1.2 BUILDINGS 1.2.1 BUILDING EQUIPMENT, APPLIANCES, AND LIGHTING

Technology Description

A school in North Carolina features daylighting, state-of-the-art lighting controls, and an energy management system, allowing individual teachers to select optimum lighting levels for each room.

Representative Technologies

Energy use in buildings depends on equipment to transform fuel or electricity into end-use services such as delivered heat or cooling, light, fresh air, vertical transport, cleaning of clothes or dishes, and information processing. (The effects of passive and related systems are discussed in other profiles.) There are energysaving opportunities within individual pieces of equipment – as well as at the system level through proper sizing, reduced distribution and standby losses, heat recovery and storage, and optimal control. Another promising opportunity lies in multifunction devices ranging from heat pumps, which provide both refrigeration and hot water, to an office appliance that serves as a networked printer, copier, scanner, and paperless fax machine. System Concepts

- Major categories of end-use equipment include heating, cooling, and hot water; ventilation and thermal distribution; lighting; home appliances; miscellaneous (process equipment and consumer products); and on-site energy and power.
- Key components vary by type of equipment, but some crosscutting opportunities for efficiency include improved materials, efficient lowemissions combustion and heat transfer, advanced refrigerants and cycles, electrodeless and solid-state lighting, smart sensors and controls, improved small-power supplies, variable-capacity systems, reduction of thermal and electrical standby losses, cogeneration based on modular fuel cells and microturbines, and utilization of waste heat from fuel cells and microturbines.
- Residential gas-fired absorption heat pumps, centrifugal chillers, desiccant preconditioners for treating ventilation air, heat-pump water heaters, proton exchange membrane fuel cells, heat pump water heaters, solid-state lighting, and lighting controls.
- Specialized HVAC (heating, ventilating, and air-conditioning) systems for research laboratories, server/data systems, and other buildings housing high technology processes.

Technology Status/Applications

• Technology improvements during the past 20 years – through quality engineering, new materials, and

better controls – have improved efficiencies in lighting and equipment by 15% to 75%, depending on the type of equipment. Efficiencies of compact fluorescent lamps are 70% better than incandescent lamps; refrigerator energy use has been reduced by more than three-quarters during the past 20 years; H-axis clothes washers are 50% more efficient than current minimum standards. Electronic equipment has achieved order-of-magnitude efficiency gains, at the microchip level, every two to three years.

Current Research, Development, and Demonstration

RD&D Goals

- By 2008, for distributed electricity generation technologies (including microturbines), enable a portfolio of equipment that show an average 25% increase in efficiency.
- By 2008, for solid-state lighting in general illumination applications, develop equipment with luminous efficacy of 79 lumens per watt (LPW); and for laboratory devices, by 2025, luminous efficacy of 200 LPW.
- By 2025, develop and demonstrate marketable and advanced energy systems that can achieve "net-zero" energy use in new residential and commercial buildings through a 70% reduction in building energy use.
- By 2030, enable the integrations of all aspects of the building envelope, equipment, and appliances with on-site micro-cogeneration and zero-emission technologies.

RD&D Activities

- Most Federal R&D on building equipment is performed by DOE.
- International funding is less relevant than state activities such as currently ongoing in California, New York, and other states. This research is synergistic with and complements the DOE research.

Recent Progress

• Recent DOE-sponsored R&D, often with industry participation, includes an improved air-conditioning cycle to reduce oversizing and improve efficiency; a replacement for inefficient, high-temperature halogen up-lights (torchieres), which use only 25% of the power, last longer, and eliminate potential fire hazards; ozone-safe refrigerants, where supported R&D was directed toward lubrication materials problems associated with novel refrigerants and ground-source heat pumps.

Commercialization and Deployment Activities

- Building equipment, appliances, and lighting systems currently on the market vary from 20% to 100% efficient (heat pumps can exceed this level by using "free" energy drawn from the environment). This efficiency range is narrower where cost-effective appliance standards have previously eliminated the least-efficient models.
- The stock and energy intensity of homes are growing faster than the building stock itself, as manufacturers introduce and consumers and businesses eagerly accept new types of equipment, more sophisticated and automated technologies, and increased levels of end-use services.
- The rapid turnover and growth of many types of building equipment especially electronics for computing, control, communications, and entertainment represent important opportunities to rapidly introduce new, efficient technologies and quickly propagate them throughout the stock.
- The market success of most new equipment and appliance technologies is virtually ensured if the efficiency improvement has a three-year payback or better and amenities are maintained; technologies with payback of four to eight-plus years also can succeed in the market, provided that they offer other customer-valued features (e.g., reliability, longer life, improved comfort or convenience, quiet operation, smaller size, lower pollution levels).
- Applications extend to every segment of the residential and nonresidential sectors. Major government, institutional, and corporate buyers represent a special target group for voluntary early deployment of the best new technologies.

Market Context

• Building equipment and appliances represent an annual market in the United States, alone, of more than \$200B, involving thousands of large and small companies. Certain technologies, such as office and home electronics, compete in global markets with little or no change in performance specifications.