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Abstract—We have developed an automated feature detec- Inapplying general-purpose supervised learningtechniquesto
tlon/cIaSS|f|ce_1t|0n system, call_ed GENetic Imagt_ery Epr0|tat|or_1 multispectral imagery, the usual approach is to employ purely
(GENIE), which has been designed to generate image processinggiaira|inputvectors, formed by the setofintensity valuesin each
pipelines for a variety of feature detection/classification tasks. tralch If hoixelinthei Th t id
GENIE is a hybrid evolutionary algorithm that addresses the Spectra C_ anne Ore_ac pl_)(e 'n_ elmage_. esevec OrSp_rOV' e
general problem of finding features of interest in multispectral @ convenient fixed-dimensionality space in which conventional
remotely-sensed images. We describe our system in detail togetherclassifiers can often work well. Itis clear, however, that spatial re-
with experiments involving comparisons of GENIE with several |ationships (such as texture, proximity, or shape, all of which are
conventional supervised classification techniques, for a number of igreqarded with purely spectral vectors) can be very informative
classification tasks using multispectral remotely sensed imagery. . o . . .

in scene classification. Many different kinds of extra spatial con-

~ Index Terms—Evolutionary algorithms, genetic programming,  textinformation could be added to the spectralinformation, as ad-
image processing, multispectral imagery, remote sensing, SUper- gitional dimensions of the pixel input vector. The problem is that

vised classification. . . . . .

there exists a combinatorically vast choice for these additional

vector dimensions; yet it is clear that a suitable choice of addi-

|. INTRODUCTION tional dimensions could make classification much easier. Unfor-
ARGE volumes of remotely sensed multispectral data atrlénately, this swt.able choice is, in general, apphcann—;pemﬂc.

To address this problem, we have developed a hybrid evolu-

being generated from an increasing number of increas- ) . o
. L . ary algorithm called GENetic Imagery Exploitation (GENIE
ingly sophisticated airborne and spaceborne sensor syste —'[8{ thgat searches through the sp%cgof iFrJnage pro(cessing)al-

While there is no substitute for a trained analyst, exploitatiofi! . h GENIE is a hvbrid in that th \uti £ th
of this data on a large scale requires the automated extracfiitnms- 's a hybrid in that the evolutionary part of the
gram attempts to identify a pipeline of image processing op-

of specific features of interest. Creation and development %rfot, hich t ; th i tral data pl int
task-specific feature-detection algorithms is important, yet cghations which transform the raw mufti-spectral data pianes into

be extremely expensive, often requiring a significant investme frew set of Image planes; these !ntermed|ate_ scratch . plan_es
of time and effort by highly skilled personnel. are then used as input to a conventional supervised classification
Our particular interest is the pixel-by-pixel classification O¥echn|que to provide the final classification results.

multispectral remotely-sensed images, not only to locate andWhen adoptmg an evolt_monary approa_ch, a critical issue is
identify but also to delineate particular features of intere e representation of candidate solutions in order that they may

These range from broad-area features such as forest and eeﬁ:fectlvely mampula_ted. we usea genetic programming (GP)
thod of representation of solutions, due to the fact that each

water to man-made features such as buildings and roads. . . L . .
large number of features in which we are interested, togetH Ividual will represent a possible image processing algorithm.

with the variety of instruments with which we work, make th P has previously been applied to image-processing problems,

hand-codi f suitable feature-detecti lqorithms i including: edge detection [9], film restoration [10], face recogni-
and-coding of sultabie feature-detection aigorithms |mpra8 [11] and image segmentation [12]. The work of Dagdal.

tical. We are therefore using a supervised learning approach
! using a superv! g app r‘fj( and Bandyopadhyay and Pal [14] (as well as our own work,

can, using only a few hand-classified training images, gene dab is of particul | i td trates that
image processing pipelines that are capable of distinguishi above) is of particular relevance since | emonstrates tha
can be employed to successfully evolve algorithms for real

features of interest from the background. We remark that o ) . o
ks in remote-sensing applications.

approach is to consider the two-class problem: although mam ) _ .
applications require the segmentation of an image into a lar erTh.e bea‘.“y O.f an evolutlonar'y approach'ls Its erX|k?|I|ty. aII.
%}at is required is a representation for candidate solutions, a fit-

number of distinct land-cover types, we consider the simpl : . .
problem of identifying a single class against a background SS measure for comparing gand@ate solutions, apd ascheme
“other” classes. or “mutating” candidate solutions into other candidate solu-
tions. Many varied problems beyond image processing have
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This paper describes our system in detail together with exp:
iments involving comparisons of GENIE with several conver
tional supervised classification techniques, for a number of cl¢
sification tasks using multispectral remotely-sensed imagery

The remainder of the paper is organized as follows: Sectior
describes the GENIE system in detail. Section Il describes t
conventional supervised classification techniques with whic
GENIE is to be compared. Section IV describes the data a
classification tasks on which the algorithms are to be tested ¢
compared. Section V describes the results of the comparisc
Section VI describes further comparison with multiclass ve
sions of the supervised classifiers. Finally, Section VIl discuss
these results and concludes.

Il. THE GENIE SYSTEM

GENIE employs a classic evolutionary paradigm: a popul.
tion is maintained of candidate solutiorth(omosomeéseach
composed of interchangeable paigerie}, and each assessed (@
and assigned a scalar fitness value, based on how well it par-
forms the desired task. After fithess determination, the evol
tionary operators of selection, crossover and mutation are
plied to the population and the entire process of fitness eva
ation, selection, crossover and mutation is iterated until sor
stopping condition is satisfied.

A. Training Data

The environment for each individual in the population cor
sists ofdata planes, each of these planes corresponding tc
separate spectral channel in the original image, together wit|
weightplane and &ruth plane. The weight plane identifies those
pixels to be used in training—these are the pixels for which ti
analyst is confident in identifying as either “true” and “false”
true defines areas where the feature of interest exfiatsede-
fines areas where that feature does not exist. The actual de
eation of true and false pixels is given by the truth plane. Th
arrangement permits us the flexibility (not used in this study) .o
employ both real-valued weights (representing degrees of confi- (b)
den.ce or of importance) and real-vaIL_Jed truth (corrgspondin_g fo 1. (a) Greyscale images of one of the scenes used to produce the training
retrieval of continuous Valued_ properties). The data in the wei a for “Urban Areas” (Urban 1). (b) Training data provided for the training
and truth planes may be derived from actual ground truth (C@tene for “Urban Areas” (white- feature, grey= not feature, and black no
lected on the ground, at or near the time the image was takenyesertion).
from the best judgement of an analyst looking at the data. Be-
cause collecting ground truth data is so expensive, our systgfiomosome describes an algorithm consisting of a sequence of
employs a graphical interface called ALADDIN to assist the alrimitive image processing operations.
alyst in making judgements about and marking out features'in, . . . .
the data. The analyst can view a multispectral image in a v A single gene consists Of an opera_tor name, a list (?f mput
riety of ways, and can create training data by painting direct! anes, specifying from which plane input is to come; a list

on the image using a computer mouse. Fig. 1 shows an im E/(usually one) output plane; and a list of scalar parameters.

alongside the markup that an analyst provides as “ground trut _arameterg may be integer, floating pom't, or cefltegorlcal. Each
e used in GENIE takes one or more distinct image planes as

Figs. 4(b), and 6(b) show further examples where the analyst ey .
marked out the desired feature on the image input, and produces one or more image planes as output. Input
' can be taken from any data planes in the training data image

cube. Output is written to any of a small humbersafatch
planes—temporary workspaces where an image plane can be

Each individualchromosomén the population consists of astored. Genes can also take input from scratch planes, but only
fixed-length string ogenes Each gene in GENIE correspondsf that scratch plane has been written to by another gene earlier
to a primitive image processing operation. Therefore the entirethe chromosome sequence.

B. Encoding Candidate Solutions
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TABLE |
PRIMITIVE IMAGE PROCESSINGOPERATORS(GENES) USED IN GENIE AND WHAT THEY DO

Tmage Tnputs/
Gene Processing OQutputs/
Abbreviation Operation Parameters Notes
ADDP Add planes 2/1/0 Basic mathematical operations. ADDS adds a scalar, which may
ADDS Add scalar 1/1/1 be negative, to its input. DIFF is like SUBP but outputs the
SUBP Subtract planes 2/1/0 absolute values. NDI is like SUBP, but divides the result by the
DIFF Absolute difference 2/1/0 sum of its two inputs. MULTS scales its input by a scalar, which
NDI Normalized difference 2/1/0 by default is positive. LINSCL is like MULTS but takes an extra
MULTS Multiply by scalar 1/1/1 parameter which is added onto the scaled input. LINCOMB
NEG Negate plane 1/1/0 outputs a linear combination of its two inputs, in proportion
MULTP Multiply planes 2/1/0 specified by its one parameter, which takes a value between 0
SQRT Square root 1/1/0 and 1.
SQR Square 1/1/0
LINSCL Linear scale 1/1/2
LINCOMB Linear combination 2/1/1
MIN Minimum 2/1/0 Logical operations. MIN and MAX perform pixel-wise minimum
MAX Maximum 2/1/0 and maximum, equivalent to AND and OR for binary input.
IFLTE ‘If less than else’ 4/1/0 IFLTE outputs its third input wherever the first input is less
than its second input, and its fourth input elsewhere.
CLIP_HI Clip high 1/1/1 Thresholding operations. CLIP_HI truncates any pixel values
CLIP_.LO Clip low 1/1/1 above a value set by its parameter. CLIP_.LO does the converse.
THRESH Threshold 1/1/1 THRESH sets all values below its threshold parameter to 0, and
all those above to dataScale.
SAVAR Spectral angle variance 2-16/1/2 Spectral angle operations. SAVAR and SADIST look at two
SADIF Spectral angle difference 2-16/1/2 circular neighborhood regions around each pixel, of size defined
SADIST Spectral angle distance 2-10/1/2-10 | by their two parameters. SAVAR returns the difference between
SANORM Normalize spectral vector 2-10/2-10/0 | the variance of the spectral angles of the pixels in the two

regions. SADIF returns the difference between the mean spectral
angle of both regions. SADIST returns the spectral angle
difference between each pixel and the vector defined by its
parameters. SANORM normalizes the vector defined by its
inputs to have a magnitude equal to dataScale.

QTREG Region Size related to Statistics 1/3/1 QTREG Determines the region size (in log base 2) around each
pixel for which the normalized variance per pixel standard of the
square region first reaches a given threshold. Also returns planes
with the linear fit slope and offset of the variance as a function
of region scale for each pixel

R5R5 Laws’ texture measure 1/1/0 Neighborhood operations. In general, all these operations take a
LAWB Laws’ texture measure 1/1/0 single plane as input and produce a single output plane. The
LAWD Laws' texture measure 1/1/0 output at each pixel is determined by looking at the pixel’s
LAWF Laws’ texture measure 1/1/0 neighborhood. R5R5, LAWB, LAWD, LAWF and LAWH are
LAWH Laws’ texture measure 1/1/0 widely-used texture measures, developed by Laws, that return

LAPLAC3 3x3 Laplacian 1/1/0 zero if the neighborhood contains all the same value of pixel, and
LAPLACS 5x5 Laplacian 1/1/0 some other value otherwise, depending upon the distribution of
MORPH.LAPLAC Morph. Laplacian 1/1/2 pixel values. RSR5 is corresponds to Laws’ R5T x R55 x 5
ISO.GRAD Isotropic gradient 1/1/0 operator. The others are 3 x 3 operatorslrcorresponding to Laws’
MEAN Mean 1/1/1 83T x L3, E37 x E3, L37 x 83 and 537 x $3 operators
VAR Variance 1/1/2 respectively. For details regarding Laws’ textural operators, the
SKEWNESS Skewness 1/1/2 interested reader is referred to [?], [?]. Most of the other
KURTOSIS Kurtosis 1/1/2 operators are familiar image processing or morphological
SKEW.COEFF Skewness coefficient 1/1/2 operators, whose description can be found in any good book on
KURT.COEFF Kurtosis coefficient 1/1/2 image processing. Most take two parameters which give the size
SD Standard deviation 1/1/2 and shape of a structuring element defining the neighborhood to
RANGE Morphological Gradient 1/1/2 which the operator is applied. ASF stands for ‘Alternating
MEDIAN Median 1/1/2 Sequential Filter’. MB.EDGE takes an additional parameter
EROD Erode 1/1/2 defining a threshold for edge strength to be looked for. The

DIL Dilate 1/1/2 single parameter for H_DOME and H_.BASIN defines the pixel
OPEN Open 1/1/2 value offset used by these operators.

CLOS Close 1/1/2
OPCL Open-close 1/1/2
CLOP Close-open 1/1/2

ASF_CLOP ASF Close-open 1/1/2
ASF_OPCL ASF Open-close 1/1/2
POS.TH Positive top hat 1/1/2
NEG_TH Negative top hat 1/1/2
OP_REC Open with reconstruction 1/1/2
CL.REC Close with reconstruction 1/1/2
H_.DOME H-dome 1/1/1
H.BASIN H-basin 1/1/1
MB.EDGE Canny edge detector 1/1/2

The image processing algorithm represented by any partic-Our notation for genes is most easily illustrated by an ex-
ular chromosome can be thought of as a directed acyclic grapmple: the gengADDP rD1 rS1 wS2| applies pixel-by-pixel
where the nonterminal nodes are primitive image processing @gldition to two input planes, read from data plane 1 and from
erations, and the terminal nodes are individual image planes sgratch plane 1, and writes its output to scratch plane 2. Addi-
tracted from the multispectral image used as input. The scrat@mal operator parameters, if any, are listed after the input and
planes are the “glue” that combines primitive operations intmutput arguments.
image processing pipelines. Traditional GP [17] uses a vari-Our “gene pool” is composed of a set of primitive image pro-
able sized (within limits) tree representation for algorithms. Owessing operators which we consider useful. For different appli-
representation differs in that it allows for reuse of values comations, the user may want to choose different sets of primitive
puted by subtrees, since many nodes can access the same soogtetators; for the studies described here, we used the operators
plane, i.e., the resulting algorithm is a graph rather than a treescribed in Table I. These include spectral, spatial, spatio-spec-
It also differs in that the total number of nodes is fixed. tral, logical and thresholding operators.
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The set of morphological operators is restricted to function-set l T ——
processing morphological operators, i.e., gray-scale morpho-
logical operators having a flat structuring element. The shape of
the structuring elements used by these operators is chosen from Canatic Algerithm
among: square, circle, diamond, horizontal cross and diagonal | Goervie
cross, and horizontal, diagonal, and vertical lines. The shape and

Dwilm,

size of the structuring element are defined by operator param- Sermich,
eters. Other local neighborhood/windowing operators such as Vi, & o
mean, median, etc. specify their kernels/windows in a similar Planes

way. The spectral operators have been chosen to permit weighted
sums, differences, and ratios of data and/or scratch planes.

It should be noted that although all chromosomes have the
same fixed number of genes, thiective !engtlmf the resulting Fig.2. Software architecture of the GENIE System.
algorithm graph may be smaller than this. For example, an oper-
ator may write to a scratch plane that is then overwritten by an- .
other gene before anything has a chance to read from it. GENjssified correctly) asiy and the false alarm rate (fraction of
performs an analysis of chromosome graphs when they are cf@\S€” Pixels classified incorrectly) a&, then the fitness F of
ated and only carries out those processing steps that actudifndidate solution is given by
affect the final result. Therefore, the fixed length of the chro- .
mosome acts as a maximum effective length. F'=500(Fq + (1 - Ryp)). (1)

In an interesting parallel to “junk DNA” in natural chromo-ry, ;s 4 fitness of 1000 indicates a perfect classification result.
somes, the final chr_omosomes produced by GENIE often EXh'I?'IInis fitness score gives equal weighting to type | (true pixel
some redundancy, i.e., genes and answer planes that do not Gos. e 1y labeled as false) and type Il (false pixel incorrectly

tributg to The aniwerr.]While these Eunk genesl’;dq EOtSﬁeCt USbeled as true) errors. Note a fitness score of 500 can be trivially
functionality of the chromosome, they can make it harder to Uz ieyeq with a classifier that identifies all pixels as true (or all

derstand how the chromosome works. We have therefore de\@(’els as false)
oped a simple postrun pruning process that removes junk genes
and ineffective answer planes from the final solution if this is rg=  goftware Implementation

quired.

The evolutionary algorithm code has been implemented in
C. Backends object-oriented Perl. This provides a convenient environment
Final classification requires that the algorithm produce fgr t_he string mampulaﬂons required by the evoluthnary op-
single scalar output plane, which can then be thresholded 61t|ons and simple access to the ur)derlylng operatmg. system
produce a binary output. It would be possible to treat, fé mux). Chromosome f|tn§ss evaluation is the computationally
example, the contents of scratch pl&eas the output from intensive part of the evolutionary process and we currently farm

the algorithm (thresholding of this plane may be required fB'iS job out 1o a separate process running a commercial image

obtain a binary result). However, we have found it advamé_rocessing engine (interactive datalanguage (IDL), by Research

geous to adopt a hybrid approach which applies a conventio Xlstems, Inc. [21]). IDL does not provide all the image pro-

supervised classifier to a (sub)set of scratch and data planeg%smg operators we want, so we have |_mplemented adqmonal
produce the final output plane operators in C that can be called from within the IDL environ-
To do this, we first select a subset of the scratch and dzﬂ?m' Within IDL, individual genes correspond to single prim-

planes to benswer planesThe conventional supervised clas!Ve Image operators, which are coded as IDL procedures; a

sifier “backend” uses the answer planes as input and produgg%omosom;;ll_s s steﬁuence tofbglgenle s and exists ta.s I|r|195 of tIDL
a final output plane; in principle, we can use any supervis € nan alch execttaple. In our present implementa-

classification technique as the backend but for the Comparis&%]’tan lD.tIF] ‘:’ﬁ ssF|)onI|s c:jpen_ed att the Starbilfl‘; run anfhpommu—
reported here, we used tligsher Linear Discriminant20]. nicates wi € Ferl code via a two-way pipe. This pipe

This provides a linear combination of the answer planes tHat? low-bandwidth connection. It IS _only the IDL Session that
maximizes the mean separation between true and false pixg eds to access the input and training data (possibly hundreds

normalized by the total variance in the projection defined b Drg?gNatk)y'Fes), rgq;urlng imght-balndwmth_c&onn_ecgon.TSe Aé‘_
the linear combination. The output of the discriminant-findin raining data mark-up fool was written in Java. =1g.

phase is a continuous-valued (gray-scale) image, which is t JHJWS the software architecture of the system.
reduced to a binary image by finding the threshold value that
maximizes the fitness as described in the following section. IIl. CONVENTIONAL SUPERVISEDCLASSIFICATION
Many implementations of standard supervised classifiers
exist. One of the most widely used remote-sensing software
The fitness of a candidate solution is given by the degree péckages is the ENvironment for Visualizing Imagery (ENVI)
agreement between the final binary output plane and the trainfdg, which is built on IDL and is also distributed by Research

data. If we denote the detection rate (fraction of “true” pixelSystems, Inc. Supervised classification techniques provided as

D. Fitness Evaluation
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part of the ENVI package were used in the comparison exp#hnat all classes are modeled as having identical covariance ma-
iments with GENIE. Currently GENIE is set up to be trainedrices (which define the shape and orientation of the normal dis-

using effectively three classes: “feature,” “nonfeature,” anmibution). In the one class case, we compare the probability that
“don’t care” and to be able to classify every pixel in its inpua new pixel was generated by the “feature” class, to a user-de-
data into one of two classes: “feature” and “nonfeature.” THaed threshold, in order to decide the class to which each pixel

normal mode of operation of the ENVI supervised classifiers ielongs.

to use training data for the one “true” class, i.e., the feature of

interest. The ENVI classifier is then used to classify the inpg. (SAM) Spectral Angle Mapper

image into “feature” or “unclassified”. The user adjusts the pa- . . .
rameters of the particular supervised classifier in order to attainThe spectral angle mapper (SAM) technique [24] is moti-

optimal performance, with respect to feature identification. Fd ted by the observation that changes in illumination caused by

our experiments, these parameters were adjusted to maxinji gdows, slope variation, sun posmon,_llgbt cloud, etc., approx-
the fitness defined in (1) imately only alter the magnitude of a pixel's vector, rather than

The one exception to this is the maximum likelihood CIa§he .di.rection. .Therefore we can eIimingte these effects by hor-
sifier, which requires more than one class in the training da _allzmg all pixel vectors to unit magnitude and then looking
In this case we used the “feature” and “nonfeature” classes Jhe a?gle between agvenp ixel and the‘:‘ mean Yector f_o r the
the maximum likelihood classifier classified every pixel in the eatur_e class. Pixels are as_S|gned to the *feature” class if this
input data into one or other of these two classes, with no “uncl::\""srlgle Is less than a user-defined threshold.
sified” pixels being allowed. For applying the ENVI-supplied ) ]
classifiers to out-of-training-sample data, the training data (réf: (BIN) Binary Encoding
erence spectra) used in the training was provided, together wittBinary encoding classification [23], [25] encodes the data and
the parameters that gave optimal performance on the trainie@erence spectra into ones and zeros, based on whether a par-
data. For the GENIE case, it was simply a case of applying thieular band value lies above or below the spectrum mean. The
algorithms found by GENIE to the out-of-training-sample datéomparison between the encoded reference spectrum with the
(including the linear discriminant and threshold found duringncoded data spectra is performed using a Boolean logic exclu-
training). sive OR (XOR) function. A user specifies the minimum fraction

In Section VI, we show auxiliary results from training theof bands that must match between the encoded reference spec-
ENVI classifiers with more than just these two (“feature” angrum and the data spectra. Pixels that do not meet this criterion

“nonfeature”) classes. are labeled as “nonfeature.” We note that binary encoding pro-
The following ENVI-supplied supervised classification techduces an extreme coarsening of the data. It was invented for, and
nigues were used in the comparison experiments [22]. is most appropriately applied to, hyperspectral data.
Itis worth noting that for the traditional supervised classifiers,
A. (MIN) Minimum Distance the user-defined thresholds determined as being optimal for

the training data may not be optimal for out-of-training-sample

The minimum distance supervised classification techniq%ta However, we can envisage a production scenario
[22], [23] computes the mean pixel vector of the *feature” clasg o e the classifiers are trained on one set of data to find

and then assigns new pixels to the “feature” class based on f)articular feature, where some kind of “ground truth” is

Euclidean distance from that pixel to the mean. For the mu'ﬂi/ailable and the resultant classifier is applied to some other

class case, the pixel is assigned to the feature whose mean valye ¢ yaining-sample data, in order to determine if that partic-

is the minimum d_'StanC_e fr_om the pixel. I_:or th_e _S|mp_le_ feah'lar feature is present or not in the data, and “ground truth” data
ture/nonfeature discrimination here, the pixels is identified St be available for that data. In this case. the lack of ground
a fgature if the .d'Stance Is less than a user-deﬁneq .thresh(? ath means that there is no quantitative way of determining
(adjust_ed t(.) tham optimum performance on the training dat e optimal threshold value for the out-of-training-sample data.
otherwise, it is a “nonfeature. It should also be pointed out that this is also the case for the
_ o GENIE classifiers. GENIEs backend has a threshold which

B. (MAX) Maximum Likelihood needs to be determined and the value determined as optimal
Maximum likelihood classification is the most common sufor @ training set may not be optimal for out-of-training-sample
pervised classification method used with remote sensing d4@a. SO, for a fair comparison, thresholds determined for
[23], and among the classifiers considered here, the one with classifiers during training where left unchanged when the
the most free parameters. Here each class (“feature” and «nglassifiers were applied to out-of-training-sample data. In addi-
feature”) is modeled with separate multivariate gaussian dist{en experiments were also conducted in which user-adjusted

butions. New pixels are assigned to the class that had the higrig&sholds were not employed, where the traditional classifiers
probability of generating that pixel. were forced to classify the entire scene into feature or non-

feature based on the particular distance measure appropriate
L to the classifier. This amounts to a planar separating surface
C. (MAH) Mahalanobis Distance compared to a sphere for the user-defined threshold case. It

The Mahalanobis distance technique [23] is very similar wwas found that the user-adjusted threshold scenario performed
the maximum likelihood classifier, but with the simplificationbetter, in general.
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TABLE I
LIST OF DATA SETS USED IN THE EXPERIMENTS

TABLE I
COMPARISON OFGENIES EVOLVED ALGORITHM WITH ENVI ALGORITHMS
(DR = DETECTION RATE, FAR = FALSE ALARM RATE)

Feature Site Name AVIRIS Flight Number

Roads 1 Moffet Field f970620t01p02_1r03_sc01 Training Data Ot-of Training-Sample Data
. Genie | MIN | MAH [ MAX T SAM [ BIN [ Genie | MIN | MAH | MAX | SAM | BIN
Roads 2 ARM Site 1970801t01p02_r01_sc06 Titess || 963.3 | 751.2 | 865.9 | 6211 | 503. | 677.5 || 763.2 | 5500 | 500.0 | 611.2 | 566.0 | 587.1
Roads 3 Denver 970701t01p02_r07_sc07 Roads | DR (%) || 9661 | 78.63 | 83.11 | 91.62 | 82.93 | 82.00 | 60.71 | 27.54 | 0.00 | 62.25 | 30.29 | 72.04
- = - FAR (%) || 395 |22.40 {1003 | 740 | 2214 | 4650 | 736 | 1557 | 0.00 | 40.02 | 17.09 | 55.51
Golf 1 Moffet Field £970620t01p02_r03_sc01 Rank ist | 5th | 3rd | 2nd | 4th | 6th | 1st | S5th | 6th | 2nd | 4th | 3rd
Golf 2 Denver £970701t01p02_r07_sc01 Fitness || 0083 | 945.0 | 047.6 | D662 | 015.4 | 820.1 || 739.5 | 684.8 | 500.0 | 553.1 | 696.5 | 572.0
- Golt [ DR{%) || 9968 | 95.16 | 93.84 | 96.21 | 92.73 | 78.72 || 61.60 | 4234 | 0.00 | 10.93 | 58.76 | 51.16
Golf 3 Kennedy Space | £960323t01p02_r04_sc02 FAR (%) || 000 | 6.7 | 432 | 2.7 | 064 | 1471 || 13.65 | 2530 | 0.00 | 031 | 19.46 | 36.57
Center Rank ist | 4th | 3rd | 2nd | sth | 6th | 1st | 3rd | 6th | 5th | 2nd | ath
Titness || 998.0 | 6547 | 8616 | 6.6 | 636.3 | 5804 || S15.5 | 686.2 | 5146 | 5694 | 4091 | 5210
Urban 1 Denver f970701t01p02_r07_sc09 Urban [ DR (%) || 99.85 | 58.55 | 80.34 | 95.67 | 75.03 | 83.50 || 6632 | 27.36 | 2.93 | 65.86 | 50.67 | 70.18
FAR (%) 0.07 16.61 8.03 2.94 47.77 | 67.52 363 10.11 0.02 51.97 | 50.51 | 65.80
Urban 2 Denver £970701t01p02_r07_sc04 Rank st | ath | 3rd | 2nd | 5th | 6th || lst | 2nd | Sth | 3rd | 6th | 4th
Urban 3 Moffet Field f970620t01p02_r03_sc01 Fitness || 999.9 | 975.7 | 946.7 | 097.0 | 979.4 | 760.2 || 9750 | 968.6 | 632.0 | 7017 | 975.3 | 7271
Clouds | DR (%) ]| 9999 | 96.41 | 94.21 | 99.91 | 98.18 | 55.50 || 97.43 | 95.38 | 28.62 | 99.97 | 97.28 | 48.85
Clouds 1 Atlanta £970806t01p02 _r07 sc01 FAR (%) || 0.00 | 1.27 | 486 | 0.33 | 2.20 | 3.55 || 1.82 | 167 | 2.22 | 50.64 | 2.23 | 343
Clouds 2 Atlanta £970806t01p02_r07_sc02 Rank st | 4th | 6th | 2nd | 3rd | 6th | st | 3rd | 6th | Sth | 2nd | 4th
« » Ta0E Titness | 990.1 | 540.1 | 0055 | 962.2 | 533.5 | 7005 || 823.6 | 674 | 536.6 | 608.8 | 6842 | 6023
Clouds 3 Clouds 1 1970817t01p02 r05 sc01 Average | DR (%) || 99.03 | 52.19 | 87.87 | 95.86 | 87.22 | 7498 || 7151 | 4816 | 7.89 | 59.75 | 59.25 | 60.78
FAR (%) ] 101 | 1236 681 | 341 | 2046|3307 || 662 | 1318 0.56 | 37.99 | 22.32 | 40.33
Rank Ist 4th 3rd 2nd 5th Bth 1st 3rd 6th 4th 2nd 5th

IV. EXPERIMENTAL DATA AND CLASSIFICATION TASKS

A. Data Used in the Experiments because of their particular attributes in multispectral data.

The remotely-sensed images referred to in this paper were d8€ features were considered a good test of a supervised
rived from the Airborne Visible and InfraRed Imaging Spectronplassification technique due to the different levels of difficulty
eter (AVIRIS) [26], asensor developed and operated by the NASReY posed for these techniques. Clouds are relatively easy, and
JetPropulsionLaboratory. The AVIRIS sensorcollectsdatain 2paestly spectral; urban areas encompass a land-cover distinc-
contiguous, relatively narrow (10 nm), uniformly-spaced spectréd®n; roads are easy for the eye to find, but notoriously difficult
channels. AVIRIS is an airborne sensor and spatial resolution d&h automated algorithms; golf courses require a combination
vary from a few meters to 20 m, depending on the altitude of ti§é spectral and spatial information to disambiguate them from
collecting platform. We used data from 1996 and 1997 AvIRISther similarly-vegetated areas (e.g., lawns).
campaigns from a range of sites shown in Table II; more detail isWe set the various supervised classification techniques the
available from the AVIRIS quicklook website [27]. task of distinguishing these features within several scenes of

For the studies reported here, we used a reduced numbet6f ten-channel multispectral data as described above. For
relatively wide spectral bands, designed to simulate image??Ch feature of interest three separate scenes had training data
from a new remote sensing satellite called the Multispectr@iarked-up using the ALADDIN tool. This provided “ground
Thermal Imager (MTI) [28]. The MTI satellite was launchedruth” for training data and for assessing the performance of
in March 2000 and collects data in 15 spectral bands. TentBg classification scheme on out-of-training-sample data. We
these bands sample wavelengths between 0.4 and 2.4 micr6fdployed a cross-validation scheme where, for each feature, we
a region covered by the AVIRIS instrument. As test data to dif@ined a classifier separately on the three marked-up scenes,
velop analysis codes for the MTI mission, AVIRIS data werand then for each scene, applied the resulting classifier to the
convolved with the MTI spectral filter functions to produce simtwo remaining out-of-sample scenes. GENIE was run, with a
ulated MTI data. This 10-band simulated data was used for gg@pulation of 100 individuals, for 500 generations, or until a
velopment of both conventional remote sensing algorithms afRerfect score) fitness of 1000 was achieved.
for GENIE development, such as reported here. An example of an image plus associated training data is

The images displayed here are false-color images (Whighown in Fig. 1. This figure shows the false-color image for one
have then been converted to gray-scale in the printing proceéﬁ)?he scenes used for the “urban area” feature classification,
The color mappings used are the same for all original ima@é‘d the associated training data. In the training data image the
data shown. The particular color mappings used here involdite pixels correspond to the places on the image where the
averaging MTI bands A (0.45-0.52m) and B (0.52-0.60 feature is asserted to be, the grey pixels to where the feature
pm) for the blue component, bands C (0.62-0,68) and is asserted not to be, and the black pixels correspond to places
D (0.76-0.86um) for the green component and bands here no assertion is made.

(0.86-0.89um) and F (0.91-0.97m) for the red component.
In addition, the images have been contrast enhanced. The

choice of color mappings was arbitrary, in that it was a personal .
decision made by the analyst in order to best “highlight” the_':Or the training phase, we ran GENIE and the ENVI-sup-

feature of interest, and thereby enable the production of hi Hed clg§sifiers on Fhe trgining data. For GENIE’, the re;ult of
quality training data. This ability to manipulate the imagd!'S training phase is an image processing pipeline which can

with color mappings and contrast enhancement is an import r?tapp"ed_tp and tested on _ot_her data. To app_ly the ENVI-sup-
feature of the graphical interface. plied classifiers to out-of-training-sample data it was necessary

to save the regions of interest of the marked-up training classes
and provide them as the reference spectra for application of the
classifiers to out-of-training-sample data.

We chose four different features of interest: roads, golf We measured the fitness, detection rate and false-alarm rate of
courses, urban areas, and clouds. These features were chafi¢ghe classifiers on the training data and out-of-training-sample

V. COMPARISON EXPERIMENTS

B. Classification Tasks
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D10 @ The RANGEoperator computes the difference between the

. maximum and minimum value in ax 7 kernel of data plane
. D10, and writes the result to scratch plagie The parameters
; ! “3 0" correspond to a square ¥ 7 kernel. The first integer
ANGE rAs:opa lem; parameter for_this operator, “3,” actuglly defines the “radius_"
- ! P : of the smoothing kernel, where the “diameter” of the kernel is
always an odd integer, and defined @sx radius) + 1. The
second integer parameter, “0”, defines the particular choice of
kernel shape, in this case a square. A “1” would define a circle,
OP_REC “2" a vertical cross, “3" a diagonal cross, etc.
The first MEANoperator, [MEAN rD4 wS2 4 0], smooths
the data plan®4 with a 9x 9 square kernel, and writes the
@ @ @ solution to scratch plang2. The secondMEAN operator,
[MEAN rS2 wS2 3 0], smooths the result stored in tg2
Fig. 3. Image processing pipeline discovered by GENIE for finding goplane with a 7 7 square kernel, and th€LOP operator
courses. Dotted lines indicate scratch planes which did not contribLb%rformS a morphological close-open operation, again with a
significantly to the final classification. L. _
7 x 7 square kernel, writing the output to scratch plage

) o The ASF_OPClLoperator performs an alternating sequential
data. Table Ill summarizes the quantitative results of the cogsen.-closing with a square kernel of maximum size 7 on

parison between the GENIE algorithm output and the traditiong 5 plan®2, and writes the output to scratch plage
algorithms’ output for each of the features. The bottom four TheVARoperator computes the variance in & 7 kernel of
rows of the table show the average, for each classification tegf};4 planed7, and writes the result to scratch plase That
nigue, across all features sought. It is interesting to notice trﬂﬂﬁne is further modified by th©@P RECoperator, which per-
the relative ranking (based on fitness score) of each of the clag§ims a morphological opening with reconstruction, again based
fiersis relatively stable over the different features, with the mogg, 5 7« 7 kernel.

complicated classifiers generally achieving the highest SCOreSThe O TREGperator also reads data plafeand writes three

For_the out-pf—training-sample data, by contrast, the simpler @is,5tch planesse, $3, ands1), two of which €3 ands1) are
gorithms (with fewer free parameters) perform much better. TRe v ritten by other operators before being used.

main exception is GENIE, which performs well on both the i)y the Fisher Discriminant backend applies a linear

traning data and on the out-of-training-sample data. combination of the scratch planes, followed by a threshold,
An example of an image processing pipeline produced by no4yce a binary answer plane. The coefficients applied to

GENIE is given by the following solution to the golf courseiq five answer planess¢, S1, 2, 3, S4) are: {—9.354 x

finding task: 1076,1.235 x 10°7,1.659 x 1075, 1.460 x 10~?,0.0349}.

There is an additional dc offset value ef0.350 applied to

the output of the linear combination. The threshold value for

MEAN

__________

_____

MEAN

SR UV S s |

()

QTREG rD7 wS5 wS3 wS1 0.05]

MEAN D4 wS2 4 0] determining the binary output was 0.664 305.
MEAN rS2 wS2 3 0 It can be seen that this image processing pipeline has only
VAR rD7 wS4 3 O] used four of the available ten data planes as input: data planes

D2, D4, D7, and D10. These correspond to the MTI bands B

CLOP S2 S2 3 0
e W ] (0.52-0.60um), D (0.76-0.86:m), G (0.99-1.04.m), and

[
[
[
[
[
[
[
[

RANGE rD10 wS1 3 O] O (2.08-2.35:m), respectively. GENIEs choice of input data
OPREC rS4 wS4 3 0] bands is (in retrospect) not too surprising, given the task. The al-
ASF.OPCL rD2 wS3 3 O]* gorithm is using the green band (B), as well as two near-infrared

(NIR) bands (D,G) and a short-wave infrared (SWIR) band (O).

As described in Section II-B, each line consists of a singhéegetation is highlighted in the two NIR bands that GENIE se-
primitive image processing operation: the name of the opdected, as well as in the green band.
ator, which datgD) or scratch(S) planes were readr) from Of these five answer planes the most important were S1, S2,
and which were writteriw) to, and what parameter values wereand S4; using only those planes we could still achieve the same
used (see Table | for details on the individual operators). GENfithess value, on the training data and out-of-training-sample
produced a solution with five answer planes, and the backedata, as when all the answer planes were used. Hence, two of
produced a linear combination of those planes, along withtlze operators did not contribute substantially to the solution. The
threshold value, to give a binary classification. A graphical reputputs of the useful answer planes, as can be seen from Fig. 3,
resentation of this pipeline is illustrated in Fig. 3. Note that thare derived from the NIR and SWIR bands. In this case we see,
circledDs represent the input data planes and the cit8kxp- somewhat surprisingly, that the green band is not contributing
resent the answer planes that are input to the back-end class#ignificantly to the solution. We might expect green to be very
(Fisher Linear Discriminant plus threshold), to produce the finakeful for identifying golf courses, and this is probably how it
classification result. To aid clarity, we now provide a narrativmade its way into the chromosome. However, in the end, the
description of the operation of this pipeline. NIR and SWIR bands were found to be more informative.
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(b) (b)

Fig. 4. (a) Greyscale images of one of the scenes used to produce the traifiiigg 5. (8) GENIE results on training data: Fitness 999.2. (b) Best

data for “Golf Courses” (Golf 3). (b) Training data provided for the trainingENVI classifier for the particular training scene (minimum distance):

scene for “Golf Courses” (white= feature, grey= not feature, and black no  Fitness= 957.4. Here, GENIEs use of spatial information is clearly evident.

assertion). The black “buffer area” around the golf course reflects the analyskise ENVI classifier actually did a better job of delineating the extent of the

lack of concern with a detailed delineation of the precise extent of the g@6lf course, whereas GENIEs spatial operators led to a “fatter” golf course

course. than the purely spectral data would warrant. On the other hand, though, this
spatial information allowed GENIE to veto the golf course-like spectra in the
rest of the image. Because the “fatter” golf course fits inside the no-assertion

We illustrate the results of these classification techniques agion, GENIE is not penalized.

training and out-of-training-sample data with an example of
g#ifrug:?:; SSPCIEQégdpi?ﬁexepﬁgztﬁggggaEgzlééaﬁ have the same approximate performance, both on training data
to MAX for one of the training data sets, and Figs. 6 and 7 com- d on out-of-sample data, and there will often be an overlap

n the choice of operators and data planes used in the image
Eg:ﬁir%?gri;f;tggtaspewal Angle Mapper (SAM) on OUt'Oferocessing pipeline that is evolved. But the space of image pro-

. . ., __cessing pipelines it too large and too rugged to achieve any real
An interesting aspect of GENIEs performance to considerl Vel of “robustness,” in this regard.

its repeatability; i.e., whether or not, for a given feature, GENI
leads to the same result (i.e., the same “image processing
pipeline”) when trained on different scenes. In general, GENIE
will not produce the same image processing pipeline even wherDepending on the application at hand, an image analyst is
trained on the same scene, if it starts with a different randasometimes interested in the identification of a single specific
number seed. However, the different solutions will generalfgature against a background of everything else in the image,

VI. FURTHER EXPERIMENTS AND RESULTS
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(b) (b)

Fig. 6. (&) Greyscale images of one of the scenes used to produce training ¢dga7. (a) GENIE results on out-of-training-sample data: Fitnes§46.9.

for “Golf Courses” (Golf 1). (b) Training data provided for the training scenéb) Best ENVI classifier (for particular training scene) on out-of-training-sample

for “Golf Courses” (white = feature, grey= not feature, and black= no  data (spectral angle mapper): Fitnes$56.7. Again, Genie has used its spatial

assertion). operators to produce “fatter” golf courses, but it was also able to censor more
of the nongolf-course area in the rest of the scene.

and is sometimes interested in the simultaneous extraction of

multiple features (for instance, when making a landcover ma,@ven the task of classifiying the scenes into multiple classes
The experiments described in the previous sections take the fjilaa of the two feature/nonfeature classes described in the
point of view and it is this binary classification task that GENI%revious experiments.

was designed to handle.

) However, for MAX a_nd othe”r_ conventional cIaSS|f|ers,_th . Experimental Procedure
background of everything else” is not well modeled as a single
unimodal class. To address this difficulty, it has been suggestedhe training data as provided to GENIE and as used in the
[29] to artificially divide the background into multiple classesexperiments described in Section V were used to create the
and then employ multi-class classification techniques. Thisaining data provided to the standard supervised classifiers. The
combined use of labeled and unlabeled samples can often |&faature” class was kept as it was, but the “nonfeature” class
to more powerful supervised classification [30]—[33]. was divided up into multiple classes. The combination of the

In order to address these same issues, we conducted a séféggure” class and the subdivided “nonfeature” class was then
of further experiments where we adopted a similar approach given as training data to the standard supervised classification
which the standard supervised classification techniques weeehniques.
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TABLE IV
RANKINGS, BASED ON FITNESS SCORESAVERAGED OVER ALL CLASSIFICATION
TASKS, OF THE BEST MULTIPLE-CLASS VARIANTS OF THE STANDARD
SUPERVISEDCLASSIFIERS ON BOTH TRAINING DATA AND TESTING DATA

the result of GENIEs training is an image processing algorithm
that can be applied to other data with times comparable to that
of the other techniques’ application to out-of-training-sample
data. We also remark that a few hours is usually a small fraction

Training Out-of-Training-Sample ; H _ ; ; H
o O T i T e of the tlme |t_wo_uld take_to hand c_JeS|gn an equivalent image
Tst Gevie | 9901 GENE 3245 processing pipeline that is customized not only to the specific
2nd || MAX gMg 965.8 || SAM (M) 780.0 feature, but also to the specific data set. Another point to con-
3rd | MAH (M) | 9491 || MIN (M) 7787 - : : . . :
Th AT 5055 | MATL (M) 5 sider is that b_emg a population bgseq optlm_lzat|0n techmqge,
5th || MIN (M) | 892.3 SAM 684.2 GENIE lends itself well to parallelization, which can dramati-
6th || SAM (M) | 8741 MII‘(I ) 674.9 cally reduce training time. Some experiments have been carried
7th MIN 840.1 || MAX (M 615.5 ;
S SAM 5535 | MAR (M) | 53656 out to demonstrate this [6].

Although the traditional classification techniques that were

) ) ) compared here use only spectral information, itis possible to en-
It should be noted that the binary encoding supervised clag;|e these techniques to use spatial information as well. There is

sification technique was not included in these additional exp&frfact a large literature on methodologies for combining spatial
iments. o , and spectral information (e.g., see [36]-[39]). Our approach was

The “nonfeature” class was divided into multiple classes Ry apply a set of spatial operators to each plane in the input multi-
applying ENVIs unsupervised k-means classification algorithmag o cira| data and then combine these new processed data planes
[1], [34], [35], to the entire “nonfeature” class. This k-meang;it the raw data planes; both sets of planes would then be pro-
classification was performed several times, varying the numRggeq as input to the supervised classifiers. We applied a number
of classes into which the nonfeature class was classified. T&ﬁnorphological smoothings at different scales to the input data
k-means classification with the number of classes that providgfy combined this with the original data. We found that this in-
the best final classification performance in terms of fitness, Wa$smation did improve the fitness scores achieved by the con-
the one included in the additional results shown here. ventional supervised classifiers, but they were still considerably

Table IV shows the overall ranking for the multiple-clasgg|o\ the performance of GENIE on the original data. Also, the
classification algorithms, averaged over all the features fpR,roved performance was only for the training data. The clas-
the training data. In this table, “(M)" indicates the use ofjiers actually performed worse on out-of-training-sample data
multi-class training; the nonmultiple-class results are thog€s | they were less robust). Obviously, if one were to adopt this
results described and shown in Section V. approach, the choice of which spatial operators to apply is very
important and the search space in this regard is immense. If one
considers a scenario where some sophisticated technique is used

With a single exception, GENIE outperformed all thdo search the space for the optimal combination of spatial oper-
other classification techniques on both training data amdors, one is entering the arena in which GENIE is designed to
out-of-training-sample data, for all of the classification tasknction.
considered. For the training data, the gap, with respect toln conclusion, an automated feature detection/classification
fitness, between GENIEs performance and the best of the otf¥gtem based on genetic programming has been described.
techniques was much less than for the out-of-training-sami&periments comparing this new system with traditional super-
case. This suggests that GENIE is significantly better wised classifiers indicate consistently better performance, on
generalizing than the other techniques compared here. p@th training data and out-of-training-sample data. We attribute
interesting observation is that the best of the other techniqueENIEs success to the choice of solution representation—as a
on the training data did not necessarily guarantee it to be thlltispectral image processing pipeline—and to the fact that
best of the other techniques on the out-of-training-sample datavery naturally combines information from both the spectral
This indicates the sensitivity of these techniques to trainir@d spatial domains.
data and highlights GENIEs generalization abilities.

The one exception was the multiclass SAM applied to golf
courses, on out-of-training-sample data. This suggests that golf
courses are relatively well identified by their spectral signaturest]

VII. DISCUSSION
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