

IEA Workshop on Energy Technology Roadmaps

Roadmaps From the U.S. Climate Change Technology Program Strategic Plan

Dr. Robert C. Marlay
Deputy Director, U.S. Climate Change Technology Program
Office of Policy and International Affairs
U.S. Department of Energy
robert.marlay@hq.doe.gov

International Energy Agency 15 - 16 May 2008 Paris, France

Part I U.S. Climate Change Technology Program

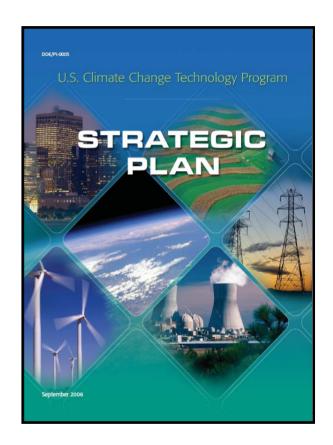
Technology Strategy

"Energy security and climate change are two of the great challenges of our time. These challenges share a common solution: technology."

President George W. Bush Major Economies Meeting September 28, 2007

Key Technology Elements

- Coal -- De-Carbonize the Grid
 - » Nuclear Power
 - » Low-Emission Coal Power
 - » Renewable Power
- Cars -- Transform Cars/Trucks Toward New Fuels
 - » Hybrid & Electric Vehicles
 - » Alternative Fuel Vehicles & Bio-Based Fuels
 - » Alternatives, including Other Modes
- Efficiency (All Sectors)
- Other GHGs
- Enablers
 - » CO₂ Capture and Storage
 - » Modernized Grid
 - » Energy Storage, Large and Small Scale
 - » Strategic and Exploratory Research


Supporting Policies to Promote Deployment

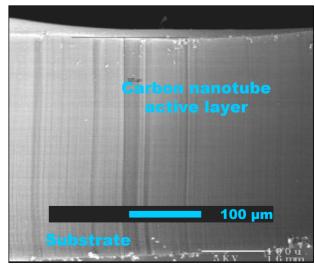
- Financial Incentives
- Fuel Mandates
- Codes, Standards, Labeling
- Transparent System for Measuring Progress
- Via U.S. Climate Change Technology Program
 - Strengthen Federal R&D Portfolio
 - Prioritize Investments
- Expand R&D Cooperation with non-Federal Entities

U.S. Climate Change Technology Program

- > U.S. Climate Change Technology Program
 - Mission Accelerate R&D on Adv. CC Techs
 - Scope Ten Federal R&D Agencies
 - Budget -- \$4.4 Billion Requested for FY'09
 - Activities Coord. R&D Planning & Budgeting
- Goals:
 - Four emissions-related strategic goals:
 - ✓ Reduce emissions from energy end use & infrastructure:
 - ✓ Reduce emissions from energy supply;
 - ✓ capture & sequester CO₂; and
 - ✓ Reduce emissions from non-CO₂ gases.
 - Two cross-cutting, supporting strategic goals:
 - ✓ Improve capabilities to measure & monitor GHGs; and
 - ✓ Bolster basic science and strategic research.
- CCTP authorized in EPAct2005. Led by DOE.

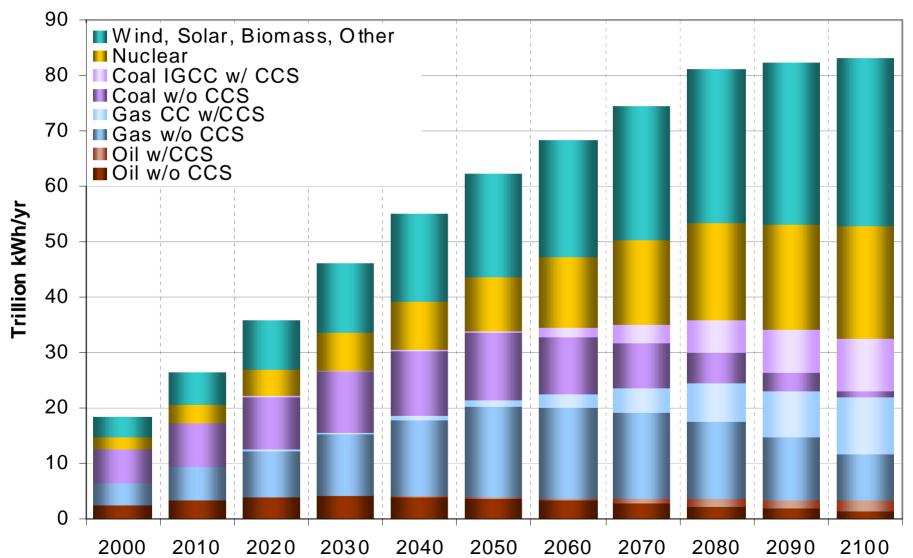
www.climatetechnology.gov

Roadmap for Climate Change Technology Development


	NEAR-TERM	MID-TERM	LONG-TERM
GOAL #1 Energy End-Use & Infrastructure	Hybrid & Plug-In Hybrid Electric Vehicles Engineered Urban Designs High-Performance Integrated Homes High Efficiency Appliances High Efficiency Boilers & Combustion Systems High-Temperature Superconductivity Demonstrations	 Fuel Cell Vehicles and H₂ Fuels Low Emission Aircraft Solid-State Lighting Ultra-Efficient HVACR "Smart" Buildings Transformational Technologies for Energy-Intensive Industries Energy Storage for Load Leveling 	Widespread Use of Engineered Urban Designs & Regional Planning Energy Managed Communities Integration of Industrial Heat, Power, Process, and Techniques Superconducting Transmission and Equipment
GOAL #2 Energy Supply	IGCC Commercialization Stationary H ₂ Fuel Cells Cost-Competitive Solar PV Demonstrations of Cellulosic Ethanol Distributed Electric Generation Advanced Fission Reactor and Fuel Cycle Technology	FutureGen Scale-Up H ₂ Co-Production from Coal/Biomass Low Wind Speed Turbines Advanced Biorefineries Community-Scale Solar Gen IV Nuclear Plants Fusion Pilot Plant Demonstration	Zero-Emission Fossil Energy H ₂ & Electric Economy Widespread Renewable Energy Bio-Inspired Energy & Fuels Widespread Nuclear Power Fusion Power Plants
GOAL #3 Capture, Storage & Sequestration	CSLF & CSRP Post Combustion Capture Oxy-Fuel Combustion Enhanced Hydrocarbon Recovery Geologic Reservoir Characterization Soils Conservation Dilution of Direct Injected CO ₂	 Geologic Storage Proven Safe CO₂ Transport Infrastructure Soils Uptake & Land Use Ocean CO₂ Biological Impacts Addressed 	 Track Record of Successful CO₂ Storage Experience Large-Scale Sequestration Carbon & CO₂ Based Products & Materia Safe Long-Term Ocean Storage
GOAL #4 Other Gases	Methane to Markets Precision Agriculture Advanced Refrigeration Technologies PM Control Technologies for Vehicles	 Advanced Landfill Gas Utilization Soil Microbial Processes Substitutes for SF₆ Catalysts That Reduce N₂O to Elemental Nitrogen in Diesel Engines 	Integrated Waste Management System with Automated Sorting, Processing & Recycle Zero-Emission Agriculture Solid-State Refrigeration/AC Systems
GOAL #5 Measure & Monitor	Low-Cost Sensors and Communications	Large Scale, Secure Data Storage System Direct Measurement to Replace Proxies and Estimators	Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)

"De-Oil" Transportation

- Future Transport System
 - Multi-Modal
 - Regional Choices
 - Coordinated Integrated Land-Use Planning
- Vehicle Options
 - Electric Vehicles
 - Hybrid Vehicles
 - Bio-Based Vehicles
 - H2 & Hydrogenated Molecules
 - Oil & Gas Vehicles



Nanotube-Enhanced Ultracapacitor [MIT, R. Signorelli – March 2005]

"De-Carbonize" the Electric Grid

Technology Scenarios Explore the Future

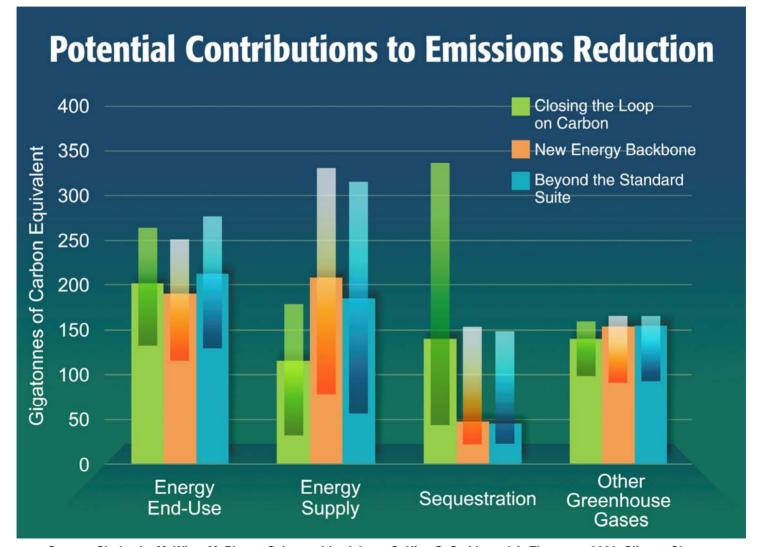
Technology Scenario #1: "Closing the Loop on Carbon"

Successful development of carbon capture and storage technologies for use in electricity, as well as in applications such as hydrogen and cement production.

Technology Scenario #2: "A New Energy Backbone"

Additional technological improvement and cost reduction for carbon-free energy sources, such as wind power, solar energy systems, and nuclear power.

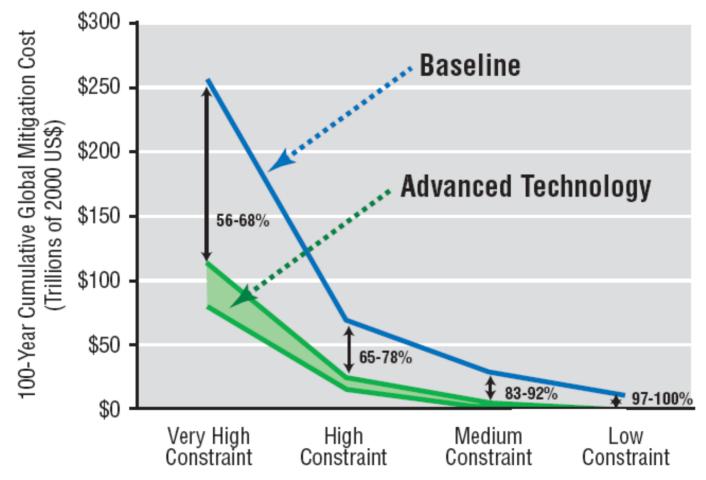
Technology Scenario #3: "Beyond the Standard Suite"


Major advances in fusion energy and/or novel energy applications for solar energy and biotechnology such that they can provide zero-carbon energy at competitive costs in the second half of this century.

Common Characteristics Across Scenarios:

- ✓ Additional gains in energy efficiency beyond the reference case occur;
- ✓ Additional technologies for managing non-CO₂ GHGs become available;
- ✓ Terrestrial carbon sequestration increases;
- ✓ The full potential of conventional oil and gas is realized; and
- ✓ Hydrogen production technology advances.

Results of An Integrated Assessment

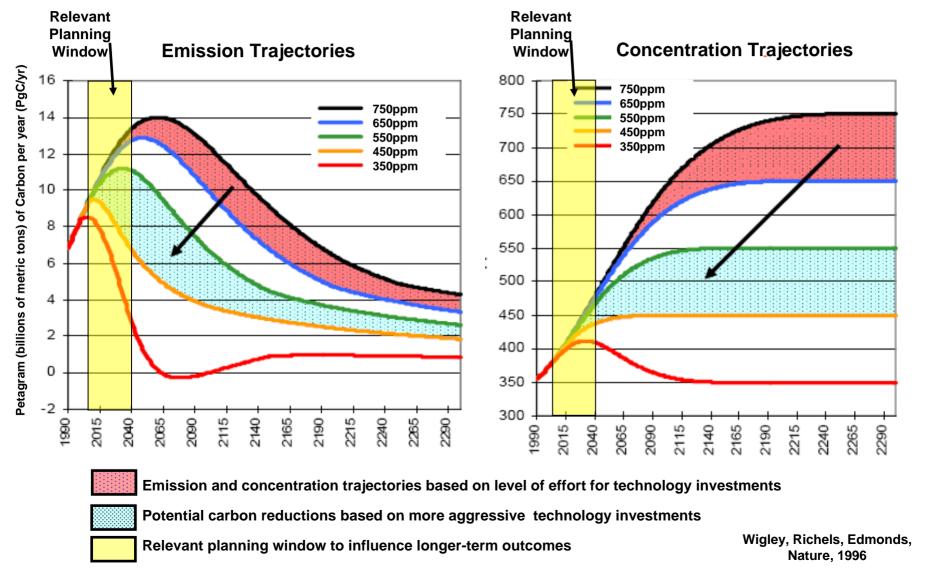


Source: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

Costs Must Be Lowered Significantly

Comparative Analysis of Estimated Cumulative Costs Over the 21st Century of GHG Mitigation, With and Without Advanced Technology, Across a Range of Hypothesized GHG Emissions Constraints.*

^{*} U.S. Climate Change Technology Program Strategic Plan, September 2006, Figure 10-2


Timing is of the Essence

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	2010 - 2020	2030 - 2040	2030 - 2050	2040 - 2060
Goal #2: Reduce Emissions from Energy Supply	2020 - 2040	2040 - 2060	2050 - 2070	2060 – 2100
Goal #3: Capture and Sequester Carbon Dioxide	2020 - 2050	2040 or Later	2060 or Later	Beyond 2100
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	2020 - 2030	2050 - 2060	2050 - 2060	2070 - 2080

Estimated timing of advanced technology market penetrations, as indicated by the first GtC-eq./year of incremental emissions mitigation, by strategic goal, across a range of hypothesized GHG emissions constraints.

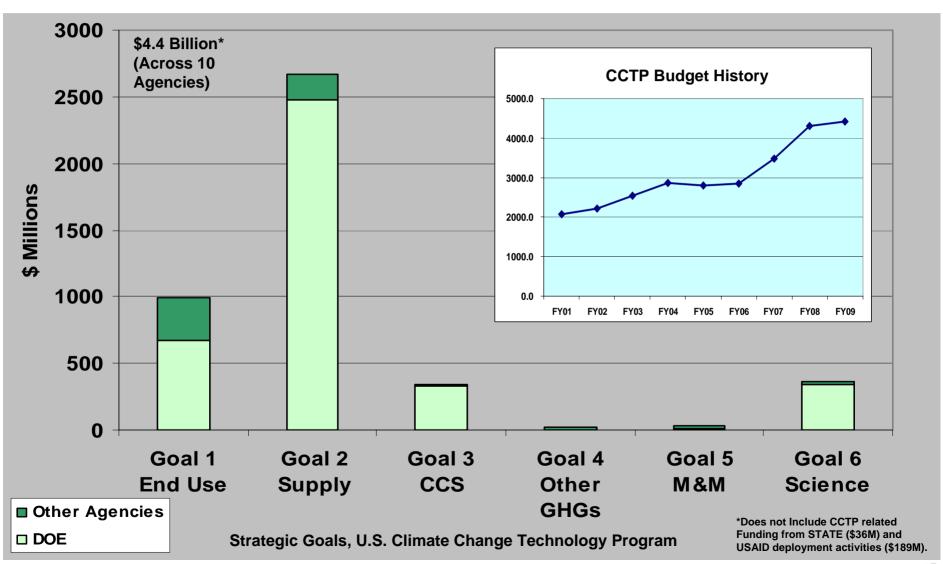
Technical Goals Set Within Context of United Nations Framework Convention on Climate Change

R&D

				Most		Scenarios Years & Quantities U.S. Only					
CCTP Strategic Goal		Key Element of Strategy	CCTP Strategic Plan Corresponding Technologies in Scenarios Analysis	Lead	Challenging Technical Scenario	Units	2020	2030	2040	2050	2100
	1.1	Transportation	Primary Energy Reduction	EE	BSS 450	GtC/yr	0.10	0.14	0.19	0.23	0.34
Reducing Emissions from Energy End-Use and	1.2 Buildings	Primary Energy Reduction	EE	BSS 450	GtC/yr	0.04	0.08	0.11	0.14	0.15	
Infrastructure	1.3	Industry	Primary Energy Reduction	EE	BSS 450	GtC/yr	0.12	0.17	0.21	0.24	0.18
	1.4	Electric Grid and Infrastructure	Enabling Technology, U.S. Grid Demand	OE	NEB 450	Trillion kWh/yr	6.67	7.35	7.92	8.38	9.49
	2.1	Low-Emission, Fossil-Based	Electricity: Coal w/CCS	FE	CLC 450	GtC/yr	0.02	0.05	0.11	0.19	0.33
	2.1	Fuels and Power	Electricity: Natural Gas w/CCS	FE	CLC 450	GtC/yr	0.02	0.04	0.08	0.15	0.26
	2.2	Hydrogen	Hydrogen Production	EE	CLC 450	Quads	2.40	3.10	4.00	5.10	7.40
			Electricity: Solar Power	EE	NEB 450	GtC/yr	0.00	0.00	0.02	0.04	0.06
Reducing Emissions from	2.3	Renewable Energy and Fuels	Electricity: Wind Power	EE	NEB 450	GtC/yr	0.00	0.02	0.06	0.11	0.13
Energy Supply			Bio-Based Fuels	EE	BSS 450	GtC/yr	0.00	0.00	0.02	0.05	0.06
_			Electricity: Gen III Reactors	NE	NEB 450	GtC/yr	0.01	0.05	0.13	0.24	0.37
	2.4	Nuclear Fission	Electricity: Gen IV Reactors	NE	NEB 450	GtC/yr	0.00	0.00	0.02	0.06	0.15
			Electricity: International TechGNEP	NE	NEB 450-W	Trillion kWh/yr	0.01	0.01	0.02	21.94	39.06
	2.5	Fusion Energy	Electricity: Fusion Energy, Others	SC	BSS 450	GtC/yr	0.00	0.00	0.01	0.04	0.35
	3.1	Carbon Capture	(Embedded in 2.1)	FE	N/A	N/A			TBD		
Capturing and Sequestering	3.2	Geological Storage	Carbon Storage	FE	CLC 450	GtC/yr	0.04	0.09	0.20	0.35	0.61
Carbon Dioxide	3.3	Terrestrial Sequestration	TBD	USDA	TBD	GtC/yr			TBD		
	3.4	Ocean Sequestration	Not Applicable This Round	DOE	N/A	N/A	TBD				
	4.1	Methane Emissions from Energy and Waste	CH₄ in CO₂-Equivalence	DOE/EPA	CLC 450	GtC-Eq./yr	TBD				
	42	4.2 Methane and Nitrous Oxide Emissions from Agriculture	TBDCH ₄ (Part)	USDA	CLC 450	GtC-Eq./yr	TBD				
Reducing Emissions of	4.2		TBDN ₂ O (Part)	USDA	CLC 450	GtC-Eq./yr	TBD				
Non-CO ₂ Greenhouse	4.3	Emissions of High Global-Warming	Short-Lived F-Gases in CO ₂ -Equivalence	EPA	CLC 450	GtC-Eq./yr			TBD		
Gasses	4.5	Potential Gases	Long-Lived F-Gases in CO ₂ -Equivalence	EPA	CLC 450	GtC-Eq./yr			TBD		
	4.4	Nitrous Oxide Emissions from Combustion and Industrial Sources	N₂O in CO₂-Equivalence	EPA	CLC 450	GtC-Eq./yr			TBD		
	4.5	Emissions of Tropospheric Ozone Precursors and Black Carbon	TBD	EPA	TBD	GtC-Eq./yr			TBD		
	5.2	MM Energy Production and Efficiency	N/A	DOE			Re	fer to Stra	ategic Pla	n, Chapte	er 8
Enhancing Capabilities to Measure and Monitor Greenhouse Gasses	5.3	MM CO ₂ Capture and Sequestration	N/A	DOE			Re	fer to Stra	ategic Pla	n, Chapte	er 8
	5.4	MM Other Greenhouse Gases	N/A	EPA			Re	fer to Stra	ategic Pla	n, Chapte	er 8
	5.5	MM Integrated Systems Architecture	N/A	SC			Refer to Strategic Plan, Chap		n, Chapte	er 8	
Bolster Basic Science	6.1	Strategic Research	N/A	SC			Re	fer to Stra	ategic Pla	n, Chapte	er 9
Contributions to Technology	6.2 Fundamental Science	N/A	SC			Re	fer to Stra	ategic Pla	n, Chapte	er 9	
Development 6.3		Exploratory Research	N/A	SC			Re	fer to Stra	ategic Pla	n, Chapte	er 9

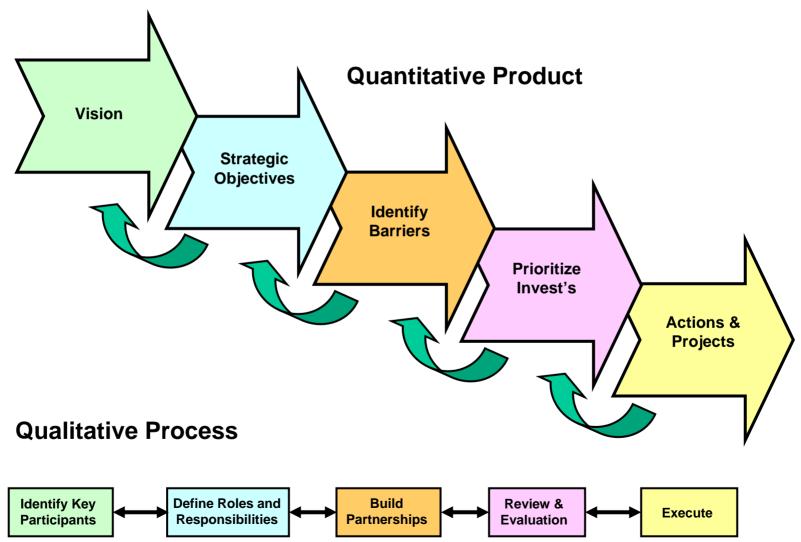
FY 2009 Budget Request -- CCTP Portfolio

CCTP FY09 Budget Request* Portfolio of R&D, Demonstration and Deployment

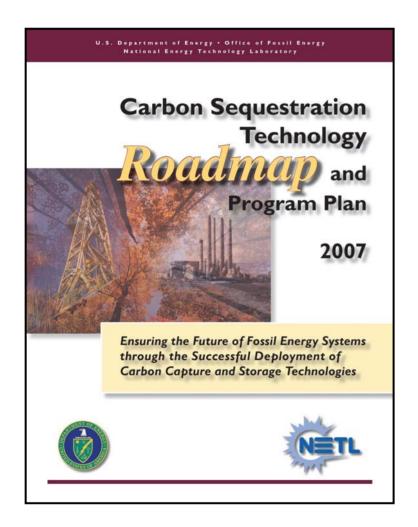

Total Multi-Agency FY09 Budget Request: \$ 4,641 Million

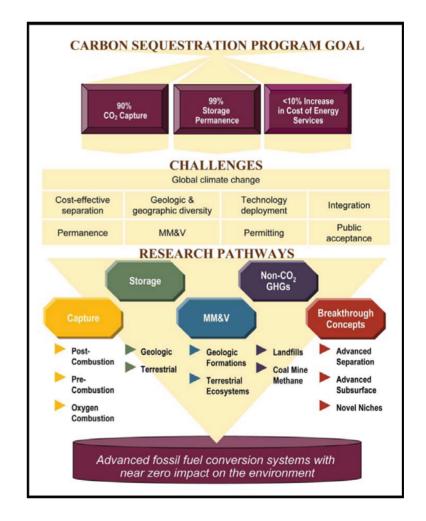
^{*} All CCTP Federal Agencies FY09 Budget Request (inc: USAID & STATE)

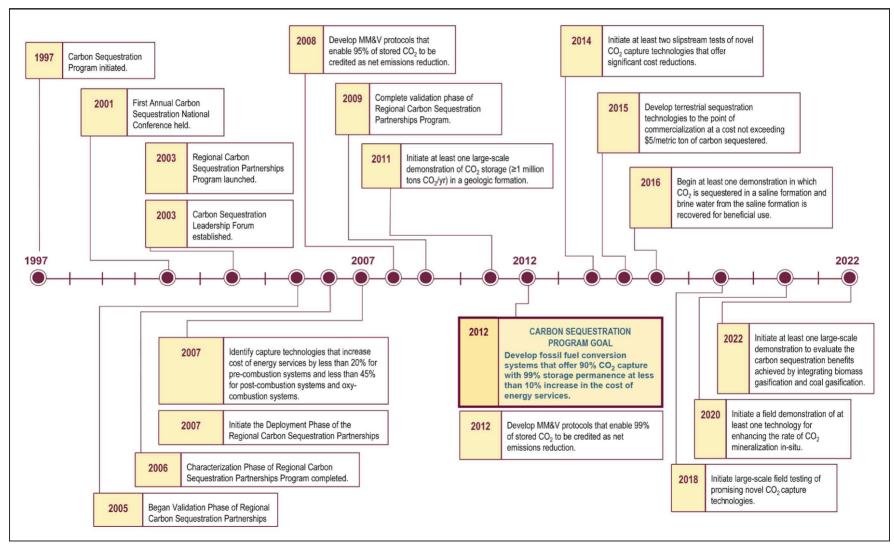
Federal Budget Request for FY 2009 – Good News for CCTP



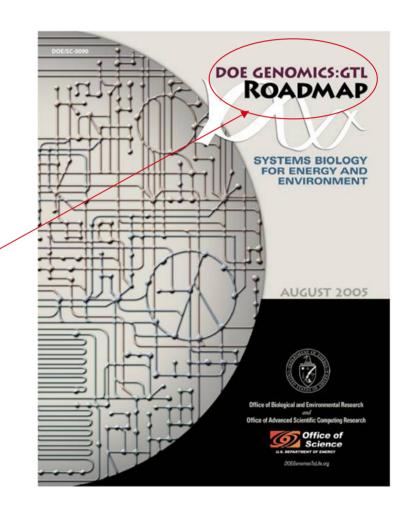
Part II Examples of Roadmaps and Applications




Critical Elements of Successful Roadmaps


Carbon Sequestration Technology Roadmap

Carbon Sequestration Program Milestones and Goals



Basic Research Needs Roadmaps

Roadmaps from Basic Research Needs Workshops (2002 – 2007):

- Catalysis for Energy
- Electric Energy Storage
- Clean and Efficient Combustion of 21st Century Transportation Fuels
- Advanced Nuclear Energy Systems
- Solid-State Lighting
- Superconductivity
- Breaking the Biological Barriers to Cellulosic Ethanol
- Genomics: GTL Roadmap
- The Path to Sustainable Nuclear Energy
- Solar Energy Utilization
- Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors
- Nanoscience Research for Energy Needs
- Hydrogen Economy
- Assure a Secure Energy Future
- Opportunities for Catalysis

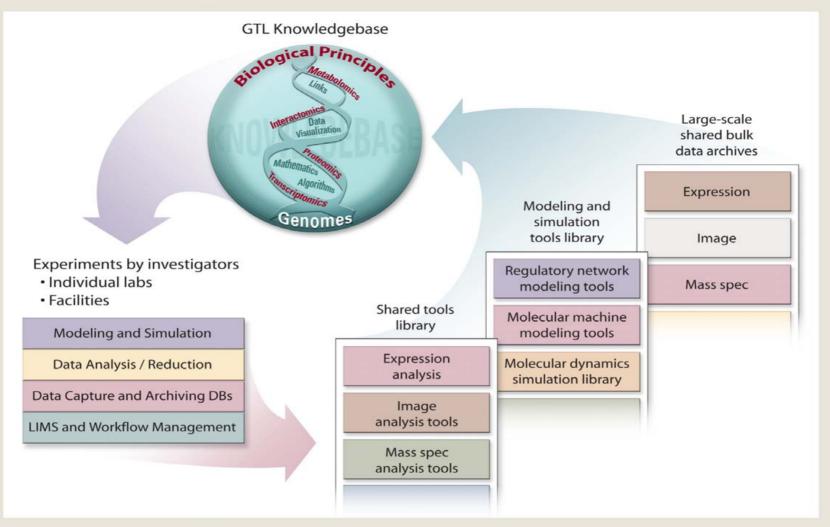
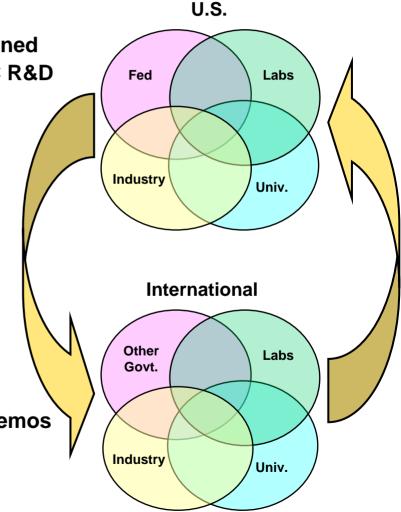


Fig. 1. GTL Integrated Computational Environment for Biology: Using and Experimentally Annotating GTL's Dynamic Knowledgebase. At the heart of this infrastructure is a dynamic, comprehensive knowledgebase with DNA sequence code as its foundation. Offering scientists access to an array of resources, it will assimilate a vast range of microbial data and knowledge as it is produced.



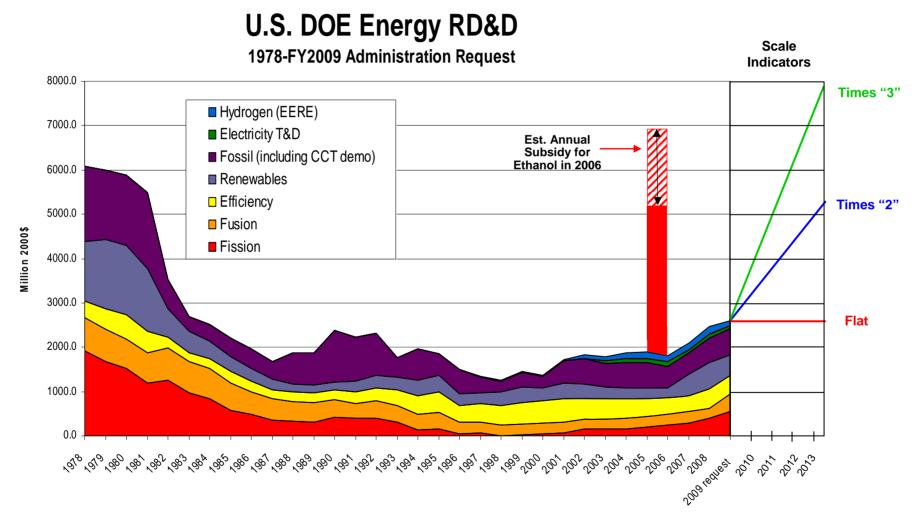
Part III International Cooperation & Collaboration

Observations and Options

- Level of Global R&D Investment -- Too Low?
 - Pace of Progress Too Slow ?
 - U.S. Federal R&D is Increasing, but Constrained
 - Two Countries Account for 80 Percent of CC R&D
 - Other Governments' R&D Decreasing
- How to Lift Global Effort?
 - More U.S. R&D ?
 - More International R&D ?
 - More Private Sector R&D ?
 - Technology Push vs. Technology Pull ?
 - New Models for Incentivizing R&D ?
- Potential Areas for Enhancement
 - Coord., Integrated, Global R&D Strategy
 - Better Access to Under-Utilized Assets
 - More Int'l R&D Collaboration
 - Division of Labor on Key Tech. Initiatives, Demos
 - Enhanced S&T Cooperation
 - Addressing Non-Technical Barriers
 - Experimenting with New R&D Models

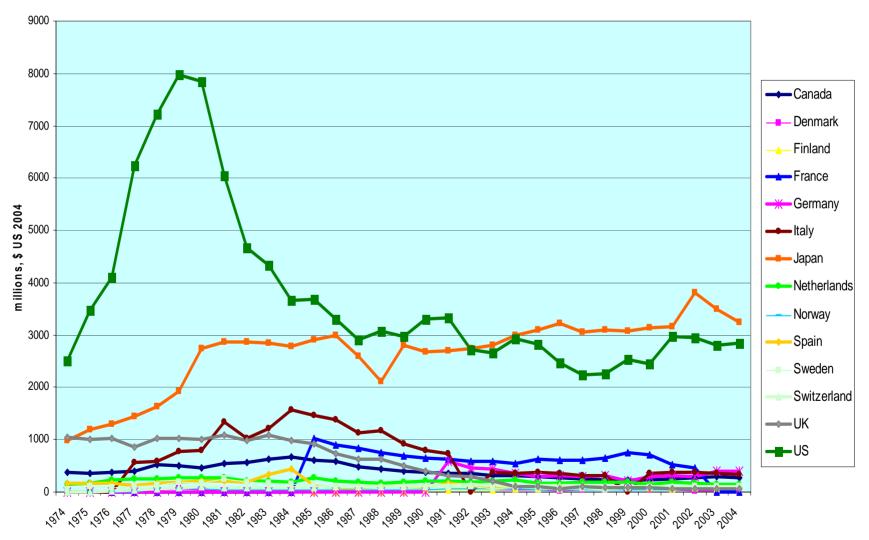
International Cooperation

Benefits


- Raise Overall Global Level of Effort
- Accelerate Technology Development
- Pool Technical Resources
- Gain Access to Privileged Facilities
- Broaden Knowledge Base
- Facilitate Exchange of Information
- Enable Multi-Path Approaches
- Harmonize Technical Standards
- Reduce Partner Costs & Risks
- Increase Likelihood of Success

Challenges

- Diverse National R&D Funding
 Motivations, Schemes and Priorities
- Lack of Common, Shared Vision
- Heterogeneous Program Designs
- Patents & Intellectual Property Issues
- Other Barriers (e.g., National Security)
- Administrative Complexity and Cost
- Travel and Coordination Costs
- Management & Accountability Issues
- Technical Support (e.g. IPCC/TSU)
- Need for Strong Central Leadership

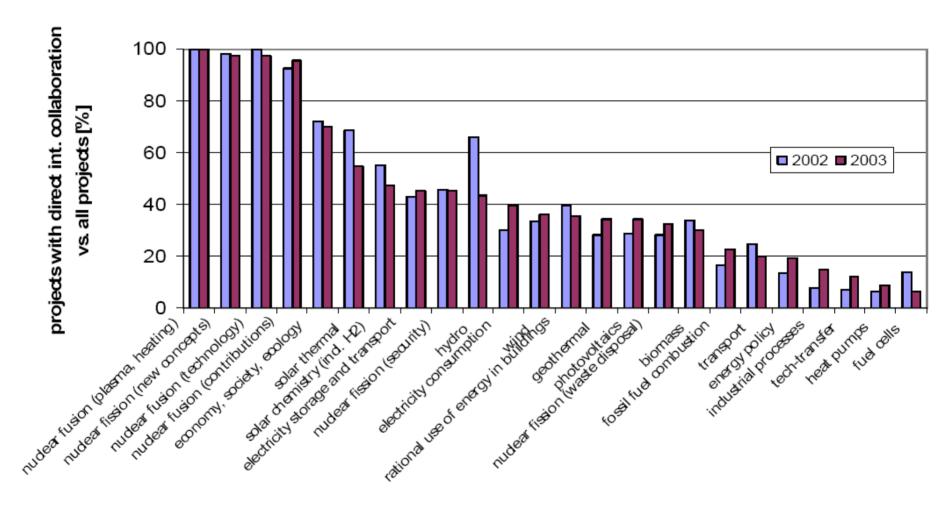


Historical Perspective on DOE Spending

History of Int'l Energy R&D

Key Technologies & International Cooperation

Key Technologies


- Advanced Lighting
- Building & Home Construction
- Advanced Transportation
- Grid (Power Electronics)
- Clean Coal
- Advanced IGCC
- Geothermal
- Hydro/Wind/Solar Power
- Rural/Village Energy Systems
- Bioenergy
- Civilian Nuclear Power
- Methane Capture/Use
- Agriculture/Forestry

International Cooperation

- Carbon Capture and Storage (22 Nations)
- Future Gen Coal (5 Nations)
- Hydrogen (17 Nations)
- Global Nuclear Energy Partnership (19 Nations)
- Gen IV Nuclear (10 Nations)
- Fusion Energy ITER (7 Nations)
- Global Earth Observation (71 Nations)
 - Recommended by National Academy of Sciences
- Clean Energy Technology Fund
 - US, UK and Japan, World Bank
- Asia Pacific Partnership (6 Nations)

Experience with International Collaboration

Potential Areas for Int'l Collaboration

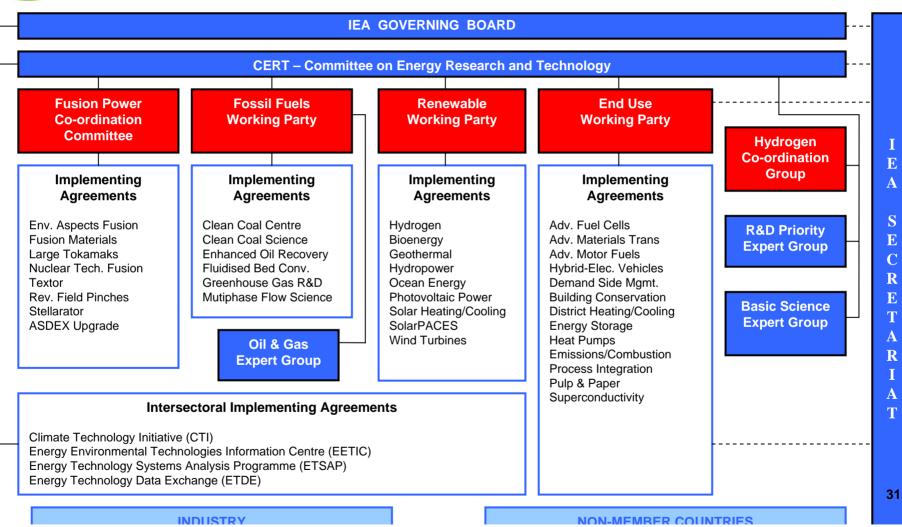
Energy End-Use Technologies	Energy Supply Technologies	Capture CO ₂ Directly from Atmosphere	
Zero-Emission Vehicle Systems	Stationary Fuel Cells	Geologic Storage: Safety, Health, and Environmental Risk Assessment	
Multi-Modal Intercity & Freight Transport	Zero-Emission Fossil Energy	Geologic Storage: Large-Scale Demonstration	
Engineered Urban Designs & Regional Planning	Hydrogen Zero-Emission Fossil Energy	Terrestrial Sequestration: Reforestation	
Low Aviation Emissions	Low-Cost H ₂ Storage & Delivery	Terrestrial Sequestration: Soils Conservation	
Ultra-Efficient HVACR	Cost-Competitive Solar PV	Carbon & CO ₂ Based Products & Materials	
Intelligent Building Systems	Cellulosic Biofuels	Ocean CO ₂ Biological Impacts Addressed	
Energy Managed Communities	Photolytic Water Splitting	Non CO ₂ GHGs	
C&CO ₂ Managed Industries	Advanced Fission Reactor and Fuel Cycle Technology	Precision Agriculture	
Water and Energy System Optimization	Proliferation-Resistant Fuel Cycles	Zero-Emission Agriculture	
Industrial Heat, Power, Processes	Advanced Concepts for Waste Reduction	Solid-State Refrigeration/AC Systems	
High-Efficiency, All-Electric Manufacturing	Demonstration of Burning Plasmas	Catalytic Reduction of N ₂ O	
Closed-Cycle Products & Materials	Fusion Power Plants	M&M	
Energy Storage for Load Leveling	ccs	Fully Operational Sensor and Satellite Networks	
Advanced Controls and Power Electronics	Post Combustion Capture	Low-Cost Sensors and Communications	
Wireless Transmission	Oxygen Separation Technologies	MM Systems Architecture	

Potential Role for IEA

Advantages:

- ETP/Scenarios Provide Foundation for Long-Term Strategic Vision
- Decades of Experience in RTD Cooperation
- Flexible Infrastructure for Countries Seeking Cooperation
- Bottom-Up Approach Accommodates Diversity of Interests
- Institutional Setting Secures High Level of Continuity
- Cooperation Rules Enable Smaller Countries to Engage Equitably
- Secretariat Provides Means for Staff Support & Management

Challenges:


- Non-Member Major Economies Must Be Engaged in Meaningful Ways
- Key Areas of CC Solutions Require Alliances with Other Parts of OECD
 - » Nuclear Power (NEA, IAES) and Biofuels (OECD)
- CC Technology Charter Must Be Credible and Comprehensive
 - » Non-CO2 Gases (CH4, N2O, SF6, HFCs), Forestry, Agriculture, Land Use
- Need for Strong Central Management to Ensure Progress & Productivity

E

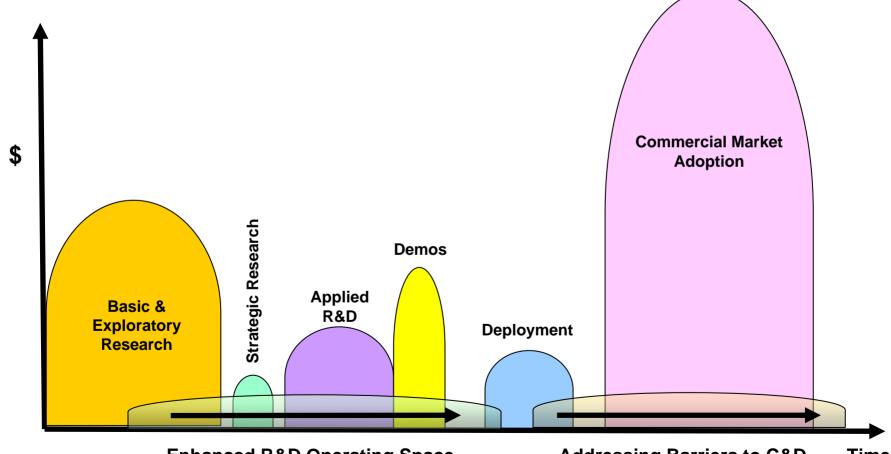
S

IEA Technology Organization

Source: IEA Activities for Energy Technologies 2002 – 2004

Summary of Challenges

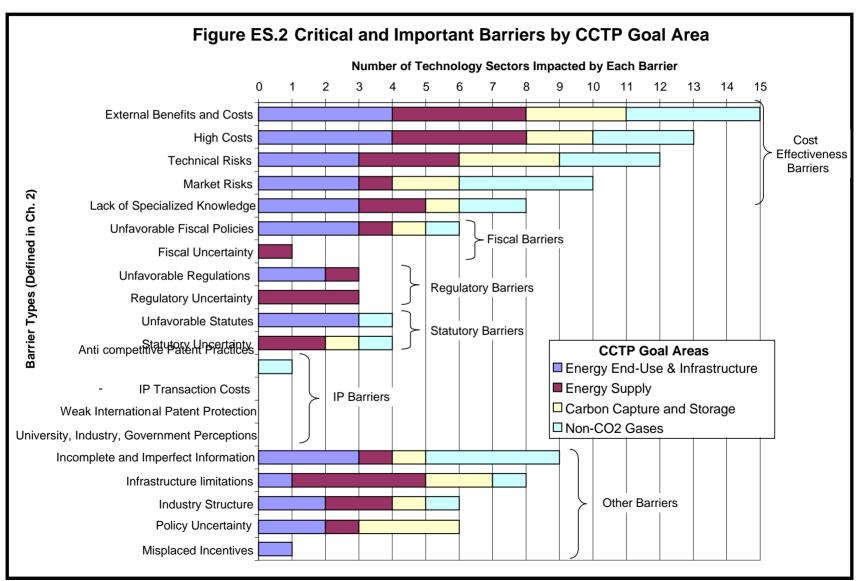
- Need for a <u>Common, Visionary, Long-Term Approach</u>, to UNFCCC Goal
- Need to Accelerate Progress Toward Low-Emissions Future
- One Mode is to Improve Performance, Reduce Costs of Low GHG Techs via:
 - More Country RD&D ?
 - More International Collaborative RD&D ?
 - More Private Sector RD&D ?
 - More Technology Push <u>and</u> Technology Pull ?
 - New Models for Funding and Incentivizing RD&D ?
- Expand Opportunities for <u>S&T Cooperation</u> Among:
 - Business, Industry, Nation States, and Others
 - Research Institutions and Academia
 - Cooperative Frameworks with S&T Actions Abroad
- Form Multi-Lateral <u>R&D Collaborations</u> via:
 - Goal Sharing, Road Mapping, Division of Labor, Multi-Lateral Invest.
- Support Deployment via <u>Finance & Trade</u> on Clean Energy
- Build a <u>Bridge to Low-Emissions Future</u> with Broadened Public Support



Back-Up Slides

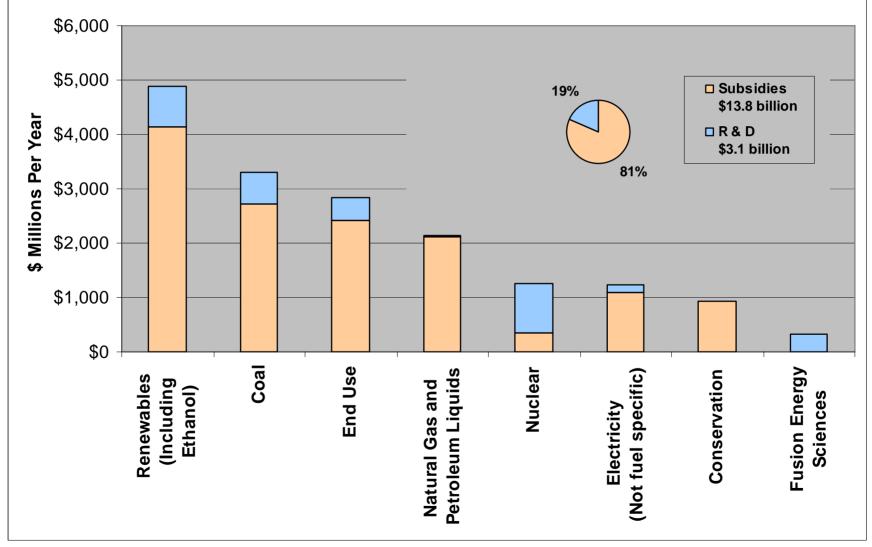
Do We Need New R&D Management Constructs?

 Are Existing R&D Management Structures Sufficient to Speed Progress and Address Key Barriers?

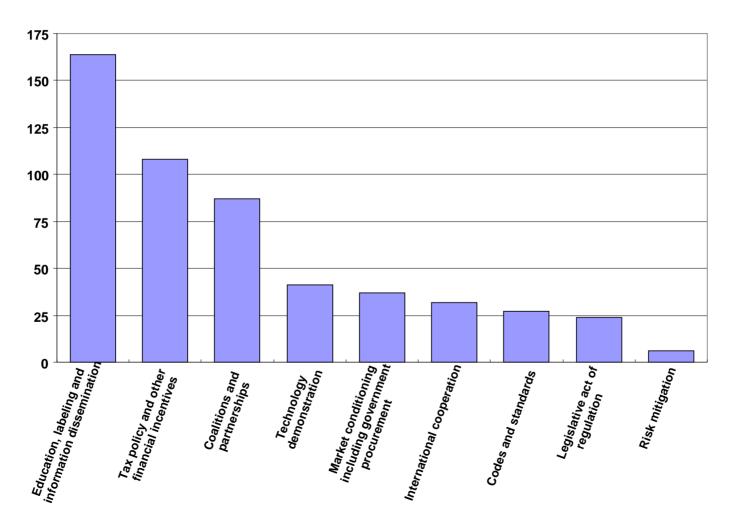


Barriers Typology

Cost Effectiveness	Fiscal Barriers	Regulatory Barriers	Statutory Barriers	Intellectual Property Barriers	Other Barriers
High Costs	Unfavorable Fiscal	Unfavorable Regulations	Unfavorable Statutes	IP Transaction Costs	Incomplete and Imperfect Information
Technical Risks	Fiscal Uncertainty	Regulatory Uncertainty	Statutory Uncertainty	Anti- competitive Patent Practices	Infrastructure limitations
Market Risks	Unfavorable tariffs			Weak International Patent Protection	Industry Structure
External Benefits and Costs	6 B	Sarrier Cate	egories	University, Industry, Government Perceptions	Misplaced Incentives
Lack of Specialized Knowledge		Barriers Detailed Ba	arriers		Policy Uncertainty



Barriers – Summary of Findings


Federal Financial Interventions and Subsidies in Energy Markets FY 2007

Commercialization & Deployment Activities, by Category or Genre

Number of Government Commercialization and Deployment Activities by Type of Policy and Measure

Policy Process Underway Some Policy Options, by Technology Area

Technology Areas	Tax Policy and Financial Incentives	Legislative Acts and/or Regulation			
Coal w/CCS	Loan Guarantees; Tax Incentives; Cost-Shared Partnerships	CO ₂ Storage – Siting & Permitting; Monitoring and Verification; Liability Indemnification; New Source Review Revisions; Access to Public Lands; Property Rights for Subsurface Areas			
Nuclear Fission	Loan Guarantees; Production Tax Credit; Standby Support for Certain Delays	Liability Indemnification; Standard Design Certifications; Early Site Permits; Combined Construction & Operating License; Waste and Fuel Management and Storage			
Electric Grid and Infrastructure	Loan Guarantee Program, Waste Energy Recovery Incentive Grants*; SmartGrid Investments Matching Grants*; Additional Incentives for Investments (including Cost Recovery Mechanisms)	Public Utilities Regulatory Policies; Renewable and Distributed Generation Code and Standards; Transmission Pricing (Rate Structures); National Transmission Corridors; SmartGrid Code and Standards*; Utility Energy Efficiency Programs*; Standard Net Metering and Interconnection Policies; Siting Access Rights; Access to Meter and Other Data;			
Transportation	Tax Credit; Manufacturing Credit; Consumer Incentives, Manufacturing Incentives*	National Regulatory Policies; Urban and Land Use Planning; CAFÉ*; Feder Fleet*			
Hydrogen	Loan Guarantees; Alternative Motor Vehicle and Alternative Fuel Infrastructure Tax Credits; Investor Incentives; Insurance	Safety, Codes & Standards; Stationary Fuel Cell Permitting			
Bio-Based Fuels	Credit for installing alternative fuel refueling; Loan Guarantees; Production Tax Credit; Development Grants*	Stable Financial Incentives; National Regulatory Policies; Biofuels Tariff; Federal Fleet*, Standard specifications for fuels*			
Wind Power	Loan Guarantees; Production Tax Credit; Clean Renewable Energy Bonds; Development Grants*;	Manufacturing Partnerships*; Stable Financial Incentives; Mandated Federal Procurement of Wind Power;			
Industry	Loan Guarantees; Efficiency Tax Credits; Sector Specific Tax Credits	Equipment Standards; Emissions Regulations; Informational Partnerships (e.g.; Manufacturing Extension Partnership), Energy-intensive industries program*			
Buildings	Manufacturer and Consumer Efficiency Tax Credits, Tax Deductions for Commercial Buildings; Accelerated Depreciation	Federal appliance and equipment standards; Building Codes*; Government Procurement, Federal Buildings Standards*			
Solar Power	Loan Guarantees; Business Energy Tax Credit; Residential & Business Solar Investment Tax Credit; Clean Renewable Energy Bonds; Development Grants*; Production Tax Credit	Manufacturing Partnerships*; Stable Financial Incentives; Access to Public Lands (for concentrating solar power installations); Mandated Federal Procurement of Solar Power			

Green: Existing Policies

Red: Policy Options