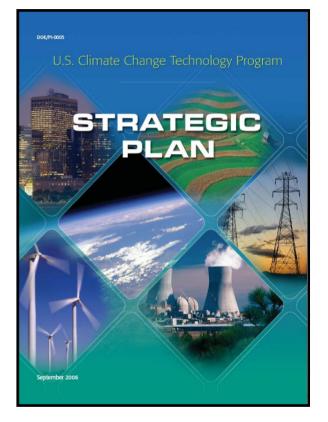


Managing Climate Change R&D

Overview of Climate Change R&D at National Laboratories

Dr. Robert C. Marlay Deputy Director, U.S. Climate Change Technology Program Office of Policy and International Affairs U.S. Department of Energy <u>robert.marlay@hq.doe.gov</u>

University of Chicago's Harris School of Public Policy and National Commission on Energy Policy 6 - 7 May 2008 Chicago, IL


U.S. Climate Change Technology Program

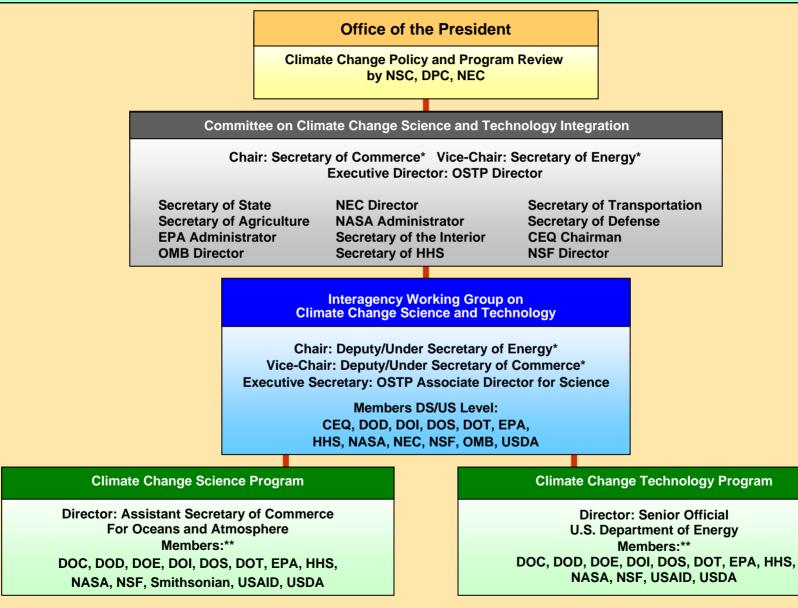
U.S. Climate Change Technology Program

- Mission Accelerate R&D on Adv. CC Techs
- Scope Ten Federal R&D Agencies
- Budget -- \$4.4 Billion Requested for FY'09
- Activities Coord. R&D Planning & Budgeting

Goals:

- Four emissions-related strategic goals:
 - Reduce emissions from energy end use & infrastructure;
 - ✓ Reduce emissions from energy supply;
 - ✓ capture & sequester CO_2 ; and
 - ✓ Reduce emissions from non-CO₂ gases.
- Two cross-cutting, supporting strategic goals:
 - Improve capabilities to measure & monitor GHGs; and
 - ✓ Bolster basic science and strategic research.
- CCTP authorized in *EPAct2005*. Led by DOE.

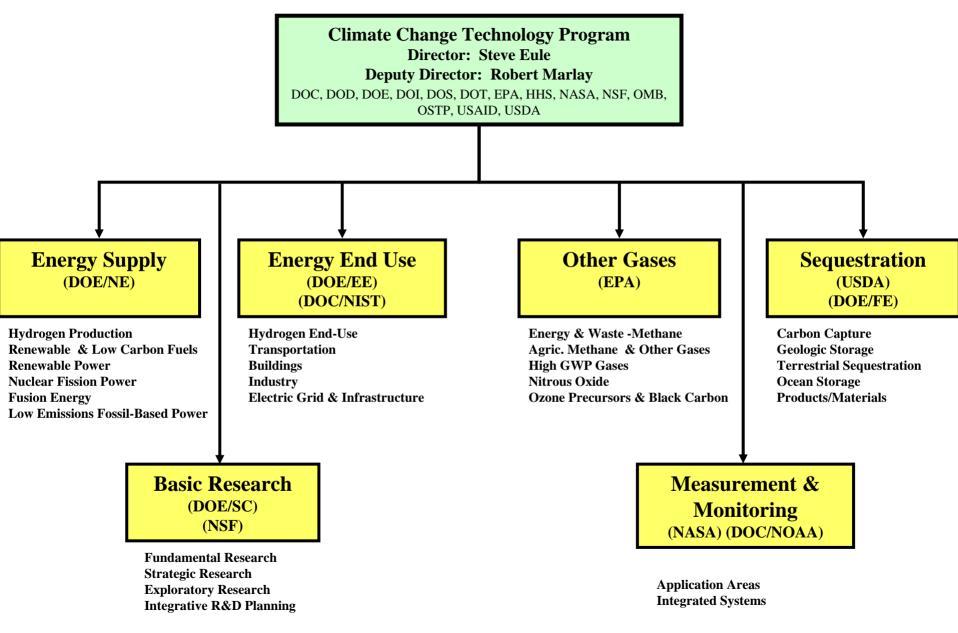
3



Federal Agency Participation in CCTP

Agency	Selected Examples of Climate Change-Related Technology R&D Activities
DOC	Instrumentation, Standards, Ocean Sequestration, Decision Support Tools
DoD	Aircraft, Engines, Fuels, Trucks, Equipment, Power, Fuel Cells, Lasers, Energy Management, Basic Research
DOE	Energy Efficiency, Renewable Energy, Nuclear Fission and Fusion, Fossil Fuels and Power, Carbon Sequestration, Basic Energy Sciences, Hydrogen, Bio-Fuels, Electric Grid and Infrastructure
DOI	Land, Forest, and Prairie Management, Mining, Sequestration, Geothermal, Terrestrial Sequestration Technology Development
DOS*	International Science and Technology Cooperation, Oceans, Environment
DOT	Aviation, Highways, Rail, Freight, Maritime, Urban Mass Transit, Transportation Systems, Efficiency and Safety
EPA	Mitigation of CO2 and Non-CO2 GHG Emissions through Voluntary Partnership Programs, including Energy STAR, Climate Leaders, Green Power, Combined Heat and Power, State and Local Clean Energy, Methane and High-GWP Gases, and Transportation; GHG Emissions Inventory
HHS*	Environmental Sciences, Biotechnology, Genome Sequencing, Health Effects
NASA	Earth Observations, Measuring, Monitoring, Aviation Equipment, Operations and Infrastructure Efficiency
NSF	Geosciences, Oceans, Nanoscale Science and Engineering Computational Sciences
USAID*	International Assistance, Technology Deployment, Land Use, Human Impacts
USDA	Carbon Fluxes in Soils, Forests and Other Vegetation, Carbon Sequestration, Nutrient Management, Cropping Systems, Forest and Forest Products Management, Livestock, and Waste Management, Biomass Energy and Bio-based Products Development

* CCTP-related funding for the indicated agencies is not included in the totals for CCTP in the budget tables of Appendix A of the Strategic Plan. However, the agencies participate in CCTP R&D planning and coordination as members of CCTP's Working Groups.


Cabinet-Level Engagement

* Chair and Vice Chair of Committee and Working Group alternate annually.

** CEQ, OSTP, and OMB also Participate

CCTP Working Groups and Subgroups

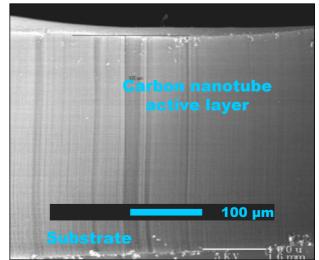
Roadmap for Climate Change Technology Development

	NEAR-TERM	MID-TERM	LONG-TERM
GOAL #1 Energy End-Use & Infrastructure	 Hybrid & Plug-In Hybrid Electric Vehicles Engineered Urban Designs High-Performance Integrated Homes High Efficiency Appliances High Efficiency Boilers & Combustion Systems High-Temperature Superconductivity Demonstrations 	 Fuel Cell Vehicles and H₂ Fuels Low Emission Aircraft Solid-State Lighting Ultra-Efficient HVACR "Smart" Buildings Transformational Technologies for Energy-Intensive Industries Energy Storage for Load Leveling 	 Widespread Use of Engineered Urban Designs & Regional Planning Energy Managed Communities Integration of Industrial Heat, Power, Process, and Techniques Superconducting Transmission and Equipment
GOAL #2 Energy Supply	 IGCC Commercialization Stationary H₂ Fuel Cells Cost-Competitive Solar PV Demonstrations of Cellulosic Ethanol Distributed Electric Generation Advanced Fission Reactor and Fuel Cycle Technology 	 FutureGen Scale-Up H₂ Co-Production from Coal/Biomass Low Wind Speed Turbines Advanced Biorefineries Community-Scale Solar Gen IV Nuclear Plants Fusion Pilot Plant Demonstration 	 Zero-Emission Fossil Energy H₂ & Electric Economy Widespread Renewable Energy Bio-Inspired Energy & Fuels Widespread Nuclear Power Fusion Power Plants
GOAL #3 Capture, Storage & Sequestration	 CSLF & CSRP Post Combustion Capture Oxy-Fuel Combustion Enhanced Hydrocarbon Recovery Geologic Reservoir Characterization Soils Conservation Dilution of Direct Injected CO₂ 	 Geologic Storage Proven Safe CO₂ Transport Infrastructure Soils Uptake & Land Use Ocean CO₂ Biological Impacts Addressed 	 Track Record of Successful CO₂ Storage Experience Large-Scale Sequestration Carbon & CO₂ Based Products & Materials Safe Long-Term Ocean Storage
GOAL #4 Other Gases	 Methane to Markets Precision Agriculture Advanced Refrigeration Technologies PM Control Technologies for Vehicles 	 Advanced Landfill Gas Utilization Soil Microbial Processes Substitutes for SF₆ Catalysts That Reduce N₂O to Elemental Nitrogen in Diesel Engines 	 Integrated Waste Management System with Automated Sorting, Processing & Recycle Zero-Emission Agriculture Solid-State Refrigeration/AC Systems
GO <mark>AL #5</mark> Measure & Monitor	Low-Cost Sensors and Communications	 Large Scale, Secure Data Storage System Direct Measurement to Replace Proxies and Estimators 	Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)

Technology Strategy

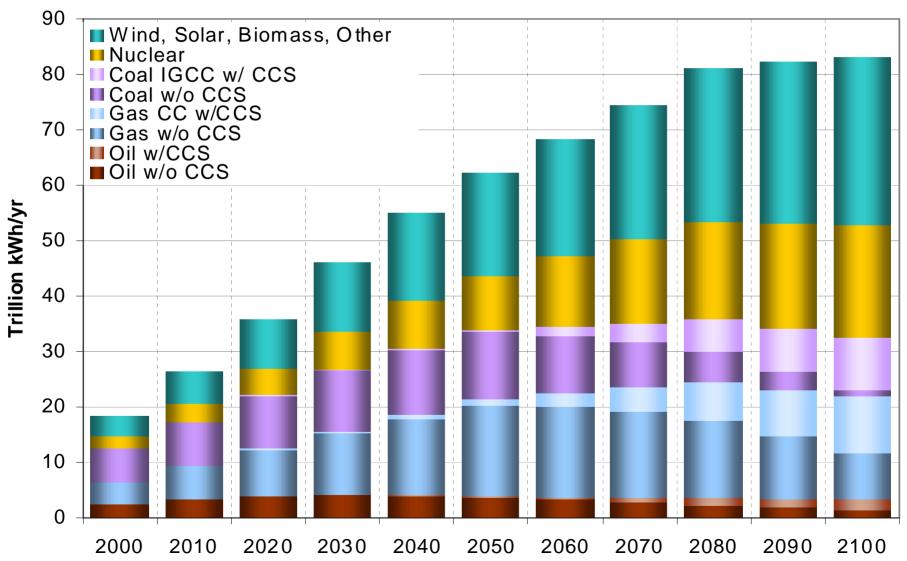
"Energy security and climate change are two of the great challenges of our time. These challenges share a common solution: technology."

President George W. Bush Major Economies Meeting September 28, 2007

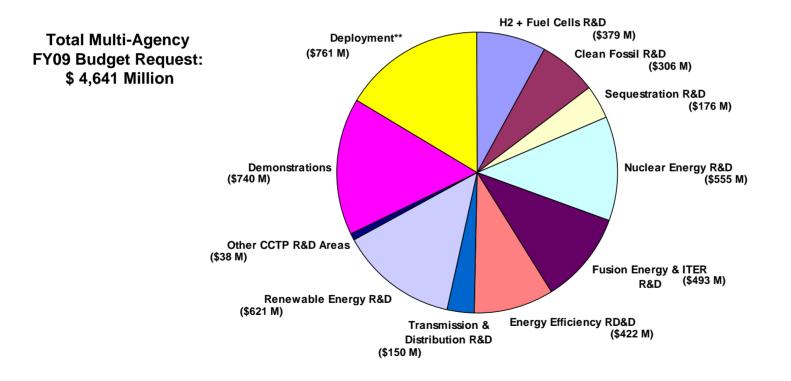

- Key Technology Elements
 - Coal -- De-Carbonize the Grid
 - » Nuclear Power
 - » Low-Emission Coal Power
 - » Renewable Power
 - Cars -- Transform Cars/Trucks Toward New Fuels
 - » Hybrid & Electric Vehicles
 - » Alternative Fuel Vehicles & Bio-Based Fuels
 - » Alternatives, including Other Modes
 - Efficiency (All Sectors)
 - Other GHGs
 - Enablers
 - » CO₂ Capture and Storage
 - » Modernized Grid
 - » Energy Storage, Large and Small Scale
 - » Strategic and Exploratory Research
- Supporting Policies to Promote Deployment
 - Financial Incentives
 - Fuel Mandates
 - Codes, Standards, Labeling
 - Transparent System for Measuring Progress
- Via U.S. Climate Change Technology Program
 - Strengthen Federal R&D Portfolio
 - Prioritize Investments
- Expand R&D Cooperation with non-Federal Entities

"De-Oil" Transportation

- Future Transport System
 - Multi-Modal
 - Regional Choices
 - Coordinated Integrated Land-Use Planning
- Vehicle Options
 - Electric Vehicles
 - Hybrid Vehicles
 - Bio-Based Vehicles
 - H2 & Hydrogenated Molecules
 - Oil & Gas Vehicles



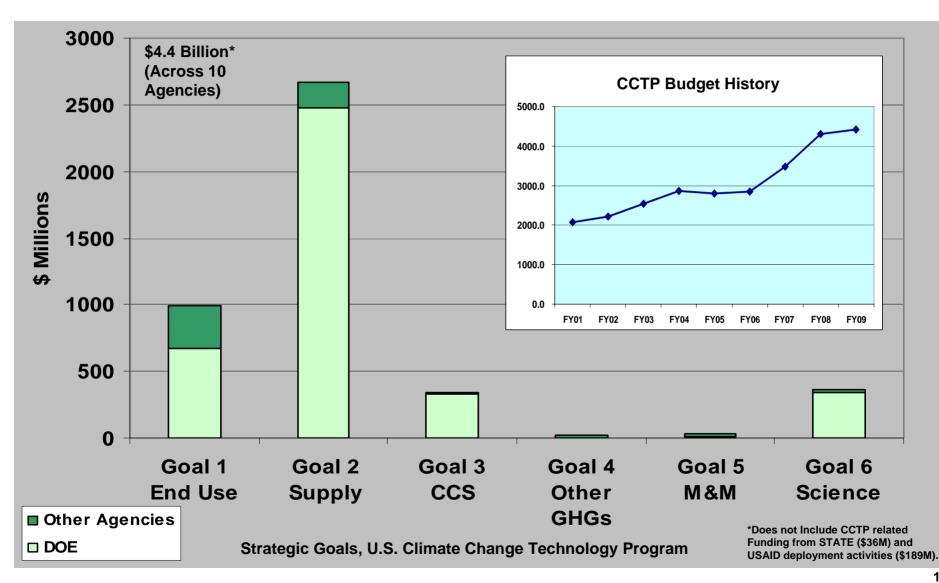
Nanotube-Enhanced Ultracapacitor [MIT, R. Signorelli – March 2005]


"De-Carbonize" the Electric Grid

FY 2009 Budget Request -- CCTP Portfolio

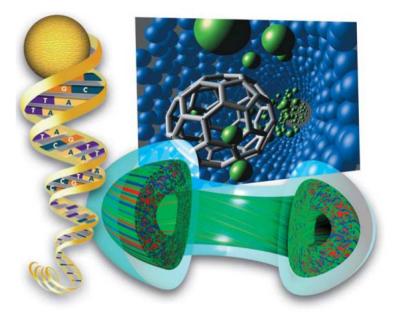
CCTP FY09 Budget Request* Portfolio of R&D, Demonstration and Deployment

* All CCTP Federal Agencies FY09 Budget Request (inc: USAID & STATE)


** Deployment is 70% Energy Efficiency

Technology Area Highlights

- Energy Efficiency [\$550M] -- Accelerated R&D to Reduce GHG Emissions
 - Vehicles: \$221M
 - Buildings: \$124M
- Renewables [\$705M] -- Increases in Biofuels and Geothermal
 - Biomass & Biorefinery Systems R&D: \$225M
 - Geothermal Technology: \$30M
 - Solar: \$156M
 - Wind: \$53M
 - Hydrogen Fuel Initiative: \$265M
- Coal [\$744M] -- Largest Budget Request in Over 25 Years
 - FutureGen: \$156M
 - CCS: \$149M
 - Clean Coal Power Initiative: \$85M
- Nuclear [\$879M] -- Increases to Spur First New Plants
 - Nuclear Power 2010: \$242M
 - Advance Fuel Cycle Initiative: \$302M
- Electricity Delivery [\$122M] -- Increases in Energy Storage
 - Energy Storage & Power Electronics: \$13M
 - Energy Storage R&D: \$34M (Office of Science)
 - Distributed Energy: \$33



Basic Science Research

- Fundamental Science:
 - Fundamental science is basic research that provides the underlying foundation of scientific knowledge that can lead to fundamental new discoveries.
- Strategic Research:
 - Strategic research is basic research that is inspired by technical challenges in the applied research and development programs.
- Exploratory Research:
 - Exploratory research is basic research, or early and exploratory study of application-inspired concepts, undertaken in the pursuit of high-risk, novel, emergent, integrative or enabling approaches, not elsewhere covered.

Fundamental science is critically important in the creation of new knowledge and improved understanding of technological innovation.

Basic Science Underpins all Goals

			Goal 6: Basic Research			Goal 1: Energy End Use				Goal 2: e Energy Supply				Ca	Goal 3: Capture & G Sequestration			Goal 5
Matrix for Integration of Applied and Basic Research Needs		f	Fundamental Research Area	Strategic Research Area	Transportation	Buildings	Industry	Grid	Fossil	Hydrogen	Renewable	Nuclear	Fusion	Capture	Geo-Storage	Terrestrial Sequestration	Non-CO ₂ Gases	Measurement and Monitoring
Abl	plieu allu basic			Materials: High Temperature														
Research Needs				Materials: Tailored Mechanical Chemical Properties														
				Materials: Tailored Electrical Magnetic Properties														
				Heat Transfer & Fluid Dynamics														
			Physical	Combustion														
			Sciences	Chemistry (Electro, Thermo)														
	A strategic research area that is central to]		Chemistry (Photo, Radiation)														
	<u>Ivancing</u> the technology approach			Membranes & Separations														
				Condensed Matter Physics														
	A strategic research area that is <u>expected to</u> <u>contribute significantly</u> to the technology approach			Nanosciences														
				Geosciences & Hydrology														
				Chemical Catalysis														
	A strategic research area that has the potential to contribute significantly to the		D . 1 . 1	Bio-Catalysis														
	technology approach		Biological Sciences	Plant and Microbial Genomics (Biotechnology)														
	A strategic research area that is <u>not</u> expected to contribute significantly to the			Bio-Based & Bio Inspired Processing														
	technology approach		Environmental	Environmental Science														
			Sciences	Atmospheric Science														
			Advanced Scientific Computing	Computational Sciences (Models & Simulations)														
			Fusion Sciences	Plasma Sciences														
			Enabling Research	Strategic Research for Sensors & Instrumentation														

14

Science to Technology Workshops

Basic Research Needs from 2005 CCTP Portfolio Review:

- Electric grid challenges system architecture, control systems, and power electronics
- Thermoelectrics by application (e.g., refrigeration, power generation)
- Solid state lighting
- Bio-X combination of nanoscience and genomics
- Plant genetic engineering
- Measuring and monitoring of climate change mitigation – international focus
- Sensors, controls, communication
- Energy storage basic science and requirements of integrated systems
- Batteries power & energy (basic chemistry)
- Heat Transfer material insulation, cryogenics, thermal conducting coolants
- Ocean sequestration & methane hydrates

BES/BER "BRN" Workshops To Date:

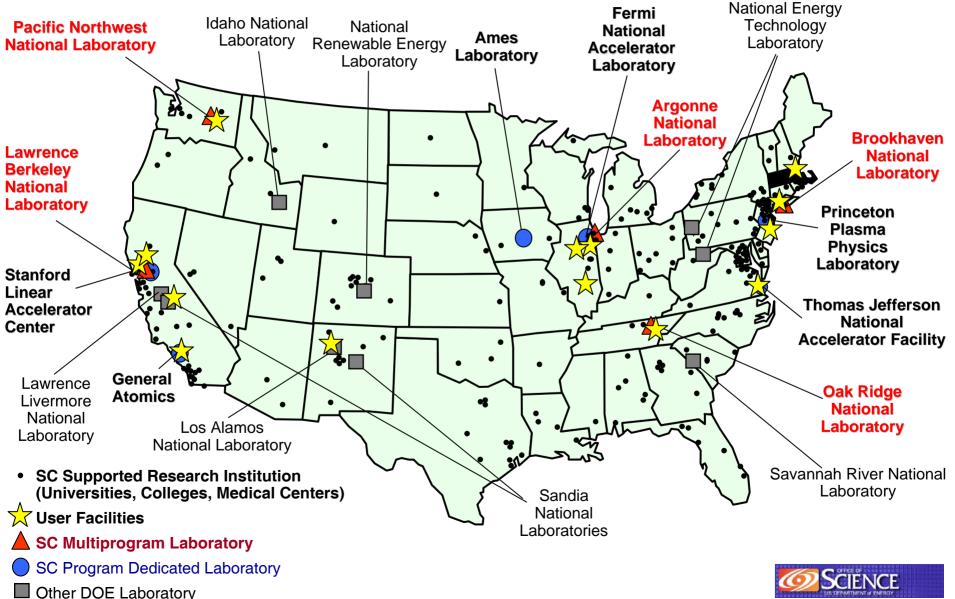
- Catalysis for Energy August 6-8, 2007
- Electric Energy Storage
 April 2-4, 2007
- Clean and Efficient Combustion of 21st Century Transportation Fuels October 29–November 1, 2006
- Advanced Nuclear Energy Systems July 31 - August 3, 2006
- Solid-State Lighting
 May 22 24, 2006
- Superconductivity
 May 8-11, 2006
- Breaking the Biological Barriers to Cellulosic Ethanol
 December 2005
- Genomics: GTL Roadmap
 August 2005
- The Path to Sustainable Nuclear Energy September 2005
- Solar Energy Utilization April 18-21, 2005
- Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors

March 31-April 2, 2004

- Nanoscience Research for Energy Needs March 16-18, 2004
- Hydrogen Economy May 13-15, 2003
- Assure a Secure Energy Future
 October 21-25, 2002
- Opportunities for Catalysis
 2002

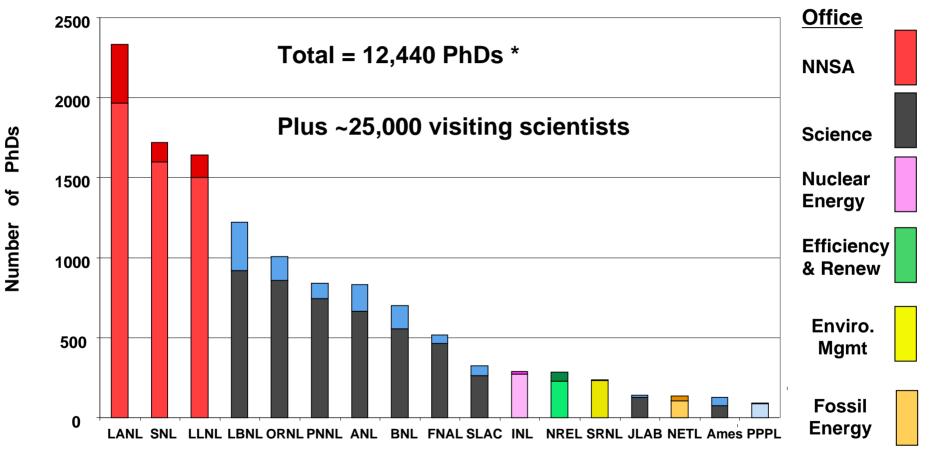
BRN = Basic Research Needs

Energy Frontier Research Centers


- A New Era for Science --
 - Innovative Basic Research to Accelerate Scientific Breakthroughs Needed to Create Advanced Energy Technologies for the 21st Century Awards to be \$2M - \$5M per Year for an Initial 5-Year Period (~\$100M/Yr)

• Centers Will Pursue Fundamental Basic Research in Areas Such as:

- Solar Energy Utilization
- Catalysis for Energy
- Electrical Energy Storage
- Solid State Lighting
- Superconductivity


- Geosciences for Nuclear Waste and CO2 Storage
- Advanced Nuclear Energy Systems
- Combustion of 21st Century Transportation Fuels
- Hydrogen Production, Storage, and Use
- Materials Under Extreme Environments
- FY 2009 Budget Proposal --
 - The Office of Science seeks to engage the Nation's intellectual and creative talent to tackle the scientific grand challenges associated with determining how nature works, leading the scientific community to direct and control matter at the quantum, atomic, and molecular levels, and harness this new knowledge and capability for some of our most critical real-world challenges.
- U.S. Universities, DOE Laboratories, and Other Institutions are Eligible

National Laboratories, User Facilities and the Institutions That Use Them

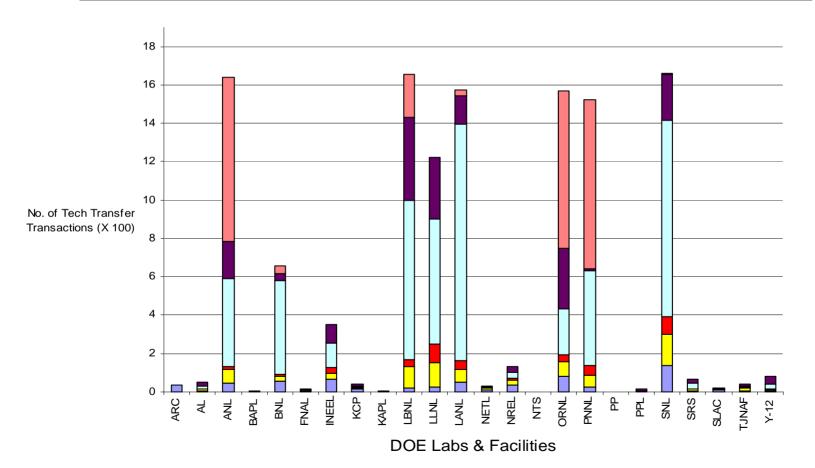
DOE Has a Robust Research Capability

Leveraging Modes at DOE Labs

- Lab -- University Collaboration
 - All M&O Contracts Require University Collaboration
 - Most DOE Labs Have Multiple University Partners
 - Many DOE Lab Have Integrated Management Structures, for Example:
 - » ANL: Univ. of Chicago
 - » INL: Battelle Energy Alliance Includes MIT (and EPRI)
 - » LBNL: Bechtel, Univ. of California
 - » ORNL: Battelle, Univ. of Tennessee
- Work for Others Non-Federal Entities
- Cooperative Research & Development Agreements (CRADAs)
- Small Business Innovative Research Program
- Laboratory Directed Research and Development
- Technology Transfer Activities
- Other Transactions New DOE Contracting Authority

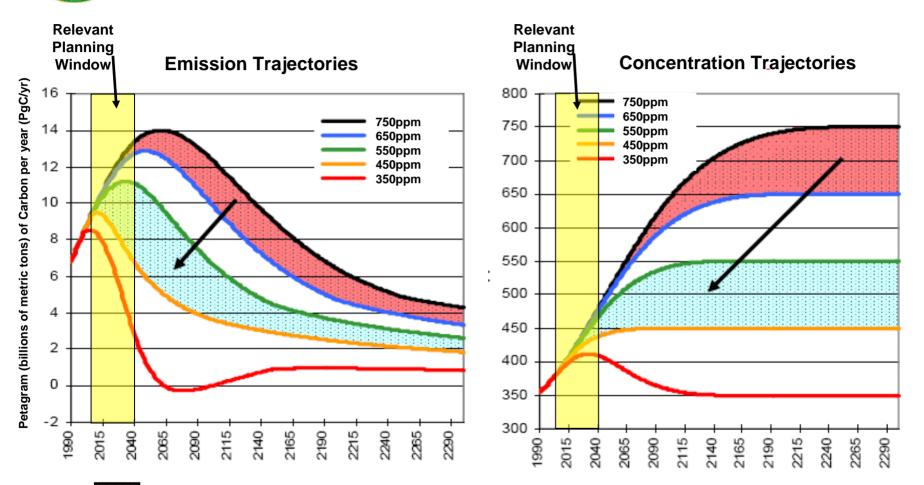
DOE Technology Transfer Laboratories and Facilities

- Ames Laboratory
- Argonne National Laboratory
- Brookhaven National Laboratory
- Fermi National Accelerator Laboratory
- Idaho National Laboratory
- Kansas City Plant
- Lawrence Berkeley National Laboratory
- Lawrence Livermore National Laboratory
- Los Alamos National Laboratory
- National Energy Technology Laboratory


- National Renewable Energy Laboratory
- Nevada Test Site
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Pantex Plant
- Princeton Plasma Physics Laboratory
- Sandia National Laboratories
- Savannah River National Laboratory
- Stanford Linear Accelerator Center
- Thomas Jefferson National Accelerator Facility
- Y-12 National Security Complex

Source: "Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories, FY2006," March 2007

DOE Technology Transfer Transactions FY 2005

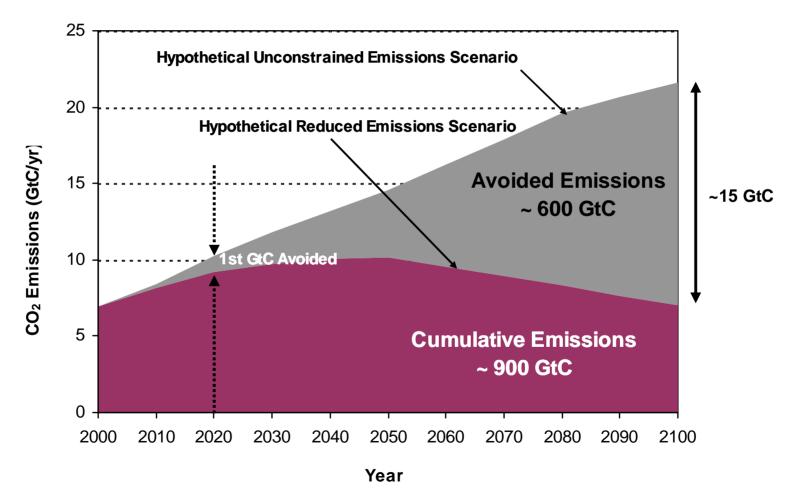

6 May 2008

R&D Portfolio Design

22

Technical Goals Set Within Context of United Nations Framework Convention on Climate Change

Emission and concentration trajectories based on level of effort for technology investments


Potential carbon reductions based on more aggressive technology investments

Relevant planning window to influence longer-term outcomes

Wigley, Richels, Edmonds, Nature, 1996

The Technical Challenge – Reduce GHGs Toward Near Net-Zero Emissions Future

GtC = Giga-Tonnes Carbon Giga-Tonne = Billion (10⁹) Metric-Tonnes (1000 Kilograms)

Technology Scenarios Explore the Future

Technology Scenario #1: "Closing the Loop on Carbon"

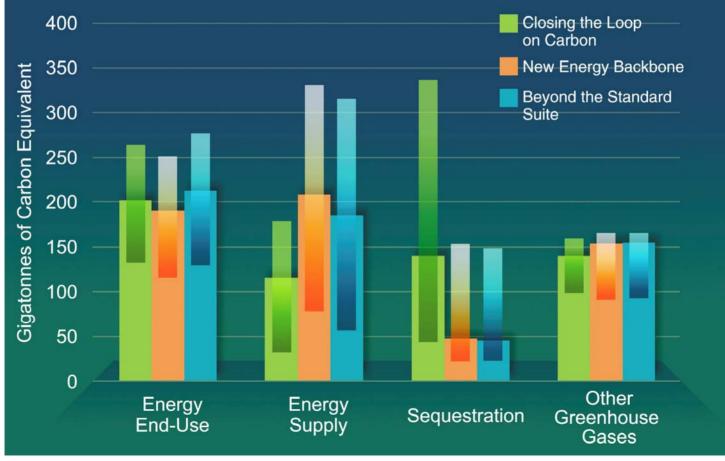
Successful development of carbon capture and storage technologies for use in electricity, as well as in applications such as hydrogen and cement production.

Technology Scenario #2: "A New Energy Backbone"

Additional technological improvement and cost reduction for carbon-free energy sources, such as wind power, solar energy systems, and nuclear power.

Technology Scenario #3: "Beyond the Standard Suite"

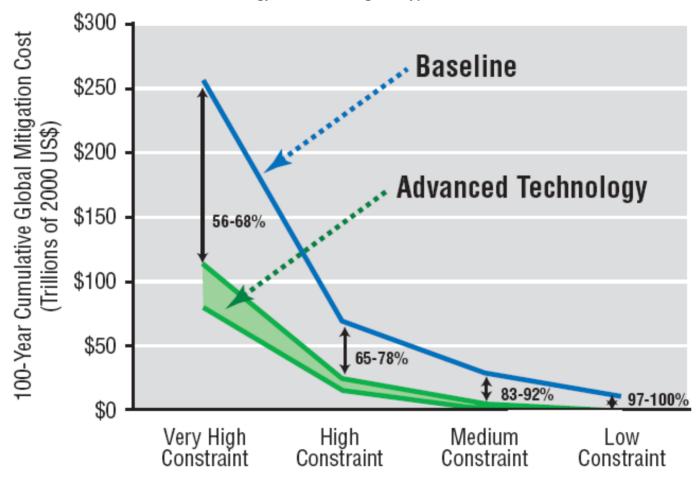
Major advances in fusion energy and/or novel energy applications for solar energy and biotechnology such that they can provide zero-carbon energy at competitive costs in the second half of this century.


Common Characteristics Across Scenarios:

- ✓ Additional gains in energy efficiency beyond the reference case occur;
- ✓ Additional technologies for managing non-CO₂ GHGs become available;
- ✓ Terrestrial carbon sequestration increases;
- ✓ The full potential of conventional oil and gas is realized; and
- ✓ Hydrogen production technology advances.

Results of An Integrated Assessment

Potential Contributions to Emissions Reduction



Source: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

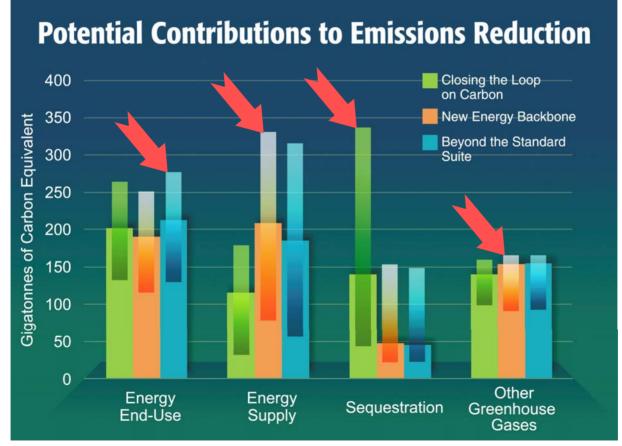
Costs Must Be Lowered Significantly

Comparative Analysis of Estimated Cumulative Costs Over the 21st Century of GHG Mitigation, With and Without Advanced Technology, Across a Range of Hypothesized GHG Emissions Constraints.*

* U.S. Climate Change Technology Program Strategic Plan, September 2006, Figure 10-2

Timing is of the Essence

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	2010 - 2020	2030 - 2040	2030 - 2050	2040 - 2060
Goal #2: Reduce Emissions from Energy Supply	2020 - 2040	2040 - 2060	2050 - 2070	2060 – 2100
Goal #3: Capture and Sequester Carbon Dioxide	2020 - 2050	2040 or Later	2060 or Later	Beyond 2100
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	2020 - 2030	2050 - 2060	2050 - 2060	2070 - 2080


Estimated timing of advanced technology market penetrations, as indicated by the first GtC-eq./year of incremental emissions mitigation, by strategic goal, across a range of hypothesized GHG emissions constraints.

Source:: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

Most Challenging Technical Scenario

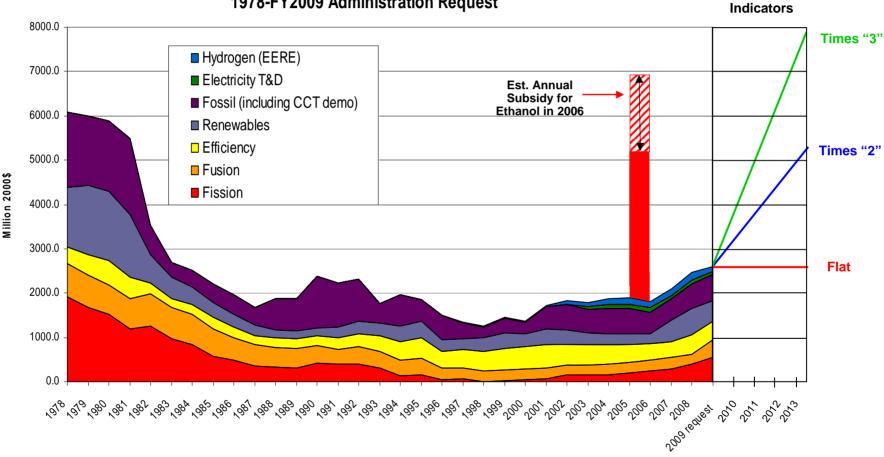
Potential ranges of greenhouse gas emissions reductions to 2100 by category of activity for three technology scenarios characterized by viable carbon sequestration (Closing the Loop on Carbon); dramatically expanded nuclear and renewable energy (New Energy Backbone); and novel and advanced technologies (Beyond the Standard Suite)

Source: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

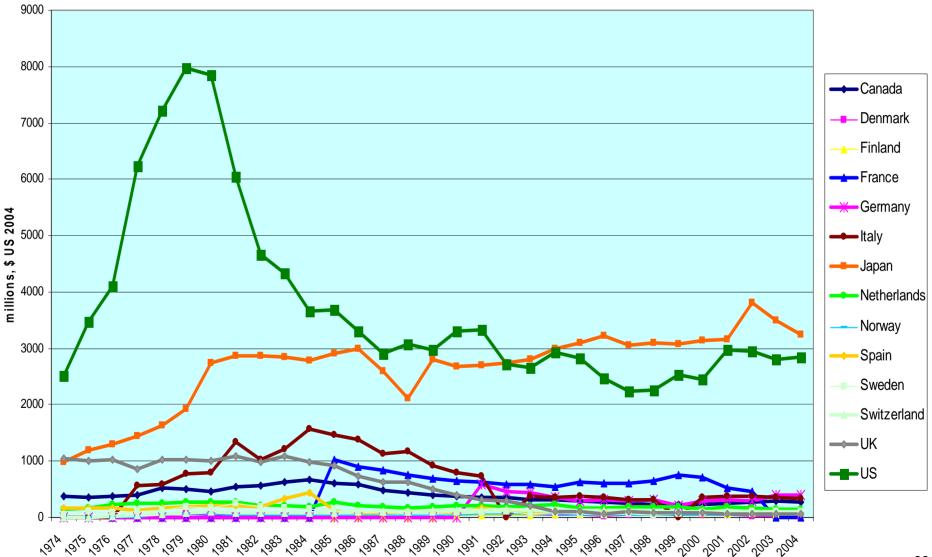
R&D

1																	
						Most		Sc	enarios Yea	rs & Quanti	ties U.S. (Only	Likelił	nood of C	CTP G	oal Attai	nment*
CCTP Strategic Goal			Key Element of Strategy	CCTP Strategic Plan Corresponding Technologies in Scenarios Analysis	Lead	Challenging Technical Scenario	Units	2020	2030	2040	2050	2100	Very Unlikely	Unlikely	Maybe	Likely	Very Likely
		1.1	Transportation	Primary Energy Reduction	EE	BSS 450	MtCO ₂ /yr	371	530	687	858	1,247					
Reducing Emissions fr Energy End-Use and		1.2	Buildings	Primary Energy Reduction	EE	BSS 450	MtCO ₂ /yr	157	275	388	501	543					
Infrastructure		1.3	Industry	Primary Energy Reduction	EE	BSS 450	MtCO ₂ /yr	443	641	775	878	652					
		1.4	Electric Grid and Infrastructure	Enabling Technology, U.S. Grid Demand	OE	NEB 450	Trillion kWh/yr	6.67	7.35	7.92	8.38	9.49					
		2.1	Low-Emission, Fossil-Based	Electricity: Coal w/CCS	FE	CLC 450	MtCO ₂ /yr	69	192	401	689	1,208					
		2.1	Fuels and Power	Electricity: Natural Gas w/CCS	FE	CLC 450	MtCO ₂ /yr	60	148	311	541	954					
		2.2	Hydrogen	Hydrogen Production	EE	CLC 450	Quads	2.40	3.10	4.00	5.10	7.40					
				Electricity: Solar Power	EE	NEB 450	MtCO ₂ /yr	0	9	59	164	216					
Reducing Emissions fr	om	2.3	Renewable Energy and Fuels	Electricity: Wind Power	EE	NEB 450	MtCO ₂ /yr	11	89	237	421	476					
Energy Supply				Bio-Based Fuels	EE	BSS 450	MtCO ₂ /yr	0	8	56	168	214					
				Electricity: Gen III Reactors	NE	NEB 450	MtCO ₂ /yr	33	183	472	864	1,339					
		2.4	Nuclear Fission	Electricity: Gen IV Reactors	NE	NEB 450	MtCO ₂ /yr	0	14	77	207	556					
				Electricity: International TechGNEP	NE	NEB 450-W	Trillion kWh/yr	0.01	0.01	0.02	21.94	39.06					
		2.5	Fusion Energy	Electricity: Fusion Energy, Others	SC	BSS 450	MtCO ₂ /yr	0	0	44	163	1,287					
		3.1	Carbon Capture	(Embedded in 2.1)	FE	N/A	N/A			TBD	1						
Capturing and Sequestering	ring	3.2	Geological Storage	Carbon Storage	FE	CLC 450	MtCO ₂ /yr	130	341	726	1,285	2,237					
Carbon Dioxide		3.3	Terrestrial Sequestration	TBD	USDA	TBD	MtCO ₂ /yr	TBD									
	_	3.4	Ocean Sequestration	Not Applicable This Round	DOE	N/A	N/A	TBD									
		4.1	Methane Emissions from Energy and Waste	CH ₄ in CO ₂ -Equivalence	DOE/EPA	CLC 450	MtCO ₂ -Eq/yr			TBD							
		4.2	Methane and Nitrous Oxide	TBDCH ₄ (Part)	USDA	CLC 450	MtCO ₂ -Eq/yr			TBD							
Reducing Emissions	of _		Emissions from Agriculture	TBDN ₂ O (Part)	USDA	CLC 450	MtCO ₂ -Eq/yr	TBD									
Non-CO ₂ Greenhouse Gasses	•	4.3	Emissions of High Global-Warming	Short-Lived F-Gases in CO ₂ -Equivalence	EPA	CLC 450	MtCO ₂ -Eq/yr	TBD									
Card Co			Potential Gases	Long-Lived F-Gases in CO ₂ -Equivalence	EPA	CLC 450	MtCO ₂ -Eq/yr	твр									
		4.4	Nitrous Oxide Emissions from Combustion and Industrial Sources	N ₂ O in CO ₂ -Equivalence	EPA	CLC 450	MtCO ₂ -Eq/yr		TBD								
	4.5		Emissions of Tropospheric Ozone Precursors and Black Carbon	TBD	EPA	TBD	MtCO ₂ -Eq/yr			TBD							
10 A		5.2	MM Energy Production and Efficiency	N/A	DOE			Re	fer to Str	ategic Pla	in, Chapte	er 8					
Enhancing Capabilities Measure and Monito		5.3	MM CO ₂ Capture and Sequestration	N/A	DOE			Re	fer to Str	ategic Pla	in, Chapte	er 8					
Greenhouse Gasses	_	5.4	MM Other Greenhouse Gases	N/A	EPA					-	in, Chapte						
		5.5	MM Integrated Systems Architecture	N/A	SC					-	in, Chapte	_					
Bolster Basic Scienc		6.1	Strategic Research	N/A	SC					•	in, Chapte						
Contributions to Techno Development	logy	6.2	Fundamental Science	N/A	SC					-	in, Chapte						
		6.3	Exploratory Research	N/A	SC			Re	fer to Str	ategic Pla	in, Chapte	er 9					

* In view of various hypothetical R&D portfolios and other factors. Check marks are representational of the process and should not be construed as results of extant situations. Key: Very Likely (90-100%); Likely (60-90%); Maybe (40-60%); Unlikely (10-40%); Very Unlikely (0-10%)


Scale

Historical Perspective on DOE Spending


U.S. DOE Energy RD&D

1978-FY2009 Administration Request

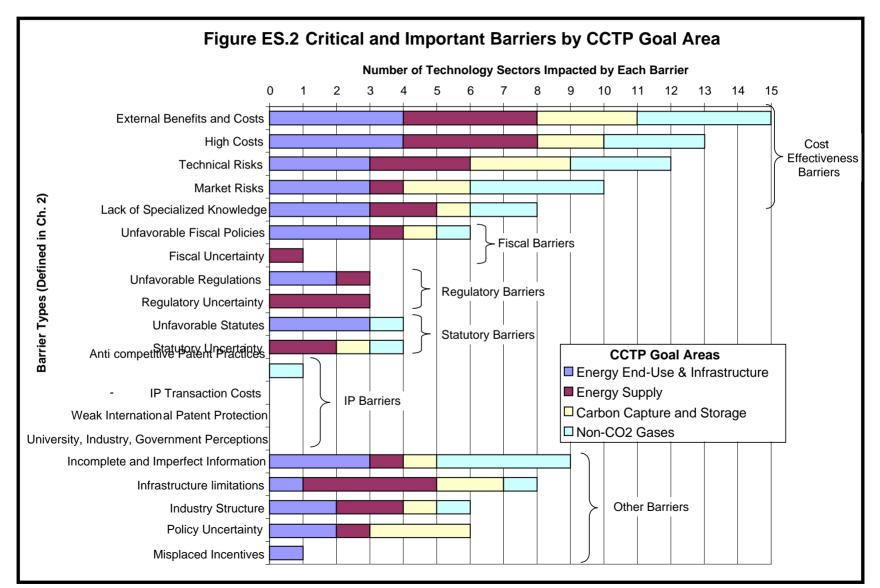
Gallager, K.S., Energy Technology Innovation Project, Belfer Center for Science & International Affairs, Kennedy School of Government, Harvard University, Cambridge, MA. File downloaded at: http://belfercenter.ksg.harvard.edu/publication/18152/doe budget authority for energy research development and demonstration database.html

Government Energy R&D in Selected Industrialized Countries,1974-2004

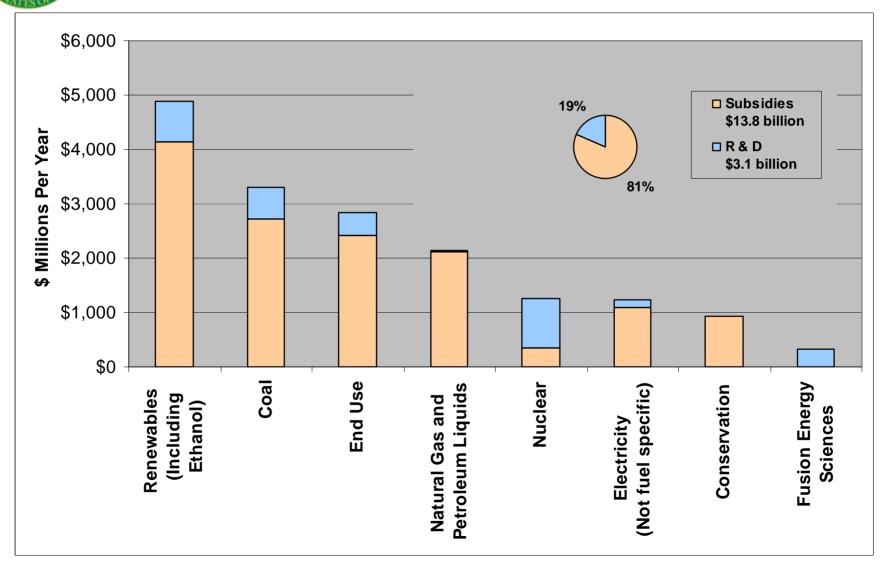
32

6 May 2008

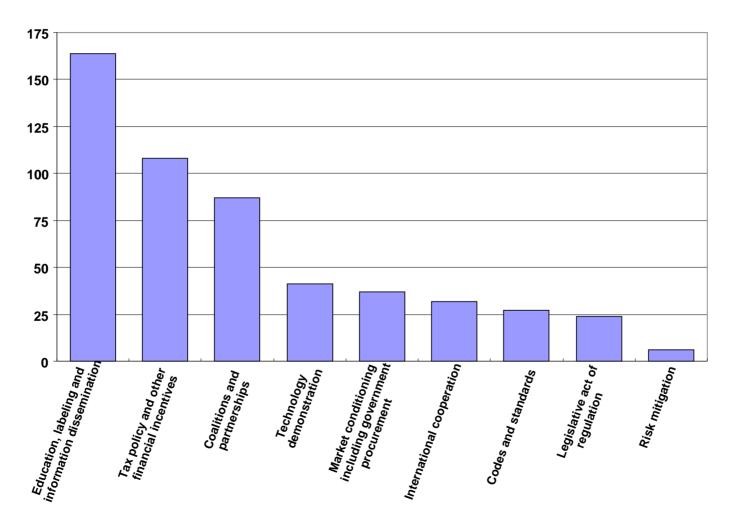
Policy Design


Barriers Typology

Cost Effectiveness	Fiscal Barriers	Regulatory Barriers	Statutory Barriers	Intellectual Property Barriers	Other Barriers
High Costs	Unfavorable Fiscal	Unfavorable Regulations	Unfavorable Statutes	IP Transaction Costs	Incomplete and Imperfect Information
Technical Risks	Fiscal Uncertainty	Regulatory Uncertainty	Statutory Uncertainty	Anti- competitive Patent Practices	Infrastructure limitations
Market Risks	Unfavorable tariffs			Weak International Patent Protection	Industry Structure
External Benefits and Costs		arrier Cate	egories	University, Industry, Government Perceptions	Misplaced Incentives
Lack of Specialized Knowledge		Barriers Detailed Ba	arriers		Policy Uncertainty


Barriers are organized into six categories consistent with EPAct 2005 Title XVI.

Barriers – Summary of Findings


Federal Financial Interventions and Subsidies in Energy Markets FY 2007

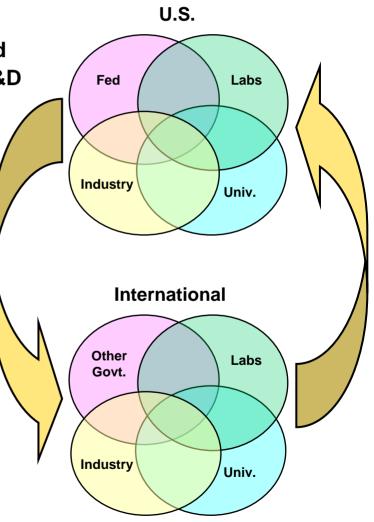
Commercialization & Deployment Activities, by Category or Genre

Number of Government Commercialization and Deployment Activities by Type of Policy and Measure

Policy Process Underway Some Policy Options, by Technology Area

Technology Areas	Tax Policy and Financial Incentives	Legislative Acts and/or Regulation
Coal w/CCS	Loan Guarantees; Tax Incentives; Cost-Shared Partnerships	CO ₂ Storage – Siting & Permitting; Monitoring and Verification; Liability Indemnification; New Source Review Revisions; Access to Public Lands; Property Rights for Subsurface Areas
Nuclear Fission	Loan Guarantees; Production Tax Credit; Standby Support for Certain Delays	Liability Indemnification; Standard Design Certifications; Early Site Permits; Combined Construction & Operating License; Waste and Fuel Management and Storage
Electric Grid and Infrastructure	Loan Guarantee Program, Waste Energy Recovery Incentive Grants*; SmartGrid Investments Matching Grants*; Additional Incentives for Investments (including Cost Recovery Mechanisms)	Public Utilities Regulatory Policies; Renewable and Distributed Generation Code and Standards; Transmission Pricing (Rate Structures); National Transmission Corridors; SmartGrid Code and Standards*; Utility Energy Efficiency Programs*; Standard Net Metering and Interconnection Policies; Siting Access Rights; Access to Meter and Other Data;
Transportation	Tax Credit; Manufacturing Credit; Consumer Incentives, Manufacturing Incentives*	National Regulatory Policies; Urban and Land Use Planning; CAFÉ*; Federal Fleet*
Hydrogen	Loan Guarantees; Alternative Motor Vehicle and Alternative Fuel Infrastructure Tax Credits; Investor Incentives; Insurance	Safety, Codes & Standards; Stationary Fuel Cell Permitting
Bio-Based Fuels	Credit for installing alternative fuel refueling; Loan Guarantees; Production Tax Credit; Development Grants*	Stable Financial Incentives; National Regulatory Policies; Biofuels Tariff; Federal Fleet*, Standard specifications for fuels*
Wind Power	Loan Guarantees; Production Tax Credit; Clean Renewable Energy Bonds; Development Grants*;	Manufacturing Partnerships*; Stable Financial Incentives; Mandated Federal Procurement of Wind Power;
Industry	Loan Guarantees; Efficiency Tax Credits; Sector Specific Tax Credits	Equipment Standards; Emissions Regulations; Informational Partnerships (e.g.; Manufacturing Extension Partnership), Energy-intensive industries program*
Buildings	Manufacturer and Consumer Efficiency Tax Credits , Tax Deductions for Commercial Buildings; Accelerated Depreciation	Federal appliance and equipment standards; Building Codes*; Government Procurement, Federal Buildings Standards*
Solar Power	Loan Guarantees; Business Energy Tax Credit; Residential & Business Solar Investment Tax Credit; Clean Renewable Energy Bonds; Development Grants*; Production Tax Credit	Manufacturing Partnerships*; Stable Financial Incentives; Access to Public Lands (for concentrating solar power installations); Mandated Federal Procurement of Solar Power
Green:Existing PRed:Policy Op		38

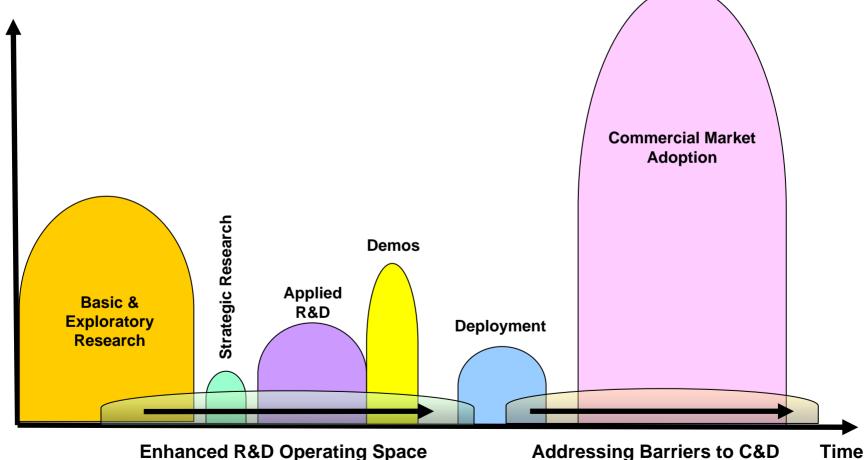
6 May 2008



Wrap Up

Observations and Options

- Level of Global R&D Investment -- Too Low?
 - Pace of Progress Too Slow ?
 - U.S. Federal R&D is Increasing, but Constrained
 - Two Countries Account for 80 Percent of CC R&D
 - Other Governments' R&D Decreasing
- How to Lift Global Effort?
 - More U.S. R&D ?
 - More International R&D ?
 - More Private Sector R&D ?
 - Technology Push vs. Technology Pull ?
 - New Models for Incentivizing R&D ?
- Potential Areas for Enhancement
 - Coord., Integrated, Global R&D Strategy
 - Better Access to Under-Utilized Assets
 - More R&D Collaboration
 - Division of Labor on Key Tech. Initiatives
 - Enhanced S&T Cooperation
 - Addressing Non-Technical Barriers
 - Experimenting with New R&D Models

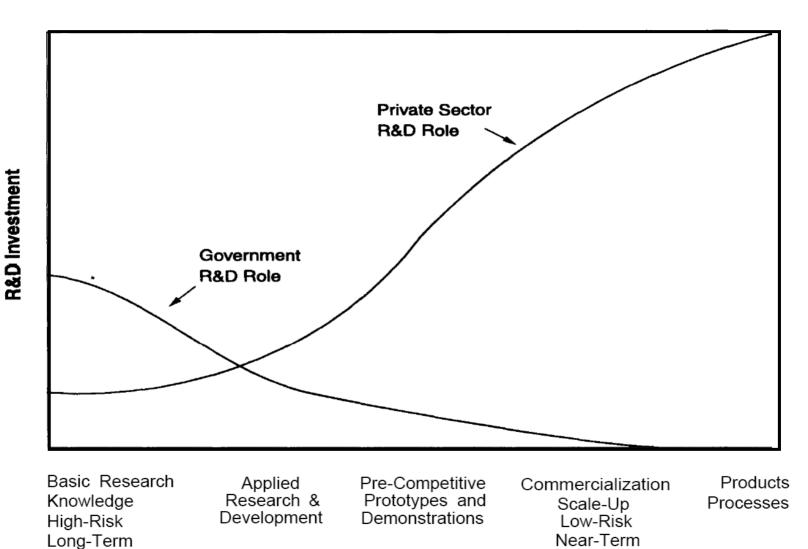


\$

Do We Need New R&D Management Constructs?

Are Existing R&D Management Structures Sufficient to **Speed Progress and Address Key Barriers?**

Enhanced R&D Operating Space


6 May 2008

Back-Up Slides

Innovation Process

43

Overview

- U.S. Climate Change Technology Program
- Interfaces Between CCTP and CCSP
- CCTP Grand Challenges
 - 1. Inform the Pace of Technology Development & Deployment
 - 2. Illuminate Trade-Offs Among Response Strategies
 - 3. Inform Decision-Making at Appropriate Levels of Governance
 - 4. Identify Key Interactions Between Natural and Human Systems
 - 5. Organize Integrated Systems Architecture for Measurement & Verification
 - 6. Explore the Means and Consequences of "Back-Stop" Options
- Summary: CCTP Grand Challenges Mapped onto Workshop Breakouts

Interface Between CCTP and CCSP

- CCTP-CCSP Issues Intersect
 - Informing the Pace of Technology Development
 - Linking GHG Emission Rates to the Timing of Impacts & Vulnerabilities
 - Identifying Effects of Climate Variability and Change on Energy Production and Use
 - Science of Carbon Sequestration Options
 - Integrated Systems Architecture for Measuring, Reporting, and Verification
 - Characterizing Regional Impacts in the U.S.
 - Adaptation/Infrastructure Planning
 - Ecological and Environmental Impacts of Mitigation & Adaptation Technologies
 - Ocean Acidification
 - Geo-Engineering
- Support Joint Mechanism to Aid Coordination Between CCTP & CCSP