the model fits the training data
but does poorly on out-of-sample test data. This problem is
typically alleviated by reducing the “capacity” of the set of
models that are considered – and this is often implemented
in terms of a regularization penalty. Complicated models are
more heavily penalized than simple models, so the chosen
model is one that optimizes a trade-off between the error on

the training data and model complexity. This formalizes the
principle of Occam’s razor, which seeks the simplest model
that explains the data.

A Bayesian interpretation of this regularization is that it
incorporates the prior information. We are given a training
dataset {(xi, yi)}�

i=1, where xi ∈ �d are input variables
and yi ∈ {−1, 1} are class labels. We consider a class of
models of the form f(x) = αT x + α0, with the sign of f(x)
predicting the label associated with the point x. The Bayes
maximum a posteriori (MAP) estimate for α can be obtained
by maximizing the following posterior density.

p(α|y) = p(y|α)p(α) (1)

Let L(z) ≡ − log p(z) be the negative log likelihood associ-
ated with the probability density p. Then, the MAP estimate
is the estimate that minimizes the loss function L(α|y) given
by

L(α|y) = L(y|α) + L(α). (2)

The first term on the right-hand side of Eq. (2) is the negative
log likelihood of the data given the model, and can be
interpreted as a measure of how well the model “fits” the
data. The second term is is the penalty for models α that are
a priori unlikely (small p, or large L); this is the term that can
be used to penalize complexity. This Bayesian interpretation
suggests that the penalty term is an appropriate place to
incorporate domain (or prior) knowledge. Different choices
for L(α) correspond to different constraints on α, and lead to
different optimization problems.

The standard penalty for the support vector machine takes
a quadratic penalty L(α) = λ‖α‖2 = λ

∑d
i=1 α2

i . But
other penalty functions are possible: for instance, a common
approach in feature selection is to choose a penalty function,
such as L(α) = λ

∑d
i=1 |αi|p, with p = 0 or p = 1, since

this penalizes solutions with many nonzero components, and
prefers sparse solutions in which many of the αi vanish.

Our domain knowledge tells us to prefer solutions for which
the discriminant function f(x) exhibits a contiguity property
– that is, f(x) tends to be more well conserved over neigh-
boring pairs of pixels than over random pairs of pixels. This
corresponds to saying that nearby pixels should align with the
hyperplane that separates positive samples from negative ones.



If we construct a quadratic penalty function that penalizes
dis-contiguity, then the regularization that penalizes overfitting
will at the same time encourage solutions with the contiguity
property. This penalty is characterized by a ”contiguity matrix”
whose computation does not require labeled data; thus the
method also provides a way to use a mix of labeled and
unlabeled data.

II. SUPPORT VECTOR MACHINE (SVM)

In a conventional support vector machine [1], the solution
is expressed in terms of a linear decision function; the label
estimated for a point x is given by the sign of this function
evaluated at x. Note that if yif(xi) is positive, then the ith

point is correctly classified by the discriminant function f(x).
In fact, the larger yif(xi), the greater ”margin” by which the
point is correctly classified. The SVM cost function promotes
large margin classification but does this in a way that bounds
the magnitude of the coefficients. The parameters α and α0

are chosen to optimize the cost function,

min
α, α0, ξi

1
2αT α + C

∑�
i=1 ξi

s.t. yi(αT xi + α0) ≥ 1 − ξi

ξi ≥ 0

(3)

where the constant C expresses the cost of misclassification,
relative to the penalty for large coefficients α in the discrimi-
nant function and ξi, i = 1, . . . , � is the amount by which the
prediction is on the wrong side of its margin.

To use the support vector machine to learn nonlinear
functions f(x), the “kernel trick” is invoked [2]. Here, a
transformation φ(x) maps x to a (usually) higher dimensional
space, and f(x) is a linear combination of of the components
of φ(x). The “trick” is that the optimization of this function
depends on φ(x) only through dot products φ(x)T φ(x′); so
rather than deal with φ(x) directly, one can define a kernel
function

K(x, x′) = φ(x)T φ(x′). (4)

Note that the linear SVM is the special case where K(x, x′) =
xT x′. The optimization can be performed entirely in terms of
this kernel, and the solution can be written

f(x) =
�∑

i=1

θiyiK(xi, x) + θo. (5)

where the θi are scalar coefficients that are optimized over. In
this sum over the data samples i, the function f(x) depends
only on the samples for which θi �= 0; these are the so-called
“support vectors.”

III. CONTIGUITY-ENHANCED SUPPORT VECTOR

MACHINE (CE-SVM)

For features having broader spatial extent, neighboring
pixels have the tendency to have similar classifier outputs. To
encourage solutions with this property, we add an extra term
to the loss function which penalizes deviations in the classifier

output at pixel i from classifier output given by pixels that are
neighbors of i. We introduce a contiguity penalty

L(α) =
1
8�

�∑
i

8∑
j

‖f(xi) − f(xij)‖2 (6)

where we write xij as the jth neighbor of xi; here we consider
the eight pixels surrounding xi as its neighbors. Since f(x) =
αT x + α0, we can write this as

L(α) =
1
8�

�∑
i

8∑
j

‖f(xi) − f(xij)‖2

= αT 1
8�

�∑
i

8∑
j

(xi − xij) (xi − xij)
T

︸ ︷︷ ︸
Ψ

α. (7)

We call Ψ the contiguity matrix, and note that the computa-
tion of this matrix does not require labeled data and can easily
be computed for any image. If we add λ times the expression
in (7) to the cost function in (3), the above optimization
problem can be rewritten as

min
α, α0, ξi

1
2αT (I + λΨ) α + C

∑�
i=1 ξi

s.t. yi(αT xi + α0) ≥ 1 − ξi

ξi ≥ 0

(8)

Note that λ is the weighting factor determining the trade-
off between two possibly conflicting goals when optimizing
the hyperplane that separates the two classes: ”encouraging
neighboring pixels of xi to align along the hyperplane” and
”keeping the coefficients small”. The added term nominally
alters the mathematical structure of the SVM cost function, so
a standard SVM optimizer cannot directly be used.

However, we can use the fact that Ψ is symmetric and
positive definite to effect a change of coordinates:

z = (I + λΨ)−1/2x (9)

β = (I + λΨ)1/2α. (10)

The optimization in Eq. (8) then becomes

min
β, α0, ξi

1
2βT β + C

∑�
i=1 ξi

s.t. yi(βT zi + α0) ≥ 1 − ξi

ξi ≥ 0

(11)

which is the standard formulation of the SVM, and therefore
standard SVM software packages can be used.

Another interpretation of the CE-SVM algorithm is that the
contiguity can be incorporated into the definition of the kernel.
Instead of K(x, x′) = xT x′ for the standard linear SVM, we
write

K(x, x′) = xT (I + λΦ)−1x. (12)

The use of a different kernel to enhance contiguity-preserving
solutions suggest the interpretation, consistent with the philos-
ophy in Chapter 11 of Schölkopf and Smola [2], of engineering
kernels to produce invariance-preserving solutions.

In the next section we test our algorithm with two multi-
spectral datasets.



(a)

(b)

Fig. 1. (a) Broadband image of Moffet field. This is a sum of the ten
channels used in the multispectral dataset that was derived from AVIRIS data.
(b) Markup for golf courses on the Moffet field image; here black indicates
the pixels where the golf courses are, gray indicates where the golf course
are not, and white is not marked up.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Used in the Experiments

The two images used in this study are derived from
the Airborne Visible and Infrared Imaging Spectrometer
(AVIRIS) [3], [4]. The AVIRIS sensor collects data in 224 con-
tiguous, relatively narrow (10 nm), uniformly-spaced spectral
channels. AVIRIS is an airborne sensor and spatial resolution
can vary from a few meters to 20 meters. The studies reported
in this paper use a reduced number of relatively wide spectral
bands. This reduction in the number of spectral bands was
performed to match the bands of a new remote sensing satellite
called the Multispectral Thermal imager (MTI) [5]. The MTI
satellite was launched in March 2000 and collects data in
15 spectral bands. Ten of these bands sample wavelengths
between 0.4 and 2.4 microns, a region covered by the AVIRIS
instrument. AVIRIS data were convolved with the MTI spec-

(a)

(b)

Fig. 2. (a) Broadband image of the Denver area. (b) Markup for urban areas;
black indicates the pixels where the urban areas are, gray indicates where the
urban areas are not, and white is not marked up.

tral filter functions to produce simulated MTI data. This 10-
band simulated data was also used in Ref. [6]. In this data,
the features of interest are Golf Courses and Urban Areas.
These features are chosen because of their particular attributes
in multi-spectral data. Both urban areas and golf courses
generally encompass quite broad area land-cover distinction.
The scenes together with their corresponding test field maps
are shown in Figs. 1 and 2.

B. Classification Tasks

We conduct experiments to compare the performance of
contiguity enhanced SVM (CE-SVM) with that of conven-
tional SVM. To estimate the parameters C and λ we first
coarsely tune these parameters independently and determine a
range of values for each parameter. Then for each parameter
we consider a discrete set of parameters. For CE-SVM we
select the pair of C and λ values that yield the best accuracy
on the validation set. For conventional SVM the performance



TABLE I

AVERAGE CLASSIFICATION ERROR ON GOLF COURSES IN FIG. 1 FOR

VARYING TRAINING SAMPLE SIZE PER CLASS. VALUES ARE PERCENTAGE

ERROR, WITH STANDARD DEVIATIONS IN IN PARENTHESES.

Training Sample Size
Classifier 10 20 50 100
SVM 8.7 (1.0) 7.6 (1.0) 6.0 (1.0) 5.1 (0.5)
SVM-CE 6.1 (1.0) 5.7 (1.0) 5.0 (0.6) 4.6 (0.4)

on the validation set is optimized with respect to C only.
Note that C values estimated this way may not necessarily
be the same. We observe the performance of both classifiers
for varying sizes of training set, randomly sampled from the
pool of labeled dataset. Each experiment is repeated 30 times
and results are shown in Tables I and II.

C. Results and Analysis

As the above experimental results suggest when the training
size is small contiguity enhanced Support Vector Machine
performs better than its naive version. This is quite intuitive
as the added contiguity term acts as a regularizer over the
classifier and yields a classifier with better generalizability.
The impact of the regularization is more significant when the
training data is limited because the classifier is more prone to
overfit the training data in this case.

V. REMARKS ON OTHER CLASSIFIERS

We have shown how contiguity can be incorporated into
the linear support vector machine, and we remark that the
formalism can be extended to nonlinear (kernelized) SVM as
well. The derivation in that case, however, is a fair bit more
complicated, and since our numerical results are only for the
linear SVM, we will not show that derivation here.

But it is relatively straightforward to produce contiguity-
enhanced algorithms both for other pattern recognition tasks,
from unsupervised clustering [7] to supervised classification.
In particular, we will illustrate how the contiguity matrix can
be incorporated into the Fisher discriminant [8]. The standard
derivation is based on the within-class covariance

Sw =
∑

i

(xi − µyi
)(xi − µyi

)T , (13)

and the between-class covariance

Sb =
∑

i

(µyi
− µ) (µyi

− µ)T , (14)

where µy is the mean value of the data samples xi for
which yi = y, and µ is the mean over all the data samples.
The decision function is given by f(x) = αT x + αo, and
minimizing the within-class variance (αT Swα) while maxi-
mizing the between-class variance (αT Sbα) leads to the best
discriminant(s), which are given by the eigenvectors of the
matrix product SbS

−1
w . For the Fisher discriminant, this leads

to α = S−1
w (µ+1 − µ−1).

TABLE II

SAME AS TABLE I, BUT FOR URBAN AREAS IN FIG. 2.

Training Sample Size
Classifier 10 20 50 100
SVM 13.1 (2.5) 10.6 (1.7) 7.6 (0.6) 6.0 (0.5)
SVM-CE 10.7 (1.7) 8.8 (1.7) 7.0 (1.0) 6.0 (0.6)

In the contiguity-enhanced Fisher discriminant, we want
both the contiguity penalty αT Ψα and within-class variance
αT Swα to be small. One way to combine these is to replace
Sw with S∗

w = (I + λΨ)1/2Sw(I + λΨ)1/2. Then, the Fisher
discriminant is given by α = S∗

w
−1(µ+1−µ−1). An advantage

of this formulation is that it can be expressed as the standard
Fisher discriminant with data scaled according to Eq. (9).

VI. CONCLUSION

Many features of interest in real-world images have a
spatial extent; as a consequence, neighboring pixels tend to
be similarly classified. We have described an efficient way to
exploit this tendency in order to improve the performance of
linear support vector machines. Here, the spatial information
is directly incorporated into the design of the classifier, using a
contiguity matrix that can be computed for any image, without
regard to the model that is being fit. Finally, we remark that
the CE-SVM requires a single convex optimization, and avoids
the expensive iterative steps that are necessary for contiguity-
enhancing algorithms based on Markov Random Fields (e.g.,
see Refs. [9], [10]).
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