Skip Standard Navigation Links
Centers for Disease Control and Prevention
 CDC Home Search Health Topics A-Z
peer-reviewed.gif (582 bytes)
eid_header.gif (2942 bytes)
Past Issue

Vol. 11, No. 6
June 2005

Adobe Acrobat logo

EID Home | Ahead of Print | Past Issues | EID Search | Contact Us | Announcements | Suggested Citation | Submit Manuscript

PDF Version | Comments Comments | Email this article Email this article



The Study
Conclusions
Acknowledgments
References
Figure 1
Figure 2
Table 1
Table 2

Dispatch

Tuberculosis due to Resistant Haarlem Strain, Tunisia

Helmi Mardassi,*Comments Amine Namouchi,* Raja Haltiti,† Mourad Zarrouk,† Besma Mhenni,* Anis Karboul,* Neila Khabouchi,* Nico C. Gey van Pittius,‡ Elizabeth M. Streicher,‡ Jean Rauzier,§ Brigitte Gicquel,§ and Koussay Dellagi*
*Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia; †Hôpital Régional de Menzel-Bourguiba, Menzel-Bourguiba, Tunisia; ‡University of Stellenbosch, Stellenbosch, South Africa; and §Institut Pasteur, Paris, France

Suggested citation for this article


Multidrug-resistant tuberculosis was diagnosed in 21 HIV-negative, nonhospitalized male patients residing in northern Tunisia. A detailed investigation showed accelerated transmission of a Mycobacterium tuberculosis clone of the Haarlem type in 90% of all patients. This finding highlights the epidemic potential of this prevalent genotype.

The ability of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis to cause epidemics and spread globally contrasts with the initial perception that MDR tuberculosis (MDR-TB) has a reduced potential for transmission (1,2). In this respect, the W/Beijing type appears to be most common in humans and accounts for most reported MDR-TB outbreaks (3).

In this report, we provide evidence for the epidemic potential of another worldwide prevalent M. tuberculosis genotype, namely, the Haarlem family (4,5). The identified strain is MDR and has rapidly expanded within immunocompetent and nonhospitalized patients.

The Study

M. tuberculosis isolates were obtained from the Laboratory of Mycobacteriology of the Institut Pasteur de Tunis as part of the National Tuberculosis Surveillance Program. All samples (884 specimens) from patients with suspected TB residing in northern Tunisia (Bizerte) from August 2001 to October 2003 were forwarded to us by the referral regional hospital. This hospital serves a region with 483,086 people and an area of 3,501 km2. The incidence of TB in this area from 2001 to 2002 was 29/100,000 male patients and 11/100,000 female patients. All patients received the standard chemotherapy regimen of the Tunisian National Tuberculosis Program, i.e., 2 months of rifampicin, isoniazid, pyrazinamide, and streptomycin, followed by 4 months of rifampicin and isoniazid (2RHZS/4RH). This regimen was introduced into the region in 1995. Of the 193 M. tuberculosis isolates recovered, 20 were MDR. The corresponding patients were interviewed, and detailed epidemiologic investigations were conducted according to described protocols (6). In April 2004, while the study was in progress, a new MDR case was diagnosed.

Analyses by IS6110 restriction fragment length polymorphism (IS6110 RFLP), ligation-mediated polymerase chain reaction (PCR), and spoligotyping were carried out by using standard protocols (7–9). Typing of the polymorphic GC-rich repetitive sequence (PGRS) with probe MTB484 (1) was conducted according to a previously reported protocol (10), with the exception that DNA was digested with AluI. Isolates were assigned to principal genetic groups according to the polymorphisms in the katG and gyrA genes (11). The following primer pairs were used to sequence rpoB, katG, and pncA gene mutations that confer resistance to rifampicin, isoniazid, and pyrazinamide, respectively: rpoB (5´-ATCACACCGCAGACGTTG-3´, 5´-TGCATCACAGTGATGTAGTCG-3´); katG (5´- CGTCGAAACAGCGGCGCTGA-3´, 5´-CAAGCGCCAGCAGGGCTCTT-3´); and pncA (5´-GGCGCACACAATGATCGGTG-3´, 5´-GCTTTGCGGCGAGCGCTCCA-3´). The recently described single nucleotide polymorphisms in putative M. tuberculosis mutator genes mutT1, mutT2, mutT3, and ogt were investigated with the same protocol reported by Rad et al. (12). DNA sequencing was conducted directly on the purified PCR products by using the Prism Ready Reaction Dye Deoxy Terminator Cycle sequencing kit on an ABI Prism 377 DNA sequencer (Applied Biosystems, Foster City, CA, USA).

Epidemiologic and clinical data indicated that all patients with MDR-TB were male with a mean age of 31 years at diagnosis (Table 1). All were Tunisians and permanently resided in the northern part of the country (Bizerte). All patients were seronegative for HIV with no documented history of travel abroad, and none had a history of immunosuppression, diabetes, or respiratory diseases other than TB. Mapping of the 21 patients with MDR-TB according to their residence sites showed that they were mostly scattered over the northeastern part of the region (surface area ≈1,000 km2) with no concentration in a particular locality (data not shown). Resistance to 5 first-line drugs was observed for most isolates (Table 2).

Figure 1
Figure 1.

Click to view enlarged image

Figure 1. IS6110 restriction fragment length polymorphism (RFLP) analysis of Mycobacterium tuberculosis isolates from 16 patients...

  

Figure 2

Figure 2.
Click to view enlarged image

Figure 2. A) IS6110 restriction fragment length polymorphism (RFLP) analysis (left) and polymorphic GC-rich repetitive sequence...

As indicated in Table 1, with the exception of patient P20, the DNA samples subjected to molecular typing were obtained from the initial isolate of all new patients. RFLP showed that 18 patients had nearly identical IS6110 profiles (Figures 1 and 2). The predominant profile (occurring in 13 patients) showed 11 bands, while the remaining 5 patients had an additional IS6110 band. The presence or absence of the additional IS6110 band was not restricted to new or previously treated patients. The RFLP pattern of patient P11, a new patient, clearly showed a mixture of the 12-band profile and some additional IS6110 bands (Figure 2A). Typing of his follow-up culture, which was obtained after 6 months of directly observed short-course therapy, as recommended by the World Health Organization, yielded only the 12-band profile (Figure 2A). Laboratory records and epidemiologic data indicate that this patient likely had a dual infection.

The isolate from patient P13 was typed by ligation-mediated PCR. Its profile was identical to the 18 other MDR isolates. Thus 19 patients with MDR-TB could be clustered according to IS6110-based typing. Effective epidemiologic links were identified for 9 (47%) patients (Table 1). Another similar RFLP pattern was observed for patient P20. It shows 10 IS6110 bands (Figure 2B), 9 of which are common to the 12-band RFLP pattern described for the other isolates. The isolate from patient P19 displayed a 9-band IS6110 profile that was clearly distinct from all the other patients with MDR-TB (data not shown).

With the exception of patient P19, the MDR isolates were identical in their PGRS profile (Figure 2) and spoligotype patterns (Table 2), which is characteristic of the Haarlem3 type (4). Sequence analysis of mutator and drug resistance genes conclusively confirmed that the 19 MDR isolates with nearly identical IS6110 (both 12- and 11-band profiles) are genetically closely related. They all harbor the L209L, T15S, S531L, and S315T mutations in mutT3, ogt, rpoB, and katG genes, respectively (Table 2), whereas mutT1 and MutT2 showed a wild type genotype (data not shown). The occurrence of an additional uncommon mutation in the rpoB gene (V610M) confirmed the clonality of this MDR Haarlem strain since it was present only in 19 patients with MDR-TB. The variability of resistance to pyrazinamide and the mutational profile within the pncA gene (Table 2) strongly suggest that primary transmission from person to person occurred mainly with a strain that was simultaneously resistant to isoniazid and rifampicin.

To extend our analysis of the situation that prevailed in this region, samples from 143 (83%) of 172 patients without MDR strains were spoligotyped. Of these 143 patients, 41 (29%) were female. Overall, 31 (22%) of the 143 patients had Haarlem3 genotype TB. In contrast to the MDR-TB outbreak that involved only men, 6 women had a non-MDR Haarlem3 strain. Aside from the absence of clustering, ligation-mediated PCR typing showed that none of these non-MDR Haarlem3 isolates displayed a profile similar to the 19 MDR isolates involved in the transmission chain. Sequencing of the rpoB gene of 10 isolates randomly selected from the 31 non-MDR Haarlem isolates showed the absence of the outbreak-associated mutation V610M. This finding is strongly indicative of a true clonal expansion and a typical MDR-TB outbreak. The W/Beijing type was absent in the analyzed pool of isolates.

Conclusions

The results indicate that an MDR strain of M. tuberculosis has been actively transmitted among 19 HIV-negative male patients in Tunisia. Several observations indicate that this particular Haarlem strain displays increased transmissibility, virulence, or both. First, the outbreak peaked suddenly within a relatively short period of 21 months; 17 new cases (89%) were reported from September 2001 to June 2003. Inspection of the hospital register for 2000 showed only 3 new patients with MDR isolates, including outbreak-associated patients P5 and P7 (Table 1). Second, no epidemiologic links or contact points could be traced for several patients, which suggests that brief exposure would have been sufficient for effective transmission. Because patients with MDR-TB do not respond to treatment, they may serve as constant sources of transmission. Such a situation is likely to have occurred for the patients with established epidemiologic links. Third, the incidence of TB in the region in which the outbreak occurred is not particularly high. Fourth, patients were seronegative for HIV with no history of treatment causing immunosuppression. Fifth, no AIDS-associated TB outbreak that might have increased the adaptability of the strain within the indigenous population had occurred in the region. Sixth, although the Haarlem strain was MDR, it was able to cause an outbreak in those vaccinated with bacille Calmette-Guérin and in persons who were not hospitalized.

Among the identified M. tuberculosis strain families (4,5), the W/Beijing type has been associated with outbreaks or microepidemics worldwide (3). The Haarlem strain family appears to be widespread (4), but its ability to cause outbreaks has been reported only twice, once in Argentina (13) and once in the Czech Republic (14). The distinctive feature of the present Haarlem MDR-TB outbreak is its accelerated transmission compared with the first 2 MDR-TB outbreaks.

Alterations within DNA repair genes (mutator genes) are thought to favor the emergence of MDR strains with an increased adaptability (12). In this respect, both W/Beijing and Haarlem strains accumulated mutations within their putative mutator genes. Widespread MDR strains might also benefit from their intrinsic adaptability (15). From an epidemiologic point of view, TB programs must conduct extensive surveillance of MDR strains of M. tuberculosis strain families because they might cause serious outbreaks.

Acknowledgments

We thank Fethi Diouani for mapping the MDR cases, Maherzia Ben Fadhel for sequencing, and Rob M. Warren for thoughtfully reviewing the manuscript.

This study was supported by the United Nations Development Program/World Bank/World Health Organization Special Program for Research and Training in Tropical Diseases (TDR).

Dr. Mardassi is head of a research group at the Institut Pasteur de Tunis. His research interests include the molecular epidemiology of M. tuberculosis and gene expression within the mycobacterial host cell.

References

  1. Espinal MA. The global situation of MDR-TB. Tuberculosis (Edinb). 2003;83:44–51.
  2. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet. 2003;362:887–99.
  3. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8:843–9.
  4. Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, et al. Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis. 2002;8:1347–9.
  5. Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PW, Martin C, et al. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol. 1999;37:2607–18.
  6. Munsiff SS, Bassof T, Nivin B, Li J, Sharma A, Bifani P, et al. Molecular epidemiology of multidrug-resistant tuberculosis, New York City, 1995–1997. Emerg Infect Dis. 2002; 8:1230–8.
  7. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31:406–9.
  8. Prod'hom G, Guilhot C, Gutierrez MC, Varnerot A, Gicquel B, Vincent V. Rapid discrimination of Mycobacterium tuberculosis complex strains by ligation-mediated PCR fingerprint analysis. J Clin Microbiol. 1997;35:3331–4.
  9. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.
  10. Warren R, Richardson M, Sampson S, Hauman JH, Beyers N, Donald PR, et al. Genotyping of Mycobacterium tuberculosis with additional markers enhances accuracy in epidemiological studies. J Clin Microbiol. 1996;34:2219–24.
  11. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A. 1997;94:9869–74.
  12. Rad ME, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9:838–45.
  13. Ritacco V, Di Lonardo M, Reniero A, Ambroggi M, Barrera L, Dambrosi A, et al. Nosocomial spread of human immunodeficiency virus-related multidrug-resistant tuberculosis in Buenos Aires. J Infect Dis. 1997;176:637–42.
  14. Kubin M, Havelkova M, Hynccicova I, Svecova Z, Kaustova J, Kremer K, et al. A multidrug-resistant tuberculosis microepidemic caused by genetically closely related Mycobacterium tuberculosis strains. J Clin Microbiol. 1999;37:2715–6.
  15. Andersson DI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003;6:452–6.

 

Table 1. Clinical characteristics of 21 patients with multidrug-resistant tuberculosis (MDR-TB), Bizerte, Tunisia, 2001–2004*


Patient

Age (y)

Sex

Case history

Isolate used for molecular typing

Initial diagnosis of MDR-TB

Epidemiologic characteristic

Chest radiography


P1

24

M

PT

Follow-up, Oct 2001

Sep 2001

Brother of patient 14

Right apical cavity nodular lesion

P2

26

M

NC

Initial

Oct 2001

Same penitentiary as patients 7 and 9

Left mid-lung nodular opacity with excavation

P3

25

M

NC

Initial

Oct 2001

None apparent

Bi-apical nodular opacity

P4

62

M

NC

Initial

Nov 2001

None apparent

Right apical nodular opacity

P5

26

M

PT

Follow-up, Feb 2002

Sep 2000

Brother of patient 18

Diffuse nodular lesions and multiple cavities

P6

23

M

PT

Follow-up, Feb 2002

Feb 2001

None apparent

Right apical and median bilateral nodular opacity

P7

24

M

PT

Follow-up, Mar 2002

Sep 2000

Same penitentiary as patients 2 and 9

Right lobe apical nodular opacity

P8

27

M

NC

Initial

Jun 2002

None apparent

Right apical nodular opacity

P9

34

M

PT

Follow-up, Jun 2002

Aug 2001

Same penitentiary as patients 2 and 7

Right apical nodular opacity and left diffuse nodular opacity

P10

21

M

NC

Initial

Jun 2002

None apparent

Right lobe apical nodular opacity and cavity

P11

42

M

NC

Initial

Jul 2002

None apparent

Basal nodular opacity of the right and left lung

P12

23

M

NC

Initial

Jul 2002

None apparent

Left apical cavity and nodular opacity

P13

29

M

PT

Follow-up, Aug 2002

Sep 2001

None apparent

Bilateral apical and diffuse opacity

P14

34

M

NC

Initial

Nov.2002

Brother of patient 1

Left apical cavity and nodular lesion

P15

51

M

PT

Follow-up, Nov 2002

ND

None apparent

Bilateral cavity

P16

17

M

NC

Initial

Mar 2002

None apparent

Bilateral nodular infiltration and cavity in the left lung

P17

17

M

NC

Initial

May 2003

Nephew of patient 14

Wright apical cavity and left lung nodular opacity

P18

21

M

NC

Initial

Jun 2003

Brother of patient 5

Right apical cavity and nodular opacity

P19

42

M

NC

Initial

Jun 2003

No interview (lost case)

Diffuse nodular opacity and multiple cavities

P20

53

M

NC

Follow-up, Oct 2003

Oct 2002

None apparent

Right apical cavities and left lobe infiltrate

P21

ND

M

NC

Initial

Apr 2004

Cousin of patient 14

ND


*PT, previously treated; NC, new case; ND, not determined.

 

Table 2. Laboratory findings and genotyping of multidrug-resistant isolates from 21 tuberculosis patients, Bizerte, Tunisia, 2001–2004*


Patient

Smear result

Resistance pattern†

RFLP‡

Spoligotype

PGG§

Mutational analysis


rpoB

katG

pncA

mutT3

Ogt


P1

+++

HSREZ

11

Haarlem3¶

2

S531L+V610M

S315T

A-11C

L209L

T15S

P2

+

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

A-11C

L209L

T15S

P3

++

HSREZ

12

Haarlem3

2

S531L+V610M

S315T

T11G (L4W)

L209L

T15S

P4

-

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

A-11C

L209L

T15S

P5

-

HSREZ

12

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S

P6

+

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S

P7

-

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

A-11C

L209L

T15S

P8

-

HSRE

11

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S

P9

+

HSRE

11

Haarlem3

2

S531L+V610M

S315T

A-11C

L209L

T15S

P10

-

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S

P11

-

HSREZ

12

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S

P12

-

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

A-11C

L209L

T15S

P13

-

HSRE

ND#

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S

P14

-

HRZ

11

Haarlem3

2

S531L+V610M

S315T

G insertion (391-392)

L209L

T15S

P15

-

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

A-11C

L209L

T15S

P16

++

HSR

12

Haarlem3

2

S531L+V610M

S315T

T11G (L4W)

L209L

T15S

P17

-

HSREZ

11

Haarlem3

2

S531L+V610M

S315T

G insertion (296-297)

L209L

T15S

P18

-

HSREZ

12

Haarlem3

2

S531L+V610M

S315T

T11G (L4W)

L209L

T15S

P19

-

HSRE

9

Other**

2

ΔN (AAC)519

S315T

G insertion (296-297)

WT

WT

P20

++

HSR

10

Haarlem3

2

S531L

S315

WT

L209L

T15S

P21

++

HR

11

Haarlem3

2

S531L+V610M

S315T

WT

L209L

T15S


*RFLP, restriction fragment length polymorphism; PGG, principal genetic grouping; WT, wild type (identical to strain H37Rv); ND, not determined.

†H, isoniazid; S, streptomycin; R, rifampicin; E, ethambutol; Z, pyrazinamide.

‡Number of IS6110 bands.

§Principal genetic grouping according to gyrA and katG polymorphisms (11).

¶Absence of spacers 31 and 33–36.

#IS6110 typing was determined by ligation-mediated polymerase chain reaction and the profile was identical to the other outbreak-associated strains.

**Absence of spacers 15, 21–24, and 33–36.

 

Suggested citation for this article:
Mardassi H, Namouchi A, Haltiti R, Zarrouk M, Mhenni B, Karboul A, et al. Tuberculosis due to resistant Haarlem strain, Tunisia. Emerg Infect Dis [serial on the Internet]. June 2005 [date cited]. Available from http://www.cdc.gov/ncidod/EID/vol11no06/04-1365.htm

   
     
   
Comments to the Authors

Please use the form below to submit correspondence to the authors or contact them at the following address:

Helmi Mardassi, Laboratoire des Mycobactéries, Institut Pasteur de Tunis, 13, Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunisia; fax: 216-71-791-833; email: helmi.merdassi@pasteur.rns.tn

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Return email address optional:


 


Comments to the EID Editors
Please contact the EID Editors at eideditor@cdc.gov

Email this article

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Your email:

Your friend's email:

Message (optional):

 

 

 

EID Home | Top of Page | Ahead-of-Print | Past Issues | Suggested Citation | EID Search | Contact Us | Accessibility | Privacy Policy Notice | CDC Home | CDC Search | Health Topics A-Z

This page posted May 12, 2005
This page last reviewed May 19, 2005

Emerging Infectious Diseases Journal
National Center for Infectious Diseases
Centers for Disease Control and Prevention