
FINAL

2001 AIR EMISSIONS INVENTORY

LAKE MEREDITH NATIONAL RECREATION AREA TEXAS

U.S. NATIONAL PARK SERVICE

OCTOBER 2003

FINAL

2001 AIR EMISSIONS INVENTORY

LAKE MEREDITH NATIONAL RECREATION AREA TEXAS

Prepared for:

National Park Service WASO - Air Resources Division 12795 West Alameda Parkway Denver, CO 80228

Prepared by:

EA Engineering, Science, and Technology, Inc. 15 Loveton Circle Sparks, MD 21152 (410) 771-4950

OCTOBER 2003

Cover Photo by NPS

CONTENTS

Page

		iv iv
1.	INTRO	DUCTION
	1.1	Background
	1.2	Typical Air Emission Sources
	1.3	Inventory Methodology
	1.4	Park Description
	1.5	Air Quality Status
2.	STATI	ONARY AND AREA SOURCE EMISSIONS7
	2.1	Stationary Sources
		2.1.1 Space and Water Heating Equipment
		2.1.2 Generators
		2.1.3 Fuel Storage Tanks10
		2.1.4 Wastewater Treatment Plants
	2.2	Area Sources
		2.2.1 Woodstoves/Fireplaces
		2.2.2 Campfires
		2.2.3 Wildfires and Prescribed Fires
		2.2.4 Oil and Gas Operations
		2.2.5 Miscellaneous Area Sources
	2.3	Summary of Stationary and Area Source Emissions
3.	MOBI	LE SOURCE EMISSIONS15
	3.1	Highway Vehicles15
		3.1.1 Visitor Vehicles
		3.1.2 NPS/GSA Highway Vehicles
	3.2	NPS Nonroad Vehicles
	3.3	Marine Vessels

CONTENTS (Continued)

Page

	3.4	Summary of Mobile Source Emissions
4.	LAKE	MEREDITH NRA AND REGIONAL EMISSION SUMMARY20
	4.1	Lake Meredith NRA Summary
	4.2	Regional Air Emissions
5.	COMP	LIANCE AND RECOMMENDATIONS
	5.1	Compliance
	5.2	Recommendations
6.	REFE	RENCES25
APPE	NDIX B	- FUEL DATA AND EMISSION FACTORS - EMISSION CALCULATIONS - PUBLIC USE DATA
APPE	NDIX D	- SELECTED TEXAS AIR QUALITY REGULATIONS

FIGURES

<u>Number</u> Title 1 Lake Meredith NRA Region/Vicinity 4 Lake Meredith National Recreation Area......5 2 TABLES <u>Number</u> Title Page 1 2 2001 Actual Criteria Emissions from Heating Equipment at Lake Meredith NRA8 2001 Potential Criteria Emissions from Heating Equipment at Lake Meredith NRA9 3 4 Lake Meredith NRA Gasoline Storage Tank Emissions10 5 6 Air Emissions from Prescribed Burning and Wildfires in Lake Meredith NRA12 Summary of 2001 Stationary and Area Source Emissions at Lake Meredith NRA14 7 8 NPS and GSA Road Vehicles at Lake Meredith NRA17 9 10 11 Summary of 2001 Mobile Source Emissions at Lake Meredith NRA 19 12 Estimated Annual Emissions from Lake Meredith NRA......20 13 Estimated Annual Emissions from Lake Meredith NRA, Surrounding Counties, and 14 Personal Watercraft and Motor Boat Emissions at Lake Meredith NRA under

1. INTRODUCTION

1.1 BACKGROUND

In August of 1999, the National Park Service (NPS) embarked on the Natural Resource Challenge, a major effort to substantially improve how the NPS manages the natural resources under its care. As part of Natural Resource Challenge, the NPS Air Resources Division (ARD) was tasked with the responsibility of expanding efforts to monitor and understand air quality and related values in the parks. In addition, the NPS Environmental Leadership policy directs the NPS to manage the parks in a manner "that demonstrates sound environmental stewardship by implementing sustainable practices in all aspects of NPS management...." In order to achieve both of these objectives, it is necessary to gain an understanding of air pollution emissions that result from activities within the park. In this regard, development of an in-park air emissions inventory for Lake Meredith National Recreation Area (NRA) serves three functions. First, it provides an understanding of the sources and magnitude of in-park emissions and a basis for contrasting them with emissions from the surrounding area. Second, it identifies existing and potential strategies to mitigate in-park air emissions. Finally, it evaluates and ensures the compliance status of the park relative to state and federal air pollution regulations.

1.2 **TYPICAL** AIR EMISSION **SOURCES**

Typical air emission sources within NPS units include stationary, area, and mobile sources. Stationary sources can include fossil fuel-fired space and water heating equipment, generators, fuel storage tanks, and wastewater treatment plants. Area sources may include woodstoves, fireplaces, campfires, and prescribed burning. Mobile sources may include vehicles operated by visitors, tour operators, and NPS and concessioner employees, and nonroard vehicles and equipment.

The air pollutants that are addressed in this report are summarized in the table below. Of the pollutants noted, ozone is not produced and emitted directly from stationary, area, or mobile sources, but rather it is formed as a result a chemical reaction of NOx and VOC emissions in the presence of sunlight. Carbon dioxide historically has not been considered a pollutant. However, in recent years, there has been much interest in its contribution to global climate warming since it is considered a greenhouse gas.

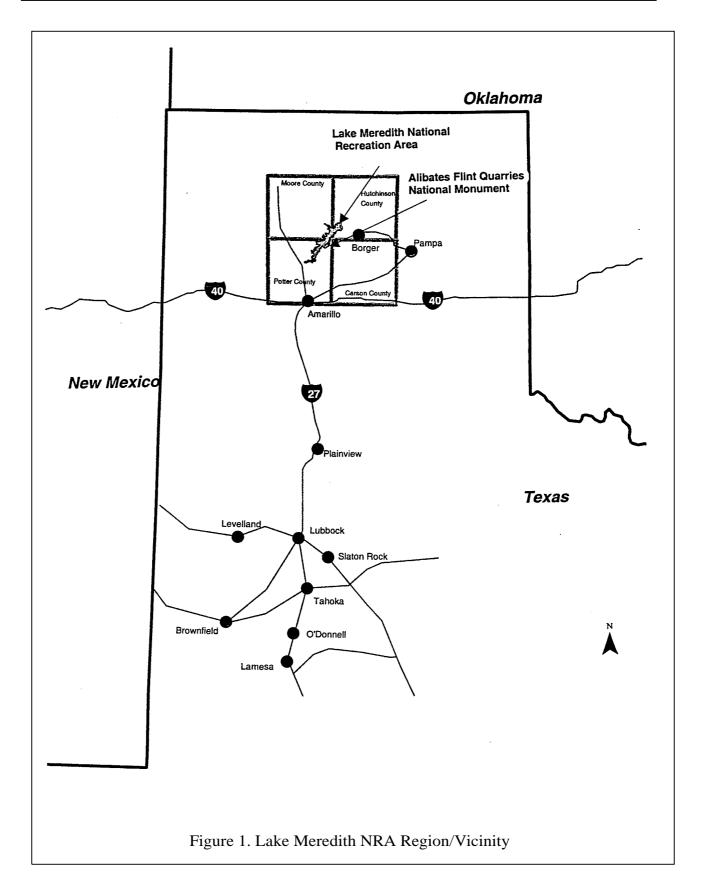
Pollutant –	Characteristics
Partioulatcb (PM⊺")	 Mixture of solid particles and liquid droplets; fine particles (less than 23 micrometers) produced by fuel combustion, power plants, and diesel buses and trucks Can aggravate astiuua, praducc acute respiratory symptoms, including aggravated coughing and difficult or painful breathing, and chronic bronchitis Impairs visibility
ulft]r Dioxide (SO2)	 Can cause temporary breathing difficulties for people with asthma Reacts with other chemicals to form sulfate particles that are major cause of reduced visibility in many parts of the country Main contributor to acid rain
	 High temperature fuel combustion exhaust product Can be an irritant to Itumans and participates in the formation of ozone Reacts with other poi lutarkrs to farm nitrite pm-ticks that are a significant contributor to visihiliryreductton in many parts of the country r Contributor xo formation of acid rain
•	r r
Carbon Dioxide (C'O	

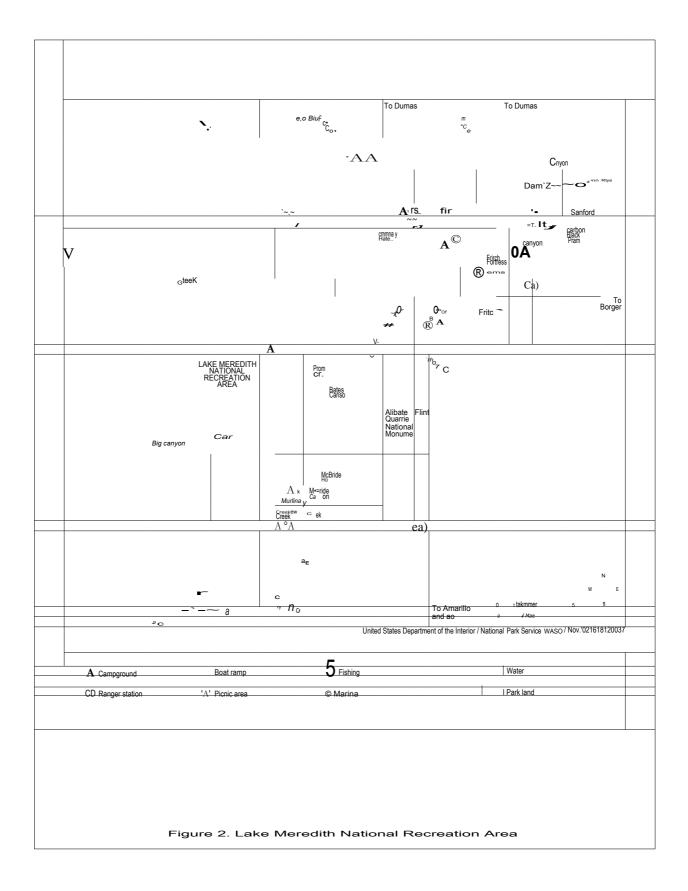
AIR PO[.Z.U'1'ANTS AND THEIR CHARACTERI4T1CS

13 INVENTORY METHODOLOGY

The methodology to accomplish the air emissions inventory was outlined in a protocol that was prepared at **the initiation** of the project (EA Engineering 2001). '1 asks consisted of a site survey **in** February 2002, interviews with Lake Meredith NR A¹ personnel, review of applicable park records, emission calculations. review of applicable suite and local air quality regulations, an assessment of mitigation measures and potential emission reduction initiatives, and report preparation, The data were used in conjunction with a number of manual and computer software

Jim I racier, Chief of Resource Management (806) 857-0309


computational tools to calculate emissions. Computational tools included U.S. Environmental Protection Agency (USEPA) emission factors such as the Factor Information Retrieval System (FIRE) database, USEPA *TANKS 4.0* model, U.S. Forest Service *First Order Fire Effects Model (FOFEM) 4.0* model, and USEPA *MOBILE6.2* mobile source emissions model. The year 2001 was selected as the basis for the air emission inventory since data for that year were the most recent available at the park. It should be noted that emissions are expected to vary from year to year due to fluctuations in visitation, prescribed and wildland fires, and other activities. Additional information on emission estimation methodology, including emission factors, is provided in Appendices A and **B**.


1.4 PARK DESCRIPTION

Lake Meredith NRA is near Fritch, Texas, in the center of the Texas Panhandle, about 40 miles north of Amarillo, Texas (Figure 1). Lake Meredith was formed in the 1960s when the U.S. Bureau of Reclamation constructed Sanford Dam on the Canadian River. The dam was built to supply water to 11 communities in the Panhandle by means of 322 miles of pipeline. The Bureau administers the surface estate on approximately 760 acres around the dam, and operation of the dam and delivery of water is administered by the Canadian River Municipal Water Authority. The NRA consists of about 45,000 acres, and the reservoir covers about 10,000 acres (Figure 2).

Lake Meredith is a major site of water-based recreation in the Panhandle, averaging more than 1.5 million visits per year from 1992 to 2000. There are no comparable large bodies of water or land that provide such recreational diversity in the Texas Panhandle area. The waters of Lake Meredith NRA support a major sport fishery, and facilities for camping, picnicking, and boating also are provided. Lake Meredith NRA is the only public land in a radius of approximately 50 miles that permits the hunting of deer, quail, ducks, and other migratory birds.

Park headquarters and visitor center are located in a leased building in the community of Fritch east of the park. Developed areas within the park boundaries are noted in Table 1. There are also 11 campsites and seven boat launch ramps. Lake Meredith also manages the 1,370 acre Alibates Flint Quarries National Monument that is located adjacent to the NRA; however, there are no developments within the Monument.

Name/Location	Function/Facilities
Fritch Headquarters	Headquarters, Visitor Center
Sanford	Maintenance Building, Fire Cache, Ranger Station
Sanford Yake Marina	Public Marina
Canadian River Municipal Water Authority	CRMWA Headquarters, Maintenance Shop, Sanford Dam
Fritch Fortress Amphitheater	Performing Arts Amphitheater

TABLE 1: LAKE MEREDITH NRA DEVELOPED AREAS

There are also 170 active oil and gas operations within the two parks. When the parks were created, the federal government acquired surface ownership within the two areas, but either private entities or the state retained subsurface mineral interests. Thus, the federal government does not own any of the subsurface oil and gas rights in the parks. In addition, there are transpark oil and gas pipelines and activities in their associated rights-of-way.

1.5 AIR **QUALITY STATUS**

Lake Meredith NRA is located in Hutchinson, Potter, and Moore Counties. There are no air monitoring stations within the park, and the nearest monitoring station is in Amarillo, TX where $PM_{2,5}$ is monitored. Data from this site have shown no exceedances, and the Texas Commission on Environmental Quality has recommended to EPA that the site be closed since air quality has been consistently below standards. The region is in attainment with all National Ambient Air Quality Standards (NAAQS), and the park is a Class II area for purposes of air quality.

There are numerous industrial facilities and operations surrounding the park that impact air quality, including thousands of oil and gas wells, the largest inland petroleum refinery in the country, a chemical plant, and several carbon black plants. Monitoring data from outside the park may indicate that ozone originating southeast of the park in industrial regions of Texas, such as Dallas/Fort Worth, may be causing slight elevations in ozone levels (NPS 2003).

2. STATIONARY AND AREA SOURCE EMISSIONS

This section summarizes emissions from sources at Lake Meredith NRA for the year 2000. The discussion is divided into sections covering emissions from combustion sources, fuel storage sources, and area sources. The following emissions were calculated for each source: particulate matter (PM_{10}), sulfur dioxide (SO_2), nitrogen oxides (NO_X), carbon monoxide (CO), carbon dioxide (CO_2), and volatile organic compounds (VOCs). Emission factors used in the calculations are provided in Appendices A and B.

2.1 STATIONARY SOURCES

2.1.1 Space And Water Heating Equipment

While the majority of space and water heating equipment is electric at Lake Meredith NRA, there are several propane space heating units. Criteria air emissions were calculated using the appropriate residential unit emission factors. For example, NOx emissions from a propane heating unit at the Sanford Ranger Station are calculated as follows:

$$740 \text{ gal/yr x} \quad \frac{14 \text{ lb } NOx}{1,000 \text{ gal}} = 10 \text{ lb } NOx/yr$$

Actual criteria pollutant emissions from space and water heating equipment are summarized in Table 2. Although the park provided propane and natural gas consumption data for the year 2001, similar data were not available from the Canadian River Municipal Water Authority, which operates facilities at Sanford Dam. However, information on their heating equipment, including size ratings, were available. Therefore, their energy consumption was estimated as a proportion of the park's energy consumption relative to the size of equipment. Potential emissions also were calculated by assuming that the heating units were operated continuously during the year or 8,760 hours per year, and these emissions are summarized in Table 3.

T	Consumption	PM ₁₀	SO ₂	NOx	СО	VOC	CO ₂				
Location	(gal/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(lbslyr)	(Ibs/yr)				
National Park Service - Propane											
Sanford Ranger Station	740	0	0	10	1	0	9,254				
Sanford Ranger Station	278	0	0	4	1	0	3,470				
Sanford Maintenance	833	0	0	12	2	0	10,410				
Sanford Maintenance	278	0	0	4	1	0	3,470				
Sanford Sign Shop	740	0	0	10	1	0	9,254				
Sanford Adm Building	1,110	0	0	16	2	0	13,881				
Sanford Adm Building	555	0	0	8	1	0	6,940				
Fire Cache	1,666	1	0	23	3	0	20,821				
	Natio	nal Park Se	rvice - Natu	ral Gas							
Headquarters	700,000 cu ftlyr	5	0	66	28	4	84,000				
	Total	8	0	153	40	6	161,500				
	Canadian Rive	r	Water Aut	hority - Pro	pane						
Laboratory	1,360	1	0	19	0	0	17,002				
Laboratory	315	0	0	4	0	0	3,932				
Meter Shop	1,157	0	0	16	0	0	14,458				
Meter Shop	250	0	0	3	0	0	3,123				
Equipment Shop	694	0	0	10	0	0	8,675				
Equipment Shop	1,666	1	0	23	0	0	20,819				
Equipment Shop	333	0	0	5	0	0	4,164				
Headquarters	1,388	1	0	19	0	0	17,349				
Headquarters	1,666	1	0	23	0	0	20,819				
Headquarters	1,628	1	0	23	0	0	20,356				
Headquarters	910	0	0	13	0	0	11,369				
Resource Office	1,360	1	0	19	0	0	17,002				
Resource Office	315	0	0	4	0	0	3,932				
Total	13,040	5	0	183	4	4	163,000				
	Park Totals	13	1	335	66	10	324,000				

TABLE 2: 2001 ACTUAL CRITERIA EMISSIONS FROM HEATING EQUIPMENT AT LAKE MEREDITH NRA

Location	Consumption (gal/yr)	PM ₁₀ (Ibs/yr)	SO ₂ (lbs/yr)	NO _X (Ibs/yr)	CO (Ibs/yr)	VOC (Ibs/yr)	CO ₂ (Ibs/yr)					
National Park Service - Propane												
Sanford Ranger Station	7,701	3	0	108	15	2	96,264					
Sanford Ranger Station	2,888	1	0	40	6	1	36,099					
Sanford Maintenance	8,664	3	0	121	17	3	108,297					
Sanford Maintenance	2,888	1	0	40	6	1	36,099					
Sanford Sign Shop	7,701	3	0	108	15	2	96,264					
Sanford Adm Building	11,552	5	0	162	23	3	144,396					
Sanford Adm Building	5,776	2	0	81	12	2	72,198					
Fire Cache	17,327	7	0	243	35	5	216,593					
	Natio	nal Park Se	rvice - Natu	ral Gas	1	- 1	- ,					
Headquarters	1,288,235 cu ft/yr	10	1	121	52	7	154,588					
	Total	36	1	1,024	181	26	960,797					
	Canadian Rive	er Municipa	l Water Aut	hority - Pro	pane							
Laboratory	14,151	6	0	198	28	4	176,885					
Laboratory	3,273	1	0	46	7	1	40,912					
Meter Shop	12,033	5	0	168	24	4	150,412					
Meter Shop	2,599	1	0	36	5	1	32,489					
Equipment Shop	7,220	3	0	101	14	2	90,247					
Equipment Shop	17,327	7	0	243	35	5	216,593					
Equipment Shop	3,465	1	0	49	7	1	43,319					
Headquarters	14,440	6	0	202	29	4	180,495					
Headquarters	17,327	7	0	243	35	5	216,593					
Headquarters	16,942	7	0	237	34	5	211,780					
Headquarters	9,463	4	0	132	19	3	118,284					
Resource Office	14,151	6	0	198	28	4	176,885					
Resource Office	3,273	1	0	46	7	1	40,912					
Total	135,664	54	1	1,899	271	41	1,695,806					
	Park Totals	90	2	2,923	452	67	2,656,603					

TABLE 3: 2001 POTENTIAL CRITERIA EMISSIONS FROM HEATING EQUIPMENTAT LAKE MEREDITH NRA

2.1.2 Generators

There are no stationary generators at Lake Meredith NRA.

2.1.3 Fuel Storage Tanks

There are two gasoline aboveground gasoline storage tanks at the Sanford Yake Marina in Lake Meredith NRA that serves the boating public. The park has no gasoline tanks for its vehicles since park-operated vehicles are refueled at off-site commercial gas stations. Emissions from fuel storage tanks were calculated using the EPA *TANKS 4.0* model. The gasoline tanks are equipped with Phase I vapor emission controls that capture vapors displaced from the vapor space in the tank when it is refilled. Emissions associated with gasoline dispensing are accounted for in the mobile source model.

There are two basic types of VOC emissions from storage tanks: working losses and standing losses. Working losses are composed of both withdrawal and refilling loss emissions. Withdrawal loss emissions result from the vaporization of liquid fuel residue on the inner surface of tank walls as the liquid levels in the tank are decreased and air is drawn into the tank. Refilling losses refer to fuel vapor releases to the air during the process of refilling the tank as the liquid level in the tank increases and pressurizes the vapor space. Standing losses describe those tank emissions from the vaporization of the liquid fuel in storage due to changes in ambient temperatures. VOC losses are also a direct function of the annual product throughput or turnovers. VOC emissions from gasoline storage tanks are summarized in Table 4.

Location	Number	Туре	Volume (gal)	Throughput (gal/yr)	VOC (Ibs/yr)
Sanford Yake Marina	1	AST	5,000	10,500	750
	1	AST	2,500	5,250	425
Totals	2			15,750	1,175

TABLE 4: LAKE MEREDITH NRA GASOLINE STORAGE TANK EMISSIONS

2.1.4 Wastewater Treatment Plants

Wastewater is treated in leach fields at Lake Meredith NRA. Since these are passive systems rather than mechanical processes such as primary wastewater treatment plants, few VOC emissions are generated.

2.2 AREA SOURCES

2.2.1 Woodstoves/Fireplaces

There are no woodstoves or fireplaces in Lake Meredith NRA.

2.2.2 Campfires

There are ten campgrounds throughout Lake Meredith NRA that accommodate tent and recreation vehicles (RVs). Park personnel provided estimates of the total number of campers at both NPS and concessionaire operated sites. It was estimated that only 25 percent of these were tent campers, with the remainder being RV campers. There were an estimated 2.5 campers per campsite and approximately 50 percent had an evening or morning campfire at each campsite. Assuming that each campfire site consumes approximately 10 lbs of wood, air emissions from campsites in 2001 were calculated and are summarized in Table 5.

TABLE 5: 2001 LAKE MEREDITH NRA CAMPFIRE EMIN	SSIONS
---	--------

Tent Campers	Campfires	Fuel (tons/yr)	PM ₁₀ (lbs/yr)	SO ₂ (lbs/yr)	NOx (lbs/yr)	CO (Ibs/yr)	VOC (lbs/yr)
16,130_	6,450	16	558	6	42	4,075	3,694
					tons/yr		
			0.28	< 0.01	0.02	2.04	1.85

2.2.3 Wildfires and Prescribed Fires

Wildland fire consists of both wildfires and prescribed fires. Wildfires are ignited naturally, usually by lightening, are typically unwanted, and therefore suppressed. On the other hand, prescribed burning is a land treatment process to accomplish natural resource management objectives, including reducing the potential for destructive wildfires, eliminating excessive fuel buildup, controlling insects and disease, improving wildlife habitat and forage production, maintaining natural succession of plant communities, and restoring natural processes. Prescribed burning can be for either ecological restoration or ecological maintenance. By policy, only prescribed burning for ecological restoration is considered an anthropogenic source of emissions; however, for the purposes of this emissions inventory, all prescribed burning has been treated as an anthropogenic source.

Park data indicated that an average of 1,120 acres a year had been consumed by prescribed burning over the 1998-2002 timeframe and another 1,380 acres a year by wildfires. The vegetation was a mixture of blue grama buffalo grass and bluestem grama grassland.

The First Order Fire Effects Model (FOFEM) was used to estimate emissions from prescribed fires. FOFEM is a computer program developed by the Intermountain Fire Sciences Lab, U.S. Forest Service to predict the effects of prescribed fire and wildfire in forests and rangelands throughout the U.S. In particular, it quantifies emissions of PM ₁₀, PM_{2.5}, CO, CO₂, and VOCs (CH₄) which are summarized in Table 6 for prescribed burning and wildfires. Emission factors produced by the FOFEM model and emission calculations are provided in Appendix B.

Fuel Type	Acres	РМ10 (Ibs/yr)	PM _{2,5} (Ibs/yr)	VOC ¹ (lbs/yr)	CO (lbs/yr)	CO ₂ (Ibs/yr)				
Prescribed Burning										
Blue Grama-Buffalo Grass	560	1,680	1,680	560	3,920	1,129,520				
Bluestem-Grama Prairie	560	3,360	2,800	560	6,720	1,864,240				
Tota	ls 1,120	5,040	4,480	1,120	10,640	2,993,760				
		Wildfire	s							
Blue Grama-Buffalo Grass	690	2,070	2,070	690	4,830	1,391,730				
Bluestem-Grama Prairie	690	4,140	3,450	690	8,280	2,297,010				
Tota	ls 1,380	6,210	5,520	1,380	13,110	3,688,740				

TABLE 6: AIR EMISSIONS FROM PRESCRIBED BURNING AND WILDFIRESIN 2001 IN LAKE MEREDITH NRA

As methane (CH_4)

2.2.4 Oil and Gas Operations

The park is near the center of Carson, Moore, Hutchinson, and Potter Counties where petroleum, petrochemical, and related industries are important components to the local and regional economies. There are approximately 9,200 producing wells in these four counties and about 170 in the park itself When the park was created, the federal government acquired surface ownership within the two areas, but either private entities or the state retained subsurface mineral interests. Thus, the federal government does not own any of the subsurface oil and gas rights in the parks. In addition, there are transpark oil and gas pipelines and activities in their associated rights-of-way. Based on average well production rates in the four counties, production from

wells inside the park is estimated to be about 7,000 barrels of oil and condensate and 8 billion cubic feet of gas per year, which represents about 0.3 percent and 6 percent of the oil and gas production, respectively, in the four county area (NPS 2002).

Park officials estimate that there are about 40 gas compressors rated at about 400 cubic inches that are on park property. Emissions from these gas compressors were calculated based on the assumption that the compressors operate on a full-time basis, and these are provided in Table 7. In addition to the compressors, the exploration and production of oil and gas in the park has the potential to impact air quality from other miscellaneous sources, including (NPS 2002):

- air-drilling
- construction of access roads, wellpads, production facilities, flowlines, gathering lines, compressors, and pipelines
- site reclamation activities
- oil storage tanks
- vehicle traffic on paved and unpaved roads
- accidental oil product spills
- flaring of gas during well testing and production operations.

2.2.5 Miscellaneous Area Sources

Miscellaneous area sources include food preparation, degreasers, paints and other surface coatings, lighter fluid consumption, consumer solvents, propane use by visitors in recreational vehicles, and highway maintenance, such as paving materials. However, few data on these activities and products were available, and their emissions are negligible.

2.3 SUMMARY OF STATIONARY AND AREA SOURCE EMISSIONS

Table 7 summarizes the stationary and area source emissions calculated above in a format that allows comparison between the various sources as well as providing totals for each pollutant or pollutant category under consideration.

2001 Air Emissions Inventory

Lake Meredith National Recreation Area, TX

A	Particulates (PM i0)		Sulfur	ur Dioxide Nitro		Nitrogen Oxides (Carbon Monoxide		Carbon Dioxide		VOCs	
Activity	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	
				Stationar	y Sources								
Heating Equipment	13	< 0.01	1	<.01	335	0.17	66	0.03	324,000	162	10	< 0.01	
Gasoline Storage Tanks											1,175	0.59	
Stationary Sources Subtotal	13	< 0.01	1	<.01	335	0.17	66	0.03	324,000	162	1,185	0.60	
				Area S	ources								
Campfires	558	0.28	6	< 0.01	42	0.02	4,075	2.04			3,694	1.85	
Prescribed Burning	5,040	2.52					10,640	5.32	2,993,760	1,497	1,120	0.56 ¹	
Wildfires	6,210	3.11					13,110	6.56	3,688,740	1,844	1,380	0.69	
Oil and Gas Well Compressors	12,912	6.46	14,673	7.34	105,646	52.82	44,020	22.01	4,531,022	2,266	31,048	15.52	
Area Sources Total	24,720	12.36	14,680	7.34	105,688	52.84	71,845	35.92	11,213,522	5,607	37,242	18.62	
				To	als								
	Particulate	es (PM,o)	Sulfur	Dioxide	Nitrogen	Oxides	Carbon M	lonoxide	Carbon E	Dioxide	VO	Cs	
Totals without Prescribed Burning,	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	
Wildfires, and Oil and Gas Compressors	571	0.29	7	< 0.01	377	0.19	4,141	2.07	324,000	162	4,879	2.44	
Totals with Prescribed Burning	5,611	2.81	7	< 0.01	377	0.19	14,781	7.39	3,317,760	1,659	6,000	3.00	
Totals with Prescribed Burning and Oil and Gas Compressors	18,523	9.26	14,687	7.34	106,023	53.01	58,800	29.40	7,848,782	3,924	37,048	18.52	

TABLE 7: SUMMARY OF 2001 STATIONARY AND AREA SOURCE EMISSIONS AT LAKE MEREDITH NRA

As methane

3. MOBILE SOURCE EMISSIONS

This section summarizes emissions from mobile sources at Lake Meredith NRA for 2001. Mobile emission sources include highway and nonroad vehicles, including marine vessels.

3.1 HIGHWAY VEHICLES

3.1.1 Visitor Vehicles

Visitors travel only a relatively short distance on park property to reach one of the16 day and overnight visitor use areas in the park. In 2001, 1,248,700 visitors were estimated to have visited the use areas. Assuming a visitor per vehicle ratio of approximately 2.5 and a roundtrip distance on park property of two miles, an estimated 500,000 visitor vehicles traveled one million vehicle miles on park property in 2001.

The majority of mobile source emissions can be categorized as either exhaust or evaporative emissions. Exhaust emissions are related to the combustion of fuel in the engine and include VOC, NOx, CO, and PM_{10} . Exhaust emissions are dependent on a number of factors, including engine load, engine design and age, combustion efficiency, emissions equipment such as catalytic converters, and other factors. Evaporative emissions, which can occur while the vehicle is running or at rest, are related to the volatilization of fuel from vapor expansion, leaks and seepage, and fuel tank vapor displacement. Evaporative emissions are primarily dependent on daily temperature cycles and fuel volatility. In addition to vehicle exhaust, PM_{10} emissions also result from brake and tire wear, as well as the re-entrainment of dust from paved and unpaved roads (referred to as fugitive dust).

Emission factors produced by the USEPA MOBILE6.2 model were used in conjunction with VMT data in order to estimate mobile source emissions for VOC (both exhaust and evaporative), NOx, CO, and PM₁₀ (exhaust, brake, and tire) for visitor vehicles. MOBILE6.2 produces exhaust and evaporative emission factors for light duty gasoline vehicles, light duty gasoline trucks, heavy duty gasoline vehicles, light duty diesel vehicles, light duty diesel trucks, heavy duty diesel vehicles, and motorcycles. It also produces a composite emission factor for all vehicles based on the vehicle VMT mix supplied to the model. Inputs to the model include average vehicle speed, vehicle VMT mix, inspection and maintenance (UM) program information, fuel information, ambient temperature data, elevation, and others. Fugitive PM $_1$ 0 emissions resulting from tireroadway interaction were based on EPA's road dust emission factors.

The MOBILE6.2 model are typically used to support planning and modeling efforts in urban or regional areas and include default inputs suited for these applications. Therefore, it is suitable for applications over large, regional transportation networks. Application of the MOBILE5b model required the utilization of unique inputs that were representative of mobile source activity within the park. In particular, it was necessary to utilize unique inputs for the visitor vehicle VMT mix and the vehicle age distribution. The Center for Environmental Research and Technology within the College of Engineering at the University of California's Riverside Campus (CE-CERT) established park-specific vehicle fleet characterizations in developing air emission inventories for Zion National Park (CE-CERT, 2001). CE-CERT found that the distribution of vehicle ages in the park reflected a larger fraction of newer vehicles compared to the general vehicle population. The park-specific mix vehicle types and vehicle age distribution developed by CE-CERT have been applied in the mobile modeling for Lake Meredith NRA.

In addition to park-specific age distribution, CE-CERT also developed park-specific modeling inputs for driving patterns that differ significantly from the default driving patterns typically used in mobile modeling, such as the Federal Test Procedure (FTP). In particular, they found that the FTP reflects both higher speeds and a wider range of speeds than observed in national parks. However, since the MOBILE6.2 model is not designed to readily incorporate unique driving pattern data, the default driving cycle remains the basis for the mobile source emission estimates provided here.

Other important mobile modeling inputs that can significantly affect mobile emission factors are the average speed, fuel characteristics, and UM program parameters. The average speed input to the mobile model was 35 mph, and fuel volatility was assumed to be Reid vapor pressure (RVP) of 8.0 (summer) and 11.8 (winter)¹. Finally, UM program inputs were not included since there are no I/M programs in the areas near the park.

In order to account for seasonal differences in mobile emissions, separate MOBILE6.2 runs were performed to produce emission factors for winter and summer. A composite emission factor for each season, reflecting a park specific VMT mix adapted from CE-CERT, served as the basis for mobile source emission estimates. Additional particulate emissions (or entrained road dust) from vehicles operating on paved roads in Lake Meredith NRA also were calculated based on VMT. A summary of visitor vehicle emissions is provided in Table 11 at the end of this section.

['] Office of Transportation and Air Quality, U.S. Environmental Protection Agency, EPA420-R-02-011, February 2002

3.1.2 NPS/GSA Highway Vehicles

Lake Meredith NRA operates a fleet of highway vehicles that are owned by the Depal tinent of the Interior (DOI) or leased from the General Services Administration (GSA). Emission factors by vehicle class were used to estimate emissions from the NPS and GSA vehicles. A summary of NPS and GSA vehicles and their estimated annual mileage is provided in Table 8, and emissions are summarized in Table 11 at the end of this section. A tenant, the Canadian River Municipal Water Authority (CEMWA) also operates a fleet of vehicles; however, it is estimated that approximately one percent of their mileage is accumulated on park proper for a total of less than 5,000 miles.

Vehicle Type	Number	Annual Usage (mi/yr)								
DOIJNPS Vehicles										
Light Duty Gasoline Vehicles	0	0								
Light Duty Gasoline Trucks	11	121,000								
Light Duty Diesel Trucks	1	11,000								
Heavy Duty Diesel Trucks	14	154,000								
Totals	26	286,000								
GSA Vehi	cles									
Light Duty Gasoline Vehicles	3	33,000								
Light Duty Gasoline Trucks	18	198,000								
Heavy Duty Gasoline Vehicles	0	0								
Heavy Duty Diesel Trucks	2	13,900								
Totals	23	244,900								

TABLE 8: NPS AND GSA	ROAD VEHICLES AT LAKE MEREDITH NRA
----------------------	---

N.A. - Not Available

3.2 NPS NONROAD VEHICLES

The NPS also owns and operates nonroad motorized equipment that is used to maintain roads and grounds and for other purposes. There are records of the Lake Meredith NRA equipment inventory, while operating hours data were taken from those thought to be representation of a park this size. These data are noted in Table 9. Emission factors from the USEPA nonroad emission database were used to calculate annual emissions that are provided in Table 11.

Vehicle Type	Number	Annual Usage (hrs/yr)
Tractors	2	500
Grader	1	100
Backhoe	1	100
Mowers	7	700
Sweepers	2	200
Forklifts	2	200
Front End Loader	1	100
ATVs	4	500

TABLE 9: NPS NONROAD VEHIC	CLES AT LAKE MEREDITH NRA
----------------------------	---------------------------

3.3 MARINE VESSELS

Water-based activities are principal recreation activities in the park. Data on public marine vessels and personal watercraft emissions were obtained from a recent Personal Watercraft Use Environmental Assessment (NPS 2003) and are presented in Table 11 and Appendix B. It should be noted that personal watercraft were temporarily banned from the park beginning in November 2002. The ban remains in effect until a special regulation is finalized. Data for NPS owned and operated marine vessels were provided by park personnel, and emissions were estimated using EPA nonroad emission factors for 2-stroke and 4-stroke engines. A summary of these data are provided in Table 10, and emission factors for the various types of marine vessels are provided in Appendix B.

Marine Vessel Type	Rated Engine Power (hp) ³	Hours of Operation	PM ₁₀ (lb/yr)	NO ₌ (Ib/yr)	CO (Ib/yr)	HC (lb/yr)
Twin-engine, Two-stroke Outboard	150	100	107	17	3,208	1,614
Twin-engine, Two-stroke Outboard	225	100	160	25	4,811	2,421
Single-engine, Four-stroke Inboard/Outboard	120	30	13	2	385	194
Twin-engine, Four-stroke Outboard	130	100	1	90	4,077	179
Single-engine, Two-stroke Outboard ²	115	50	20	3	615	309
		Totals	301	136	13,096	4,718
NPS boat ² CRMWA boat	An average load factor of 0.21 was applied to all rated hp					

TABLE 10: LAKE MEREDITH NRA NPS MARINE VESSEL EMISSIONS

² CRMWA boat An average load factor of 0.21 was applied to all rated hp

SUMMARY OF MOBILE SOURCE EMISSIONS 3.4

Table 11 summarizes the mobile source emissions calculated above in a format that allows comparison between the various sources as well as providing totals for each pollutant or pollutant category under consideration.

	Particulates (PM, 0) Sult		Sulfur	Sulfur Dioxide Nitroger		gen Oxides Carbon M		Ionoxide VOCs		s
Activity	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
			Road Ve	ehicles						
Visitor Vehicles	1,923	0.96			2,962	1.48	47,983	1.17	2,339	1.17
DOI/NPS Road Vehicles	640	0.32			6,062	3.03	8,943	4.47	500	0.25
GSA Road Vehicles	477	0.24			1,185	0.59	12,660	6.33	606	0.30
Road Vehicle Emission Subtotal	20,348	10.17			10,209	5.11	69,586	34.79	3,445_	1.72
]	Nonroad `	Vehicles						
NPS Nonroad Vehicles	447	0.22			3,060	1.53	1,770	0.88	536	0.27
Public Motorized Boats	10,200	5.10			7,600	3.80	491,000	245.50	116,400	58.20
Public/Rental Personal Watercraft	4,200	2.10			600	0.30	185,000	92.50	85,600	42.80
NPS Marine Vessels	300	0.15			136	0.07	13,096	6.55	4,718	2.36
Nonroad Vehicle Emission Subtotal	15,147	7.58			11,396	5.70	690,866	345.43	207,254	103.63
Totals										
	Particulates (PM,o) Sulfu		Sulfur	Dioxide	kide Nitrogen Oxides		Carbon M	onoxide	VOC	s
	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
Totals	35,495	17.75			21,605	10.80	760,450	380.23	210,700	105.35

Includes exhaust PM $_{\rm l}o$ and road dust

4. LAKE MEREDITH NRA AND REGIONALEMISSION SUMMARY

4.1 LAKE MEREDITH NRA SUMMARY

A summary of Lake Meredith NRA emissions is provided in Table 12.

Source	PM ₁ 0 (tons)	SO ₂ (tons)	NO,~ (tons)	CO (tons)	VOCs (tons)	
		Point Sources				
Space and Water Heaters	< 0.01	< 0.01	0.17	0.03	< 0.01	
Gasoline Storage Tanks					0.59	
Subtotal	< 0.01	< 0.01	0.17	0.03	0.60	
		Area Sources				
Campfires	0.28	< 0.01	0.02	2.04	1.85	
Prescribed Burning	2.52			5.32	0.56	
Wildfires	3.11			6.56	0.69	
Oil and Gas Well Operations	6.46	7.34	52.82	22.01	15.52	
Subtotal	12.36	7.34	52.84	35.92	18.62	
	N	Mobile Sources				
Road Vehicles	10.17		5.11	34.79	1.72	
Nonroad Vehicles	0.22		1.53	0.88	0.27	
Marine Vessels	7.35		4.17	344.55	103.36	
Subtotal	17.75		10.80	380.23	105.35	
Totals						
Totals	30.11	7.34	63.81	416.18	124.57	

 TABLE 12:
 ESTIMATED ANNUAL EMISSIONS FROM LAKE MEREDITH NRA

4.2 Regional Air Emissions

Emission estimates for Hutchinson, Moore, and Potter Counties and the State of Texas were obtained from the 1999 National Emission Inventory (NEI) maintained by USEPA. It is important to note that differences may exist between the methodologies used to generate the park emission inventory and those used to generate the NEI. For example, here gasoline storage tanks have been included as stationary sources, while the NEI treats them as area sources. Table 13 provides a comparison of Lake Meredith NRA emissions with those from the surrounding counties and the state. For all pollutants, Lake Meredith NRA emissions account for less than 1 percent of the surrounding county point and mobile source emissions.

Area	PM ₁₀ (tons/yr)	SO ₂ (tons/yr)	NOx (tons/yr)	CO (tons/yr)	VOC (tons/yr)		
Point Sources							
Lake Meredith NRA Total	< 0.01	< 0.01	0.17	0.03	0.60		
	r						
Hutchinson County, TX	539	19,540	7,206	17,510	7,842		
Moore County, TX	264	10,804	12,556	6,529	2,061		
Potter County, TX	519	29,095	16,578	4,213	542		
Surrounding Counties	1,322	59,439	36,340	28,252	10,445		
Texas	54,700	977,386	920,494	463,370	251,840		
		rea Sources					
Lake Meredith NRA Total	12.36	7.34	52.84	35.92	18.62		
Hutchinson County, TX	1,964	25	35	101	2,122		
Moore County, TX	2,562	14	23	61	2,122		
Potter County, TX	2,302	68	114	331	4,073		
Surrounding Counties	6,961	107	172	493	8,631		
Texas	797,800	8,361	40,542	532,560	545,340		
	Mo	bile Sources					
Lake Meredith NRA Total	17.75		10.80	380.23	105.35		
Hutshinson County TV	5 174	110	1.561	6771	707		
Hutchinson County, TX	5,174	110	1,561	6,774	787		
Moore County, TX	2,672	139	1,395	5,085	594		
Potter County, TX	4,537	410	6,059	32,910	3,582		
Surrounding Counties	12,383	659	9,015	44,769	4,963		
Texas	1,873,475	113,121	1,274,494	5,161,011	600,335		

TABLE 13: ESTIMATED ANNUAL EMISSIONS FROM LAKE MEREDITH NRA,
SURROUNDING COUNTIES, AND THE STATE OF TEXAS

5. COMPLIANCE AND RECOMMENDATIONS

5.1 COMPLIANCE

The Texas Commission on Environmental Quality (formerly, the Texas Natural Resources Conservation Commission) administers the state's air pollution program. Park personnel should coordinate with the agency on permit issues relating to stationary sources, as well as prescribed burning activities (see Appendix D for selected air quality regulations). Prior to replacing or adding relatively large heating units, generators, and fuel storage tanks, the Texas Administrative Code (TAC) should be consulted regarding the need to obtain a permit to construct or a permit to operate such sources. According to the TAC Chapter 106, current general exemptions to these permits include:

- Natural gas or propane fuel burning equipment of less than 40 million Btu per hour heat input
- Stationary internal combustion engines rated less than 240 hp.

According to TAC Chapter 111, Subchapter B, outdoor burning, under certain conditions, is allowed for:

- Fires used solely for recreational or ceremonial purposes (§111.207)
- Prescribed burning (§111.211)
- Firefighting training (§ 111.205).

The park Fire and Resources Management Division personnel noted that they cooperate with the Texas Commission on Environmental Quality in preparation for prescribed burns.

In addition to the 170 gas and oil wells operating on park property, there are numerous industrial facilities and operations surrounding the park that impact air quality. These include thousands of oil and gas wells, the largest inland petroleum refinery in the country, a chemical plant, and several carbon black plants.

NPS regulations governing nonfederal oil and gas operations are published at Title 36 of the Code of Federal Regulations, Part 9, Subpart B (36 CFR Part 9B). Under these regulations, each operator requiring access on, across, or through NPS lands or water may conduct activities only under a Plan of Operations approved by the NPS. Once a Plan of Operations is approved, it serves as the operator's permit to operate in the park. Through the plan, the operator must show that the "...operations will be conducted in a manner that utilizes technologically feasible

methods least damaging to the federally owned or controlled lands, water, and resources of the unit..." These requirements are discussed in greater detail in the recently completed Oil and Gas Management Plan EIS (NPS 2002).

Based on the results of this study, the park is in compliance with state air quality regulations.

5.2 **RECOMMENDATIONS**

Energy RecordkeepingAlthough Lake Meredith NRA had a 2001 Annual Energy Management Data Report, it is incomplete. For example, units of natural gas consumption were not clearly stated, there were no data for gasoline consumption, and no consumption or cost data for diesel fuel. Although NPS gasoline vehicles are refueled off-site at commercial facilities, it would be of interest to track total gasoline usage over time to ascertain increasing or decreasing gasoline consumption trends.

Oil and GasWells-There are approximately 170 active oil and gas wells on park property that are owned and operated by private interests. These wells produce the overwhelming majority of total emissions from point and area sources within the park. The park recently completely an *Oil and Gas Management Plan, Environmental Impact Statement* for the combined Lake Meredith NRA and Alibates Flint Quarries National Monument (NPS 2002). The purpose of the plan was to clearly define a direction for long-term management of existing and anticipated oil and gas operations associated with the exercise of nonfederal oil and gas interests underlying the parks, while protecting park resources, visitor use and experience, and human health and safety, and preventing impairment to park resources and values.

Sustainable Developmen Actions to promote sustainable development in the design, retrofit, and construction of park facilities have associated air quality benefits. These include actions that reduce or replace consumption of conventional fossil fuels and/or reduce the consumption of other resources. Reductions in potable and non-potable water consumption also achieve concurrent reductions in energy consumption and associated air emissions. Acquisition of energy efficient appliances whenever possible also is an incremental energy saving measure that has associated air quality benefits.

The park has undertaken several actions that reduce emissions and the use of energy and water. These include:

- Photovoltaic-powered parking lights at the boat ramps at Blue West, Harbor Way, and Fritch Fortress.
- Two wind-powered warning lights
- The Alibates Flint Quarries National Monument comfort station is an enclosed vault toilet system that requires pumping at least semi-annually. A retrofit project installed a patented vault system that converts 75 percent or more of waste material to water vapor. Since the retrofit was accomplished, pumping the vaults has almost been eliminated, resulting in reduced pump truck diesel fuel consumption and emissions.
- The park has 16 solar photovoltaic powered comfort stations in back country areas, and ten more will be installed in 2004.
- Solar heating panels provide partial heating in the Roads and Trails Shop and Buildings and Utilities Shop.

Marine Vessels-Marine engines are estimated to produce over 80 percent of both CO and VOC emissions that are generated by stationary, area, and mobile sources within the park. Emissions from marine vessels operated by the public on Lake Meredith NRA far exceed emissions from visitor road vehicles. However, over time these levels will decrease as new marine gasoline engines that meet new EPA standards are phased in. Table 14 compares estimated emissions from personal watercraft and motor boats operating at Lake Meredith NRA in 2002 to a proposed scenario wherein personal watercraft are regulated under an NPS strategy that reduces user conflicts in certain lake areas by the year 2012 (NPS 2003).

PM ₁₀ (tons/yr)	NO _x (tons/yr)	CO (tons/yr)	VOC (tons/yr)			
	20	02				
6.7	3.8	313.7_	95.8			
2012						
5.0	4.3	256.7	47.7			
Percent Change						
-25	+13	-18	-50			

TABLE 14: PERSONAL WATERCRAFT AND MOTOR BOAT EMISSIONSAT LAKE MEREDITH NRA UNDER SPECIAL NPS REGULATION

Two of the four marine vessels operated by the NPS are equipped with 2-stroke engines. As these engines and vessels are replaced, models with 4-stroke engines should be procured. Four-stroke engines produce significantly lower PM $_{IO}$ and VOC emissions compared to 2-stroke models. However, NOx and CO emissions would increase.

6. REFERENCES

- College of Engineering at the University of California's Riverside Campus (CE-CERT). 2001. *Air Emissions Inventory for Zion National Park.*
- EA Engineering, Science, and Technology. 2001. *Air Emission Inventory Preparation Plan.* Prepared for the National Park Service. November.
- National Park Service. 2002. Final Oil and Gas Management Plan/Environmental Impact Statement, Lake Meredith National Recreational A rea and A libates Flint Quarries National Monument, Texas. April.
- National Park Service. 2003. Personal Watercraft Use, Environmental Assessment, Lake Meredith National Recreation Area. February.
- USEPA, 1991. Nonroad Engine and Vehicle Emission Study Report. EPA-21A-2001 and EPA46 0/3 -91 -02. November.
- USEPA, 1995a. Compilation of Air Pollution Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources.
- USEPA, 1995b. *Highway Vehicle Particulate Emission Modeling Software "PARTS"*. Office of Transportation and Air Quality.
- USEPA, 1995c. *Calculating Potential to Emit (PTE) for Emergency Generators*. Office of Air Quality Planning and Standards. September 6.
- USEPA, 2000a. *Factor Information REtrieval (FIRE) Data System*. Office of Air Quality Planning and Standards.
- USEPA, 2000b. TANKS 4.09a. Office of Air Quality Planning and Standards.
- USEPA, 2000c. *Emission Modeling for Recreational Vehicles*. Office of Air and Radiation. 13 November.
- USEPA, 2002. User's Guide to MOBILE6.1 and MOBILE6.2 Mobile Source Emission Factor Model. EPA420-R-02-010. Office of Air and Radiation. March.
- U.S. Forest Service. 1997. First Order Fire Effects Model (FOFEM) 4.0 User's Guide. January.

APPENDIX A

FUEL DATA AND EMISSION FACTORS

FUEL DATA

Fuel	Heating Value	Sulfur Content
No. 2 Distillate Fuel Oil/Diesel	140,000 Btu/gal	0.05% by weight
Natural Gas	1,050 Btu/ft ³	2,000 grains/10 ⁶ ft ³
Propane	91,500 Btu/gal	0.18 grains/100 ft ³

STATIONARY SOURCE EMISSION FACTORS - BOILERS/HEATING UNITS

DISTILLATE OIL (DF-2) - CRITERIA POLLUTANTS										
Combustor Type	Emiss	ion Factor	(lb/1.000	(lb/1.000 gal fue						
Combusion Type	PM ^(a)	S02 ^(b)	NO _X ⁽)	СО	VOC ^(a)					
Residential Furnace)	0.4	142S	18	5	0.713					
Boilers < 100 Million Btu/hr (Commercial/Institutional Combust.)	2	142S	20	5	0.34					
Boilers < 100 Million Btu/hr (Industrial Boilers ^(s))	2	142S	20	5	0.2					
Boilers > 1 00 Million Btu/hr (Utility Boilers $^{(h)})$	2	157S	24	5						
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Tables 1	.3-1 and 1	1.3-3.	1							

Combustor Type	Er	nission Fac	tor $(lb/10^{6} ft)$	³ fuel burn	ed)
(MMBtu/hr Heat Input)	PM ())	SO ₂	NO,(')	СО	VOC
Residential Furnaces (<0.3)					
-Uncontrolled	7.6	0.6	94	40	5.5
Tangential-Fired Boilers (All Sizes)					
-Uncontrolled	7.6	0.6	170	24	5.5
-Controlled-Flue gas recirculation	7.6	0.6	76	98	5.5
Small Boilers (<100)					
-Uncontrolled	7.6	0.6	100	84	5.5
-Controlled-Low NO, burners	7.6	0.6	50	84	5.5
-Controlled-Low NO, burners/Flue gas recirculation	7.6	0.6	32	84	5.5
Large Wall-Fired Boilers (>100)					
-Uncontrolled (Pre-NSPS) ^(k)	7.6	0.6	280	84	5.5
-Uncontrolled (Post-NSPS) ^(k)	7.6	0.6	190	84	5.5
-Controlled-Low NO, burners	7.6	0.6	140	84	5.5
-Controlled-Flue gas recirculation	7.6	0.6	100	84	5.5

STATIONARY SOURCE EMISSION FACTORS - BOILERS/HEATING UNITS (Continued)

PROPANE (LPG) - CRITERIA POLLUTANTS										
Combustor Type	Emission Factor (lb/1,000 'al fuel burned									
Combustor Type	PM ^(a)	SOP ⁾	NOX	СО	VOC ^(d)					
Commercial Boilers ^{t0}	0.4	0.105	14	1.9	0.3					
Industrial Boilers ⁽ ~~	0.6	0.10S	19	3.2	0.3					
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 1.5-1.										

STATIONARY SOURCE EMISSION FACTORS - GENERATORS

		Emissi	ip-hr)									
Fuel Type	PM	SOX	ΝΟχ	r co	VOC							
DF-2	2.20 E-03	2.05 E-03	0.031	6.68 E-03	2.51 E-03							
Gasoline	7.21 E-04	5.91 E-04	0.011	0.439	0.022							
Natural Gas/Propane	1.54 E-04	7.52 E-03(S)	3.53 E-03	8.6 E-04	1.92 E-04							
Source: AP-42, 5th Editio	on, Supplements	Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 3.3-1 and 3.1-1										

For generators rated at less than or equal to 448 kW (600 hp):

For generators rated at greater than 448 kW (600 hp):

		Emission Factor (lb/hp-hr)											
Fuel Type	PM	$\mathbf{SO}_{x}(^{b})$	NO,,	СО	VOC								
DF-2	0.0007	(8.09 E-03)S	0.024	5.5 E-03	6.4 E-04								
Source: AP-42	Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 3.4-1.												

FIREPLACE EMISSION FACTORS

Fuel Type		Em	ission Factor (1	b/ton)						
Fuel Type	PM ^{a)}	sox	NO _X ⁽⁾	co .	voc					
Wood	34.6	0.4	2.6	252.6	229.0					
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 1.9-1.										

WOODSTOVE EMISSION FACTORS

Stove Type		En	nission Factor (lb/ton)	
Stove Type Conventional Noncatalytic	PM ⁰⁾		VOC		
Conventional	30.6	0.4	2.8	230.8	53
Noncatalytic	19.6	0.4		140.8	12
Catalytic	20.4	0.4	2.0	104.4	15
Source: AP-42,	5th Edition, St	upplements A,	B, C, D, and E,	Table 1.10-1.	1

STATIONARY SOURCE EMISSION FACTORS - SURFACE COATING OPERATIONS

Surface Coating Type	VOC Emission Factor (lb/gal)
Paint: Solvent Base	5.6
Paint: Water Base	1.3
Enamel: General	3.5
Lacquer: General	6.1
Primer: General	6.6
Varnish/Shellac: General	3.3
Thinner: General	7.36
Adhesive: General	4.4
Source: Calculation Methods for Criteria Air Pollute July 1994. Armstrong Laboratory.	Int Emission Inventories, AL/OE-TR-1994-0049,

- (a) PM = Filterable Particulate Matter.
- (b) These factors must be multiplied by the fuel sulfur content (for example, if the sulfur content is 0.05%, then S equals 0.05).
- (c) Expressed as NO_{2} .
- (d) Emission factors given in AP-42 are actually for non-methane total organic compounds (NMTOC) which includes all VOCs and all exempted organic compounds (such as ethane, toxics and HAPs, aldehydes and semivolatile compounds) as measured by EPA reference methods.
- (e) Unit Rating <300,000 Btu/hr.
- (f) Unit Rating 3300,000 Btulhr, but <10,000,000 Btu/hr.
- (g) Unit Rating 310,000,000 Btu/hr, but <100,000,000 Btulhr.
- (h) Unit Rating 3100,000,000 Btu/hr.
- (i) POM = Particulate POM only.
- (j) PM = Filterable Particulate Matter + Condensible Particulate Matter.
- (k) NSPS = New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction, modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction, modification, or reconstruction after June 19, 1984.
- (1) Emission factors are given on a fuel input basis (lb/MMBtu). To convert to a power output basis (lb/hp-hr), use an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr.

APPENDIX **B**

EMISSION CALCULATIONS

2001 ACTUAL CRITERIA EMISSIONS FROM HEATING UNITS AT LAKE MEREDITH NRA

Emission Source	Facilities	Fuel	Number of Sources	Capacity (Btu/hr)		Consumption (gal/vr)	PM (Ibs/yr	SO ₂ (Ibs/yr)	NOx (Ibs/yr)	CO (Ibs/yr)	CO ₂ (Ibs/vr)	VOC (Ibs/yr)
				National Park	x Service						. ,	
Heater	Sanford Ranger Station	Propane	1	80,000	80,000	740	0	0	10	1	9,254	0
Water Heater	Sanford Ranger Station	Propane	Ι	30,000	30,000	278	0	0	4	1	3,470	0
1-Heater	Sanford Maintenance	Propane	Ι	90,000	90,000	833	0	0	12	2	10,410	0
Water Heater	Sanford Maintenance	Propane	Ι	30,000	30,000	278	0	0	4	- 1	3,470	ů
Heater	Sanford Sign Shop	Propane	2	40,000	80,000	740	0	0	10	1	9,254	0
Heater	Sanford Administration Building	Propane	3	40,000	120,000	1,110	0	0	16	2	13,881	0
Heater	Sanford Administration Building	Propane	Ι	60,000	60,000	555	0	0	8	1	6,940	0
Heater	Fire Cache	Propane	2	90,000	180,000	1,666	1	0	23	3	20,821	0
		Subtotal	12		670,000	6,200	2	0	87	12	77,500	02
						Cu Ft/Yr					11,500	2
Furnaces	Headquarters	Natural Gas				700,000	5	0	66	28	84,000	4
		Totals					8	1	153	40	161,500	6
	tors from AP-42, Tables 1.5-1 for comme mula = Consumption (gal/yr) * Emission F		ins/100 _{Cu} fl				0.4	0.1 *S	14.00	1.90	12,500	0.30
	Formula = Consumption (Cu ft/yr) * Emiss		Cu fl)				7.60	0.60	94.00	40.00	120,000	5.50

Emission	Facilities	Fuel	Number of	Capacity		Consumption	PM	SO ₂	NOx	СО	CO ₂	VOC
Source	T actitutes		Sources	(Btu/hr)		(gal/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)
			Canadi	an River Municip	al: Water Au	thority						
Heater	Laboratory	Propane	1	147,000	147,000	1,360	1	0	19	3	17,002	0
	er Laboratory	Propane	Ι	34,000	34,000	315	0	0	4	Ι	3,932	0
Heater	Meter Shop	Propane	1	125,000	125,000	1,157	0	0	16	2	14,458	0
Water Heater	r Meter Shop	Propane	1	27,000	27,000	250	0	0	3	0	3,123	0
Heater	Equipment Shop	Propane	1	75,000	75,000	694	0	0	10	i	8,675	0
Heater	Equipment Shop	Propane	3	60,000	180,000	1,666	1	0	23	3	20,819	0
Water Heate	er Equipment Shop	Propane	1	36,000	36,000	333	0	0	5		4.164	0
Heater	Headquarters	Propane	2	75,000	150,000	1,388	1	0	19	3	17,349	0
Heater	Headquarters	Propane	3	60,000	180,000	1,666	1	0	23	3	20,819	0
Heater	Headquarters	Propane	2	88,000	176,000	1,628	1	0	23	3	20,356	0
Heater	Headquarters	Propane	1	98,300	98,300	910	0	0	13	2	11,369	0
Heater	Resource Office	Propane	Ι	147.000	147,000	1.360	1	0	19	2	17,002	
Water Heater	r Resource Office	Propane	Ι	34,000	34,000	315	0	0	4	J	3 932	0
		Total	19	. ,	1,409,300	13,040	5	0	183	26	163,000	4
	ctors from AP-42, Tables 1.5-1 for comm onsumption (gal/yr) * Emission Factor (rains/100 cu ft				0.4	0.1 *S	14.00	1.90	12,500	0.30
		Park Totals	31			Ibs/yr	13	I	335	66	324,500	10
						tons/yr	0.01	0.00	0.17	0.03	162	0.00

Emission	Facilities	Fuel	Number of	Capacity		Consumption	PM	SO ₂	NOx	СО	CO_2	VOC
Source	i denities		Sources	(Btu/hr)		(gal/yr)	(Ibs/yr)	(lbs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibslvr)	(Ibs/yr)
				Na	tional Parl	s Service						
Heater	Sanford Ranger Station	Propane	Ι	80,000	80,000	7,701	3	0	108	15	96,264	2
Water Heat	t(Sanford Ranger Station	Propane	Ι	30,000	30,000	2,888	1	0	40	6	36,099	1
Heater	Sanford Maintenance	Propane	1	90,000	90,000	8,664	3	0	121	17	108,297	3
Waterl-leaf	t(Sanford Maintenance	Propane	Ι	30,000	30,000	2,888	1	0	40	6	36,099	1
Beater	Sanford Sign Shop	Propane	2	40,000	80,000	7,701	3	0	108	15	96,264	2
Heater	Sanford Administration Building	Propane	3	40,000	120,000	11,552	5	0	162	23	144,396	3
Heater	Sanford Administration Building	Propane	1	60,000	60,000	5,776	2	0	81	12	72,198	2
Heater	Fire Cache	Propane	2	90,000	180,000	17,327	7	0	243	35	216,593	5
		Subtotal	12		670,000	64,497	26	I	903	129	806,209	19
						Cu Ft/Yr						
Furnaces	Headquarters	Natural Gas	1	150,000	150,000	1,288,235	10	1	121	52	154,588	7
		Totals					36	2	1,024	181	960,797	26
Emission F	Factors from AP-42, Tables 1.5-1 for	commercial t	boilers, $S = 0$.	18 grains/100) cu it		0.4	0.1 *S	14.00	1.90	12,500	0.30
Propaane F	Formula = Consumption (gal/yr) * Er	nission Factor	(lb/1,000 gal)							,	
Natural Ga	s Formula = Consumption (cu ft/yr)	* Emission Fa	ctor (1b/1,000),000 cu ft)			7.60	0.60	94.00	40.00	120,000	5.50

2001 POTENTIAL CRITERIA EMISSIONS FROM HEATING UNITS AT LAKE MEREDITH NRA

Emission Source	Facilities	Fuel	Number of Sources	Capacity (Btu/hr)		Consumption (pal/yr)	PM (Ibs/yr)	SO ₂ (Ibs/yr)	NOx (Ibs/yr)	CO Ohs/yr`)	CO ₂ (Ibs/yr)	VOC (Ibs/yr)
			(Canadian Riv	ver Munici	pal Water Aut			((100, 51)
Heater	Laboratory	Propane	1	147,000	147,000	14,151	6	0	198	28	176.885	4
Water Heat	t (Laboratory	Propane	1	34,000	34,000	3,273	Ι	0	46	7	40,912	
Heater	Meter Shop	Propane	1	125,000	125,000	12,033	5	0	168	24	150,412	4
Water Heat	t(Meter Shop	Propane	1	27,000	27,000	2,599	1	0	36	5	32,489	
Heater	Equipment Shop	Propane	1	75,000	75,000	7,220	3	0	101	14	90,247	2
Heater	Equipment Shop	Propane	3	60,000	180,000	17,327	7	0	243	35	216,593	5
Water Heat	(Equipment Shop	Propane	Ι	36,000	36,000	3,465	1	0	49	7	43,319	-
Heater	Headquarters	Propane	2	75,000	150,000	14,440	6	0	202	29	180,495	4
Ileater	Headquarters	Propane	3	60,000	180,000	17,327	7	0	243	35	216,593	5
Heater	Headquarters	Propane	2	88,000	176,000	16,942	7	0	237	34	211,780	5
Heater	Headquarters	Propane	Ι	98,300	98,300	9,463	4	0	132	19	118,284	3
Heater	Resource Office	Propane	Ι	147,000	147,000	14,151	6	0	198	28	176,885	4
Water Heat	(Resource Office	Propane	1	34,000	34,000	3,273	1	0	46	7	40,912	
		Total	19		1,409,300	135,664	54	2	1,899	271	1,695,806	41
	actors from AP-42, Tables 1.5-1 Consumption (gal/yr) * Emissic			18 grains/100) cu ft		0.4	0.1 *S	14.00	1.90	12,500	0.30
		Park Totals	31			lbs/yr	90	4	2,923	452	2,656,603	67
						tons/yr	0.04	0.00	1.46	0.23	1,328	0.03

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	MERE Amarillo Texas NPS Horizontal Tank 5000 gallon AST
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (yin): Is Tank Underground (y/n):	13.25 8.00 5,000.00 0.00 10,500.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition:Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	White/White Good -0.03 0.03

Meteorological Data used in Emissions Calculations: Amarillo, Texas (Avg Atmospheric Pressure = 12.92 psia)

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank:	MERE 1 Amarillo Texas NPS Horizontal Tank
Description:	2500 gasoline AST
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (yin):	15.00 5.25 2,500.00 0.00 5,250.00 N
Is Tank Underground (y/n):	Ν
Paint Characteristics Shell Color/Shade: Shell Condition:	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	-0.03 0.03

Meteorological Data used in Emissions Calculations: Amarillo, Texas (Avg Atmospheric Pressure = 12.92 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

			y Liquid Surf. ratures (deg F)		Liquid Bulk Temp.	Vapor	Pressures (psia	1)	Vapor Mol.	Liquid Mass	Vapor Mass	Mot.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deq F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	59.09	52.30	65.88	56.96	3.9708	3.4582	4.5430	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4M Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 8)	33.75	393.66	427.42				

2001 ACTUAL EMISSIONS FROM CAMPFIRES AT LAKE MEREDITH NRA

	Total	Tent				PM	SO ₂	NO,,	CO	VOC
Location	Campers	Campers	Camps	Fires/Yr ²	Tons/Yr ³	(lbs/yr)	(Ibs/yr)	(lbs/yr)	(lbs/yr)	(Ibs/yr)
NPS Campgrounds	64,523	16,131	6,452	3,226	16	558	6	42	4,075	3,694
						tons/yr	tons/yr	tons/yr	tons/yr	tons/yr
						0.28	0.00	0.02	2.04	1.85
Assumptions:		² Fifty percer	an estimated nt of camp sit 0 lbs wood p	es have eith	• •		ng campfire			
		I	Emission Fac	tor (Ibs/ton)		34.60	0.40	2.60	252.60	229.00

TITLE: Results of FOFEM model execution on date: 6/13/2003

FUEL CONSUMPTION CALCULATIONS

Region: Interior West Cover Type: SAF/SRM - SRM 611 - Blue Grama - Buffalograss Fuel Type: Natural Fuel Reference: FOFEM 271

Fuel Component Name	Preburn Load (t/acre)	FUEL C Consumed Load (t/acre)	CONSUMPTION Postburn Load (t/acre)	TABLE Percent Reduced (%)	Equation Reference Number	Moisture
Litter	0.00	0.00	0.00	0.0	999	
Wood (0-1/4 inch)	0.00	0.00	0.00	0.0	999	
Wood $(1/4-1 \text{ inch})$	0.00	0.00	0.00	0.0	999	25.0
Wood (1-3 inch)	0.00	0.00	0.00	0.0	999	
Wood (3+ inch) Sound	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Wood (3+ inch) Rotten	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Duff	0.00	0.00	0.00	0.0	2	100.0
Herbaceous	0.63	0.57	0.06	90.0	221	
Shrubs	0.00	0.00	0.00	0.0	23	
Crown foliage	0.00	0.00	0.00	0.0	37	
Crown branchwood	0.00	0.00	0.00	0.0	38	
Total Fuels	0.63	0.57	0.06	90.0		

FIRE EFFECTS ON FOREST FLOOR COMPONENTS

Forest Floor	Preburn	Amount	Postburn		Equation
Component	Condition	Consumed	Condition		Number
Duff Depth (in)	0.0	0.0	0.0	0.0	6
Min Soil Exp (%)		21.9	21.9	21.9	10

	Emissions 11 flaming smo	bs/acre oldering	total
PM 10 PM 2.5 CH 4 CO CO 2	3 3 1 7 2017	0 0 0 0 0	3 3 1 7 2017
	Co Flaming: Smoldering: Total:	nsumption tons/acre 0.57 0.00 0.57	Duration hour:min:sec 00:01:00 00:00:00

FUEL CONSUMPTION CALCULATIONS

Region: Interior West Cover Type: SAF/SRM - SRM 604 - Bluestem - Grama Prairie Fuel Type: Natural Fuel Reference: SMFDB 438

		FUEL C	CONSUMPTION	TABLE		
Fuel	Preburn	Consumed	Postburn	Percent	Equation	
Component	Load	Load	Load	Reduced	Reference	
Name	(t/acre)	(t/acre)	(t/acre)	(%)	Number	Moisture
Litter	0.00	0.00	0.00	0.0	999	
Wood (0-1/4 inch)	0.00	0.00	0.00	0.0	999	
Wood $(1/4-1 \text{ inch})$	0.00	0.00	0.00	0.0	999	25.0
Wood (1-3 inch)	0.00	0.00	0.00	0.0	999	
Wood (3+ inch) Sound	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Wood (3+ inch) Rotten	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Duff	0.00	0.00	0.00	0.0	2	100.0
Herbaceous	1.04	0.94	0.10	90.0	221	
Shrubs	0.00	0.00	0.00	0.0	23	
Crown foliage	0.00	0.00	0.00	0.0	37	
Crown branchwood	0.00	0.00	0.00	0.0	38	
Total Fuels	1.04	0.94	0.10	90.0		

FIRE EFFECTS ON FOREST FLOOR COMPONENTS

Forest Floor	Preburn	Amount	Postburn		Equation
Component	Condition	Consumed	Condition		Number
Duff Depth (in)	0.0	0.0	0.0	0.0	6
Min Soil Exp (%)		21.9	21.9	21.9	10

		lbs/acre smoldering	total
PM 10	6	0	6
PM 2.5	5	0	5
CH 4	1	0	1
CO	12	0	12
CO 2	3329	0	3329

Со	nsumption	Duration
	tons/acre	hour:min:sec
Flaming:	0.94	00:01:00
Smoldering:	0.00	00:00:00
Total:	0.94	

2001 WILDFIRE EMISSIONS AT LAKE MEREDITH NRA

Fuel Type	Acres	PM⊥∘ (Ibs/yr)	РМ 2.5 (lbs/yr)	CI-I ₄ (Ibs/yr)	CO (Ibs/yr)	CO ₂ (Ibs/yr)	PM i⁰ (tons/yr)	PM 2.5 (tons/yr)	CH ₄ (tons/yr)	CO (tons/yr)	CO ₂ (tons/yr)
	710100	(100, j1)	(100, j1)	(186, j1)	(186/31)	(100/)1/	(10110/31)	((0))(0))	((0))(0,)(1)	((0))(0) (1)	(torio/ji)
Blue Grama-Buffalo Grass	690	2,070	2,070	690	4,830	1,391,730	1.04	1.04	0.35	2.42	695.87
Bluestem-Grama Prairie	690	4,140	3,450	690	8,280	2,297,010	2.07	1.73	0.35	4.14	1,148.51
Totals	1,380	6,210	5,520	1,380	13,110	3,688,740	3.11	2.76	0.69	6.56	1,844.37
Emission Factors (lbs/acre)											
Blue Grama-Buffalo Grass		3	3	1	7	2017					
Bluestem-Grama Prairie		6	5	1	12	3,329					
		PR	ESCRIBED BU	RNING EMISS	IONS AT LAKE	E MEREDITH NRA					
		PM _i 0	PM _{2.5}	CH₄	СО	CO ₂	PM 10	PM _{2.5}	CH₄	CO	CO ₂
Fuel Type	Acres	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Blue Grama-Buffalo Grass	560	1,680	1,680	560	3,920	1,129,520	0.84	0.84	0.28	1.96	564.76
Bluestem-Grama Prairie	560	3,360	2,800	560	6,720	1,864,240	1.68	1.40	0.28	3.36	932.12
	1,120	5,040	4,480	1,120	10,640	2,993,760	2.52	2.24	0.56	5.32	1,496.88
Emission Factors (lbs/acre)											
Blue Grama-Buffalo Grass		3	3	1	7	2017					
Bluestem-Grama Prairie		6	5	1	12	3,329					

2001 ACTUAL CRITERIA EMISSIONS FROM OIL AND GAS WELL COMPRESSORS AT LAKE MEREDITH NRA

Emission <u>Source</u> <u>Compressor</u>	Location <u>Oil and Gas Wells</u>	Fuel <u>Natural</u> <u>Gas</u>	Number of <u>Sources</u> <u>40</u>	Rating (<u>kW)</u> <u>13</u>	Run Time <u>(hrs/yr)</u> <u>8,760</u>	Output <u>(kW-hr/yr)</u> <u>4,380,000</u>	PM <u>(Ibs/yr)</u> <u>12,912</u>	SO ₂ (<u>Ibs/yr)</u> <u>14,673</u>	NO, <u>(Ibs/yr)</u> <u>105,646</u> _	CO <u>(Ibs/yr)</u> <u>44,019</u>	CO ₂ <u>(Ibs/yr)</u> 4,531,022	VOC <u>(Ibs/yr)</u> <u>31,048</u>
	s from AP-42, Chapter 3.4- ut (kW-hr/yr) * 1.34 (hp/kV	0 0		kW, S ⁼ 0.05			2.20E-03	0.05*S	1.80E-02	7.50E-03	7.72E-01	5.29E-03
-							PM <u>(tons/yr)</u>	SO ₂ <u>(tons/yr)</u>	NO x — <u>(tons/yr)</u> —	CO — <u>(tons/yr)</u> ——	CO 2 (tons/yr)	VOC _ <u>(tons/yr)</u>
							<u>6.46</u> _	7.34_	<u> </u>	22.01	<u>2,265.51</u>	<u> </u>

/ Lake Meredith NRA Winter Conditions. File 1, Run 1, Scenario 17. M584 Warning: The user supplied area wide average speed of 35.0 will be used for all hours of the day. 100°% of VMT has been assigned to a fixed combination of freeways, freeway ramps, arterial/collector and local roadways for all hours of the day and all vehicle types. Reading PM Gas Carbon ZML Levels from the external data file PMGZML.CSV Reading PM Gas Carbon DR1 Levels from the external data file PMGDR1.CSV Reading PM Gas Carbon DR2 Levels from the external data file PMGDR2.CSV Reading PM Diesel Zero Mile Levels from the external data file PMDZML.CSV Reading the First PM Deterioration Rates from the external data file PMDDR1.CSV Reading the Second PM Deterioration Rates from the external data file PMDDR2.CSV User supplied gasoline sulfur content = 300.0 ppm. M616 Comment: User has supplied post-1999 sulfur levels. M 48 Warning: there are no sales for vehicle class HDGV8b Calendar Year: 2001 Month: Jan. Altitude: High Minimum Temperature: 0.0 (F)

F	Absolu Nomin We Fuel Sul Exhaust Evap	Temperature: tte Humidity: al Fuel RVP: eathered RVP: fur Content: I/M Program: I/M Program: ATP Program: cmulated Gas:	75. g 11.8 p 11.8 p 299. p No No No	rains/lb si si							
Vehicle	Type: GVWR:	LDGV	<6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribu	tion:	0.7002	0.1410	0.1044		0.0060	0.0008	0.0016	0.0180	0.0280	1.0000
Composite Emis	sion Fa	.ctors (g/mi)	:								
Composite	voc :	1.044	1.479	1.307	1.406	1.072	0.433	0.439	0.509	2.84	1.172
Composite		26.95		31.91	34.11	32.08	1.308	0.931	6.582	31.55	28.433
Composite		1.006								1.41	
Veh.	Туре:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT	Mix:	0.0330	0.1080	0.0719	0.0325	0.0000	0.0016				
Composite Emis	sion Fa										
Composite				1.269		2.424	0.391				
Composite	CO	34.89	36.00	31.75	32.24	6.522	0.795				
Composite			1.580	1.558	2.095	2.555	1.180				
Veh.	Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGVBA •	HDGV8B		
VMT	Mix:	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Composite Emis	sion Fa	.ctors (g/mi)	:								
Composite	VOC :			0.000							
Composite	СО	32.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Composite	NOX :	4.092	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Veh.	Туре:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8E		

VMT Mix:	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Composite Emission Fa Composite VOC : Composite CO Composite NOX :	ctors (g/mi 0.378 1.942 4.150	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	
will be us has been a	mmer Condit rio 18.	tions. # # # # # # # ea wide ave hours of a fixed co	# # # # # # erage speed the day. I ombination	100% of VM of freeway	ys,				
	n ZML Leve	day and al ls			<u> </u>				
Reading PM Gas Carbo from the external da									
Reading PM Gas Carbo from the external da									
Reading PM Diesel Ze from the external da									
Reading the First PM from the external da									
Reading the Second P from the external da									
User supplie	d gasoline	sulfur con	tent = 300	0.0 ppm.					
M616 Comment: User ha	s supplied	post-1999	sulfur lev	vels.					

_

M 48 Warning:

Minimum T Maximum Absolut Nomina We Fuel Sul:	lendar Year Month Altitude Cemperature Temperatur te Humidity al Fuel RVP athered RVF fur Content	: July : High : 95.0 (e: 105.0 (: 75_ g : 8.0 p : 7.1 p : 299, p	si							
	I/MI Program Y/M Pro ^g ram									
	ATP Program									
Reform	mulated Gas	: No								
Vehicle Type: GVWR :	LDCV	LDCT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	TIC	All Veh
VMT Distribution;	0.7002	0.1410	0.1044		0.0060	0.0008	0.0016	0.0180	0,0280	1.0000
Composite Omission Fac									0.07	0.05-
Com ^p osite VOC :	0.861	0.998	0.975	0.989 16 . 26	0.942 23,39	0.405 1.277	0.461 0.945	0.490 6.500	3.31 37 . 99	0.954 15 . 188
Composite CO Com ^p osite NOX :	14,10 0.841	16.37 1,078	16.12 1.370	10.20	23,39 3.688	1.170	1.239	16.556	0.75	1,229
COMPOSILE NOX		·	1.070							*
J` Veh. Type:	LDGT1	LWGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0330	0.1080	0.0719	0.0325	0.0000	0.0016				
Composite Emission Fa	ctors (g/mi				0.510	0.446				
Composite VOC	0.961	1,010	0.958	1.013	2.512	0.418				
Composite CO	16.09	16.45	16.04	16.31	6.775 2.574	0.824 1.212				
Com ^p osite NOX :	0.856	1.146	1.237	1.666	2.0/4	1.212				
" Veh " Type :	MDGV2B	HDGV 3	IIDGV4	HDGVS	HE)CV6	HDGV7	HCGV\$A	HL;GV8B		
VMT Mix:	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

there are no sales for vehicle class HDGV8b

Composite Emission Fac	tors (g/m	i):						
Composite VOC :	0.942	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Composite CO	23.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Composite NOX :	3.688	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B
VMT Mix:	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Composite Emission Fac	tors (g/m	i):						
Composite VOC :	0.374	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Composite CO	1.957	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Composite NOX :	4.078	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Calendar Year:	2001	
Month:	Jan.	
Gasoline Fuel Sulfur Content:	299. j	ppm
Diesel Fuel Sulfur Content:		
Particle Size Cutoff:	10.00	Microns
Reformulated Gas:	No	

Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.7002	0.1410	0.1044		0.0060	0.0008	0.0016	0.0180	0.0280	1.0000
Composite Emission Fa	ctors (g/m	i):								
Lead:	0.0000	0.0000	0.0000	0.0000	0.0000				0.0000	0.0000
GASPM:	0.0042	0.0047	0.0044	0.0046	0.0523				0.0205	0.0050
ECARBON:						0.1244	0.0488	0.1250		0.0024
OCARBON:						0.0351	0.0703	0.0997		0.0019
SO4:	0.0028	0.0049	0.0047	0.0048	0.0118	0.0049	0.0106	0.0540	0.0010	0.0043
Total Exhaust PM:	0.0071	0.0096	0.0091	0.0094	0.0640	0.1644	0.1297	0.2786	0.0215	0.0136
Brake:	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125
Tire:	0.0080	0.0080	0.0080	0.0080	0.0080	0.0080	0.0080	0.0115	0.0040	0.0080
Total PM:	0.0276	0.0302	0.0297	0.0300	0.0846	0.1849	0.1503	0.3027	0.0380	0.0341
S02:	0.0684	0.0804	0.1134	0.0944	0.1603	0.0939	0.2028	0.7715 0.0270	0.0328 0.0113	0.0872 0.0970
NH3:	0.1016	0.1005	0.1015	0.1009	0.0451	0.0068	0.0068	0.0270	0.0113	0.0970
Idle Emissions (g/hr) PM Idle:								1.0557		0.0190
- Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0330	0.1080	0.0719	0.0325	0.0000	0.0016				
- Composite Emission Fa	ctors (g/m	ıi):								
Lead:	0.0000	0.0000	0.0000	0.0000						
GASPM:	0.0047	0.0047	0.0044	0.0044						
ECARBON:					0.1498	0.0464				
OCARBON:					0.2156	0.0668				

SO4: Total Exhaust PM: Brake: Tire: Total PM:	0.0049 0.0096 0.0125 0.0080 0.0302	0.0049 0.0096 0.0125 0.0080 0.0302	0.0047 0.0091 0.0125 0.0080 0.0297	0.0047 0.0091 0.0125 0.0080 0.0297	0.0062 0.3717 0.0125 0.0080 0.3922	0.0107 0.1238 0.0125 0.0080 0.1444			
S02:	0.0804	0.0804	0.1134	0.1134	0.1196	0.2049			
NH3:	0.1005	0.1005	0.1015	0.1015	0.0068	0.0068			
Idle Emissions (g/hr)									
PM Idle:									
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGVS	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Composite Emission Fa	ctors (g/m								
Lead:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
GASPM:	0.0523	0.0523	0.0503	0.0504	0.0503	0.0503	0.0503	0.0000	
ECARBON:									
OCARBON:									
S04:	0.0118	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total Exhaust PM:	0.0640	0.0523	0.0503	0.0504	0.0503	0.0503	0.0503	0.0000	
Brake:	0.0125	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Tire:	0.0080	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total PM:	0.0846	0.0523	0.0503	0.0504	0.0503	0.0503	0.0503	0.0000	
S02:	0.1603	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
NH3:	0.0451	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Idle Emissions (g/hr)									
PM Idle:									
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Composite Emission Fa	ctors (g/m	 i):							
Lead: -									
GASPM:									
ECARBON:	0.0514	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
OCARBON:	0.0535	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
S04:	0.0172	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total Exhaust PM:	0.1221	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Brake:	0.0125	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Tire:	0.0080	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Total PM: so2: NH3: Idle Emissions (g/hr) PM Idle:	0.1426 0.2452 0.0270 1.0617	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000		
# # # # # # # # # Lake Meredith NRA Sum File 1, Run 1, Scenar # # # # # # # # # # #	rio 18.	tions.	# # # # # # # # # #							
	e Fuel Sul: L Fuel Sul: Particle	lendar Yea: Month fur Content fur Content Size Cutof: mulated Ga	n: July t: 299. p t: 500. p f: 10.00 M	pm						
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	220101	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.7002	0.1410	0.1044		0.0060	0.0008	0.0016	0.0180	0.0280	1.0000
Composite Emission Fac	ctors (g/m									
Lead:	0.0000	0.0000	0.0000	0.0000	0.0000				0.0000	0.0000
GASPM:	0.0042	0.0046	0.0044	0.0045	0.0523				0.0205	0.0050
ECARBON:						0.1192	0.0485	0.1160		0.0023
OCARBON:						0.0336	0.0698	0.0926		0.0018
SO4:	0.0028	0.0049	0.0047	0.0048	0.0120	0.0049	0.0106	0.0540	0.0010	0.0042
Total Exhaust PM:	0.0070	0.0095	0.0091	0.0093	0.0643	0.1576	0.1289	0.2626	0.0215	0.0133
Brake:	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125
Tire:	0.0080	0.0080	0.0080	0.0080	0.0080	0.0080	0.0080	0.0116	0.0040	0.0080
Total PM:	0.0276	0.0300	0.0297	0.0299	0.0848	0.1782	0.1494	0.2867	0.0380	0.0338
SO2:	0.0684	0.0804	0.1134	0.0944	0.1601	0.0929	0.2031	0.7714	0.0328	0.0872
NH3:	0.1016	0.1007	0.1015	0.1010	0.0451	0.0068	0.0068	0.0270	0.0113	0.0970
Idle Emissions (g/hr)										
PM Idle:								1.0472		0.0189
Veh. Type:	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0330	0.1080	0.0719	0.0325	0.0000	0.0016				

Composite Emission Fa	ctors (g/m	ni):							
Lead:	0.0000	0.0000	0.0000	0.0000					
GASPM:	0.0046	0.0046	0.0044	0.0044					
ECARBON:					0.1498	0.0464			
OCARBON:					0.2156	0.0668			
SO4:	0.0049	0.0049	0.0047	0.0047	0.0062	0.0107			
Total Exhaust PM:	0.0095	0.0095	0.0091	0.0091	0.3717	0.1238			
Brake:	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125			
Tire:	0.0080	0.0080	0.0080	0.0080	0.0080	0.0080			
Total PM:	0.0300	0.0300	0.0297	0.0297	0.3922	0.1444			
SO2:	0.0804	0.0804	0.1134	0.1134	0.1196	0.2049			
NH3:	0.1007	0.1007	0.1015	0.1015	0.0068	0.0068			
Idle Emissions (g/hr)									
PM Idle:									
Veh. Type:		HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Composite Emission Fa	otors (a/m								
Lead:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
GASPM:	0.0523	0.0523	0.0506	0.0506	0.0506	0.0506	0.0505	0.0000	
ECARBON:									
OCARBON:									
SO4:	0.0120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total Exhaust PM:	0.0643	0.0523	0.0506	0.0506	0.0506	0.0506	0.0505	0.0000	
Brake:	0.0125	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Tire:	0.0080	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total PM:	0.0848	0.0523	0.0506	0.0506	0.0506	0.0506	0.0505	0.0000	
S02:	0.1601	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
NH3:	0.0451	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Idle Emissions (g/hr)	0.0101	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	
PM Idle:									
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Composite Emission Fac	 ctors (a/m	 ni):							
Lead: -									
GASPM: -									

0.0503	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0523	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0171	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1198	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0125	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0080	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1403	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.2450	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0270	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.0504	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0171 0.1198 0.0125 0.0080 0.1403 0.2450	0.0171 0.0000 0.1198 0.0000 0.0125 0.0000 0.0080 0.0000 0.1403 0.0000 0.2450 0.0000 0.0270 0.0000	0.0171 0.0000 0.0000 0.1198 0.0000 0.0000 0.0125 0.0000 0.0000 0.0080 0.0000 0.0000 0.1403 0.0000 0.0000 0.2450 0.0000 0.0000 0.0270 0.0000 0.0000	0.0171 0.0000 0.0000 0.0000 0.1198 0.0000 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.0080 0.0000 0.0000 0.0000 0.1403 0.0000 0.0000 0.0000 0.2450 0.0000 0.0000 0.0000 0.0270 0.0000 0.0000 0.0000	0.0171 0.0000 0.0000 0.0000 0.0000 0.1198 0.0000 0.0000 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.0000 0.0080 0.0000 0.0000 0.0000 0.0000 0.1403 0.0000 0.0000 0.0000 0.0000 0.2450 0.0000 0.0000 0.0000 0.0000 0.0270 0.0000 0.0000 0.0000 0.0000	0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.1198 0.0000 0.0000 0.0000 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0080 0.0000 0.0000 0.0000 0.0000 0.0000 0.1403 0.0000 0.0000 0.0000 0.0000 0.0000 0.2450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0270 0.0000 0.0000 0.0000 0.0000 0.0000	0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1198 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0080 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1403 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0270 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2001 LAKE MEREDITH NRA VISITOR VEHICLE EMISSIONS

Paved Road Annual VMT

1,000,000

		Emission Factors (g/mi) - All Vehicles						
				Phi _{I()} (F	Paved)			
			Exhaust, Brake, and					
	NOx	CO	VOC	Tire	Fugitive	Total		
Summer	1.229	15.188	0.954	0.0338	0.84	0.8738		
Winter	1.464	28.433	1.172	0.0341	0.84	0.8741		
Average	1.347	21.811	1.063			0.874		
		Emiss	sions (tons/yr)) - All Vehicles				
						Paved		
	NOx	<u></u>	<u>voc</u>			<u>PM</u> ₁ 0		
	1.48	23.99	1.17			0.96		
		Emis	sions (Ibs/yr)	-AllVehicles				
						Paved		
	<u>NOx</u>	<u>co</u>	VOC			<u>PM</u> 10		
	2,962	47,983	2,339			1,923		

LAKE MEREDITH NRA DO1 VEHICLES

	LDGV	LDGT	LDDT	HDDV	Total	_
Total Miles	0	121,000	11,000	154,000	286,000	
		Emiss	ion Facto	rs (g/mi) - L	DGV	
					PM ₁ 0	
				Exhaust,		
				Brake,		
	NOx	CO	VOC	and Tire	Fugitive	Total
Summer	0.8410	14.1000	0.8610	0.0276	0.8400	0.8676
Winter	1.0060	26.9500	1.0440	0.0276	0.8400	0.8676
Average	0.9235	20.5250	0.9525			0.8676
		Fmi	ssions (to	nslyr) - LD(GV	
	NOx	CO	VOC			PM ₁0
	0.00	0.00	0.00		_	0.00
		Emiss	ion Factor	s (g/mi) - L	DGT PM₁0	
				Exhaust,		
				Brake,		
	NOx	СО	VOC	and Tire	Fugitive	Total
Summer	1.202	16.260	0.989	0.030	0.840	0.870
Winter	1.587	34.110	1.406	0.030	0.840	0.870

Average	1.395	25.185	1.198	0.870			
	Emissions (tonslyr) - LDGT						
	NOx	CO	VOC	PM ₁ 0			

-	00	100	
0.19	3.35	0.16	0.12

Emission Factors (glmi) - LD	DT
	PM ₁o

					PM ₁o	
				Exhaust,		
				Brake,		
	NOx	CO	VOC	and Tire	Fugitive	Total
Summer	1.239	0.945	0.461	0.149	0.840	0.989
Winter	1.212	0.931	0.439	0.150	0.840	0.990
Average	1.226	0.938	0.450			0.990

	Emis	sions (tonsl	yr) - HDGV	
NOx	_ <u>CO</u>	_ <u>VOC</u>	<u>PM.</u>	
0.01	0.01	0.01	0.01	

Emission Factors (glmi) - HDDV

					PM ₁ 0		
				Exhaust,			
				Brake,			
	NOx	CO	VOC	and Tire	Fugitive	Total	
Summer	16.586	6.500	0.490	0.287	0.840	1.127	
Winter	16.834	6.582	0.509	0.303	0.840	1.143	
Average	16.710	6.541	0.500			1.135	
		Emissions (tonslyr) - HDDV					
	NOx	CO	VOC		_	PM 10	
	2.83	1.11	0.08			0.19	
		Emi	issions (to	ns/yr) - Tol	al		
	NOx	<u>CO</u>	VOC			PM 10	
	3.03	4.47	0.25			0.32	
		Em	Emissions (Ibslyr) - Total				
	NOx	<u>CO</u>	VOC			PM 10	
	6,062	8,943	499			640	

	LDGV	LDGT	LDDT	HDDV	Total	
Total Miles	33,000	198,000	0	13,900	244,900	
		Emi	ssion Fact	ors (glmi) LE)GV PM₁0	
	_			Exhaust,		
	NOx	со	VOC	Brake, and Tire	Fugitive	Total
Summer	0.8410	14.1000	0.8610	0.0276	0.8400	0.867
Winter	1.0060	26.9500	1.0440	0.0276	0.8400	0.867
Average	0.9235	20.5250	0.9525			0.867
	NOx	Ei CO	missions (VOC	tonslyr) LDG	V	
	0.03	0.75	0.03			<u>PM</u> 10 0.0
		Emi	ssion Fact	ors (glmi) - LD	GT	
		Liiii	0010111 000		PM 10	
				Exhaust, Brake, and		
	NOx	CO	VOC	Tire	Fugitive	Total
Summer	1.202	16.260	0.989	0.030	0.840	0.870
Winter	1.587	34.110	1.406	0.030	0.840	0.870
Average	1.395	25.185	1.198			0.870
	NOx	Ei CO	missions (1 <u>VOC</u>	onslyr) - LDG	F	<u></u>
	0.30	5.49	0.26			0.19
		Emi	ssion Fact	ors (glmi) - LD		
				Exhaust,	PM ₁ 0	
	NOx	СО	VOC	Brake, and Tire	Fugitive	Total
Summer	1.239	0.945	0.461	0.149	0.840	0.989
Winter	1.212	0.931	0.439	0.150	0.840	0.990
Average	1.226	0.938	0.450			0.990
		Er	nissions (te	ons/yr) - HDG\	/	
	<u>NOx</u> 0.00	<u>CO</u> 0.00	<u>VOC</u> 0.00			<u>PM 10</u> 0.00
		Emis	sion Facto	ors (glmi) - HDI	DV PM 10	
				Exhaust, Brake, and		
	NOx	CO	VOC	Tire	Fugitive	Total
Summer	16.586	6.500	0.490	0.287	0.840	1.12
Winter	16.834	6.582	0.509	0.303	0.840	1.14
Average	16.710	6.541	0.500			1.13
	NO			onslyr) - HDD∖	/	DM -
	<u>NOx</u> 0.26	<u> </u>	<u>VOC</u> 0.01			PM 10 0.02
		<u>E</u> i	missions (tonslyr) - Total		
	<u>NOx</u> 0.59	<u></u>	VOC			<u>PM 10</u>
	0.59	6.33	0.30			0.24
	NOx	<u></u>	missions (<u>VOC</u>	(Ibs/yr) - Total		<u>PM 10</u>

LAKE MEREDITH NRA GSA VEHICLES

 Emissions (lbs/yr) - Total

 NOx
 CO
 VOC
 PM 10

 1,185
 12,661
 606
 477

2001 LAKE MEREDITH NRA NONROAD VEHICLE EMISSIONS

		Emi	ssion Facto	rs (gm/hp-h	r)					Emissions (lbs/yr)	
Vehicle	No.	PM	Nox	CO	VOC	hp	load	hrs/yr	PM	Nox	CO	VOC
Tractors	5	2.04	1.03	2.31	2.19	42.35	0.68	500	65	33 0	73 0	69
Backhoe	1	2.04	1.03	2.31	2.19	77	0.55	100	19	10	22	20
Riding Mower	7	1.11	10.3	4.8	1.3	15	0.55	700	14	131	61	17
Grader	1	1.06	9.6	3.8	1.43	172	0.61	100	24	222	88	33
Sweeper	2	1.7	14	6.06	1.46	30	0.68	200	15	126	54	13
Forklift	2	1.06	9.6	3.8	1.43	172	0.61	200	49	443	175	66
Front End Loader	1	1.11	10.3	4.8	1.3	77	0.55	100	10	96	45	12
ATVs	4	1	8	5	1.22	350	0.65	500	250	2,002	1,251	305
							Totals:	(lbs/yr)	447	3,061	1,769	536
								(tons/yr)	0.22	1.53	0.88	0.27

LAKE MEREDITH NRA NPS MARINE VESSEL EMISSIONS

Diesel Engine Emission Factors

Units	HC	CO	NO,,	PM	SO ₂		
(g/hp-hr)	1.26	1.91	8.92	0.563	0.352	1 g =	0.002202
(lb/hp-hr)	0.003	0.004	0.020	0.001	0.001	BSFC =	0.367

¹ Source: Exhaust Emission Factors for Nonroad Engine Modeling -Compression-Ignition EPA Report No., NR-009A; Table 1

2-Stroke Gasoline Engine Emission Factors³

Units	HC	CO	NO _x	PM	SO ₂
(g/hp-hr)	116.38	231.26	1.19	7.7	0.000
(lb/hp-hr)	0.256	0.509	0.003	0.017	0.000

4-Stroke Gasoline Engine Emission Factors³

Units	HC	CO	NO,,	PM	SO ₂
(g/hp-hr)	14.92	339.18	7.46	0.06	0.000
(lb/hp-hr)	0.033	0.747	0.016	0.000	0.000

³ Source: Nonroad Emission Inventory Model, Draft, June 17, 1998

Criteria Pollutant Emissions³

		No. of	Engine	Hours of	Load	HC	CO	NO,,	PM	SO ₂
Vessel Type		Engines	Power (hp) Operation	Factor	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
150 HP Outboard	NPS	2	150	100	0.21	1,614	3,208	17	107	0
225 HP Outboard	NPS	2	225	100	0.21	2,421	4,811	25	160	0
Inboard/Outboard ²	NPS	1	120	30	0.21	194	385	2	13	0
4-Stroke Outboard ²	NPS	2	130	100	0.21	179	4,077	90	1	0
Outboard	CRMWA ³	1	115	50	0.21	309	615	3	20	0
						4,718	13,096	136	301	0
					tons/year					
						2.36	6.55	0.07	0.15	0.00

¹ Assumes 2-stroke engine

² Assumes 4-stroke engine

³ Canadian River Municipal Water Authority

Emissions = Emission Factor * No. of Engines * Engine Power * Hours of Operation *Load Factor

2002 Boating Activity at Lake Meredith National Recreation Area

Source: Lake Meredith National Recreation Area Personal Watercraft Use Environmental Assessment, February 2003

Motor Boats	Annual Visits 16,300			
PWCs	4,075			
Totals	20,375			
	НС	со	NO,,	PM ₁ 0
	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Motor Boats	116,400	491,000	7,600	10,200
PWCs	85,600	185,000	600	4,200
Totals	202,000	676,000	8,200	14,400
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Motor Boats	58.20	245.50	3.80	5.10
PWCs	42.80	92.50	0.30	2.10

101.00 338.00 4.10

7.20

Totals

Public and NPS Total Boating Emissions

	HC	CO	NO.	PM 10
	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
Public	202,000	676,000	8,200	14,400
N PS	4,718	13,096	136	301
Totals	206,718	689,096	8,336	14,701
Totals (tons/yr)	103.36	344.55	4.17	7.35

2002 Public Personal Watercraft and Motor Boats

APPENDIX C

PUBLIC USE DATA

LAKE MEREDITH NRA 12/2001			7540		
	December 2001				
	Recreational	Non-Recreational	Total	Calendar Year-To-Date	
Visits	51,326	0	51,326	1,248,702	
Visitor Hours	157,755	0	157,755	3,807,403	
				Fiscal YTD	
Fotal Fiscal YTD	Visitor Days			59,81	

Monthly Public Use Report Printed on 01 /20/2003

Recreation O/N stays	Current Month	Year-To-Date		
Concessioner Lodging	0	0	NPS Campgrounds	
Concessioner Campgrounds	0	0	Tents RN's .	364 1,593
NPS Campgrounds	1,957	64,523	Total	1,957
NPS Backcountry	890	4,957		
NPS Miscellaneous	0	478		
Non Recreation O/N stays	0	0		
Total Overnight stays	2,847	69,958		

	This Month	Same Month Last Year	Percent Change		
Total Rec	51,326	39,744	29.14 %		
Total NonRec	0	0	0.00 %		
Total Visits	51,326	39,744	29.14 %		
Total YTD	1,248,702	1,634,876	-23.62 %		
Special	Use Data	This Month	Year-To-Date		
GROUP CAMPERS			0 200		
MOTORCYCLES/DUNEBUG		4,85	1 47,842		
HUNTERS		1,55	5 4,510		
BOAT OVERNIGHTS			0 278		

LAKE MEREDITH NRA

Report Date: December 2001

	Non- Reporting Vehicles	This Month	Same Month Last Year	% Change	This Year YTD	Last Year YTD	% Change YTD
Sanford-Yake	601	8,274	3,843	115.31	176,096	251,293	-29.9
Cedar Canyon	60	5,8491	2,867	104.01	194,3551	285,236	-31.9
Spring Canyon	01	0	1,673	-100.0	71,323	102,5991	-30.5
Fritch Fortress	301	3,595	3,388	6.1	153,2861	199,7521	-23.3
Harbor Bay	601	6,619	431	1437.41	203,774	283,808	-28.2
Alibates/McBride	6011	4,624	23,293	-80.2	79,9161	130,351	-38.7
'P1um Creek	601	1,176	1,621	-27.41	30,923	27,5731	12.1
Blue West	30	2,786	98	2742.91	123,865	78,14111	58.5
Big Blue	90	1,6141	812	98.7	57,734	91,0841	-36.61
Bugbee Canyon	60	1,0081	728	38.51	37,1841	42,991	-13.5
North Canyon		908	455	99.61	16,907	19,6461	-13.9
Rosita	60	14,875	537	2668.71	103,341	122,4041	-15.6
Total Recreation Visits		51,326	39,744	29.1	1,248,702	1,634,876	-23.6
Overnight	t Stays	_					
Tent		3641	84	333.31	15,6171	12,7231	22.8
Recreation Vehicles		1,593	347	359.6	48,906	65,877	-25.8
Backcountry		890	797	11.7	4,957	5,787	-14.3
Group		0	0	0	200	1,9631	-89.8

APPENDIX D

SELECTED TEXAS AIR QUALITY REGULATIONS

Texas Natural Resource Conservation Commission Chapter 106 - Exemptions from Permitting

SUBCHAPTER G: COMBUSTION §§106.181 - 106.183 Effective November 1, 2001

§106.181. Used-Oil Combustion Units.

Small boilers and heaters burning used oil that has not been mixed with hazardous waste are permitted by rule provided that all of the following conditions are met:

(1) the combustion unit or combination of combustion units at the same account have a maximum capacity of 1.0 million Btu per hour (MMBtu/hr) and each individual combustion unit is not greater than 0.5 MMBtu/hr;

(2) the combustion gases from the combustion unit(s) are vented to the ambient air in accordance with the following requirements:

- (A) through an unobstructed vent; or
- (B) through a vertical vent with a cap; and
 - (i) a flat roof, through a minimum of a three-foot stack; or

(ii) a sloped roof, through a stack that is at least three feet higher than the highest point on the roof or three feet higher than a point extending ten feet horizontally from the roof; and

(3) the combustion unit(s) burns only used oil the owner or operator generates on-site or used oil received from household do-it-yourself used oil generators.

Adopted October 10, 2001

Effective November 1, 2001

§106.182. Ceramic Kilns.

Kilns used for firing ceramic ware, heated exclusively by natural gas, liquid petroleum gas, electricity, or any combination thereof are permitted by rule where the conditions of this section are met:

(1) the total heat input is ten million British thermal units per hour or less; and

Page 1

Texas Natural Resource Conservation Commission Chapter 106 - Exemptions from Permitting

(2) there are no emissions of lead, beryllium, or fluorides, and emissions of sulfur dioxide and particulate matter from both the material being fired and fuel burned do not exceed 25 tons per year of either air contaminant.

Adopted August 9, 2000

Effective September 4, 2000

§106.183. Boilers, Heaters, and Other Combustion Devices.

Boilers, heaters, drying or curing ovens, furnaces, or other combustion units, but not including stationary internal combustion engines or turbines are permitted by rule, provided that the following conditions are met.

(1) The only emissions shall be products of combustion of the fuel.

(2) The maximum heat input shall be 40 million British thermal unit (Btu) per hour with the fuel being:

- (A) sweet natural gas;
- (B) liquid petroleum gas;

(C) fuel gas containing no more than 0.1 grain of total sulfur compounds, calculated as sulfur, per dry standard cubic foot; or

(D) combinations of the fuels in subparagraphs (A) - (C) of this paragraph.

(3) Distillate fuel oil shall be fired as a backup fuel only. Firing shall be limited to 720 hours per year. The fuel oil shall contain less than 0.3% sulfur by weight and shall not be blended with waste oils or solvents.

(4) All gas fired heaters and boilers with a heat input greater than ten million Btu per hour (higher heating value) shall be designed such that the emissions of nitrogen oxides shall not exceed 0.1 pounds per million Btu heat input.

(5) Records of hours of fuel oil firing and fuel oil purchases shall be maintained on-site on a two-year rolling retention period and made available upon request to the commission or any local air pollution control agency having jurisdiction.

Adopted August 9, 2000

Effective September 4, 2000

Texas Natural Resource Conservation Commission Chapter 106 - Permits by Rule

SUBCHAPTER W: TURBINES AND ENGINES §106.511, §106.512 Effective June 13, 2001

§106.511. Portable and Emergency Engines and Turbines.

Internal combustion engine and gas turbine driven compressors, electric generator sets, and water pumps, used only for portable, emergency, and/or standby services are permitted by rule, provided that the maximum annual operating hours shall not exceed 10% of the normal annual operating schedule of the primary equipment; and all electric motors. For purposes of this section, "standby" means to be used as a "substitute for" and not "in addition to" other equipment.

Adopted August 9, 2000

Effective September 4, 2000

§106.512. Stationary Engines and Turbines.

Gas or liquid fuel-fired stationary internal combustion reciprocating engines or gas turbines that operate in compliance with the following conditions of this section are permitted by rule.

(1) The facility shall be registered by submitting the commission's Form PI-7, Table 29 for each proposed reciprocating engine, and Table 31 for each proposed gas turbine to the commission's Office of Permitting, Remediation, and Registration in Austin within ten days after construction begins. Engines and turbines rated less than 240 horsepower (hp) need not be registered, but must meet paragraphs (5) and (6) of this section, relating to fuel and protection of air quality. Engine hp rating shall be based on the engine manufacturer's maximum continuous load rating at the lesser of the engine or driven equipment's maximum published continuous speed. A rich-bum engine is a gas-fired spark-ignited engine that is operated with an exhaust oxygen content less than 4.0% by volume. A lean-bum engine is a gas-fired spark-ignited engine that is operated with an exhaust oxygen content of 4.0% by volume, or greater.

(2) For any engine rated 500 hp or greater, subparagraphs (A) - (C) of this paragraph

shall apply.

(A) The emissions of nitrogen oxides (NO $_{\rm X}$) shall not exceed the following limits:

(i) 2.0 grams per horsepower-hour (g/hp-hr) under all operating conditions for any gas-fired rich-bum engine;

(ii) 2.0 g/hp-hr at manufacturer's rated full load and speed, and other operating conditions, except 5.0 g/hp-hr under reduced speed, 80-100% of full torque conditions, for any spark-ignited, gas-fired lean-burn engine, or any compression-ignited dual fuel-fired engine manufactured new after June 18, 1992;

Page 1

SUBCHAPTER B OUTDOOR BURNING §§111.201, 111.203, 111.205, 111.207, 111.209, 111.211, 111.213, 111.215, 111.219, 111.221 Effective June 12, 2002

§111.201. General Prohibition.

No person may cause, suffer, allow, or permit any outdoor burning within the State of Texas, except as provided by this subchapter or by orders or permits of the commission. Outdoor disposal or deposition of any material capable of igniting spontaneously, with the exception of the storage of solid fossil fuels, shall not be allowed without written permission of the executive director. The term "executive director," as defined in Chapter 3 of this title (relating to Definitions), includes authorized staff representatives.

Adopted August 21, 1996

Effective September 16, 1996

§111.203. Definitions.

Unless specifically defined in the Texas Clean Air Act (TCAA) or in the rules of the Texas Natural Resource Conservation Commission (commission), the terms used by the commission have the meanings commonly ascribed to them in the field of air pollution control. In addition to the terms which are defined by the TCAA, the following terms, when used in this chapter, shall have the following meanings, unless the context clearly indicates otherwise.

(1) Extinguished - The absence of any visible flames, glowing coals, or smoke.

(2) Landclearing operation - The uprooting, cutting, or clearing of vegetation in connection with conversion for the construction of buildings, rights-of-way, residential, commercial, or industrial development, or the clearing of vegetation to enhance property value, access or production. It does not include the maintenance burning of on-site property wastes such as fallen limbs, branches, or leaves, or other wastes from routine property clean-up activities, nor does it include burning following clearing for ecological restoration.

(3) **Practical alternative -** An economically, technologically, ecologically and logistically viable option.

(4) **Prescribed burn -** The controlled application of fire to naturally-occurring vegetative fuels under specified environmental conditions and confined to a predetermined area, following appropriate planning and precautionary measures.

(5) **Structure containing sensitive receptor(s)** - A man-made structure utilized for human residence or business, the containment of livestock, or the housing of sensitive live vegetation. The term "man-made structure" does not include such things as range fences, roads, bridges, hunting blinds or facilities used solely for the storage of hay or other livestock feeds. The term "sensitive live vegetation" is defined as vegetation which has potential to be damaged by smoke and heat, examples of which include, but are not limited to: nursery production, mushroom cultivation, pharmaceutical plant production, or laboratory experiments involving plants.

(6) **Sunrise/Sunset -** Official sunrise/sunset as set forth in the United States Naval Observatory tables available from National Weather Service offices.

(7) Wildland - Uncultivated land other than fallow, land minimally influenced by human activity, and land maintained for biodiversity, wildlife forage production, protective plant cover, or wildlife habitat.

Adopted August 21, 1996

Effective September 16, 1996

§111.205. Exception for Fire Training.

(a) Outdoor burning shall be authorized for training fire-fighting personnel when requested in writing and when authorized either verbally or in writing by the local air pollution control agency. In the absence of such local entities, the appropriate commission regional office shall be notified. The burning shall be authorized if notice of denial from the local air pollution control agency, or commission regional office is not received within 10 working days after the date of postmark or the date of personal delivery of the request.

(b) Facilities dedicated solely for fire-fighting training, at which training routinely will be conducted on a frequency of at least once per week, shall submit an annual written notification of intent to continue such training to the appropriate commission regional office and any local air pollution control agency.

(c) Facilities dedicated solely for fire-fighting training, at which training is conducted less than weekly, shall provide an annual written notification of intent, with a telephone or electronic facsimile notice 24 hours in advance of any scheduled training session. No more than one such notification is required for multiple training sessions scheduled within any one-week period, provided the initial telephone/facsimile notice includes all such sessions. Both the written and telephone notifications shall be submitted to the appropriate commission regional office and any local air pollution control agency.

(d) Authorization to conduct outdoor burning under this provision may be revoked by the executive director if the authorization is used to circumvent other prohibitions of this subchapter.

Adopted August 21, 1996

§111.207. Exception for Fires Used for Recreation, Ceremony, Cooking, and Warmth.

Outdoor burning shall be authorized for fires used solely for recreational or ceremonial purposes, or in the noncommercial preparation of food, or used exclusively for the purpose of supplying warmth during cold weather. Such burning shall be subject to the requirements of §111.219(7) of this title (relating to General Requirements for Allowable Outdoor Burning).

Adopted August 21, 1996

Effective September 16, 1996

Effective September 16, 1996

§111.209. Exception for Disposal Fires.

Outdoor burning shall be authorized for:

(1) Domestic waste burning at a property designed for and used exclusively as a private residence, housing not more than three families, when collection of domestic waste is not provided or authorized by the local governmental entity having jurisdiction, and when the waste is generated only from that property. Provision of waste collection refers to collection at the premises where the waste is generated. The term "domestic waste" is defined in §101.1 of this title (relating to Definitions). Wastes normally resulting from the function of life within a residence that can be burned include such things as kitchen garbage, untreated lumber, cardboard boxes, packaging (including plastics and rubber), clothing, grass, leaves, and branch trimmings. Examples of wastes not considered domestic waste which cannot be burned, include such things as tires, non-wood construction debris, furniture, carpet, electrical wire, and appliances.

(2) Diseased animal carcass burning when burning is the most effective means of controlling the spread of disease.

(3) Animal remains burning by a veterinarian if the burning is conducted on property owned by the veterinarian; the property is in a county with a population of less than 10,000; and the veterinarian does not charge for the burning. Animal remains refer to an animal that dies in the care of the veterinarian and does not include any other type of medical waste.

(4) On-site burning of trees, brush, and other plant growth for right-of-way maintenance, landclearing operations, and maintenance along water canals when no practical alternative to burning exists and when the materials are generated only from that property. Structures containing sensitive receptors must not be negatively affected by the burn. Such burning shall be subject to the requirements of \$111.219 of this title (relating to General Requirements for Allowable Outdoor Burning). When possible, notification of intent to burn should be made to the appropriate commission regional office prior to the proposed burn. For a single project entailing multiple days of burning, an initial notice delineating

the scope of the burn is sufficient if the scope does not constitute circumvention of the rule for a continual burning situation. Commission notification or approval is not required.

(5) Crop residue burning for agricultural management purposes when no practical alternative exists. Such burning shall be subject to the requirements of §111.219 of this title, and structures containing sensitive receptors must not be negatively affected by the burn. When possible, notification of intent to burn should be made to the appropriate commission regional office prior to the proposed burn. Commission notification or approval is not required. This section is not applicable to crop residue burning covered by an administrative order.

(6) Brush, trees, and other plant growth causing a detrimental public health and safety condition may be burned by a county or municipal government at a site it owns upon receiving site and burn approval from the executive director. Such a burn can only be authorized when there is no practical alternative, and it may be done no more frequently than once every two months. Such burns cannot be conducted at municipal solid waste landfills unless authorized under §111.215 of this title (relating to Executive Director Approval of Otherwise Prohibited Outdoor Burning), and shall be subject to the requirements of §111.219 of this title.

Adopted May 22, 2002

Effective June 12, 2002

§111.211. Exception for Prescribed Burn.

Outdoor burning shall be authorized for:

(1) Prescribed burning for forest, range and wildland/wildlife management purposes, with the exception of coastal salt-marsh management burning. Such burning shall be subject to the requirements of §111.219 of this title (relating to General Requirements for Allowable Outdoor Burning), and structures containing sensitive receptors must not be negatively affected by the burn. When possible, notification of intent to bum should be made to the appropriate commission regional office prior to the proposed burn. Commission notification or approval is not required.

(2) Coastal salt-marsh management burning conducted in Aransas, Brazoria, Calhoun, Chambers, Galveston, Harris, Jackson, Jefferson, Kleberg, Matagorda, Nueces, Orange, Refugio, and San Patricio Counties. Coastal salt-marsh burning in these counties shall be subject to the following requirements:

(A) All land on which burning is to be conducted shall be registered with the appropriate commission regional office using a United States Geological Survey map or equivalent upon which are identified significant points such as roads, canals, lakes, and streams, and the method by which access is made to the site. For large acreage, the map should be divided into manageable blocks with

identification for each defined block. The information must be received for review at least 15 working days before the burning takes place.

(B) Prior to any burning, notification, either verbal or written, must be made to, and authorization must be received from the appropriate commission regional office. Notification must identify the specific area and/or block to be burned, approximate start and end time, and a responsible party who can be contacted during the bum period.

(C) Such burning shall be subject to the requirements of §111.219 of this title.

Adopted August 21, 1996

Effective September 16, 1996

§111.213. Exception for Hydrocarbon Burning.

Outdoor burning shall be authorized for hydrocarbon burning from pipeline breaks and oil spills only upon proper notification as set forth in §101.6 of this title (relating to Notification Requirements for Major Upset), and if the executive director has determined that the burning is necessary to protect the public welfare. Sampling and monitoring may be required to determine and evaluate environmental impacts.

Adopted August 21, 1996

Effective September 16, 1996

§111.215. Executive Director Approval of Otherwise Prohibited Outdoor Burning.

If not otherwise authorized by this chapter, outdoor burning may be authorized by written permission from the executive director if there is no practical alternative and if the burning will not cause or contribute to a nuisance, traffic hazard or to a violation of any federal or state primary or secondary ambient air standard. The executive director may specify procedures or methods to control or abate emissions from outdoor burning authorized pursuant to this rule. Authorization to burn may be revoked by the executive director at any time if the burning causes nuisance conditions, is not conducted in accordance with the specified conditions, violates any provision of an applicable permit, or causes a violation of any air quality standard.

Adopted August 21, 1996

Effective September 16, 1996

§111.219. General Requirements for Allowable Outdoor Burning.

Outdoor burning which is otherwise authorized shall also be subject to the following requirements when specified in any section of this subchapter.

(1) Prior to prescribed or controlled burning for forest management purposes, the Texas Forest Service shall be notified.

(2) Burning must be outside the corporate limits of a city or town except where the incorporated city or town has enacted ordinances which permit burning consistent with the Texas Clean Air Act, Subchapter E, Authority of Local Governments.

(3) Burning shall be commenced and conducted only when wind direction and other meteorological conditions are such that smoke and other pollutants will not cause adverse effects to any public road, landing strip, navigable water, or off-site structure containing sensitive receptor(s).

(4) If at any time the burning causes or may tend to cause smoke to blow onto or across a road or highway, it is the responsibility of the person initiating the burn to post flag-persons on affected roads.

(5) Burning must be conducted downwind of or at least 300 feet (90 meters) from any structure containing sensitive receptors located on adjacent properties unless prior written approval is obtained from the adjacent occupant with possessory control.

(6) Burning shall be conducted in compliance with the following meteorological and timing considerations:

(A) The initiation of burning shall commence no earlier than one hour after sunrise. Burning shall be completed on the same day not later than one hour before sunset, and shall be attended by a responsible party at all times during the active burn phase when the fire is progressing. In cases where residual fires and/or smoldering objects continue to emit smoke after this time, such areas shall be extinguished if the smoke from these areas has the potential to create a nuisance or traffic hazard condition. In no case shall the extent of the burn area be allowed to increase after this time.

(B) Burning shall not be commenced when surface wind speed is predicted to be less than six miles per hour (mph) (five knots) or greater than 23 mph (20 knots) during the burn period.

(C) Burning shall not be conducted during periods of actual or predicted persistent low-level atmospheric temperature inversions.

(7) Electrical insulation, treated lumber, plastics, non-wood construction/demolition materials, heavy oils, asphaltic materials, potentially explosive materials, chemical wastes, and items containing natural or synthetic rubber must not be burned.

Adopted August 21, 1996

Effective September 16, 1996

§111.221. Responsibility for Consequences of Outdoor Burning.

The authority to conduct outdoor burning under this regulation does not exempt or excuse any person responsible from the consequences, damages, or injuries resulting from the burning and does not exempt or excuse anyone from complying with all other applicable laws or ordinances, regulations, and orders of governmental entities having jurisdiction, even though the burning is otherwise conducted in compliance with this regulation.

Adopted August 21, 1996

Effective September 16, 1996