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[1] Paleoearthquake observations often lack enough events at a given site to directly
define a probability density function (PDF) for earthquake recurrence. Sites with fewer
than 10–15 intervals do not provide enough information to reliably determine the shape of
the PDF using standard maximum-likelihood techniques (e.g., Ellsworth et al., 1999). In
this paper I present a method that attempts to fit wide ranges of distribution parameters to
short paleoseismic series. From repeated Monte Carlo draws, it becomes possible to
quantitatively estimate most likely recurrence PDF parameters, and a ranked distribution
of parameters is returned that can be used to assess uncertainties in hazard calculations.
In tests on short synthetic earthquake series, the method gives results that cluster around
the mean of the input distribution, whereas maximum likelihood methods return the
sample means (e.g., NIST/SEMATECH, 2006). For short series (fewer than 10 intervals),
sample means tend to reflect the median of an asymmetric recurrence distribution,
possibly leading to an overestimate of the hazard should they be used in probability
calculations. Therefore a Monte Carlo approach may be useful for assessing recurrence
from limited paleoearthquake records. Further, the degree of functional dependence
among parameters like mean recurrence interval and coefficient of variation can be
established. The method is described for use with time-independent and time-dependent
PDFs, and results from 19 paleoseismic sequences on strike-slip faults throughout the state
of California are given.
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1. Introduction

[2] This paper describes a method for estimating most-
likely values and resolution on earthquake recurrence inter-
val and coefficient of variation from paleoseismic and
historic earthquake records. Even long paleoseismic cata-
logs cannot generate a complete probability density function
(PDF) on recurrence (Figure 1) [Savage, 1994]. Further,
inconsistent statistical practice between recurrence estima-
tion and earthquake probability calculations can be a
concern [e.g., Savage, 1991, 1992]. Optimally, we would
have enough observations of earthquake intervals to fill out
recurrence PDFs; these would eliminate the epistemic
uncertainties surrounding recurrence parameters, and define
the aleatory uncertainty inherent in earthquake recurrence.
Unfortunately, we lack the data to do that. In this paper I
show that, by making one decision about the class of
recurrence PDF, that PDF can be used to model observed
paleoseismic sequences. As will be shown, Monte Carlo
fitting tends to be most useful on short sequences and seems
primarily sensitive to the histogram of the data. Results reflect

epistemic uncertainties by showing the range and uncertainty
in distribution parameters that are consistent with observa-
tions and their uncertainties. A further issue addressed by this
analysis is that of coupled recurrence parameters.

1.1. Example

[3] To highlight some of the issues addressed in this
paper, I show an example calculation made from paleoseis-
mology on the south Hayward fault in the San Francisco
Bay region of California. Lienkaemper et al. [2003] reported
the series of events given in Table 1. The mean interval is
151 years (calculated by dividing time between the mid-
point of the oldest event and the date of the youngest event
by the number of intervals) and the distribution of preferred
intervals is shown in Figure 1. Translation of a mean
interval, like the 151-year south Hayward calculation into
an exponential function, or an asymmetric, time-dependent
distribution such as lognormal [e.g., Nishenko and Buland,
1987], Weibull [Hagiwara, 1974], or Brownian Passage
Time [Kagan and Knopoff, 1987; Matthews et al., 2002]
illustrates some of the difficulty in constraining a recurrence
distribution with even a fairly lengthy paleoseismic series
(Figure 1). Exponential distributions as defined by

F tð Þ ¼ le�lt; for t > 0 ð1Þ
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where t is time, and l is the mean rate, and Brownian
Passage Time distributions as

f t;m;að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2pa2t3

r
exp � t � mð Þ2

2ma2t

 !
; ð2Þ

where m is recurrence interval or its proxy and a is
coefficient of variation, are also plotted in Figure 1.
[4] From the plot of event mid-times (center of dating

interval) it appears that the Hayward fault has an orderly
series that does not look like a Poisson process; lacking are
observations of short recurrence times that would be
expected if the south Hayward fault ruptured randomly in
time. However, if all possible event times are bootstrapped
from the dating intervals, then the possibility of short-

interval events arises (Figure 2). Thus it is probably not
possible to distinguish whether earthquake recurrence on
the south Hayward fault is distributed according to an
exponential or a time-dependent distribution [e.g.,Matthews
et al., 2002]. However, in other places it may be possible;
for example, Ogata [1999] found a poor fit to exponential
distributions for paleoseismic sites in Japan.
[5] Depending on the application, there may be a desire

to use exponential distributions to characterize faults like
the Hayward, such as in the National Seismic Hazard Map
Program [e.g., Frankel et al., 2002]. Alternatively, the same
fault segment may be characterized by time-dependent
distributions [e.g., Working Group on California Earth-
quake Probabilities (WGCEP), 2003]. For consistent statis-
tical practice, recurrence parameters and their uncertainties
should be developed specifically using the PDFs from
which earthquake probabilities will be calculated. For the
most part, paleoseismic data cannot help us choose which
PDF to use, and the decision must be made from other
criteria. The methods shown in this paper enable any
distribution to be fit to paleoseismic observations, and no
resolution between distributions is implied. Rather, one can
investigate the impact of any given recurrence PDF on
probabilistic hazard calculations.

1.2. Current Methods

[6] The methods described in this paper differ from other
recurrence parameter estimation techniques. Most common-
ly, variants of maximum-likelihood techniques are applied
to observed series to estimate recurrence parameters [e.g.,
Nishenko and Buland, 1987; Davis et al., 1989; Wu et al.,
1991; Ogata, 1999]. To account for dating uncertainty,
Ellsworth et al. [1999] developed a process in which
carbon-dating-PDFs of paleoseismic intervals were boot-
strapped, and then results were used to develop Brownian
Passage Time (BPT, also know as the inverse Gaussian
distribution) parameters for recurrence interval and coeffi-
cient of variation using a maximum likelihood technique.

Figure 1. Observed preferred (dating interval centers)
earthquake interevent times on the south Hayward fault
from Table 1 [Lienkaemper et al., 2003] shown in
histogram; the arithmetic mean of the intervals is
�150 years Gray curves are Brownian Passage Time
(BPT) distributions with m = 150 years, a = 0.6 and m =
170 years, a = 0.2 mean-coefficient of variation pairings.
Black curves show exponential distributions.

Table 1. South Hayward Fault Paleoseismic Catalog

Calendar Age
(Calibrated
2-Sigma) Min

Interval
Max

Interval PreferredOld Young

Open to 2006 138 138 138
1868 1868 78 218 148
1650 1790 0 260 130
1530 1740 0 360 180
1380 1590 0 360 180
1230 1410 0 410 205
1000 1270 0 360 180
910 1010 10 260 135
750 900 70 510 290
390 680 0 400 200
280 640 0 450 225
190 550

Figure 2. Bootstrapped earthquake interevent times on the
south Hayward fault. When all possible interevent times are
included, the distribution looks more exponential than the
plot of event centers shown in Figure 1. Best fit exponential
and Brownian Passage Time distributions are plotted.
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Biasi et al. [2002] applied a similar method for lognormal
distribution parameters. When there are few events, a large
number of short earthquake series are produced. Each short
series still suffers the same poor resolution for predicting the
shape of recurrence PDFs; for example, Ellsworth et al.
[1999] showed that a series of 10 events could constrain
recurrence coefficient of variation within a range of about
0.2 to 0.8.
[7] As an example, let us assume from Table 1 that the

Hayward fault has a �150-year average recurrence interval,
and for simplicity, that recurrence is distributed as an
exponential function. To illustrate resolution issues, I sam-
pled a 150-year mean exponential distribution, gathering
5,11, and 25 event sequences at random. The distribution of
arithmetic means form these randomly sampled series is
shown in Figure 3. Only about 10–15% of these series with
less than 25 events has a mean within ±10 years of the
parent distribution. Thus the arithmetic mean of any given
11-event series has a small probability of representing the
actual mean recurrence interval on a fault segment. I used
maximum likelihood techniques [StataCorp, 2005] to find
the exponential rate parameter on these synthetic series,
which returned, as expected, equivalent values to the
arithmetic sample means. A maximum-likelihood estimate
of BPT distribution parameters for the south Hayward series
shown in Figure 1 yielded a mean recurrence interval of m =

155 years [W. Ellsworth, written communication, 2007],
also very close to the arithmetic mean for that series (Figure 1).
[8] The methods described in this paper yielded a recur-

rence interval range of m = 90–340 years at 95% confi-
dence, and m = 120–230 years at 67% confidence from the
same data. The method tries every reasonable recurrence
PDF in a forward sense millions of times, and parameter
sets that reproduce observed sequences within age uncer-
tainties significantly more often are considered the most
likely PDFs. The method is most effective at filling in gaps
posed by very sparse sequences, and/or series with poorly
constrained event dates.
[9] In this paper I first show methods for modeling the

rate term (l) for the exponential distribution. Then the
discussion is expanded to include time-dependent distribu-
tion parameters that include mean recurrence interval and
coefficient of variation. Example calculations are made for a
compilation of California paleoseismic sites.

1.3. Paleoseismic Data

1.3.1. Data Sources
[10] A statewide database of California paleoseismic

observations was assembled for the Working Group on
California Earthquake Probability (WGCEP) by T. Dawson
and R. Weldon that is available from the WGCEP Paleosites
database. The data represent published and unpublished
contributions for major strike-slip fault zones in California

Figure 3. Distribution of arithmetic means of 5-, 11-, and 25-event series randomly sampled from a
parent exponential distribution with a 150-year mean. Only about 10–15% of the series have means
within ±10 years of the parent distribution mean for series with fewer than 25 events. Techniques for
determining distribution parameters such as maximum likelihood estimators are sensitive to the
arithmetic mean, and thus may suffer from poor resolution on short series.
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including the San Andreas fault in southern and central
California [Fumal et al., 2002a, 2002b; Grant and Sieh,
1994; Liu et al., 2004; Sims, 1994; Biasi et al., 2002; Seitz
et al., 1996, 2000; McGill et al., 2002; Yule and Sieh, 2001;
Sieh, 1986; Weldon et al., 2004], the Elsinore fault
[T. Rockwell, unpublished data, 2006; Vaughan et al.,
1999], the San Jacinto fault [Rockwell and Ben-Zion.,
2007; Gurrola and Rockwell, 1996], the Garlock fault
[Dawson et al., 2003; C. H. Madden, unpublished data,
2006], the San Andreas fault in northern California [Fumal
et al., 2003; Zhang et al., 2006], the Hayward fault
[Lienkaemper et al., 2003], the San Gregorio fault [Simpson
et al., 1997], and the Calaveras fault [Kelson et al., 1996;
Simpson et al., 1999].
1.3.2. Uncertainty Associated With Paleoseismic Data
[11] In the absence of a long term historical earthquake

catalog, paleoseismic observations provide perhaps the only
non-model-derived earthquake rate estimates that can be
used for probabilistic forecasting. Considerable uncertainty
is involved in developing a paleoearthquake catalog [e.g.,
Grant and Gould, 2004], much of which results from dating
stratigraphic layering and the events that disturb such layers
[e.g., Biasi et al., 2002]. A very informative summary of
issues surrounding radiocarbon dating, sample collection,

and preparation is given by Fumal et al. [2002a]. Less
quantifiable uncertainty can result from how earthquake
features are interpreted within a trench site in terms of
which types of disturbances result from large earthquakes.
Data and interpretations from the California sites analyzed
in this paper have been vetted through multiple reviews for
consistency of geologic approach [Grant and Lettis, 2002].
[12] Another issue with interpreting paleoseismic data

stems from the possibility of missing events in the record.
Seismologists examining instrumental earthquake catalogs
have suggested that large earthquakes may cluster closely in
time on the same fault [Kagan and Jackson, 1999]. How-
ever, most paleoseismic series are interpreted under a
quasiperiodic characteristic earthquake model [Schwartz
and Coppersmith, 1984], and tend not to indicate clustering
(see Tables 1 and 2). At least three explanations are
possible: (1) two or more earthquakes striking the same
fault in a short time could look very much like a single
event, (2) earthquakes might happen that leave no trace at a
paleoseismic site, or (3) seismologists interpreting earth-
quake doublets on the same fault are working at a very
different spatial resolution than are paleoseismologists, and
could actually be seeing earthquakes rupturing neighboring
fault planes. Therefore recurrence parameters derived from

Table 2. Analysis Results of 19 Paleoseismic Sites in California Using an Exponential PDFa

Modeled Parameters Time/Intervals Method

Lat Lon Mode Median Mean 2.5% 97.5% 16.5% 83.5% T min T max Events RI Min RI Max RI Pref.

Calaveras fault-North 37.5104 �121.8346 440 640 799 230 2280 370 1160 1861 2381 5 595 372 484
Elsinore-Glen Ivy 33.7701 �117.4909 150 180 232 80 620 120 310 794 947 6 159 189 174
Elsinore Fault-Julian 33.2071 �116.7273 850 1540 1855 400 4570 760 3080 N/A N/A 2 N/A N/A N/A
Elsinore-Temecula 33.4100 �117.0400 1310 1620 1842 460 4350 880 2800 1200 1800 4 400 600 500
Elsinore-Whittier 33.9303 �117.8437 850 1630 1925 410 4610 790 3190 N/A N/A 2 N/A N/A N/A
Garlock-Central 35.4441 �117.6815 1490 1430 1603 520 3810 840 2200 6120 6640 6 1224 1328 1276
Garlock-Western 34.9868 �118.5080 1080 1420 1616 500 3790 830 2370 3920 5350 5 980 1338 1159
Hayward fault-North 37.9306 �122.2977 260 290 343 140 750 200 460 1830 2166 5 261 542 401
Hayward fault-South 37.5563 �121.9739 160 170 189 90 340 120 230 1318 1678 11 132 168 150
N. San Andreas-
North Coast

38.0320 �122.7891 N/A N/A N/A N/A N/A N/A N/A 2566 2896 12 233 263 248

SAF-Arano Flat 36.9415 �121.6729 110 120 141 60 270 80 180 796 896 9 100 112 106
N. San Andreas-
Fort Ross

38.5200 �123.2400 220 340 456 130 1300 200 670 956 1351 5 239 338 288

San Gregorio-North 37.5207 �122.5135 440 980 1327 220 4160 440 2260 N/A N/A 2 N/A N/A N/A
San Jacinto-Hog Lake 33.6153 �116.7091 N/A N/A N/A N/A N/A N/A N/A 3500 4000 16 233 267 250
San Jacinto-Superstition 32.9975 �115.9436 240 390 552 110 1940 200 830 476 823 3 238 412 325

South San
Andreas sites Lat Lon Mode Median Mean 2.5% 97.5% 16.5% 83.5% Time Events RI Min RI Max RI Pref.

San Andreas-
Burro Flats

33.9730 �116.8170 140 180 226 90 460 130 320 0774–2006 7 85 559 176

SAF-Combined
Carrizo Plain

35.1540 �119.7000 190 290 341 120 810 180 470 0598–2006 6 108 640 235

San Andreas-Indio 33.7414 �116.1870 170 250 361 90 1170 140 550 1020–2006 4 96 904 246
San Andreas-Pallett
Creek

34.4556 �117.8870 N/A N/A N/A N/A N/A N/A N/A 0645–2006 10 74 283 136

San Andreas-Pitman
Canyon

34.2544 �117.4340 130 160 191 80 440 110 250 0931–2006 7 75 382 154

San Andreas-
Plunge Creek

34.1158 �117.1370 140 210 349 80 1480 120 480 1499–2006 3 58 820 169

Mission Creek-
1000 Palms

33.8200 �116.3010 160 260 336 100 930 150 500 0824–2006 5 102 728 236

San Andreas-
Wrightwood

34.3697 �117.6680 N/A N/A N/A N/A N/A N/A N/A 0533–2006 15 60 175 98

aAlso given are mean recurrence intervals calculated by dividing the total time by the number of intervals. T min and T max are the minimum and
maximum allowable cumulative observation intervals. Event ages calculated by T. Dawson [references given in section 1.3], except the southern San
Andreas sites, which were calculated by Biasi et al. [2002]. Reported confidences are upper and lower one-sided intervals.
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paleoseismic observations may carry potential sources of
uncertainty beyond those explicitly quantified.
[13] The analysis presented here provides methods for

considering dating uncertainty, and open intervals before,
during, and after observed paleoseismic events. However,
the data are not sufficient to determine whether a quasipe-
riodic or anti-periodic earthquake recurrence model is more
appropriate. Thus both types of recurrence distributions are
used.

2. Monte Carlo Determination of Exponential
Parameters

[14] Here it is assumed that if an exponential distribution
is used to calculate earthquake probability, then the best
distribution parameters to use are those that most commonly
reproduce an observed paleoseismic sequence. The first step
is construction of a series of distributions that covers all
reasonable rates (10 years to 10 times the sample mean
recurrence). Intervals are randomly drawn millions of times
from each series and assembled into earthquake sequences
(Figure 4). Those sequences that have one earthquake
occurring in order during each observed event windows
(range of possible event times as constrained by radio
carbon dating), and no earthquakes in the intervals between
event windows are tallied. The examples shown in this
paper use a uniform distribution for the event time-window
defined by dating uncertainty, and an event that happens at
any time within the window is considered a match. A
refinement to the technique would be weighting of solutions
by comparison with the event PDFs defined by radio carbon
dating analysis. At the time of this writing, event PDFs were
not uniformly available for California sites. It should be
noted that an event PDF is defined here as the distribution
of possible ages for a single event derived from dating
uncertainty, and should not be confused with the recurrence
PDF, which is the distribution of possible earthquake
recurrence times.

[15] Each exponential distribution (recurrence PDF) for a
given rate is randomly sampled 5 million times. Each
attempt that matches a paleoseismic catalog is tallied. A
distribution of matches to the observed record is produced
(Figure 5), and the mode (most frequent value), median, or
mean of that distribution could be taken to represent the
recurrence parameter (rate, or the inverse of the mean
recurrence in the case of the exponential distribution). This
approach simultaneously incorporates epistemic uncertainty
related to dating intervals, and aleatory uncertainty related
to natural interval variation.
[16] In the examples discussed in this paper, the Mote

Carlo sequences begin with an event that is given freedom
to happen any time prior to the first observed earthquake
time window. The extra event contributes nothing other than
a starting point for the sampling. This is needed because the
first observed time window has some range within which
the event might have happened, whereas Monte Carlo
simulation must begin at a point in time. It is expected that
that an earthquake occurred prior to the first identified event
in each paleoseismic series, but we have no knowledge of it
other than that. To avoid the starting time having any
influence, any number of events are allowed to happen over
a long time prior to the first observed window. Conversely,
simulations that include earthquakes within the open inter-
val (or any other open interval) between the latest earth-
quake in the catalog and present time are discarded.
[17] Monte Carlo results provide a set of rates that fit

observed paleoseismic sequences for use in time-indepen-
dent earthquake probability calculations. There are a num-
ber of possible approaches for using these rates; one can use
every value and produce a distribution of probabilities [e.g.,
Savage, 1991, 1992; Parsons et al., 2000; Parsons, 2005],
or a central value and confidence intervals can be extracted.
For a central value from the Hayward example, the mode,
median, or mean of of the distribution (160, 170, or 189 years
respectively) might be interpreted as the most likely value;
95% of the frequencies fall in the range between 90 and
340 years, and 67% are found between 120 and 230 years.

Figure 4. Paleoseismic intervals from the Burro Flats site [Yule and Sieh, 2001]; the gray band is the
open interval since the last earthquake, the red bands show periods in which earthquakes happened, the
white bands are intervals in which they did not occur. The bottom red band is the open interval before
the first observed event in which any number of earthquakes may have happened. One hundred randomly
drawn earthquake series from an exponential PDF with mean interval of 180 years are shown by small
blue arrows. None of the first 100 attempts fit the record. Clustering behavior inherent with the
exponential distributions is evident.
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Example distributions of exponential parameters from a
number of other California sites are shown in Figure 5,
which cover a broad range in terms earthquake intervals and
total duration.
[18] An attempt was made to fit earthquake sequences

from 23 California paleoseismic sites using exponential
PDFs. Sequences varied from 2 to 16 events spanning a
total of �500 to 6000 years. As a result, resolution on
recurrence intervals differed strongly, depending on the site
(Table 2). Relative resolution is defined here by the ratio of
the mean recurrence interval and width of confidence
intervals. The most numerous paleoseismic sequences were
difficult to fit to any exponential distribution, and four sites
(parameters labeled ‘‘N/A’’ in Table 2) were not fit even
after trying 10 million times per frequency. However, broad
estimates were obtained for two sites with only two events
each which could not be estimated using a time/intervals
method (Table 2).
[19] The most likely exponential distributions extrapolat-

ed from the paleoseismic record tend to have slightly higher
mean intervals than the arithmetic means of observed
records on average. The mean recurrence interval for
all comparable events was 497 years using a Monte
Carlo method and 380 years using a time/intervals method
[T. Dawson, unpublished data; Biasi et al., 2002]. Different
recurrence intervals are expected from the Monte Carlo
method because open intervals are accounted for [e.g.,
Ogata, 1999]; allowing a simulated event to occur any time
prior to the first observed event and disallowing events
within the last open interval most closely represents the state
of knowledge, but also has the effect of slightly lengthening
recurrence-interval estimates. The impact of open intervals is

greatest on sites with the fewest number of events, because
they make up a greater proportion of the overall number of
intervals.
[20] Perhaps more important than open intervals, there are

other factors that influence differences in calculated recur-
rence intervals between time/intervals methods and the
Monte Carlo results, which may be revealed by examining
Figure 3. Because of the shape of the parent exponential
distribution, randomly sampled synthetic paleoseismic se-
ries tended more often to have shorter mean values than the
parent distribution. Since most California paleoseismic sites
have relatively short earthquake records, and if the actual
parent distributions governing earthquake behavior are
asymmetric (with medians less than means), odds are that
sample means are smaller than the actual means.
[21] To better assess the relative ability of different

methods to recover the mean recurrence intervals from a
small sample, 100 analyses were performed using Monte
Carlo methods and maximum likelihood. The average
California paleoseismic site on which Monte Carlo analysis
could be performed had 5 events and an apparent mean
recurrence interval of 341 years. The total average dating
uncertainty was about 50% of the recurrence interval. Thus
100 random series were pulled from an exponential distri-
bution with a 341-year mean and ±75-year time windows
were generated around each event. For 5 events, maximum
likelihood is the same as the sample mean (observation
period divided by the number of events). Results of the
simulations are shown in Figure 6.
[22] Sample means tended to underestimate recurrence inter-

vals by an average of 97 years or 28% (see also Figure 3),
clustering most closely to the median of the parent distri-

Figure 5. Example distributions of exponential frequencies fit to various California paleoseismic sites.
Source: Working Group on California Earthquake Probabilities (WGCEP) paleosites database.
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bution (0.63/l = 215 years). In the limiting case of a single
interval, sample means would cluster exactly at the median
because there is a 50% chance of landing on either side of it.
With increasing sample size (>25, Figure 3), sample means
begin to reflect the mean of the parent distribution. While
any given sample mean could be the same as the underlying
distribution, odds are that sample means from a collection of
paleoseismic sites with 5–10 events each (as is the case in
California) will yield a result closer to the underlying
medians. The result being a possible overestimate of the
hazard if earthquakes recur according to an asymmetric PDF
with medians less than means (e.g., exponential, lognormal,
Brownian Passage Time).
[23] Means of Monte Carlo simulations overestimated

mean recurrence by an average 20 years or 6%, while use

of the median values underestimated recurrence intervals by
27 years or 8%. The mode of Monte Carlo analyses tended
to underestimate recurrence intervals more, by an average
70 years (21%); thus use of the median or mean of the
simulations appears to be the best choice. If, as is usually
assumed [e.g., WGCEP, 2003], earthquake recurrence is
distributed asymmetrically, then it would appear that Monte
Carlo sampling may be a useful technique for analysis of
(<5–10 events) short paleoseismic series.
[24] As would be expected, there is an apparent relation-

ship between the number of observed earthquakes in a
paleoseismic series and confidence in determining mean
recurrence interval. In Figure 7, the number of events in
each series is plotted against a normalized expression of the
confidence, where means are divided by 95% confidence

Figure 6. Results of 100 Monte Carlo analyses on 5-event synthetic earthquake series drawn from a
known distribution. Histograms show differences between calculated and the correct recurrence value.
The asymmetric exponential distribution causes a sampling bias for short series such that the arithmetic
mean of the samples is systematically less than the underlying distribution, approaching the distribution
median of 0.63/l (bottom panel). Monte Carlo techniques are subject to considerable uncertainty (upper
panels), but tend to distribute more symmetrically about the mean.
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intervals. Thus larger values imply better-constrained recur-
rence intervals. A standard-error calculation on expected
resolution is shown for comparison.
[25] To summarize, exponential distribution means were

calculated for 19 California paleoseismic sites using a
Monte Carlo method in which all reasonable exponential
distributions were considered. Relative success rates of dif-
ferent recurrence distribution parameters from the Monte
Carlo analysis were used to estimate most-likely interevent
times at each site. A test using synthetic paleoseismic series
tended to show recovery of the parent distributionmeanwithin
about 5–10% of the actual value. The full array of exponential
PDFs (e.g., Figure 5) can be retained for use in probability
calculations as a way of accounting for uncertainty.

3. Monte Carlo Determination of Time-
Dependent Recurrence Parameters

[26] Time-dependent probability calculations can be fit to
mimic the renewal hypothesis of earthquake regeneration
such that earthquake likelihood on a fault is lowest just after
the last event. As tectonic stress grows, the odds of another
earthquake increase. A time-dependent probability calcula-
tion sums a PDF f(t) as

P t � T � t þDtð Þ ¼
Z tþDt

t

f tð Þdt ð3Þ

where f(t) can be any distribution, such as lognormal [e.g.,
Nishenko and Buland, 1987], Weibull [Hagiwara, 1974], or
Brownian Passage Time (inverse Gaussian) [Kagan and
Knopoff, 1987; Matthews et al., 2002]. These functions
distribute interevent time or its proxy (m), and the width of
the distributions represents inherent variability (coefficient
of variation a) on recurrence. For example, in the case of
common practice where a is limited to between 0 and 1, a
very narrow distribution implies very regular recurrence.

[27] Two commonly applied probability density functions,
the lognormal

f t;m;að Þ ¼ 1

ta
ffiffiffiffiffiffi
2p

p exp
� ln t � mð Þ2

2a2

 !
ð4Þ

and Brownian Passage Time (inverse Gaussian, equation (2)),
have characteristics that qualitatively simulate earthquake
renewal when a is limited to be between 0 and 1. The
distributions are asymmetric (Figure 1), with less weight at
very short recurrence times which, when integrated,
translates to very low probability early in the earthquake
cycle. They are defined by two parameters, mean interevent
time (m), and a coefficient of variation (a) that govern their
shape. The distributions differ in their asymptotic behavior;
integration of the lognormal distribution to very long times
asymptotes to zero, whereas the Brownian Passage Time
distribution asymptotes to a fixed value, behavior that
Matthews et al. [2002] say favors the Brownian distribution
for hazard calculations.
[28] The strategy for Monte Carlo determination of time-

dependent recurrence parameters is much the same as
described for exponential frequencies in section 2, except
the analysis must be expanded to consider a range of
coefficient of variation. Thus distributions with means
covering the reasonable range of possible recurrence values
(10 years to 10 times the sample mean) are constructed
across coefficient of variation values between 0.01 and 1.0.
For each PDF described by a paring of coefficient of
variation and mean recurrence, event interval sets are
drawn at random and assembled into earthquake sequences
5 million times. Those that match observed event windows
(range of possible event times as constrained by radio
carbon dating assuming a uniform distribution), are tallied.
Open intervals and the interval before the first catalog event
are treated in the same way as described for the exponential
distribution example in section 2.
[29] Undertaking dual-parameter estimation from sparse

paleoseismic data is a difficult problem, and one that
generally produces a poorly resolved result. The goal with
the Monte Carlo approach is to provide a quantitative basis
for limiting parameters, and for assessing most-likely pair-
ings, because time-dependent probability calculations de-
mand these values. Thus at the very least, the results can be
used to test the consistency of a chosen time-dependent
model with the range of paleoseismic constraints.
[30] As an example, the paleoseismic catalog from the

south Hayward site of Table 1 is analyzed. By repeatedly
sampling a full range of time-dependent PDFs, the most
likely combinations emerge (Figure 8). In this example,
Brownian Passage Time distributions [e.g., Matthews et al.,
2002] are used. The contour plot of Figure 8 shows the
range of possible PDFs that can reproduce the paleoseismic
sequence on the south Hayward fault. From model results it
is possible to conduct a variety of statistical analyses to aid
in selecting appropriate parameters for use probability
calculations. The mean of coefficient of variation-recur-
rence interval combinations yielding PDFs that match
observed records most frequently can be taken as most
likely following the results of analysis shown in Figure 6.
Additionally, the number of matches to observed for a given

Figure 7. Number of paleoearthquakes at different
California sites plotted against normalized expression of
confidence on mean recurrence interval (mode divided by
95% confidence interval). Dashed line represents inverse
standard error.
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combination can be divided by the total number of matches,
and a relative likelihood expressed as a fraction of the most-
frequently successful combination (Table 3).
[31] In Table 3 and Figure 8, results from the south

Hayward fault analysis are given with the most likely
parameters expressed as a function of coefficient of varia-
tion. In that example, a coefficient of variation of 0.2 is
favored, similar to the value calculated by Sykes and Menke
[2006]. The mean of that PDF is 172 years, and the 95%
confidence interval ranges from 140 to 190 years; confi-
dence intervals were found by counting the hits. Should
these parameters be used in time-dependent probability
calculations, the relative likelihood of each parameter set
could be used to weight the solutions. For example, a

coefficient of variation of 0.2 is �8 times more likely than
a value of 0.5 according to the Monte Carlo analysis
(Table 3). More examples from a variety of paleoseismic
sites are discussed and tabulated in section 4.
[32] In some cases there can be dependence between the

coefficient of variation and recurrence interval. That is, for a
given recurrence interval, the most likely range of coeffi-
cient of variation differs from that of a different interval. An
example of this behavior is shown in Figure 9, where data
from a trench on the Elsinore fault at Glen Ivy [T. Rockwell,
unpublished data] were analyzed. This issue varies in
importance depending on the site investigated (e.g., no
slope is apparent on Figure 8). Thus model results could
be used to identify the most likely combinations on a
segment-by-segment basis. Such an analysis for a multifault
probability forecast reduces the possibility of giving non-
zero weight to mutually exclusive recurrence models [Page
and Carlson, 2006] as compared with applying a single
range of coefficient of variation across an entire region.
[33] Calculation results yield distributions of coefficient

of variation-recurrence interval pairings, which in turn
define distributions. Examination of Table 3 shows that
recurrence parameter sets are not normally distributed since
the mode, mean, and median all differ. Here the mean is taken
as the preferred value based on tests shown in Figure 6.
However, It is necessary to verify that the distributions are not
multimodal. For example, in Figure 10, a bimodal distribu-
tion is evident from analysis of the Whittier site on the
Elsinore fault. The site has only 2 reported events that yield
one closed and two open intervals, allowing for a broad
array of possible PDFs each with comparable likelihood of

Figure 8. Analysis results for time-dependent parameters
for Brownian Passage Time distributions at a site on the
south Hayward fault [Lienkaemper et al., 2003]. The
number of matches to the observed paleoseismic sequence
are contoured vs. recurrence interval and coefficient of
variation. The dashed line illustrates dependence between
recurrence interval and coefficient of variation.

Table 3. Probability of Coefficient of Variation-Recurrence

Interval Combinations Defining Recurrence PDFs From Monte

Carlo Modeling of the Tule Pond Site on the Hayward Faulta

Prob COV Mode Median Mean 2.5% 98.5% 16.5% 83.5%

0.0002 0.99 200 153 194 80 340 120 240
0.0004 0.9 190 135 188 80 300 120 230
0.0008 0.8 170 142 184 90 270 130 220
0.0017 0.7 160 148 181 100 260 130 210
0.0039 0.6 170 156 177 100 240 130 200
0.0087 0.5 160 134 173 110 230 130 190
0.0208 0.4 170 137 172 120 210 140 180
0.0420 0.3 170 138 171 130 200 140 180
0.0657 0.2 170 135 172 140 190 150 170
0.0235 0.1 190 143 184 160 190 150 180

aThe most likely mode, median, and mean of the recurrence distributions
are given for a range of coefficient of variation values. In addition, 95% and
67% confidence bounds on recurrence intervals are given.

Figure 9. Analysis results for time-dependent parameters
for Brownian Passage Time distributions at a site on the
Elsinore fault at Glen Ivy (Source: Working Group on
California Earthquake Probabilities (WGCEP) paleosites
database.) The number of matches to the observed paleoseis-
mic sequence are contoured vs. recurrence interval and
coefficient of variation. The dashed line illustrates depen-
dence between recurrence interval and coefficient of variation.
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being correct (Table 4). However, the range of likelihood
does provide a mechanism for weighting parameters in a
probability calculation which, given the similarity in
weights, would reflect the breadth of the recurrence-
parameter uncertainty.

4. Time Dependent Recurrence Interval
Estimates From California Paleoseismic Sites

[34] In this section, the methods outlined in section 3 are
used to analyze a variety of California paleoseismic sites
and most-likely values for mean recurrence interval and
coefficient of variation are reported. Parameters derived
from Monte Carlo analysis are compared with values taken
directly from paleoseismic series.
[35] Data from trenches across 19 California strike-slip

fault segments were analyzed using Monte Carlo methods.
These are the same sites for which exponential parameters
were developed in section 2. A range of coefficient of
variation values was used from 0.01 to 0.99 in 0.1 incre-
ments, and recurrence intervals from 10 years to 10 times
the sample means were attempted at 10-year intervals. Each
combination was tried 5 million times, resulting in a total of
�1.65 	 1010 randomly drawn earthquake series per site that
were compared with observed sequences, which represents
a maximum reasonable compute time for desktop com-
puters. As in the time-independent calculations, the length-
iest series and ones with most tightly constrained ages were
not reproduced with any combination. Thus unless higher-
powered computer resources are used, the method is best
applied to sparse paleoseismic sequences.

[36] Just as recurrence intervals determined from Monte
Carlo analysis using exponential functions could be slightly
higher than sample arithmetic means depending on whether
the modes, means, or medians of the Monte Carlo results
were used, so too were those calculated using Brownian
Passage Time (BPT) distributions. These effects can be
shown graphically by plotting modeled recurrence intervals
against the means of observed intervals (Figure 11).
[37] The Monte Carlo method described in this paper

identifies most-likely PDFs that reproduce a paleoseismic
sequence. For time-dependent analysis, Brownian Passage
Time functions were used, which have long tails (Figure 1). A
long-tailed distribution implies that there are low-probability
long-interval events expected. The majority of California
paleoseismic sites have sequences of fewer than 10 events
identified. Thus if earthquakes are actually distributed like a
Brownian Passage Time (or lognormal) distribution, infre-
quent long-interval events are unlikely to be in the record.
So, when models impose long-tailed shapes to observed
intervals, there is an assumption that long-interval recur-
rence times will happen in the future. Thus the means of
best-fit long-tailed PDFs are expected to be higher than the
arithmetic mean of intervals (Figure 11). An exception to
that outcome is the Garlock fault, where there are some
long intervals in the record (Figure 12). In that instance,
Monte Carlo modeling fits the mean recurrence interval at
m = 729 years as compared to the arithmetic mean of m =
1276 years (Table 5 and Figure 12).
[38] Calculations performed here enable an assessment

of most-likely values of earthquake coefficient of variation
across California. Values range from a = 0.2 to a = 0.9
(Table 5), implying that choosing a single value for the
entire state in probabilistic forecasts might not be the best
practice. There appears to be some consistency among
fault zones with multiple sites; the four Elsinore fault sites
show relatively high coefficient of variation values of a =
0.5 to a = 0.8, and the two Garlock fault sites are similar
at a = 0.6 and a = 0.7. On the southern San Andreas fault,
nearby sites tend to be somewhat consistent: Plunge Creek
and Pitman Canyon both have a = 0.7–0.9 modeled
coefficient of variation, and the Indio and Thousand Palms
Oasis sites have values of a = 0.6 to 0.7. A counterex-

Figure 10. Analysis results for time-dependent parameters
for Brownian Passage Time distributions at a site on the
Elsinore fault at Whittier (Source: Working Group on
California Earthquake Probabilities (WGCEP) paleosites
database.) The number of matches to the observed
paleoseismic sequence are contoured vs. recurrence interval
and coefficient of variation. The plot shows a bimodal
distribution of recurrence intervals with modes at about
1100 and 700 years.

Table 4. Probability of Coefficient of Variation-Recurrence

Interval Combinations Defining Recurrence PDFs From Monte

Carlo Analysis From the Whittier Site on the Elsinore Faulta

Prob COV Mode Median Mean �95% 95% �67% 67%

0.0015 0.99 700 1000 1138.7 670 1950 860 1180
0.0014 0.9 700 1010 1150.5 680 1970 870 1200
0.0012 0.8 750 1030 1167.4 680 2010 890 1230
0.0011 0.7 820 1060 1193.7 690 2040 920 1250
0.0011 0.6 860 1100 1226 720 2080 950 1290
0.0012 0.5 1040 1130 1256.4 740 2080 1000 1310
0.0013 0.4 1180 1190 1286.1 740 2060 1070 1320
0.0011 0.3 1100 1190 1289.7 730 2050 1050 1360
0.0015 0.2 1160 1130 1222.7 720 2010 1010 1250
0.002 0.1 1150 1090 1150.9 700 1690 980 1200

aThe analysis was constrained by only 2 intervals (one open), so the
relative likelihoods of different combinations are not very different,
demonstrating a poorly determined solution.

B03302 PARSONS: MONTE CARLO RECURRENCE ESTIMATION

10 of 14

B03302



ample is the Hayward fault, with its 2 sites having
coefficient of variation values of a = 0.2 and a = 0.7.
[39] As in coefficient of variation, there is a degree of

consistency in modeled recurrence interval among faults
(Table 5). Three of 4 Elsinore sites are calculated to have
recurrence estimates that range from m = 741 to m =
1256 years. The Glen Ivy site shows a higher frequency
of m = 291 years. The two Garlock-fault sites are calculated
to have consistent recurrence intervals of m = 711 and m =
729 years. Of the southern San Andreas fault sites that could
be fit with a Monte Carlo technique there is consistency in
modeled recurrence intervals, with values ranging between
m = 234 and m = 303 years. However, the southern San
Andreas locations not analyzed here, the Wrightwood and
Pallet Creek sites, have yielded significantly shorter inter-
vals (m = 105 and m = 135 years respectively) as calculated
by Biasi et al. [2002]. There is a discrepancy in northern
San Andreas earthquake recurrence between the Arano Flat
site near Watsonville that shows a relatively short recurrence
interval of m = 110 years as compared with the Ft. Ross site
north of the San Francisco Bay area that has a 350-year
interval.

5. Conclusions

[40] A method for estimating most-likely recurrence
parameters from short paleoseismic observations is ex-
plored. Sample means from short series that are expected
to have asymmetric recurrence distributions will tend to
reflect the distribution medians rather than the means, and
could underestimate recurrence intervals (and thus overes-
timate hazard). Benchmarking tests on short, synthetic
paleoearthquake catalogs indicate that the Monte Carlo
methods can give results more reflective of the underlying
distribution mean. Monte Carlo draws from every reason-
able recurrence PDF of an assumed class are tested for
consistency with observed paleoearthquake series. Those
models that can reproduce observations within dating

uncertainties are tallied, and the mean of PDFs that produce
the most fits to observed is taken as most likely. Very long
observed sequences with tight age constraints are difficult to
reproduce with any specific PDF because of computational
limitations; thus the proposed method is most useful in
extracting recurrence information from short (�10 events)
series, and/or sequences with poor age control. The method
was applied to 19 paleoseismic sites across California using

Figure 12. Observed preferred earthquake intervals on the
central Garlock fault [Dawson et al., 2003; C. H. Madden,
unpublished data, 2006] shown as a histogram; the
arithmetic mean of the intervals is �1276 years. The black
curves are BPT distributions with 1276-year and 729-year
means. The gray curve is an exponential distribution
corresponding to a 1200-year mean. In this instance Monte
Carlo modeling finds that BPT distributions with lower
means than the arithmetic mean can accommodate the long-
intervals in the record because of the distribution asymmetry.

Figure 11. Plot of modeled recurrence-interval means against (a) exponential, and (b) Brownian
Passage Time distribution parameters derived directly from observed intervals. The dashed black lines
have a slope of 1.0; thus points falling on it would imply both methods yield the same result. The means,
medians, and modes of Monte Carlo fits to parameters from Table 2 and Table 5 are shown by green, red
and blue dots respectively.
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time-independent and time-dependent PDFs. Relative
weights were calculated for recurrence parameters from
even the sparsest catalogs, which are proposed to be used
for weighting logic-tree branches in earthquake probability
calculations.
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