

NIOSH HEALTH HAZARD EVALUATION REPORT

HETA #2005-0031-3055 C & C Roofing Phoenix, Arizona

March 2008

DEPARTMENT OF HEALTH AND HUMAN SERVICES
Centers for Disease Control and Prevention
National Institute for Occupational Safety and Health

PREFACE

The Hazard Evaluation and Technical Assistance Branch (HETAB) of the National Institute for Occupational Safety and Health (NIOSH) conducts field investigations of possible health hazards in the workplace. These investigations are conducted under the authority of Section 20(a)(6) of the Occupational Safety and Health (OSHA) Act of 1970, 29 U.S.C. 669(a)(6) which authorizes the Secretary of Health and Human Services, following a written request from any employers or authorized representative of employees, to determine whether any substance normally found in the place of employment has potentially toxic effects in such concentrations as used or found.

HETAB also provides, upon request, technical and consultative assistance to federal, state, and local agencies; labor; industry; and other groups or individuals to control occupational health hazards and to prevent related trauma and disease. Mention of company names or products does not constitute endorsement by NIOSH.

ACKNOWLEDGMENTS AND AVAILABILITY OF REPORT

This report was prepared by Chandran Achutan, Judith Eisenberg, and Charles Mueller of HETAB, Division of Surveillance, Hazard Evaluations and Field Studies (DSHEFS), and Ron Sollberger, currently with the United States Veterans Administration in Cincinnati, Ohio. Field assistance was provided by Walter Alarcon, Carlos Aristeguieta, and Manuel Rodriguez of DSHEFS; Diana Freeland, David Spainhour, and Jim Taylor of the Division of Respiratory Disease Studies (DRDS); Kevin Ashley of the Division of Applied Research and Technology (DART); and Maria Lioce-Mata of the NIOSH Office of the Director. Review of spirometry results was provided by Paul Enright of DRDS. Interpretation of x-rays was provided by Lee Petsonk and Anita Wolfe of DRDS. Mobile x-ray equipment was provided by Professional Health Services (Havertown, Pennsylvania). Analytical support was provided by DataChem Laboratories, Inc., (Salt Lake City, Utah). Desktop publishing was performed by Robin Smith. Editorial assistance was provided by Ellen Galloway.

Copies of this report have been sent to employee and management representatives at C & C Roofing and the OSHA Regional Office. This report is not copyrighted and may be freely reproduced. The report may be viewed and printed from the following internet address: http://www.cdc.gov/niosh/hhe/. Copies may be purchased from the National Technical Information Service (NTIS) at 5825 Port Royal Road, Springfield, Virginia 22161.

For the purpose of informing affected employees, copies of this report shall be posted by the employer in a prominent place accessible to the employees for a period of 30 calendar days.

Highlights of the NIOSH Health Hazard Evaluation

NIOSH received a request for a health hazard evaluation (HHE) from the United Union of Roofers, Waterproofers, and Allied Workers Local 135 to evaluate exposures to dust during saw cutting of cement tile among employees of C & C Roofing, Phoenix, Arizona. Medical screening of employees for silicosis was performed in February 2005, and employee exposures to dust and noise were evaluated during a site visit in March 2005.

What NIOSH Did

- We evaluated worker exposures to dust and crystalline silica.
- We evaluated worker exposures to noise.
- We observed work practices, fall protection, and personal protective equipment (PPE).
- We screened employees from C & C Roofing and three other Phoenix roofing contractors for silicosis using a medical questionnaire, lung function testing, and chest x-ray.

What NIOSH Found

- Most employees were overexposed to silica and noise
- Workers wore respirators most of the time during cutting activities.
- Employees were not aware of the workplace hazards.
- Most roofers who participated in the medical screening had normal lung function.
- None of those with abnormal lung function had moderate or severe impairments.
- Lung function decreased with increasing years of performing dry-cutting of cement tiles.
- No chest x-rays showed findings consistent with silicosis.

What C & C Roofing Managers Can Do

- Establish engineering controls such as local exhaust ventilation and work practice controls to reduce airborne silica levels.
- Implement a mandatory respiratory protection program until engineering controls are in place and proven effective.
- Develop and enforce a hearing conservation program.
- Conduct periodic environmental monitoring to ensure that dust control measures are effective.
- Provide training on workplace hazards, PPE use, and dust control measures.
- Implement OSHA-mandated silica medical surveillance protocols.
- Ensure compliance with fall protection standards.

What C & C Roofing Employees Can Do

- Use dust control measures.
- Use respirators and hearing protection properly.
- Tell management about health and safety concerns.
- Attend training programs provided by the company.
- Tell your doctor that you might be exposed to respirable silica at work and contact him/her right away if you develop shortness of breath or cough.

What To Do For More Information:

We encourage you to read the full report. If you would like a copy, either ask your health and safety representative to make you a copy or call 1-513-841-4252 and ask for HETA Final Report #2005-0031-3055

Health Hazard Evaluation Report 2005-0031-3055 C & C Roofing Phoenix, Arizona March 2008

Chandran Achutan, PhD Judith Eisenberg, MD, MS Ron Sollberger, CHMM Charles Mueller, MS

SUMMARY

On October 29, 2004, the National Institute for Occupational Safety and Health (NIOSH) received a request from the United Union of Roofers, Waterproofers, and Allied Workers Local 135 to conduct a health hazard evaluation (HHE) among C & C Roofing employees at a job site in Phoenix, Arizona. The request listed silica and noise as potential hazards to roofers. This is one of four HHE requests received from this union asking NIOSH to examine silica and noise exposures among roofers employed by four roofing companies in Arizona.

Medical screening was conducted from February 22–24, 2005. Employees from all four roofing companies were invited to participate if they had at least 5 years of experience as a roofer. The medical screening included a questionnaire, lung function test (spirometry), and a chest x-ray. Of the 118 employees who participated in all three tests, 14 were from C & C Roofing.

Most roofers who participated in the medical screening had normal lung function. None of those with abnormal lung function had moderate or severe impairments. After controlling for the effects of smoking, NIOSH investigators found that lung function decreased with increasing years of dry cutting cement tiles. No chest x-rays showed findings consistent with silicosis.

Dust and noise measurements for employees at C & C Roofing were collected during site visits on March 1–2, 2005. Four of the ten personal breathing zone (PBZ) total dust samples reached or exceeded the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 15 mg/m³ for particulate not otherwise regulated. All of the PBZ respirable silica results exceeded the NIOSH and the American Conference of Governmental Industrial Hygienists criteria; one exceeded the OSHA PEL.

Noise exposures for the seven roofers exceeded the NIOSH recommended exposure limit. Five of the seven also exceeded the OSHA action level, and two reached or exceeded the OSHA PEL.

An occupational health hazard due to exposures to respirable silica and noise existed for employees of C & C Roofing. Recommendations for controlling workplace exposures include reducing or eliminating exposures by implementing engineering controls and enforcing the use of personal protective equipment under the OSHA respirator program guidelines. The employer should develop a training program regarding the potential health hazards of respirable silica exposure and establish an employee medical monitoring program as specified by the OSHA Special Emphasis Program for Silicosis. Additional recommendations are included at the end of this report. Keywords: NAICS: 238160 (Roofing Contractors), silica, quartz, dust, total dust, respirable dust, respirable silica, silicosis, noise, construction, roofing, fall protection, lung function, heat stress

Table of Contents

Prefaceii
Acknowledgments and Availability of Reportii
Highlights of the Health Hazard Evaluationiii
Summaryiv
Introduction1
Background1
Methods1
Industrial Hygiene1
Medical2
Evaluation Criteria3
Silica (Quartz, Cristobalite)3
Noise5
Fall Protection6
Results6
Industrial Hygiene6
Medical7
Discussion9
Industrial Hygiene9
Medical11
Conclusions11
Recommendations11
References
Tables16
Figures

INTRODUCTION

On October 29, 2004, the National Institute for Occupational Safety and Health (NIOSH) received a request from the United Union of Roofers, Waterproofers, and Allied Workers Local 135 to conduct a health hazard evaluation (HHE) among C & C Roofing employees at a job site in Phoenix, Arizona. The request listed silica and noise as potential hazards that workers may be exposed to when performing roofing operations. This request was one of four requests submitted by the union concerning silica and noise exposures to roofers.

Based on the results of the first survey that found overexposures to silica and noise¹, a medical team from NIOSH conducted medical screening and exposure assessment for the roofers employed with C & C Roofing as well as three other companies from February 22–24, 2005, in the Phoenix area. Participants were asked to complete a medical questionnaire, spirometry, and chest x-ray. This report includes environmental and medical findings for C & C Roofing and group medical findings for all roofers evaluated by NIOSH in a series of health hazard evaluations.^{2,3}

On March 1–2, 2005, NIOSH investigators conducted an exposure assessment at residential building construction sites in Phoenix, Arizona. They measured dust and noise exposures and took bulk samples of tile dust to determine the silica content.

BACKGROUND

C & C Roofing Inc. provides roofing installation services to residential and commercial properties in the greater Phoenix area. The company employs 50–60 workers. Although C & C Roofing was a unionized shop at the time of the HHE request, that relationship ended in 2005. Spanish is the primary language for many employees.

The employees are organized in crews of three to five, typically consisting of a foreman, a

"second man," laborers, cutters, and drivers. The work shift is typically 6:00 a.m. to 3:00 p.m. for 5 to 6 days per week, but may start and end earlier during the summer. The roof installation includes three phases. The first phase is laving sticks and paper on the roof, the second is setting the tiles by stacking them in various areas of the roof, and the third is cutting and nailing the tiles in place. The tiles come in various colors and can be molded to look like wood shingles. They may be barrel-shaped or Sshaped, or made of slate (the job site had the slate-shaped tiles that were "uncolored," which is actually a tan-brown color). At least one handheld gas-powered cutting saw is used per crew. Generally the foreman or the second man cuts the tile while the laborers and drivers lay and nail the tiles in place. Dust is generated during the cutting of tiles to fit for size at the channels and valleys on the roof, at cupolas or turrets, and at the ends of the roof. At the completion of the roof installation, a cleanup of the roof is done by using a gas-powered leaf blower to remove dust and debris from the tiles, also creating dust exposures to the employees for short periods of time. Crews install approximately 200 roofs per month at different sites around Phoenix.

METHODS

Industrial Hygiene

The sampling strategy consisted of selecting home sites each day where employees would be cutting and laying tiles throughout the day. Noise measurements and simultaneous full-shift personal breathing zone (PBZ) air samples were collected for total and respirable dust. Bulk samples of tile dust were also collected at each house. In addition, NIOSH investigators observed fall protection and respiratory protection practices as the roofers worked.

Bulk Samples

Bulk samples of tile dust were collected at houses where workers performed roofing operations during this survey. The samples were analyzed for silica (quartz and cristobalite) using x-ray diffraction per NIOSH Manual of Analytical Methods (NMAM) Method 7500.⁴

Total and Respirable Dust

Simultaneous PBZ air samples for total and respirable particulate were collected and analyzed according to NIOSH Methods 0500 and 0600, respectively. Samples were collected on 37-millimeter (mm), 5-micrometer (µm) polyvinyl chloride (PVC) filters, at a flow rate of 2 liters per minute (Lpm) for total particulate, and 1.7 Lpm using a 10-mm nylon cyclone preselector for respirable particulate. In addition, the respirable particulate samples were analyzed for silica content by x-ray diffraction using NIOSH Method 7500.

Noise

Electronics Model Q-300 Noise Ouest® Dosimeters were used to collect the daily noise exposure measurements from the roofers who had volunteered to participate in the NIOSH evaluation. The dosimeter was secured on the workers' belts or fall protection harnesses and the dosimeter's microphone attached to their shirt, halfway between the collar and the point of the shoulder. A windscreen provided by the dosimeter manufacturer was placed over the microphone during recordings. The dosimeters were worn by the roofers for their entire work shift. The noise information was downloaded to a personal computer for interpretation with QuestSuite® Professional computer software and the dosimeters reset for the next day. The dosimeters were calibrated before and after the work shift according to the manufacturer's instructions.

Medical

Medical screening was conducted from February 22–24, 2005. Employees were initially recruited during January 2005. Recruitment flyers in English and Spanish were distributed to all workers present. These flyers explained the purpose of the medical screening and recruited workers with at least 5 years of work experience as a roofer dry-cutting cement roofing tiles. This criterion was chosen based on initial exposure data that indicated levels of respirable silica that could pose a risk for the development of chronic silicosis.

The medical screening consisted of a medical questionnaire, spirometry, and chest x-ray. Informed consent was obtained from all participants in their primary language. To address language and literacy issues, NIOSH personnel read the questionnaire aloud in the participant's primary language. The medical. questionnaire covered past occupational, and smoking history; symptoms that could be consistent with silicosis or other conditions that have been associated with silicosis; and previous medical evaluations.

Spirometry was conducted by NIOSH-certified spirometry technicians. Spirometry is a form of lung function testing that measures multiple parameters of an exhaled breath that are then compared to an expected set of values for a participant's age, gender, height, weight, and ethnicity. The two spirometry parameters measured were the FEV1, the forced exhaled volume in one second, and the FVC, the forced vital capacity. The absolute values of the FEV1 and FVC along with their ratio are used to classify findings into obstructive, restrictive, or mixed patterns of lung function. Obstructive patterns are found in diseases such as chronic bronchitis when mucus physically blocks the inside of the airways. Restrictive patterns are found in conditions that prevent full inflation of the lungs as in the case of morbid obesity or fluid in the space between the lungs and the chest cavity.

Participants were coached in their primary language on how to properly perform the exhalation required for this test. Real-time computer displays of each exhalation curve ensured that the runs were technically adequate for interpretation. Computer interpretations of the exhalation curves were reviewed by a NIOSH pulmonologist.

Chest x-rays were performed by technicians with mobile x-ray equipment supplied by Professional Health Services. All x-rays were interpreted by NIOSH-certified B-readers in a median read protocol. B-readers are physicians who pass a proficiency test every 4 years to demonstrate the ability to correctly grade work-related lung disease chest x-rays in accordance

with the standardized set of films produced by the International Labor Organization in Geneva, Switzerland. Each x-ray was read by two Breaders. If their interpretations differed, the film was given to a third B-reader, and the final interpretation was taken as the majority opinion.

Statistical Analysis

The data from the medical screening component were analyzed in two ways. The first analysis involved only data from employees of C & C Roofing. The second analysis used the data from all four contractors. Descriptive statistics were calculated for company-specific data, and linear regression analysis was performed on the combined data set to examine the relationship between years of dry-cutting cement tiles and lung function while controlling for effects of smoking. SAS Version 9.1.3 (Cary, North Carolina) was used for all statistical analysis. The significance level (p) was 0.05.

EVALUATION CRITERIA

As a guide to the evaluation of the hazards posed by workplace exposures, NIOSH field staff employs environmental evaluation criteria for the assessment of a number of chemical and physical agents. These criteria are intended to suggest levels of exposure to which most workers may be exposed up to 10 hours per day, 40 hours per week for a working lifetime without experiencing adverse health effects. It is, however, important to note that not all workers will be protected from adverse health effects even though their exposures are maintained below these levels. A small percentage may experience adverse health effects because of individual susceptibility, a pre-existing medical condition. and/or hypersensitivity (allergy). In addition, some hazardous substances may act in combination with other workplace exposures, the general environment, or with medications or personal habits of the worker to produce health effects even if the occupational exposures are controlled at the level set by the criterion. These combined effects are often not considered in the evaluation criteria. Also, some substances are absorbed by direct contact with the skin and mucous

membranes, and thus potentially increases the overall exposure. Finally, evaluation criteria may change over the years as new information on the toxic effects of an agent become available.

The primary sources of environmental evaluation criteria for the workplace are: (1) NIOSH recommended exposure limits (RELs),⁵ (2) the American Conference of Governmental Industrial Hygienists' (ACGIH®) threshold limit values (TLVs®),⁶ and (3) the U.S. Department of Labor, OSHA permissible exposure limits (PELs).⁷ Employers are encouraged to follow the OSHA limits, the NIOSH RELs, the ACGIH TLVs, or whichever are the more protective criteria.

OSHA requires an employer to furnish employees a place of employment that is free from recognized hazards that are causing or are likely to cause death or serious physical harm [Occupational Safety and Health Act of 1970, Public Law 91–596, sec. 5(a)(1)]. Thus, employers should understand that not all hazardous chemicals have specific OSHA exposure limits such as PELs and short-term exposure limits (STELs). An employer is still required by OSHA to protect its employees from hazards, even in the absence of a specific OSHA PEL.

A time-weighted average (TWA) exposure refers to the average airborne concentration of a substance during a normal 8- to 10-hour workday. Some substances have recommended STEL or ceiling values which are intended to supplement the TWA where there are recognized toxic effects from higher exposures over the short-term.

Silica (Quartz, Cristobalite)

Silica, or silicon dioxide (SiO_2), occurs in a crystalline or non-crystalline (amorphous) form. In crystalline silica, the SiO_2 molecules are oriented in a fixed pattern versus the random arrangement of the amorphous form. The more common crystalline forms in workplace environments are quartz and cristobalite, and to a lesser extent, tridymite. Occupational

exposures to respirable crystalline silica (quartz and cristobalite) have been associated with silicosis, lung cancer, pulmonary tuberculosis, and airway diseases.

In particular, silicosis is a fibrotic disease of the lung caused by the deposition of fine crystalline silica particles in the lungs. It is the disease most often associated with exposure to respirable crystalline silica. This lung disease, which is sometimes asymptomatic, is caused by the inhalation and deposition of respirable crystalline silica particles that are 10 µm or less in diameter. Particles 10 µm or below are considered respirable particles and classified as having the potential to reach the lower portions of the human lung (alveolar region). Although particle sizes 10 µm and below are considered respirable, the human body and its clearance mechanisms are capable of deposition of a certain portion of these sizes before they reach the alveolar region.8 Symptoms usually develop insidiously, with cough, shortness of breath, chest pain, weakness, wheezing, and nonspecific chest illnesses. Silicosis usually occurs after years of exposure (chronic), but may appear in a shorter period of time (acute) if exposure concentrations are very high. Acute silicosis is typically associated with a history of high exposures from tasks that produce small particles of airborne dust with a high silica content.⁹ Even though the carcinogenicity of crystalline silica in humans has been strongly debated in the scientific community, the International Agency for Research on Cancer (IARC) in 1996 concluded that there was "sufficient evidence in humans for the carcinogenicity of inhaled crystalline silica in the form of quartz or cristobalite from occupational sources." A NIOSH publication also lists several other serious diseases from occupational exposure to crystalline silica. These include lung cancer and non-carcinogenic disorders including immunologic disorders and autoimmune diseases, rheumatoid arthritis, renal diseases, and an increased risk of developing tuberculosis after exposure to the infectious agent.11

When proper practices are not followed or controls are not maintained, respirable crystalline silica exposures can exceed the NIOSH REL, the ACGIH TLV, or the OSHA PEL. 5,6,7 NIOSH recommends an exposure limit of 0.05 mg/m³ to reduce the risk of developing silicosis, lung cancer, and other adverse health effects.

The OSHA PEL for respirable dust containing 1% quartz or more in general industry is expressed as an equation:

Respirable PEL =
$$\frac{10 \text{ mg/m}^3}{\text{% Silica} + 2}$$

If, for example, the dust contains no crystalline silica, the PEL is 5 mg/m³, and if the dust is 100% crystalline silica, the PEL is 0.1 mg/m³. For tridymite and cristobalite, OSHA uses half the value calculated using the formula for quartz.

The current OSHA PEL for respirable dust containing crystalline silica (quartz) for the construction industry is measured by impinger sampling. The PEL is expressed in millions of particles per cubic foot (mppcf) and is calculated using the following formula:¹²

Since the PELs were adopted, the impinger sampling method has been rendered obsolete by gravimetric sampling. 13 OSHA is not aware of any government agencies or employers in this country that are currently using impinger sampling to assess worker exposure to dust containing crystalline silica, and impinger samples are generally recognized as less reliable than gravimetric samples. OSHA currently instructs its compliance officers to apply a conversion factor of 0.1 mg/m³ per mppcf when converting between gravimetric sampling and particle count standard when characterizing construction operation exposures. 14 Arizona OSHA reports respirable dust concentrations in mg/m³ even though the workers fall under the

OSHA construction standard.¹⁵ Therefore, in this report dust concentrations are presented in mg/m³ instead of mppcf. The ACGIH TLVs for respirable quartz and cristobalite are 0.025 mg/m³ as 8-hour TWAs.⁶

Noise

Noise-induced loss of hearing is an irreversible, sensorineural condition that progresses with exposure. Although hearing ability declines with age (presbycusis) in all populations, exposure to noise produces hearing loss greater than that resulting from the natural aging process. This noise-induced loss is caused by damage to nerve cells of the inner ear (cochlea) and, unlike some conductive hearing disorders, cannot be treated medically.¹⁶ While loss of hearing may result from a single exposure to a very brief impulse noise or explosion, such traumatic losses are rare. In most cases, noise-induced hearing loss is insidious. Typically, it begins to develop at 4000 or 6000 Hertz (Hz) (the hearing range is 20 Hz to 20000 Hz) and spreads to lower and higher frequencies. Often, material impairment has occurred before the condition is clearly recognized. Such impairment is usually severe enough to permanently affect a person's ability to hear and understand speech under everyday conditions. Although the primary frequencies of human speech range from 200 Hz to 2000 Hz, research has shown that the consonant sounds, which enable people to distinguish words such as "fish" from "fist," have still higher frequency components.¹⁷

The A-weighted decibel (dBA) is the preferred unit for measuring sound levels to assess worker noise exposures. The dBA scale is weighted to approximate the sensory response of the human ear to sound frequencies near the threshold of hearing. The decibel unit is dimensionless, and represents the logarithmic relationship of the measured sound pressure level to an arbitrary reference sound pressure (20 micropascals, the normal threshold of human hearing at a frequency of 1000 Hz). Decibel units are used because of the very large range of sound pressure levels which are audible to the human ear. Because the dBA scale is logarithmic, increases of 3 dBA, 10 dBA, and 20 dBA

represent a doubling, tenfold increase, and hundredfold increase of sound energy, respectively. It should be noted that noise exposures expressed in decibels cannot be averaged by taking the simple arithmetic mean. A TWA exposure refers to the average noise exposure during a normal 8-hour workday.

The OSHA construction standard for occupational noise exposure (29 CFR 1926.52)¹⁸ stipulates that a worker can be exposed to a maximum PEL of 90 dBA for 8 hours per day. Times permitted at noise levels from 90 to 115 dBA are given in Table D-2 of the standard. These levels are based on a 5-dB time/intensity trading relationship, or exchange rate. This means that a person may be exposed to noise levels of 95 dBA for no more than 4 hours, to 100 dBA for 2 hours, etc. The standard provides a formula to calculate the equivalent noise exposures for conditions where noise levels vary throughout the day:

$$F(e) = T1/L1 + T2/L2 + ... + Tn/Ln,$$

where F(e) indicates the equivalent noise exposure factor, T indicates the period of noise exposure at any essentially constant level, and L indicates the duration of the permissible noise exposure at the constant level (Table D-2).

If the value of F(e) exceeds unity (1) the exposure exceeds permissible levels. When noise levels exceed the PEL, feasible administrative or engineering controls shall be utilized. If such controls fail to reduce sound levels within the levels of the table, personal protective equipment shall be provided and used to reduce sound levels to less than permissible levels.¹⁹

In August 2002, OSHA published an advance notice of proposed rulemaking on a hearing conservation program for construction workers.²⁰ In the notice, OSHA is considering rulemaking to revise the construction noise standards to include a hearing conservation component for the construction industry that provides a similar level of protection to that afforded to workers in general industry. The **OSHA** industry standard general

occupational exposure to noise (29 CFR 1910.95)²¹ also specifies a maximum PEL of 90 dBA for 8 hours per day. The regulation, in calculating the PEL, uses a 5-dB time/intensity exchange rate. The duration and sound level intensities can be combined in order to calculate a worker's daily noise dose according to the formula:

Dose =
$$100 \text{ X} \left(C_1/T_1 + C_2/T_2 + ... + C_n/T_n \right)$$
,

where C_n indicates the total time of exposure at a specific noise level and T_n indicates the reference duration for that level as given in Table G-16a of the OSHA general industry noise regulation. During any 24-hour period, a worker is allowed up to 100% of his daily noise dose. Doses greater than 100% are in excess of the OSHA PEL.

The OSHA general industry regulation has an additional action level (AL) of 85 dBA; an employer shall administer a continuing, effective hearing conservation program when the 8-hour TWA value exceeds the AL. The program must include monitoring, employee notification, observation, audiometric testing, hearing protectors, training, and record keeping. All of these requirements are included in 29 CFR 1910.95, paragraphs (c) through (o). conclusion, the OSHA noise standard states that when workers are exposed to noise levels in excess of the OSHA PEL of 90 dBA, feasible engineering or administrative controls shall be implemented to reduce the workers' exposure levels.

NIOSH, in its Criteria for a Recommended Standard, ²² and the ACGIH propose exposure criteria of 85 dBA as a TWA for 8 hours, 5 dB less than the OSHA standard. The criteria also use a more conservative 3-dB time/intensity trading relationship in calculating exposure limits. Thus, a worker can be exposed to 85 dBA for 8 hours, but to no more than 88 dBA for 4 hours or 91 dBA for 2 hours. Twelve-hour exposures have to be 83 dBA or less according to the NIOSH REL. Like the PEL, a worker is allowed a daily noise dose of up to 100% during a 24-hour period under these criteria.

Fall Protection

The OSHA safety and health regulation for section 1926.501(b)(13) construction, ("Residential Construction"), states that if an employee is exposed to falling 6 feet (1.8 meters) or more from an unprotected side or edge, the employer must select a guardrail system, safety net system, or personal fall arrest system to protect the worker.²³ Fall protection for residential construction has certain tasks identified that may be performed without the use of conventional fall protection provided the employer follows all guidelines in Appendix E of Subpart M covered in OSHA Instruction STD 3.1, "Interim Fall Protection Compliance Guidelines For Residential Construction." An employer does not have to demonstrate that conventional fall protection is not feasible before using these procedures. A fall protection plan is required but it does not have to be written nor does it have to be specific to the job site.

RESULTS

Industrial Hygiene

Bulk Samples

Bulk samples of tile dust contained 20%–22% quartz. None of the samples contained cristobalite.

Total and Respirable Dust

Ten total dust and respirable dust PBZ air samples were collected. The concentrations of the total and respirable dust in the samples are shown in Table 1. The ten total dust concentrations ranged from 3.7 to 445 mg/m³, with a mean of 74 mg/m³. Four of the total dust samples exceeded the OSHA PEL of 15 mg/m³. The ten respirable dust concentrations ranged from 0.7 to 6.3 mg/m³, with a mean of 1.7 mg/m³. All respirable dust measures were below the OSHA PEL of 5 mg/m³ and the ACGIH TLV of 3 mg/m³.

Respirable Silica

Results of the silica analyses are also presented in Table 1. The quartz content in the respirable dust samples ranged from 9.8% to 16.9%. The OSHA PEL for silica uses a formula that reflects the combination of two components: (1) the level of respirable dust (i.e., dust small enough to penetrate to the air exchange regions of the lung), and (2) the percent and type of crystalline silica (e.g., quartz or cristobalite) in the dust. One of the 10 samples (10%) exceeded the OSHA PEL. The NIOSH and ACGIH exposure criteria are based on the respirable quartz concentration in the sample. All ten PBZ samples exceeded the NIOSH REL and ACGIH TLV for respirable quartz. Exposures did not significantly differ over job titles. The majority of the tile cutting during the survey was done by the foreman and the second man. The laborers rarely conduct tile cutting, but are often in close proximity during tile cutting so they can lay and set the tiles. A couple of the employees were observed wearing disposable dust respirators at times during their work shift.

Noise

The Quest dosimeters collect data so that one can directly compare the information with the three different noise criteria used in this survey, the OSHA PEL (same PEL criterion for both construction and general industry) and AL, and the NIOSH REL. The OSHA criteria use a 90dBA criterion and 5-dB exchange rate for the PEL and AL. The difference between the two is the threshold level employed, with a 90 dBA threshold for the PEL and an 80 dBA threshold for the AL. The threshold level is the lower limit of noise values included in the calculation of the criteria; values less than the threshold are ignored by the dosimeter. The NIOSH criterion differs from the OSHA criterion in that the NIOSH criterion is 85 dBA, the threshold is 80 dBA, and it uses a 3-dB exchange rate. Because of the different 8-hour criteria and exchange rates, the dose equations used to calculate the equivalent TWA values are different for the NIOSH and OSHA criteria. The OSHA dose equation is:

$$TWA = 16.61 \times \log_{10} (Dose/100) + 90$$
,

and the NIOSH equation is:

$$TWA = 10.00 \times \log_{10} (Dose/100) + 85.$$

Because of these criteria differences, different equivalent TWA values will be calculated for the same noise environment.

Each roofing crew was composed of a foreman, second man, and two laborers. Two K-12 portable circular saws with 12" diamond-tipped blades designed to cut concrete and masonry were taken up on the roof by each of the crews. None of the employees were observed wearing hearing protection devices (HPDs) while on the roof. Most cutting with the power saw was done by the foreman and second man on both crews. Noise data are presented in Table 2 for the 2 survey days. Full-shift TWA noise exposures calculated according to the three criteria revealed that the NIOSH REL was exceeded for all seven measurements. The exposures ranged from 86 to 99 dBA, with the highest values measured on the crew's second man. Six employees exceeded the OSHA AL of 85 dBA and two employees reached or exceeded the OSHA PEL of 90 dBA.

Fall Protection

Employees were consistently observed working without fall protection during this evaluation.

Medical

Results for C & C Roofing Employees

Medical questionnaire: Fourteen employees of C & C Roofing involved in cement tile installation participated in the medical screening. The mean age was 35 (range 23 to 50) years. Of the 14, 85% identified themselves as Hispanic. Eleven employees were current or former smokers. The mean number of years of dry cutting was 10 with a range of 4 to 27 years for the ten C & C employees who were reached by phone.

Five C & C employees reported shortness of breath while walking fast. Three of the five employees were smokers, and one was a non-smoker. The smoking status of one employee was not known. No C & C employee reported shortness of breath requiring them to walk more

slowly on level ground than others of similar age but two did report getting short of breath while at work. These categories were not mutually exclusive and employees could answer more than one.

Spirometry: No C & C participants had abnormal spirometry results.

Chest x-ray: No chest x-rays were interpreted as consistent with silicosis. One had non-silicosis related findings (e.g., possible cancer, infections, or heart abnormalities) for which NIOSH investigators quickly notified the affected individual by both telephone and letter. Four had non-specific findings of increased bronchovascular markings and/or calcified granulomas or nodes noted by the B-reader; these results were relayed to the participants in their notification packets.

Further statistical analysis was not performed due to the small number of participants from C & C Roofing. However, because the work conditions, job tasks, and materials used were similar for all four contractors, the results obtained from the analysis of the grouped results (i.e., a slight decrease in both spirometry parameters versus years roofing) are relevant to each company.

Grouped Results for all Four Roofing Contractors

One hundred eighteen participants completed all three testing stations: medical questionnaire, spirometry, and chest x-ray. An additional five completed only one or two stations.

Medical questionnaire: All participants were male and between the ages of 19–58 years. The mean age of all participants was 32 years. One hundred eight (91%) identified themselves as Hispanic. Thirty-three (30%) were current smokers and 39 (36%) were former smokers. When reviewing the questionnaire, investigators noted apparent confusion regarding the responses to the question that asked for duration of dry cutting. Therefore, NIOSH investigators attempted to contact all the participants by phone using Spanish-fluent NIOSH personnel to

confirm responses. Of the 123 participants, they were only able to reach 68. For the participants who were reached by phone, the mean duration of dry cutting was 7.5 years with a range of 0 to 27 years.

Nineteen (16%) roofers reported shortness of breath. Of the nineteen, eleven reported shortness of breath while at work, two reported that their shortness of breath made doing their job tasks difficult, and three sought treatment for shortness of breath. The diagnoses given to those who were treated included sinusitis/pneumonia, asthma, and "smoking-related" disease.

The medical questionnaire included inquiries regarding participants' past exposure to mycobacterium tuberculosis (TB) and any subsequent diagnosis of this infection. These questions were included because persons with silicosis have an increased risk for developing active TB infection after exposure to the TB bacterium. Two had a self-reported history of a positive TB skin test, but none reported a prior diagnosis of TB. (We did not inquire about BCG [Bacillus of Calmette and Guerin] vaccination status, which may produce a false positive skin test for TB.) No participant had a prior diagnosis of silicosis, scleroderma, or systemic lupus erythematosis. Positive responses came in for rheumatoid arthritis (1) and renal disease (2). Scleroderma. sarcoidosis, systemic erythematosis, rheumatoid arthritis, and renal disease have been associated with silicosis in the medical literature.

Spirometry: Eighteen (15%) of the participants had abnormal spirometry results: three had borderline restrictive patterns, ten had borderline obstructive patterns, four had mild restrictive patterns, and one had a mild obstructive pattern. One participant could not generate acceptable curves for analysis. No participants had moderate or severe impairments on their spirometry results.

When controlling for smoking, there was a 0.6% decrease in the percent predicted FEV1 per year of dry cutting (p=0.054) and a 0.3% decrease in the percent predicted FVC per year of dry

cutting (p=0.35) for the 58 participants having data for years dry cutting, smoking status, and spirometry. These 58 participants represent those employees whose employment duration was confirmed by a second telephone interview. The variable "years dry cutting" was used as a marker for years of exposure to respirable silica. Because percent predicted values were used, normal decreases in lung function that occur with age were already taken into account.

Chest x-ray: All 121 chest x-rays were read as technically adequate by the B-readers. No chest x-rays had a profusion score of 1/0 or higher, which is needed for that film to be read as consistent with silicosis. Nineteen participants (16%) were notified of non-silicosis related findings on their chest x-rays that could indicate the presence of a potential malignancy, infectious process, or structural abnormality.

All employees who participated in the medical screening component received a packet containing the following: a letter in both English and Spanish explaining in lay terms the results of their spirometry and chest x-ray, advising them if any further action was needed based on those results, recommending that they show the results of this testing to their family doctors. give their family doctor a copy of the "What Physicians Need to Know" document included in the packet, and advice to stop smoking if they were current smokers; copies of the actual spirometry results (flow chart and interpretation) and B-reading interpretation forms; a copy of the NIOSH publication No. 2004-108 "Silicosis-Learn the Facts" which is a booklet having English and Spanish texts for their own reference; and lastly, a copy of the New Jersey Department of Health document Physicians Need to Know About Occupational Silicosis and Silica Exposure Sources" in both English and Spanish.

DISCUSSION

Industrial Hygiene

The cement tiles used in this evaluation contain crystalline silica, and workers were exposed to

silica concentrations in excess occupational exposure limits; therefore, a control system or program should be in place to prevent recurring high exposures. This system, in order of preference, can consist of engineering controls (e.g., wet cutting or use of saws equipped with local exhaust ventilation), work practice changes (e.g., positioning employees during tile cutting and roof cleaning to take advantage of wind and natural dilution ventilation, or implementing employee rotation for tile cutting jobs), and personal protective equipment (PPE). NIOSH recommends substituting less hazardous materials crystalline silica whenever feasible. In addition, appropriate respiratory protection should be used when source controls cannot keep exposures below the REL or in the interim until such controls are in place. Medical surveillance of exposed employees should also be performed for evaluation of conditions related to silica exposure.24

Crystalline silica has been regulated under OSHA's Hazard Communication Standard (HCS) 29 CFR 1910.1200. (The construction standard 29 CFR 1926.59 states that the requirements applicable to construction work under this section are identical to those set forth in 1910.1200). The HCS establishes uniform requirements to ensure that the hazards of all chemicals imported, produced, or used in the workplace are fully evaluated for possible physical or health hazards, and that this hazard information is transmitted to affected employers and exposed workers. Under the HCS, OSHAregulated businesses must follow Federal guidelines concerning hazard communication and worker training.²⁵

Dry cutting of cement tiles generates large amounts of dust when not controlled. Wet cutting, whether using water from a main or a portable water tank, has been shown to be the most effective method for controlling silica dust generated during sawing, because when wet, dust is less able to become or remain airborne. Masonry saws with vacuum systems are commercially available; a vacuum pulls dust from the cutting point through a special fitting connected directly to the saw (fixed blade saws)

or, alternatively, through a dust collection shroud connected to the back of the saw (plunge-cut saws). With any type of vacuum system, worker protection from respirable dust is only as good as the filter in the vacuum: the less efficient the filter, the more respirable dust will pass through the vacuum exhaust air. High efficiency particulate air (HEPA) filters allow for maximum control because they are at least 99.97% efficient when tested with fine dust (0.3 um). However, increasing the vacuum filter efficiency can result in decreased airflow, and lower airflow can reduce the amount of dust that a system captures at the cutting wheel. A larger filter will help minimize this problem, as will using a more powerful vacuum. HEPA filters tend to be more costly; the use of pre-filters can extend the service life of the HEPA filter by protecting the fine particulate filter by initially capturing the larger dust.

This survey was conducted in March when temperatures were below 80°F. However, summertime temperatures in Phoenix can exceed 100°F, which can discourage use of personal protective equipment by the employees. One study reported that the increased temperature imposed by wearing a disposable respirator results in increased physiological stress (e.g., increased heart rate and blood pressure), especially at high work loads.²⁷ It is known that respirator acceptance is related directly to comfort, and if comfort decreases (e.g., sweat accumulation in the respirator) then the respirator is more likely to be removed when it should be worn, thus compromising worker health.28

Respiratory protection, in the form of filtering facepiece (disposable) respirators, was available on the crew trucks and was observed in use by a couple of employees. Respiratory protection should be worn until engineering controls and work practices are shown to reduce exposures below the occupational criteria. Respirable quartz sample results indicate that the workers should wear, at a minimum, a half-mask, airpurifying respirator with a high-efficiency particulate filter (designated as an N-100, P-100, or R-100 series, where the N-100 can be used for non-oil aerosol environments and the P-100

and R-100 can be used for both oil and non-oil Half-mask environments). air purifying respirators have an assigned protection factor (APF) of 10, which means they can be used by workers when exposures are less than or equal to ten times the REL ($\leq 0.5 \text{ mg/m}^3$). Respirators at a higher APF such as a full-facepiece airpurifying respirator with N-100, P-100, or R-100 filters (APF=50) or a powered air purifying respirator (PAPR) with a loose-fitting or tightfitting facepiece and high efficiency filters (APF=25 for loose fitting and APF=50 for tightfitting) can also be considered. Ease of use, reuse, disposability, and safety issues (e.g., tripping hazards with PAPR hoses on the roof) are all factors that must be considered for respirator selection.

Even though NIOSH did not evaluate heat exposure, with summer ambient temperatures exceeding 100°F in Phoenix, heat stress can pose a health hazard. Also, employees were observed not wearing fall protection.

All members of the roofing crew were exposed to excessive levels of noise on the surveyed days, according to the NIOSH criterion. Inspection of the figures reveals that the saw greatly influenced the exposures. Saw use by the roofers resulted in noise levels greater than 100 dBA, while noise levels when the saws were not operated were closer to 80–90 dBA.

NIOSH investigators observed no HPD use by the crew. Because the noise output of the portable saws is so intense, an HPD with a large noise reduction rating (NRR)²⁹ value would be necessary to adequately protect the employee during the time when the saw is on. However, with this level of protection during times when gas-powered tools were not operational, the worker would most likely be overprotected from the 80-90 dBA exposures. Realistically, this would mean that the roofers would have difficulty hearing important signals, including conversations, during times when they were not overexposed to noise if they did not remove their HPDs each time that no saws were in use on the roof. A more appropriate HPD would be one that is able to monitor the ambient noise environment and either amplify signals during periods of low noise exposure or attenuate during periods of high exposure. Most of the devices of this type are configured as ear muffs, which may pose additional problems in the high temperature environment in which these roofers work.

Medical

Most roofers who participated were young and had unremarkable past respiratory medical histories, and none had previous medical evaluations consistent with a diagnosis of silicosis. This would be expected with the physically demanding nature of their daily job tasks such as climbing ladders, handling power tools on the roof, etc. However, this study was limited by the lack of pre-placement spirometry or chest x-rays for comparison.

The healthy worker effect is a phenomenon observed in physically demanding occupations. Because a worker must be in excellent physical condition to perform the job, it is unlikely that those who become ill due to work-related exposures or other causes would be able to continue working in that occupation. Therefore, sick roofers would not be available to participate in this study because they would have already removed themselves from the job.

Another important issue to consider when evaluating these results is that the latency period for chronic silicosis is 10–20 years or more. Between the healthy worker effect described above and the fact that the mean duration of dry cutting for the entire group of medical screening participants was 7.5 years, well below the latency period, it is not surprising that NIOSH investigators found no abnormalities consistent with silicosis on chest x-rays.

NIOSH investigators did find in the grouped results, however, a slight decrease in lung function related to years performing dry cutting of cement tiles. They used "duration of dry cutting" as an indicator of duration of exposure to respirable silica. Although other respirable substances (such as asbestos or coal dust) can diminish lung function, prior air sampling of the roofers' PBZ showed that the dust the workers

were inhaling contained primarily respirable silica as described earlier in this report. This decrease in lung function could indicate subclinical lung damage. Although NIOSH investigators cannot ascertain that this decrement is from silica exposure, it is prudent and good public health practice to limit further exposure.

CONCLUSIONS

Dry cutting of cement roof tiles with hand-held saws produces large amounts of dust in the respirable size range and hazardous levels of respirable quartz and noise. Any worker on the roof has the potential for overexposures to respirable quartz and noise.

During the NIOSH evaluation, respiratory protection, in the form of filtering facepiece (disposable) respirators, was available and was observed in use by employees. Until engineering controls and work practices are shown to reduce exposures below the occupational criteria, respiratory protection use should continue.

The medical screening revealed that workers at C & C Roofing had no diagnosable silicosis by chest x-ray and no pulmonary function test abnormalities. For C & C Roofing employees and for the participants from all four roofing contractors as a whole, there were decrements in both measures of lung function (percent predicted FEV1 and percent predicted FVC) with increased number of years of dry cutting although only the decrease in the percent predicted FEV1 reached statistical significance.

RECOMMENDATIONS

The following recommendations are offered to prevent or minimize exposures to respirable silica, noise, and heat; prevent falls; monitor employees' respiratory health; and educate employees regarding the hazards of silica exposure.

1. Reduce dust levels. This can be accomplished by either wetting the material to

be cut or extracting the dust by suction close to its point of production. Both can significantly reduce dust emissions during cutting activities. Tile cutting using a stationary saw positioned on the ground with local exhaust ventilation is another option to consider for reducing airborne dust levels.

- 2. Use a vacuum with a HEPA filter to clean debris from roofs when the tile cutting work is completed. Leaf blowers currently being used contribute to the airborne dust generated during the roof installation process.
- 3. Implement a respiratory protection program for all work crews until engineering controls are in place and proven effective in reducing worker exposures below the NIOSH REL and the OSHA PEL for silica. The data from this evaluation indicate that a respirator having an assigned protection factor of at least 10 is needed. The program should conform to the requirements in the OSHA standard 29 CFR 1910.134.³⁰ (The construction standard 29 CFR 1926.103 states that requirements applicable to construction work under this section are identical to those set forth in 29 CFR 1910.134).
- 4. Implement an exposure monitoring program to evaluate airborne silica levels every time a material or process changes, and to measure the effectiveness of engineering controls.
- 5. Institute a hearing loss prevention program. The OSHA construction standard for noise does not currently provide detailed guidelines for such a program. Therefore, the regulations set forth in the OSHA general industry standard should be met. Other sources for defining effective hearing loss prevention programs are also available. 31,32,33
- 6. Require roofers to wear HPDs whenever saws are in use on a roof. The use should include all members of the crew. Several types of foam and premolded earplugs should be adequate to protect workers from saw noise. However, they will overprotect during times when saws are not used, and they are difficult to remove and insert throughout the work shift. Management should

research different types of protectors that provide varying levels of amplification and attenuation depending on the surrounding noise conditions.

- 7. As required by the OSHA HCS, workers must be "provided with effective information and training on hazardous chemicals in their work area at the time of their initial assignment, and whenever a new physical or health hazard the employees have not previously been trained about is introduced into their work area." This information can be provided to the employees comprehensive means of communication programs, which are to include container labeling and other forms of warning, material safety data sheets and employee training" regarding worker exposure to silica and noise.
- 8. Assure compliance with the fall protection standard per the OSHA construction standard 29 CFR, Subpart M, Fall Protection, 1926.500(a), 1926.501, 1926.502, 1926.503.
- 9. Consult an occupational medicine physician to implement the employee medical monitoring program as outlined in OSHA's Special Emphasis Program for Silicosis. This includes a focused medical examination, lung function testing, and a chest x-ray to be done pre-placement, at regular intervals as determined by the supervising physician, and at termination. These records should be kept by the employers for 30 years post-termination due to the potentially long latency period for silicosis.
- 10. Create a heat stress prevention program that will:³⁴
 - Assess employees for medical fitness before they begin hard work, especially during the hot season.
 - Allow employees to get used to the heat (acclimate) before they work in it full time.
 - Train employees to know the dangers of and protect themselves from working in extreme heat.
 - Encourage employees to report any heat stress symptoms and signs.

- Keep systematic records of employee reports of heat stress illnesses.
- Teach employees to monitor their own and others' heat stress and strain signs.

REFERENCES

- 1. NIOSH [2006]. Health hazard evaluation report: Diversified Roofing, Phoenix, AZ. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, NIOSH Report No. 2003-0209-3015.
- 2. NIOSH [2007]. Health hazard evaluation report: Headlee Roofing, Mesa, AZ. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, NIOSH Report No. 2005-0030-2968.
- 3. NIOSH [2007]. Health hazard evaluation report: Petersen Dean Roofing Systems, Phoenix, AZ. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, NIOSH Report No. 2005-0032-2985.
- 4. NIOSH [2007]. NIOSH manual of analytical methods (NMAM®). 4th ed. Schlecht PC, O'Connor PF, eds. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication 94-113 (August, 1994); 1st Supplement Publication 96-135, 2nd Supplement Publication 98-119; 3rd Supplement 2003-154. [http://www.cdc.gov/niosh/nmam/].
- 5. NIOSH [1992]. Recommendations for occupational safety and health: compendium of policy documents and statements. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for

- Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 92-100.
- 6. ACGIH® [2007]. 2007 TLVs® and BEIs®: threshold limit values for chemical substances and physical agents. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
- 7. CFR [2003]. 29 CFR 1910.1000. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register.
- 8. Hinds WC [1999]. Aerosol technology: properties, behavior, and measurement of airborne particles. 2nd ed. New York: John Wiley & Sons, Inc., pp. 239–242.
- 9. Merchant JA, Boehlecke BA, Taylor G, Pickett-Harner M [1986]. Occupational respiratory diseases. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 86-102.
- 10. IARC [1997]. IARC monographs on the evaluation of carcinogenic risks to humans: silica, some silicates, coal dust and para-aramid fibrils. Vol. 68. Lyon, France: World Health Organization, International Agency for Research on Cancer.
- 11. NIOSH [2002]. NIOSH Hazard Review: Health effects of occupational exposure to respirable silica. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). Publication No. 2002-129.
- 12. CFR [2003]. 29 CFR 1926.55. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register.

- 13. OSHA [1996]. Memorandum for regional administrators from: Joseph A. Dear. Subject: special emphasis program (SEP) for silicosis. May 2nd 1996. Appendix F: Permissible Exposure Limits for Construction and Maritime. [http://www.osha.gov/dcsp/ote/trng-materials/silicosis/specialemphasismemo.html]. Date accessed: December 31, 2007.
- 14. OSHA [2001]. Memorandum for regional administrators and silica coordinators from: Richard E. Fairfax Director, Directorate of Compliance Programs. Subject: transmission of NIOSH recommended conversion factor for silica sample results and favorable appellate court decision on silica sampling. September 4, 2001.
- 15. Maeda J [2007]. Telephone conversation on March 23, 2007, between J. Maedea of the Arizona Division of Occupational Safety and Health and R. McCleery of the Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services.
- 16. Ward WD, Royster LH, Royster JD [2003]. Anatomy & physiology of the ear: normal and damaged hearing. In: Berger EH, Royster LH, Royster JD, Driscoll DP, Layne M, eds. The noise manual. 5th ed. Fairfax, VA: American Industrial Hygiene Association, pp. 101–122.
- 17. Suter AH [1978]. The ability of mildly hearing-impaired individuals to discriminate speech in noise. Washington, DC: U.S. Environmental Protection Agency, Joint EPA/USAF study, EPA 550/9-78-100, AMRL-TR-78-4.
- 18. CFR [1997]. 29 CFR 1926.52. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register.
- 19. CFR [1997]. 29 CFR 1926.101. Code of Federal Regulations. Washington, DC: U.S.

- Government Printing Office, Office of the Federal Register.
- 20. Federal Register [2002]. Occupational Safety and Health Administration: hearing conservation program for construction workers. Washington, D.C.: Federal Register 57:50610-50618, August 5, 2002.
- 21. CFR [1997]. 29 CFR 1910.95 Code of Federal Regulations. Washington, D.C.: U.S. Government Printing Office, Office of the Federal Register.
- 22. NIOSH [1998]. Criteria for a recommended standard: occupational noise exposure (revised criteria 1998). Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 98-126.
- 23. CFR [1997] 29 CFR 1926.501. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register.
- 24. Calvert GM, Rice FL, Boiano JM, Sheehy JW, Sanderson WT [2003]. Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states in the U.S. Occ Env Med 60:122–129.
- 25. CFR [1997]. 29 CFR 1910.1200. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register.
- 26. Thorpe A, Ritchie AS, Gibson MJ, Brown RC [1999]. Measurements of the effectiveness of dust control on cut-off saws used in the construction industry. Ann Occup Hyg 43(7):443–456.
- 27. Jones JG [1991]. The physiological cost of wearing a disposable respirator. Am Ind Hyg Assoc J 52(6):219–225.

- 28. Johnson AT, Scott WH, Coyne KM, Sahota MS, Benjamin MB, Rhea PL, Martel GF, Dooly CR [1997]. Sweat rate inside a full-facepiece respirator. Am Ind Hyg Assoc J 58:881–884.
- 29. EPA [1978]. Noise labeling requirements for hearing protectors. Federal Register 44(190), 40 CFR part 211, 56130–56147.
- 30. CFR [1998]. 29 CFR 1910.134. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register.
- 31. NIOSH [1996]. Preventing occupational hearing loss A practical guide. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 96-110.
- 32. Suter AH [2002]. Hearing conservation manual. 4th ed. Milwaukee, WI: Council for Accreditation in Occupational Hearing Conservation.
- 33. Royster JD, Royster LH [1990]. Hearing conservation programs: practical guidelines for success. Chelsea, MI: Lewis Publishers.
- 34. NIOSH [2002]. Health hazard evaluation report: Grand Canyon National Park, Grand Canyon, Arizona. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, NIOSH Report No. 99-0321-2873.

TABLES

Table 1
Full-Shift Personal Breathing Zone Concentrations of
Total and Respirable Dust, and Respirable Silica

Employee ID	Job Title	Total Dust (mg/m³)	Respirable Dust (mg/m³)	Quartz (%)	*Respirable Quartz (mg/m³)	Calculated OSHA PEL (mg/m³)
Employee A	Foreman	18.8	1.7	12.86	0.22	0.67
Employee B	Second man	15.2	1.2	14.89	0.17	0.59
Employee C	Laborer	15.0	1.5	11.67	0.17	0.73
Employee D	Second man	445	6.3	12.94	†0.76	0.67
Employee D‡	Second man	7.0	0.7	11.70	0.08	0.73
Employee E	Third man	6.7	2.3	14.55	0.34	0.60
Employee E‡	Third man	10.2	1.1	14.81	0.16	0.59
Employee F	Foreman	6.4	1.2	16.87	0.21	0.53
Employee G	Foreman	6.3	0.9	13.89	0.13	0.63
Employee H	Second man	3.7	0.7	9.82	0.07	0.85

^{*} All samples exceeded the NIOSH REL of 0.05 mg/m³ and the ACGIH TLV of 0.025 mg/m³

Table 2
Full-Shift Personal Noise Dosimetry

Employee ID	Job Title	Duration (hh:mm)	OSHA AL		OSHA PEL		NIOSH REL	
			TWA	Dose	TWA	Dose	TWA	Dose
			(dBA)	(%)	(dBA)	(%)	(dBA)	(%)
Employee I	Laborer	08:15	81.1	29.3	77.0	16.5	86.3	136.1
Employee J	Foreman	08:21	88.6	82.8	87.0	66.4	94.0	803.2
Employee K	Laborer	06:03	89.1	87.9	88.3	78.8	96.8	1500.1
Employee L	Second man	05:27	89.5	93.6	88.6	82.0	96.4	1367.8
Employee M	Foreman	07:06	93.5	162.4	92.9	149.0	98.8	2413.1
Employee N	Laborer	08:11	87.2	67.5	85.7	55.4	92.9	621.0
Employee O	Second man	08:24	85.2	51.5	83.1	38.3	91.3	427.0

The various dose percentages are the amounts of noise accumulated during a work day, with 100% representing the maximum allowable daily dose.

Employees J-O exceeded the OSHA AL; M exceeded the OSHA PEL; everyone exceeded the NIOSH REL.

[†] Sample exceeded the OSHA PEL

[‡] Employees participated on both days of the evaluation

FIGURES

Figure 1 Noise dosimeter data for Roofer I

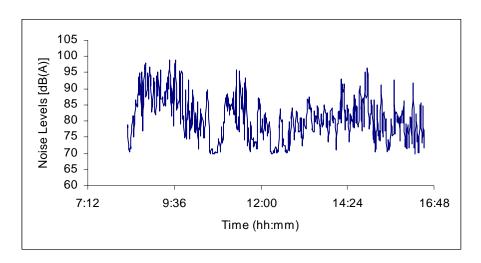


Figure 2 Noise dosimeter data for Roofer J

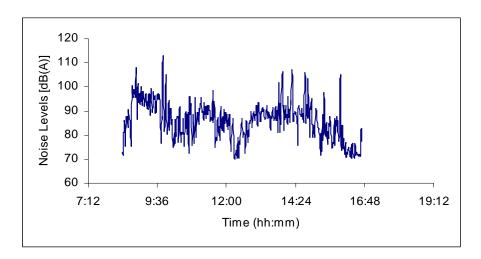


Figure 3 Noise dosimeter data for Roofer K

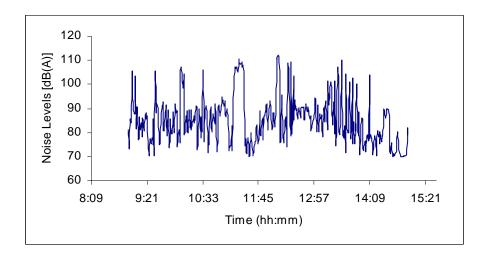


Figure 4 Noise dosimeter data for Roofer L

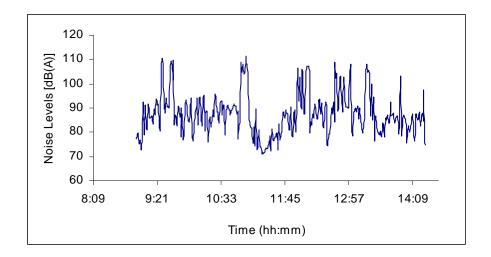


Figure 5 Noise dosimeter data for Roofer M

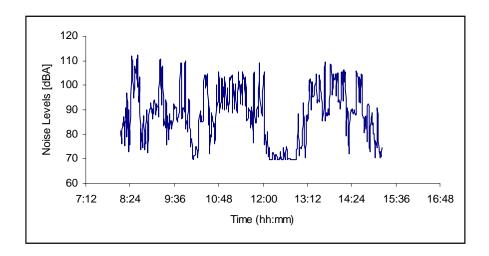
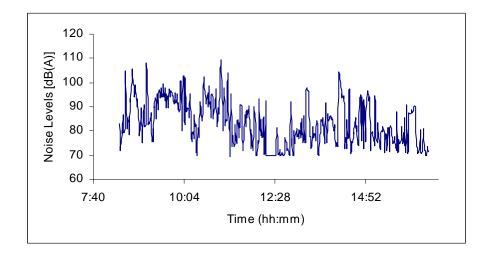
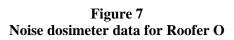
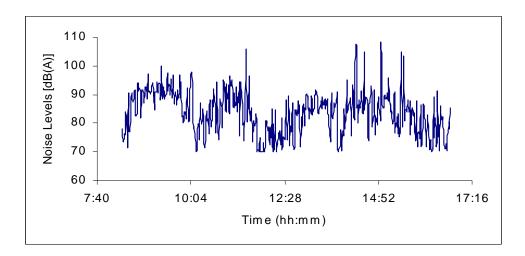
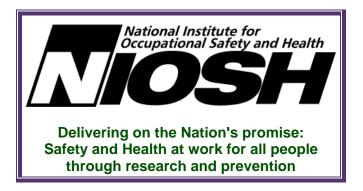





Figure 6 Noise dosimeter data for Roofer N



DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226-1998

OFFICIAL BUSINESS
Penalty for private use \$300

To receive NIOSH documents or information about occupational Safety and Health topics contact NIOSH at:

1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov or visit the NIOSH web site at: http://www.cdc.gov/niosh

For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews

SAFER • HEALTHIER • PEOPLE™