
FINAL

2000 AIR EMISSIONS INVENTORY

LAKE MEAD NATIONAL RECREATION AREA NEVADAIARIZONA

U.S. NATIONAL PARK SERVICE

FINAL

2000 AIR EMISSIONS INVENTORY

LAKE MEAD NATIONAL RECREATION AREA NEVADA/ARIZONA

Prepared for:

National Park Service WASO - Air Resources Division 12795 West Alameda Parkway Denver, CO 80228

Prepared by:

EA Engineering, Science, and Technology, Inc. 15 Loveton Circle Sparks, MD 21152 (410) 771-4950

JUNE 2003

CONTENTS

Page

		iv iv									
1.	INTR	ODUCTION									
	1.1 1.2 1.3 1.4 1.5	1.2 Typical Air Emission Sources 1 1.3 Inventory Methodology 2 1.4 Park Description 3									
2.	STAT	IONARY AND AREA SOURCE EMISSIONS									
	2.1	Stationary Sources									
		2.1.1Space and Water Heating Equipment62.1.2Generators72.1.3Fuel Storage Tanks92.1.4Wastewater Treatment Plants10									
	2.2	Area Sources									
		2.2.1Woodstoves/Fireplaces102.2.2Campfires102.2.3Prescribed and Wildland Fires102.2.4Miscellaneous Area Sources11									
	2.3	Summary of Stationary and Area Source Emissions11									
3.	MOBI	LE SOURCE EMISSIONS									
	3.1	Highway Vehicles									
		3.1.1Visitor Vehicles133.1.2GSA/NPS Highway Vehicles15									
	3.2	NPS Nonroad Vehicles16									
	3.3	Marine Vessels16									
	3.4	Aircraft									

CONTENTS (Continued)

<u>Page</u>

	3.6	Summary of Mobile Source Emissions	18					
4.	LAKE	MEAD NRA AND REGIONAL EMISSION SUMMARY	. 20					
	4.1	Lake Mead NRA Summary	.20					
	4.2	Regional Air Emissions	20					
5.	COMP	LIANCE AND RECOMMENDATIONS	. 22					
	5.1	Compliance	. 22					
	5.2	Recommendations	.22					
6.	REFE	RENCES	25					
APPENDIX A - FUEL DATA AND EMISSION FACTORS APPENDIX B - EMISSION CALCULATIONS APPENDIX C - PUBLIC USE DATA APPENDIX D - DEVELOPED AREAS IN LAKE MEAD NRA, NV/AZ APPENDIX E - SELECTED CLARK COUNTY, NV AIR QUALITY REGULATIONS								

FIGURES

<u>Numt</u>	ber <u>Title</u>							
1	Lake Mead National Recreation Area Location							
	TABLES							
Numt	ber <u>Title</u> Pa	<u>ge</u>						
1	Lake Mead NRA Developed Areas	.4						
2	2000 Actual Criteria Emissions from Heating Equipment at Lake Mead NRA	.6						
3	2000 Potential Criteria Emissions from Heating Equipment at Lake Mead NRA	7						
4	2000 Actual Lake Mead NRA Generator Criteria Emissions	. 8						
5	2000 Potential Lake Mead NRA Generator Criteria Emissions	.8						
6	Lake Mead NRA Gasoline Storage Tank Emissions	.9						
7	2000 Lake Mead NRA Campfire Emissions	10						
8	Air Emissions from Wildfires in Lake Mead NRA	11						
9	Summary of 2000 Stationary and Area Source Emissions at Lake Mead NRA	12						
10	Estimated Visitor Vehicle Travel in Lake Mead NRA	13						
11	NPS and GSA Road Vehicles at Lake Mead NRA	15						
12	NPS Nonroad Vehicles at Lake Mead NRA	16						
13	Lake Mead NRA Marine Vessel Emissions	17						
14	Summary of 2000 Mobile Source Emissions at Lake Mead NRA	19						
15	Estimated Annual Emissions from Lake Mead NRA	20						
15	Estimated Annual Emissions from Lake Mead NRA, Surrounding Counties, and the States of Nevada and Arizona	21						

1. INTRODUCTION

1.1 BACKGROUND

In August of 1999, the National Park Service (NPS) embarked on the Natural Resource Challenge, a major effort to substantially improve how the NPS manages the natural resources under its care. As part of Natural Resource Challenge, the NPS Air Resources Division (ARD) was tasked with the responsibility of expanding efforts to monitor and understand air quality and related values in the parks. In addition, the NPS Environmental Leadership policy directs the NPS to manage the parks in a manner "that demonstrates sound environmental stewardship by implementing sustainable practices in all aspects of NPS management...." In order to achieve both of these objectives, it is necessary to gain an understanding of air pollution emissions that result from activities within the park. In this regard, development of an in-park air emissions inventory for Lake Mead National Recreation Area (NRA) serves three functions. First, it provides an understanding of the sources and magnitude of in-park emissions and a basis for contrasting them with emissions from the surrounding area. Second, it identifies existing and potential strategies to mitigate in-park air emissions. Finally, it evaluates and ensures the compliance status of the park relative to state and federal air pollution regulations.

1.2 **TYPICAL** AIR EMISSION **SOURCES**

Typical air emission sources within NPS units include stationary, area, and mobile sources. Stationary sources can include fossil fuel-fired space and water heating equipment, generators, fuel storage tanks, and wastewater treatment plants. Area sources may include woodstoves, fireplaces, campfires, and prescribed burning. Mobile sources may include vehicles operated by visitors, tour operators, and NPS and concessioner employees, and nonroard vehicles and equipment.

The air pollutants that are addressed in this report are summarized in the table below. Of the pollutants noted, ozone is not produced and emitted directly from stationary, area, or mobile sources, but rather it is I wined as a result a chemical reaction of NOx and VOC emissions in the presence of sunlight. It is primarily an issue on the East Coast and Southern California, while particulate matter is more of an issue in the West. Carbon dioxide historically has not been considered a pollutant. However, in recent years, there has been much interest in its contribution to global climate waiming since it is considered a greenhouse gas.

1

Pollutant	Characteristics
Particulates (PM 10)	 Mixture of solid particles and liquid droplets; fine particles (less than 2.5 micrometers) produced by fuel combustion, power plants, and diesel buses and trucks Can aggravate asthma, produce acute respiratory symptoms, including aggravated coughing and difficult or painful breathing, and chronic bronchitis Impairs visibility
Sulfur Dioxide (SO ₂)	 Can cause temporary breathing difficulties for people with asthma Reacts with other chemicals to form sulfate particles that are major cause of reduced visibility in many parts of the country
Nitrogen Oxides (NOx)	 High temperature fuel combustion exhaust product Can be an irritant to humans and participates in the formation of ozone
Carbon Monoxide (CO)	 Odorless, colorless gas produced by fuel combustion, particularly mobile sources May cause chest pains and aggravate cardiovascular diseases, such as angina May affect mental alertness and vision in healthy individuals
Volatile Organic Compounds (VOCs)	 Fuel combustion exhaust product Consists of a wide variety of carbon-based molecules Participates in the formation of ozone
Ozone (0 ₃)	 Not directly emitted by mobile, stationary, or area sources Formed from complex reactions between NOx and VOC emissions in the presence of sunlight Occurs regionally due to multiplicity of sources Can irritate the respiratory system Can reduce lung function Can aggravate asthma and increase susceptibility to respiratory infections Can inflame and damage the lining of the lungs
Carbon Dioxide (CO ₂)	 Does not directly impair human health It is a greenhouse gas that traps the earth's heat and contributes to the potential for global warming

AIR POLLUTANTS AND THEIR CHARACTERISTICS

1.3 **INVENTORY METHODOLOGY**

The methodology to accomplish the air emissions inventory was outlined in a protocol that was prepared at the initiation of the project (EA Engineering 2001). Tasks consisted of a site survey in February 2002, interviews with Lake Mead NRA['] personnel, review of applicable park records, emission calculations, review of applicable state and local air quality regulations, an assessment of mitigation measures and potential emission reduction initiatives, and report preparation. The data were used in conjunction with a number of manual and computer software computational tools to calculate emissions. Computational tools included U.S. Environmental Protection Agency (USEPA) emission factors such as the Factor Information Retrieval System (FIRE) database, USEPA *TANKS 4.0* model, U.S. Forest Service *First Order Fire Effects Model (FOFEM) 4.0* model, USEPA *MOBILE6.2* mobile source emissions model, and Federal Aviation

Bill Burke, Resource Management Specialist (702) 293-8935

Administration *Emissions and Dispersion Modeling System (EDMS)*. The year 2000 was selected as the basis for the air emission inventory since data for that year were the most recent available at the park. It should be noted that emissions are expected to vary from year to year due to fluctuations in visitation, prescribed and wildland fires, and other activities. Additional information on emission estimation methodology, including emission factors, is provided in Appendices A and B.

1.4 PARK DESCRIPTION

Lake Mead National Recreation Area (NRA) includes two reservoirs, Lake Mead and Lake Mohave, along 140 miles of the former Colorado River from the southern tip of Nevada to the northwest corner of Arizona (Figure 1). The park contains 1,501,216 acres of which 1,484,159 acres are in federal ownership administered by the NPS and 12,568 are nonfederal lands. The Bureau of Reclamation (BOR) administers an additional 4,488 acres surrounding Hoover and Davis Dams. Other agencies located within the park include the U.S. Fish and Wildlife Service and Nevada Wildlife Department, which operate fish hatcheries, Southern Nevada Water Authority, and the Arizona Game and Fish Department. The Hacienda Hotel and Casino that is located approximately three miles from Hoover Dam is an in-holding. The City of Las Vegas, NV lies approximately 20 miles to the northwest.

Lake Mead has a surface area of 157,900 acres with over 700 miles of shoreline, and Lake Mohave has a surface area of 28,260 acres and 150 miles of shoreline. Lake Mead has four large subbasins, including Boulder, Virgin, Temple, and Gregg's Basin, and four narrow canyons, Black, Boulder, Virgin, and Iceberg, are located between these basins. The shoreline area includes several large bays, including Grand Wash, Las Vegas, and Bonelli. The area surrounding Lakes Mead and Mohave is rugged with deep canyons, dry washes, sheer cliffs, and mountains. Lakeshore Scenic Drive is the most heavily used road in the park and provides access to the Alan Bible Visitor Center, Boulder Beach, and Las Vegas Bay developed areas on the southwestern portion of Lake Mead. Northshore Scenic Drive provides access to the Callville Bay, Echo Bay, and Overton Beach developed areas along the western edge of Lake Mead (see maps following Figure 1).

Information on the developed areas is summarized in Table 1, and maps of these areas are provided in Appendix D. Commercial services in the park that are authorized under numerous concession contract activities that may generate air emissions include lodging, food services, gasoline stations, stores and other retail establishments, motor boats, and marinas.

Name/Location	Function/Facilities				
Boulder City	Headquarters, Maintenance Facility, Procurement Office				
	Visitor Center, Lake Mead Lodge, Beach Store, Gasoline Station, Marina,				
Boulder Beach	Launching Ramps, Campground, Employee Housing				
Las Vagas Pay/Wash	Ranger Station, Boat Repair Ship, Store/Snack Bar, Gasoline Station, Marina,				
Las Vegas Bay/Wash	Launching Ramps, Campground, Employee Housing				
Call 11 - Darr	Ranger Station, Store, Gasoline Station, Restaurant, Marina, Launching Ramps,				
Call 11e Bay	Campground, Dry Boat Storage, Employee Housing				
	Ranger Station, Lodge, Store, Gasoline Station, Fish Cleaner, Marina,				
Echo Bay	Launching Ramps, Campground, Dry Boat Storage, Water Treatment Plant,				
-	Employee Housing				
Orverter Decel	Ranger Station, Motel, Restaurant, Gasoline Station, Gasoline Dock and				
Overton Beach	Supplies, Launching Ramp, Campground, Dry Boat Storage, Employee Housing				
	Visitor Center/Ranger Station, Motel, Vacation Cabinsites, Cafe-Store-Post				
Temple Bar	Office, Gasoline Station, Fish Cleaner, Maintenance Shop, Launching Ramp,				
	Campground, Dry Boat Storage, Gasoline Dock, Employee Housing				
Willow Beach	Ranger Station, Campground, Motel, Restaurant/Store, Gasoline Station,				
willow Beach	Marina, Launching Ramp, Dry Boat Storage, Employee Housing				
	Ranger Station, Motel, Post Office/Concession Office, Gasoline Station,				
Cottonwood Cove	Maintenance Shop, Launch Ramp, Campground, Dry Boat Storage, Marina,				
	Gasoline Dock, Employee Housing				
	Ranger Station, Motel, Store, Restaurant, Concession Office, Gasoline Station,				
Katherine	Maintenance Yard, Launch Ramp, Campground, Boat Repair Facility, Gasoline				
	Dock, Employee Housing				
NV Department of Wildlife	Gasoline Tank				

TABLE 1: LAKE MEAD NRA DEVELOPED AREAS

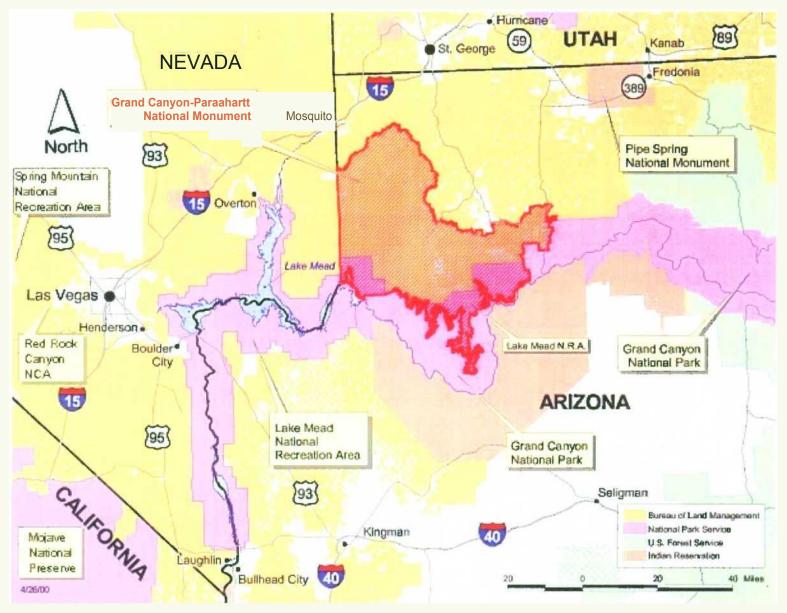
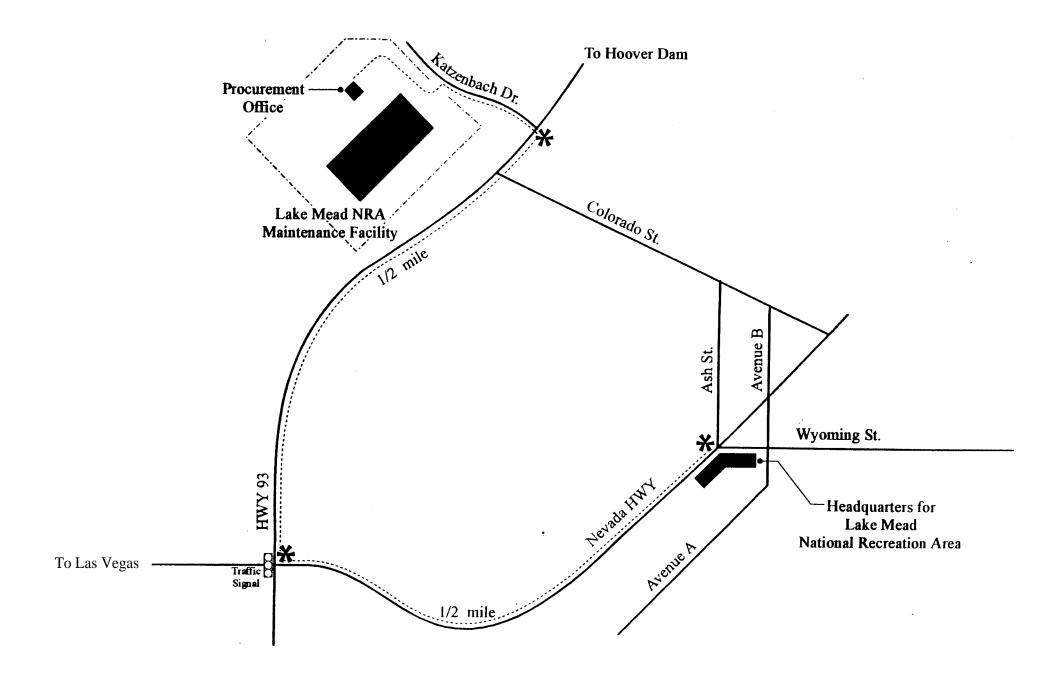
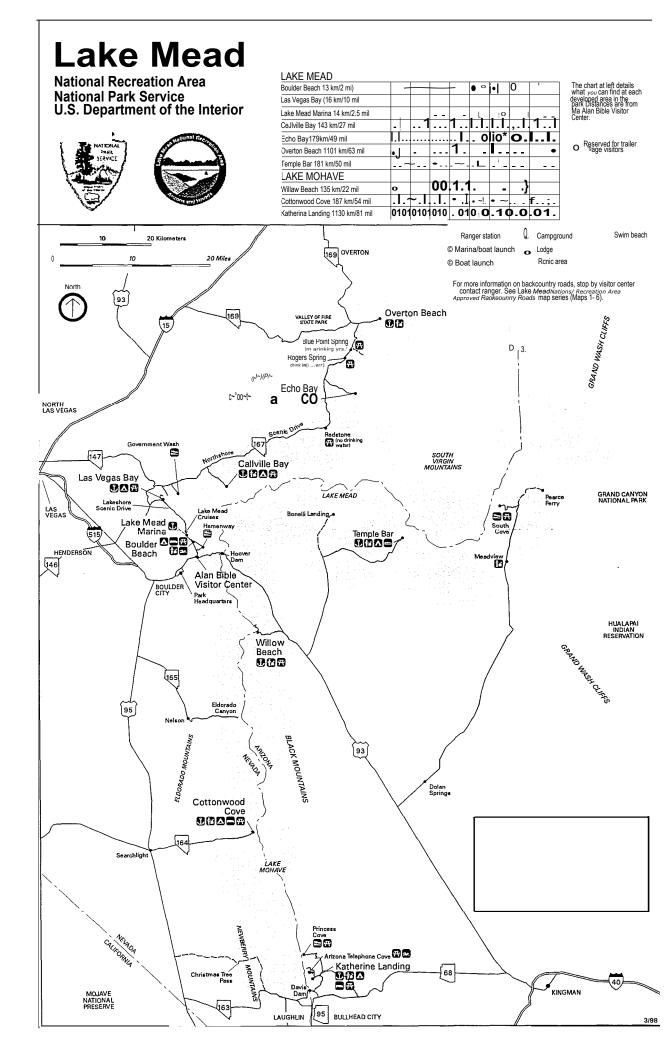
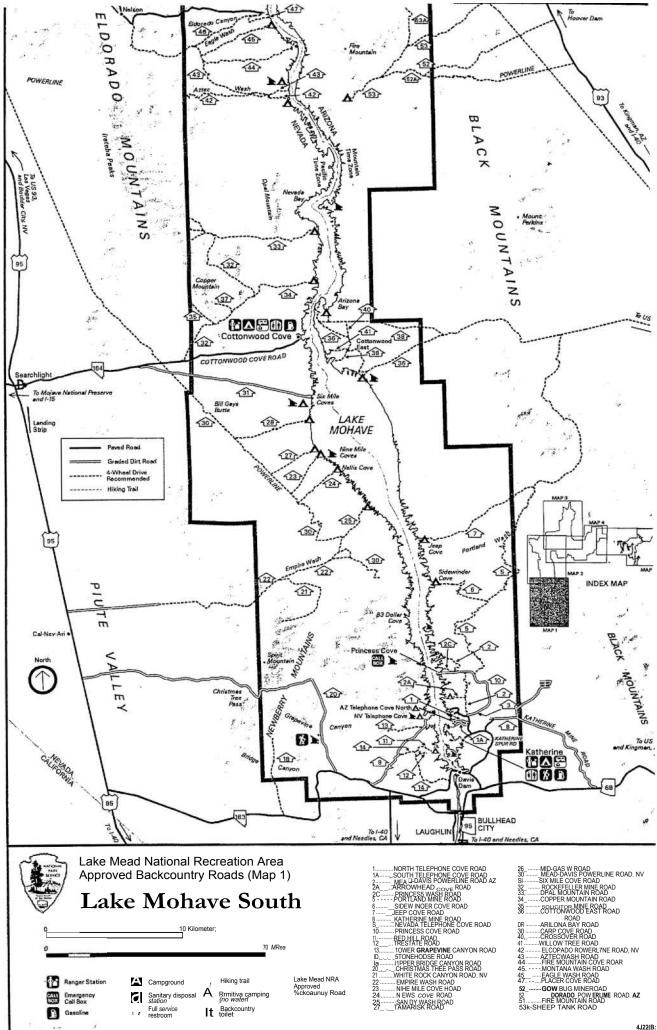
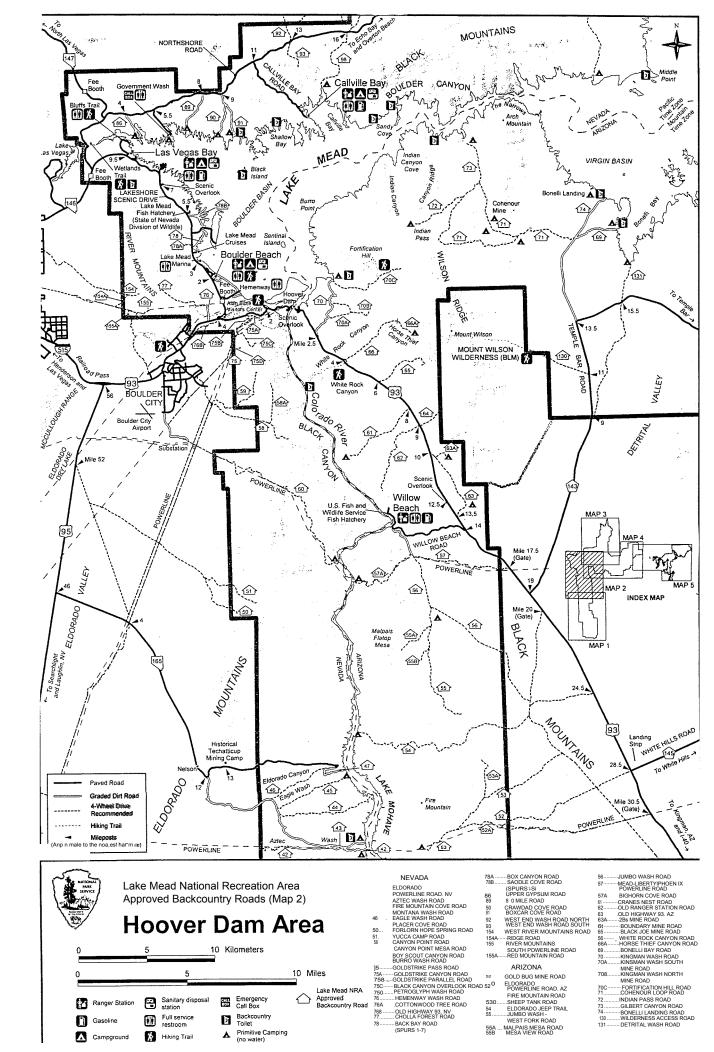
1.5 AIR QUALITY STATUS

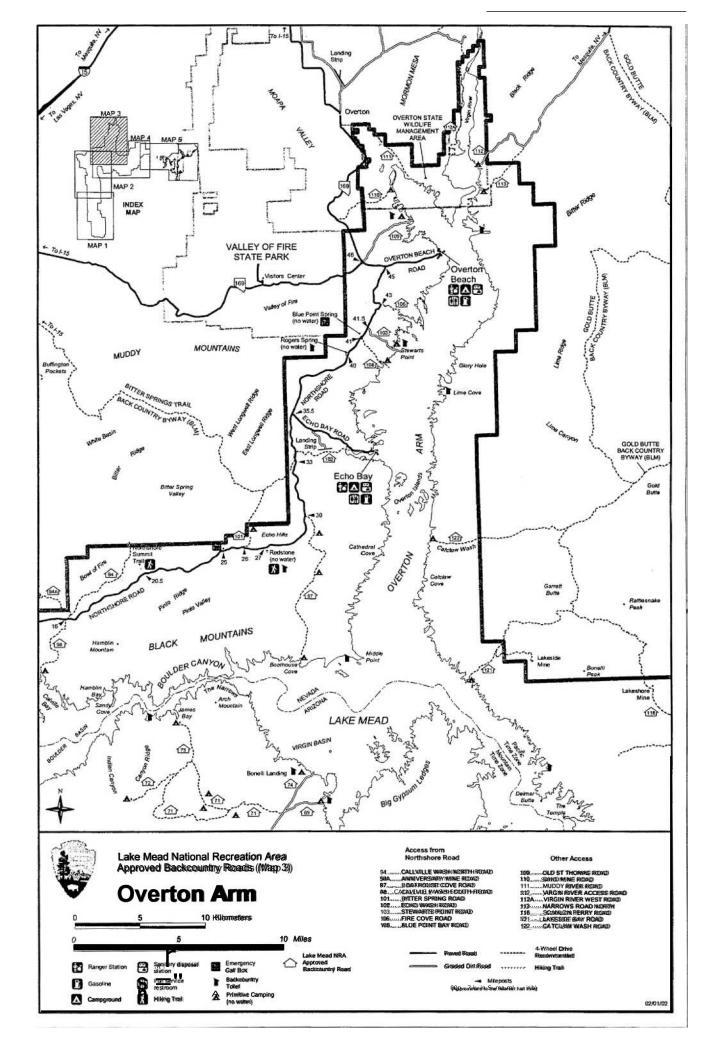
Lake Mead NRA is located in Clark County, NV and Mohave County, AZ. Although the Nevada Division of Environmental Protection, Bureau of Air Quality has air quality jurisdiction over most counties in Nevada, the Clark County Department of Air Quality Management is the regulatory and enforcement agency for air quality matters in Clark County. A portion of Clark County (the Las Vegas planning area Hydrographic Basin 212) has been designated as a serious nonattainment area for the National Ambient Air Quality Standards (NAAQS) for particulate matter (PM $_{10}$) and carbon monoxide (CO); however, the park is not located in a nonattainment area (NPS 2002). Mohave County, AZ is in attainment for all national and state AAQS, including PM $_{10}$ and CO.

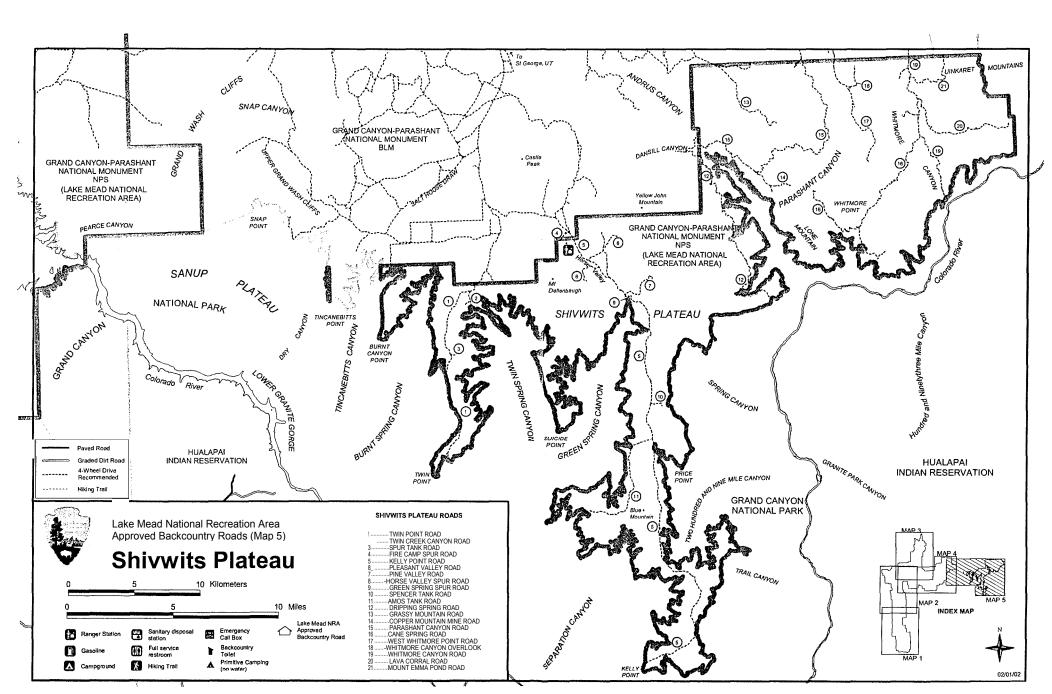
Air pollutants originate primarily from sources outside the park and can concentrate, especially during periods of atmospheric inversion, in the park, causing visible smog. The major existing sources of air pollutants within or adjacent to the recreation area include the Mohave generating plant near Laughlin, Nevada; emissions from motor vehicles from the Las Vegas valley and other urban areas; gravel and gypsum quarries; fugitive dust from disturbed lands and construction

4

activities; and other power generating plants in the region. Localized impacts on air quality from fuel odors and smoke from exhaust are apparent around the marina areas and in areas where concentrated boating occurs (NPS 2002b).


Figure 1. Lake Mead National Recreation Area Location



2. STATIONARY AND AREA SOURCE EMISSIONS

This section summarizes emissions from sources at Lake Mead NRA for the year 2000. The discussion is divided into sections covering emissions from combustion sources, fuel storage sources, and area sources. The following emissions were calculated for each source: particulate matter (PM $_{10}$), sulfur dioxide (SO₂), nitrogen oxides (NO_X), carbon monoxide (CO), and volatile organic compounds (VOCs). In addition to SO $_2$, a small amount of SO $_3$ emissions are generated during combustion processes. Emission factors used in the calculations are provided in Appendices A and B.

2.1 STATIONARY SOURCES

2.1.1 Space And Water Heating Equipment

While the majority of space and water heating equipment is electric at Lake Mead NRA, there are several propane space heating units. Criteria air emissions were calculated using the appropriate residential unit emission factors. For example, PM emissions from a propane heating unit at the Lake Mojave Resort are calculated as follows:

$$12,000 \text{ gal/yr } x \quad \begin{array}{c} 0.4 \text{ lb } PM \\ 1,000 \text{ gal} \end{array} = 5 \text{ lb } PM/yr$$

Actual criteria pollutant emissions from space and water heating equipment are summarized in Table 2. Potential emissions also were calculated by assuming that the heating units were operated continuously during the year or 8,760 hours per year, and these emissions are summarized in Table 3.

TABLE 2: 2000 ACTUAL CRITERIA EMISSIONS FROM HEATING EQUIPMENT AT LAKE MEAD NRA

Location	Consumption	PM _{I0}	SO ₂	NOX	CO	VOC
	(gal/yr)	(lbs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)
Lake Mead Drive Entrance Station	2,719	1	0	38	5	1
Lake Mead Blvd Entrance Station	2,532	1	0	35	5	1
Callville Bay Marina Maintenance	400	0	0	6	1	0
Callville Bay Marina Housing	12,300	5	0	172	25	4
Lake Mojave Resort	12,000	5	0	168	24	4
Total	29,951	12	0	419	60	10

Location	Consumption	$\mathbf{PM}_{\%0}$	SO_2	NOx	СО	VOC
Location	(gallyr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
Lake Mead Drive Entrance Station	7,659	3	0	107	15	2
Lake Mead Blvd Entrance Station	7,659	3	0	107	15	2
Callville Bay Marina Maintenance	4,787	2	0	67	10	1
Callville Bay Marina Housing	143,607	57	1	2,010	287	43
Lake Mojave Resort	7,659	3	0	107	15	2
Total	171,371	68	1	2,398	342	50

TABLE 3: 2000 POTENTIAL CRITERIA EMISSIONS FROM HEATING EQUIPMENT AT LAKE MEAD NRA

2.1.2 Generators

2.1.2.1 Generator Emissions - Actual

Emissions were calculated by multiplying the unit rating (kW) of the generators by an estimated annual run time (hr/yr) to get the kW-hr/yr, and the appropriate emission factors were then applied. For example, PM emissions from the diesel 60 kW generator at Echo Bay are calculated as:

 $\begin{array}{cccc} 60 \ kWx & \begin{array}{c} 1,460 \ hours \\ year \end{array} x & \begin{array}{c} -\underline{1.34 \ hp}^{-} \\ kW \end{array} \times & \begin{array}{c} 0.00220 \ lb \ PM \\ hp \ -hr \end{array} = 258 \ lb \ PM / \ yr \end{array}$

Actual generator criteria emissions are summarized in Table 4.

2.1.2.2 Generator Emissions - Potential

Potential emissions were also calculated for the generators, and the same emission factors that were used to calculate the actual emissions were used to calculate these potential emissions. To calculate potential emissions, EPA guidance on the number of hours of operation to assume was adopted:

EPA does not recommend the use of 8,760 hours per year (i.e., full-year operation) for calculating PTE (potential to emit) for emergency generators...The EPA believes that 500 hours is an appropriate default assumption for estimating the number of hours that an emergency generator could be expected to operate under worst-case conditions (EPA 1995c).

For generators that were actually operated more than 500 hours a year, potential hours were assumed to be *8,760* hours. Potential criteria generator emissions are summarized in Table *5*.

Facility	Fuel	Number	Rating (kW)	Run Time (hrslyr)	Output (kW-hr/yr)	PM ₁₀ (lbs/yr)	SO ₂ (lbs/yr)	NOx (lbs/yr)	CO (lbs/yr)	VOC (lbs/yr)
Boulder City Headquarters	Propane	1	15	26	390	0	1	2	0	0
Lake Mead Blvd Station	Propane	1	10	26	260	0	0	1	0	0
Lake Mead Drive Station	Propane	1	10	26	260	0	0	1	0	0
Shivwits Plateau Ranger Stn	Propane	1	20	26	520	0	1	2	1	0
Echo Bay	Diesel	1	60	1,460	87,600	258	241	3,639	784	295
Callville Bay	Diesel	1	50	25	1,250	4	3	52	11	4
Callville Bay	Diesel	1	125	25	3,125	9	9	130	28	11
Lake Mead Cruises	Diesel	1	50	26	1,300	4	4	54	12	4
	Total	8				275	256	3,881	836	314

TABLE 4: 2000) ACTUAL LAKE MEAD NRA	A GENERATOR	CRITERIA EMISSIONS
---------------	------------------------	-------------	--------------------

Began operation in March 2001

TABLE 5: 2000 POTENTIAL LAKE MEAD NRA GENERATOR CRITERIA EMISSIONS

Facility	Fuel	Number	Rating (kW)	Run Time (hrs/yr)	Output (kW-hr/yr)	PM ₁₀ (lbs/yr)	SO ₂ (lbs/yr)	NOa (lbs/yr)	CO (lbs/yr)	VOC (Ibs/yr)
Boulder City Headquarters	Propane	1	15	500	7,500	2	14	35	9	2
Lake Mead Blvd Station	Propane	1	10	500	5,000	1	9	24	6	1
Lake Mead Drive Station	Propane	1	10	500	5,000	1	9	24	6	1
Shivwits Plateau Ranger Stn	Propane	1	20	500	10,000	2	18	47	12	3
Echo Bay	Diesel	1	60	8,760	525,600	1,549	1,444	21,833	4,705	1,768
Callville Bay	Diesel	1	50	500	25,000	74	69	1,039	224	84
Callville Bay	Diesel	1	125	500	62,500	184	172	2,596	559	210
Lake Mead Cruises	Diesel	1	50	500	25,000	74	69	1,039	224	84
	Total	8				1,887	1,803	26,637	5,745	2,153

2.1.3 Fuel Storage Tanks

Lake Mead NRA has aboveground and underground gasoline storage tanks that serve the general public vehicles and boats. The park has no gasoline tanks for its vehicles since park-operated vehicles are refueled at off-site commercial gas stations. Emissions from fuel storage tanks were calculated using the EPA *TANKS 4.0* model. The gasoline tanks are equipped with Phase I vapor emission controls that capture vapors displaced from the vapor space in the tank when it is refilled. Emissions associated with gasoline dispensing are accounted for in the mobile source model.

There are two basic types of VOC emissions from storage tanks: working losses and standing losses. Working losses are composed of both withdrawal and refilling loss emissions. Withdrawal loss emissions result from the vaporization of liquid fuel residue on the inner surface of tank walls as the liquid levels in the tank are decreased and air is drawn into the tank. Refilling losses refer to fuel vapor releases to the air during the process of refilling the tank as the liquid level in the tank increases and pressurizes the vapor space. Standing losses describe those tank emissions from the vaporization of the liquid fuel in storage due to changes in ambient temperatures. VOC losses are also a direct function of the annual product throughput or turnovers. VOC emissions from gasoline storage tanks are summarized in Table 6.

Location	Number	Туре	Volume (gal)	Throughput (gallyr)	VOC (lbs/yr)
Boulder Beach (Lake Mead Resort)	2	AST	10,000	250,000	5,340
Calvilla Pay	1	UST	35,000	377,656	2,812
Calville Bay	1	UST	12,000	125,885	937
Cottonwood Cove	1	UST	23,000	292,172	2,175
Echo Bay	4	UST	10,000	259,093	1,929
Lake Mohave Resort	3	UST	12,000	400,000	2,978
	2	AST	15,000	21,760	5,967
Las Vegas Boat	1	AST	6,000	86,400	3,440
	1	AST	1,000	16,000	760
NV Department of Wildlife	1	AST	5,000	12,000	2,292
Overton Beach Resort	2	UST	10,000	180,000	1,340
Temple Bar	2	AST	12,000	308,000	7,589
W'lls Desit Helter	1	AST	8,000	80,000	3,543
Willow Beach Harbor	1	AST	4,000	40,000	1,997
Totals	23			2,448,966	43,099

TABLE 6: LAKE MEAD NRA GASOLINE STORAGE TANK EMISSIONS

2.1.4 Wastewater Treatment Plants

There are no wastewater treatment plants at Lake Mead NRA.

2.2 **AREA SOURCES**

2.2.1 Woodstoves/Fireplaces

There are no woodstoves or fireplaces in Lake Mead NRA.

2.2.2 Campfires

There are eight campgrounds throughout Lake Mead NRA that accommodate tent and recreation vehicles (RVs). Park personnel provided estimates of the total number of campers at both NPS and concessionaire operated sites. It was estimated that only 25 percent of these were tent campers, with the remainder being RV campers. It was further assumed that only tent campers had campfires. There were an estimated 2.5 campers per campsite and that approximately 50 percent had an evening or morning campfire at each campsite. Assuming that each campfire site consumes approximately 10 lbs of wood, air emissions from campsites in 2000 were calculated and are summarized in Table 7.

TABLE 7: 2000 LAKE MEAD NRA	CAMPFIRE EMISSIONS
-----------------------------	--------------------

Location	Campfires	Fuel (tons/yr)	PM ₁ a (Ibs/yr)	SO ₂ (lbs/yr)	NO x (lbs/yr)	CO (lbs/yr)	VOC (lbs/yr)		
NPS Frontcountry	11,197	56	1,937	22	146	14,141	12,820		
NPS Backcountry	14,433	72	2,497	29	188	18,229	16,526		
Concessionaires	8,512	43	1,473	17	111	10,750	9,746		
Total	34,141	171	5,906	68	444	43,120	39,092		
			tons/yr						
			2.95	0.03	0.22	21.56	19.55		

2.2.3 Prescribed and Wildland Fires

Wildland fires are ignited naturally, usually by lightning and are typically suppressed, while prescribed fires are ignited intentionally in order to achieve fire management objectives. Prescribed burning is a land treatment process to accomplish natural resource management objectives, including reducing the potential for destructive wildfires, eliminating excessive fuel buildup, controlling insects and disease, improving wildlife habitat and forage production,

maintaining natural succession of plant communities, and restoring natural processes. Only prescribed burning emissions are considered as anthropogenic emissions; however, to the extent that prescribed burning is conducted to achieve ecological benefit, the emissions could be considered natural.

The First Order Fire Effects Model (FOFEM) was used to estimate emissions from prescribed fires. FOFEM is a computer program developed by the Intermountain Fire Sciences Lab, U.S. Forest Service to predict the effects of prescribed fire and wildfire in forests and rangelands throughout the U.S. In particular, it quantifies emissions of PM_{+0} , $PM_{2.5}$, CH_4 , CO, and $CO_{2.5}$ which are summarized in Table 8 for wildfires only. In 2001, there were four very small prescribed fires that consumed less than one acre.

TABLE 8: AIR EMISSIONS FROM WILDLAND FIRES IN 2001 IN LAKE MEAD NRA

Fire Name	Acres	PM ₁₀ (lbs/yr)	PM2.5 (Ibs/yr)	VOC (lbs/yr)	CO (lbs/yr)	CO ₂ (lbs/yr)
Sagebrush	50	550	450	200	2,800	200,650
Salt Desert Shrub	50	900	800	300	4,600	373,450
Total	100	1,450	1,250	500	7,400	574,100

As methane (CH₄)

2.2.4 Miscellaneous Area Sources

Miscellaneous area sources include food preparation, degreasers, paints and other surface coatings, lighter fluid consumption, consumer solvents, propane use by visitors in recreational vehicles, and highway maintenance, such as paving materials. However, few data on these activities and products were available, and they are assumed to be negligible.

2.3 SUMMARY OF STATIONARY AND AREA SOURCE EMISSIONS

Table 9 summarizes the stationary and area source emissions calculated above in a format that allows comparison between the various sources as well as providing totals for each pollutant or pollutant category under consideration.

	Particulates (PM ₁₀)		Sulfur Dioxide		Nitrogen Oxides		Carbon Monoxide		VOCs	
Activity	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
Stationary Combustion Sources										
Space and Water Heating Units	12	< 0.01	0	0	419	0.21	60	0.03	10	< 0.01
Generators	275	0.14	259	0.13	3,881	1.94	836	0.42	314	0.16
Gasoline Storage Tanks									43,099	21.55
Stationary Sources Subtotal	287	0.14	259	0.13	4,300	2.15	896	0.45	43,423	21.71
Area Sources										
Campfires	5,906	2.95	68	0.03	444	0.22	43,120	21.56	39,092	19.55
Wildfires	1,450	0.72					7,400	3.70	500	0.25
Area Sources Subtotal	7,356	3.68	68	0.03	444	0.22	50,520_	25.26	39,592	19.80
Totals										
	Particulates (PM ₁₀)		Sulfur Dioxide		Nitrogen Oxides		Carbon Monoxide		VOCs	
	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
Totals without Wildfires	6,193	3.10	327	0.16	4,744	2.37	44,016	22.01	82,515	41.26
Totals with Wildfires	7,643	3.82	327	0.16	4,744	2.37	51,416	25.71	83,015	41.51

As methane

3. MOBILE SOURCE EMISSIONS

This section summarizes emissions from mobile sources at Lake Mead NRA for 2000. Mobile emission sources include highway and nonroad vehicles, including marine vessels and aircraft.

3.1 HIGHWAY VEHICLES

3.1.1 Visitor Vehicles

An estimated 2,658,360 visitor vehicles and 1,370 tour buses entered the park through approximately 15 points. Park officials estimate visitor data by these entrances and estimate that the visitor per vehicle ratio is approximately 3.3. Using these data and roadway distances to principal destination points, the vehicle miles traveled by visitor vehicles were calculated and are presented in Table 10.

Entrance	Visitors	Vehicles	Road Length (miles)	Vehicle Miles Traveled
Boulder Beach Access from US 90	2,130,427	645,584	4	2,582,336
Lakeshore Road Eastbound	2,038,311	617,670	25	15,441,750
Lake Mead Boulevard	1,121,567	339,869	14	4,758,163
Kingman Wash	12,693	3,846	20	76,927
Northshore Road (Southbound/Overton)	470,921	142,703	32	4,566,507
Valley of Fire Access Road	300,826	91,159	8	729,275
Temple Bar Access Road	161,788	49,027	40	1,961,067
South Cove - Pearce Ferry Road	159,553	48,349	32	1,547,181
Miscellaneous Access to Lake Mead	870,600	263,818	10	2,638,182
Willow Beach Access Road	199,942	60,588	8	484,708
Cottonwood Cove Access Road	138,713	42,034	14	588,479
Katherine Access Road	1,032,490	312,876	10	3,128,758
Miscellaneous Access to Lake Mohave	134,758	40,836	12	490,029
Total	8,772,589	2,658,359		38,993,362

TABLE 10: ESTIMATED VISITOR VEHICLE TRAVEL IN LAKE MEAD NRA

The majority of mobile source emissions can be categorized as either exhaust or evaporative emissions. Exhaust emissions are related to the combustion of fuel in the engine and include VOC, NOx, CO, and PM₁₀. Exhaust emissions are dependent on a number of factors, including engine load, engine design and age, combustion efficiency, emissions equipment such as catalytic converters, and other factors. Evaporative emissions, which can occur while the vehicle is running or at rest, are related to the volatilization of fuel from vapor expansion, leaks and seepage, and fuel tank vapor displacement. Evaporative emissions are primarily dependent on daily temperature cycles and fuel volatility. In addition to vehicle exhaust, PM ₁₀ emissions also

result from brake and tire wear, as well as the re-entrainment of dust from paved and unpaved roads (referred to as fugitive dust).

Emission factors produced by the USEPA MOBILE6.2 model were used in conjunction with VMT data in order to estimate mobile source emissions for VOC (both exhaust and evaporative), NOx, CO, and PM,o (exhaust, brake, and tire) for visitor vehicles. MOBILE6.2 produces exhaust and evaporative emission factors for light duty gasoline vehicles, light duty gasoline trucks, heavy duty gasoline vehicles, light duty diesel vehicles, light duty diesel trucks, heavy duty diesel vehicles, and motorcycles. It also produces a composite emission factor for all vehicles based on the vehicle VMT mix supplied to the model. Inputs to the model include average vehicle speed, vehicle VMT mix, inspection and maintenance (UM) program information, fuel information, ambient temperature data, elevation, and others. Fugitive PM 10 emissions resulting from tireroadway interaction were based on EPA's road dust emission factors.

The MOBILE6.2 model are typically used to support planning and modeling efforts in urban or regional areas and include default inputs suited for these applications. Therefore, it is suitable for applications over large, regional transportation networks. Application of the MOBILE5b model required the utilization of unique inputs that were representative of mobile source activity within the park. In particular, it was necessary to utilize unique inputs for the visitor vehicle VMT mix and the vehicle age distribution. The Center for Environmental Research and Technology within the College of Engineering at the University of California's Riverside Campus (CE-CERT) established park-specific vehicle fleet characterizations in developing air emission inventories for Zion National Park (CE-CERT, 2001). CE-CERT found that the distribution of vehicle ages in the park reflected a larger fraction of newer vehicles compared to the general vehicle population. The park-specific mix vehicle types and vehicle age distribution developed by CE-CERT have been applied in the mobile modeling for Lake Mead NRA.

In addition to park-specific age distribution, CE-CERT also developed park-specific modeling inputs for driving patterns that differ significantly from the default driving patterns typically used in mobile modeling, such as the Federal Test Procedure (FTP). In particular, they found that the FTP reflects both higher speeds and a wider range of speeds than observed in national parks. However, since the MOBILE6.2 model is not designed to readily incorporate unique driving pattern data, the default driving cycle remains the basis for the mobile source emission estimates provided here.

Other important mobile modeling inputs that can significantly affect mobile emission factors are

the average speed, fuel characteristics, and I/M program parameters. The average speed input to the mobile model was 35 mph, fuel volatility was assumed to be Reid vapor pressure (RVP) of 9 (summer) and 14.1 (winter), and reformulated gasoline (RFG) was not assumed to be present. Finally, UM program inputs were not included since there are no I/M programs in the areas near the park.

In order to account for seasonal differences in mobile emissions, separate MOBILE6.2 runs were performed to produce emission factors for winter and summer. A composite emission factor for each season, reflecting a park specific VMT mix adapted from CE-CERT, served as the basis for mobile source emission estimates. Additional particulate emissions (or entrained road dust) from vehicles operating on paved roads in Lake Mead NRA also were calculated based on VMT. A summary of visitor vehicle emissions is provided in Table 14 at the end of this section.

3.1.2 GSA/NPS Highway Vehicles

Lake Mead NRA operates a fleet of highway vehicles that are owned by the NPS or leased from the General Services Administration (GSA). Emission factors that were specific to vehicle classes (e.g., LDGVs) were used to estimate emissions from the NPS and GSA vehicles. A summary of NPS and GSA vehicles and their estimated annual mileage is provided in Table 11, and emissions are summarized in Table 14 at the end of this section.

Vehicle Type	Number	Annual Usage (mi/yr)
Light Duty Gasoline V	ehicles (LDGV)	
Autos	37	249,585
Light Duty Gasoline 7	Trucks (LDGT)	
Pickups	122	610,060
Sport Utility Vehicles	32	283,641
Vans	11	30,852
Suburbans	4	30,668
Heavy Duty Gasoline V	ehicles (HDGV)
Ambulances	5	464
Heavy Duty Diesel Tr	rucks (HDDT)	
Fire Trucks	6	2,600
Dump Trucks	3	1 1,200
Buses	2	15,000
Heavy-Duty Trucks	2	13,100
Total	231	1,247,945

TABLE 11: NPS AND GSA ROAD VEHICLES A	AT LAKE MEAD NRA
---------------------------------------	------------------

N.A. - Not Available

3.2 NPS NONROAD VEHICLES

The NPS also owns and operates nonroad motorized equipment that is used to maintain roads and grounds and for other purposes. There are records of the Lake Mead NRA equipment inventory, and park officials estimated usage data, which are noted in Table 12. Annual usage and mission factors from the USEPA nonroad emission database were used to calculate annual emissions that are provided in Table 14.

Vehicle Type	Number	Annual Usage (hrs/yr)
Utility Carts	28	10,590
Backhoes	15	4,238
Dozers	3	912
Compressors	13	400
Sweepers	2	60
Chainsaws	57	6,285
Forklifts	14	8,020
Cranes	2	200
ATVs	4	300

TABLE 12: NPS NONROAD VEHICLES AT LAKE MEAD NR	A
--	---

3.3 MARINE VESSELS

Water-based activities are the principle recreation activities in the park. Data on marine vessels and estimated operation hours by public, including rental, marine vessels were obtained from a lake management plan (NPS 2001). Analogous data for NPS owned and operated marine vessels were provided by park personnel. A summary of these data are provided in Table 13, and emission factors for the various types of marine vessels are provided in Appendix B.

Marine Vessel Type	Engine <i>Power (hp)'</i>	<i>Hours of</i> Operation	HC (lb/yr)	CO (lb/yr)	NO _x (lb/yr)	<i>PM</i> (lb/yr)
	Public Mar	ine Vessels				
<i><30 HP</i> Outboard	20	13,846	14,900	29,609	152	98
>30 HP Outboard	50	38,829	104,464	207,582	1,068	6,91
4-Stroke Outboard	90	65,553	40,697	925,183	20,349	16
Inboard/Outboard ²	200	371,881	513,056	11,663,433	256,528	2,06
Inboard	200	122,263	1,315,726	2,614,495	13,453	87,05
Inboard Jet	200	26,320	283,241	562,832	2,896	18,74
Personal Watercraft	155	170,009	1,417,895	2,817,515	14,498	93,81
Personal Watercraft ²	155	30,028	250,437	497,646	2,561	16,57
		Public Total	3,940,418	19,318,294	311,506	226,297
	NPS Mari	ne Vessels				
	150	500	4,036	8,019	41	26
Barge	550	600	17,756	35,284	182	1,17
	225	700	8,475	16,840	87	56.
	60	625	2,018	4,010	21	13
	90	15	73	144	1	
	115	100	619	1,230	6	4.
	220	800	9,470	18,818	97	62
Motor <i>Boat</i>	25	3,000	4,036	8,019	41	26
	40	3,200	6,887	13,686	70	45
Chase Boat	150	5,000	40,355	80,191	413	2,67
Ferry Boat	125	5,000	33,630	66,826	344	2,22.
	200 ²	5,000	53,807	106,921	550	3,56
Fire Boat	70	350	1,318	2,620	13	8
	15	700	565	1,123	6	3
Fishing Boat	40	100	215	428	2	1
	25	280	377	748	4	2.
Float Boat	60	9,600	30,993	61,586	317	2,051
		NPS Totals	214,629	426,492	2,195	14,20
		Park Totals	4,155,047	19,744,785	313,700	240,49

TABLE 13: LAKE MEAD NRA MARINE VESSEL EMISSIONS

2 Four-stroke gasoline engines

3 An average load factor of 0.21 was applied to all rated hp

3.4 AIRCRAFT

The park operates a Cessna aircraft, and data on operating hours and landings and takoffs were provided by park officials. There are two paved airstrips and two dirt airstrips that are used by private transient aircraft on an intermittent basis; however, there were no data on number of operations or types of aircraft.

The approved method for calculating emissions from aircraft is based on the Federal Aviation Administration (FAA) model titled *Emissions and Dispersion Model System (EDMS)*, and this model calculates emissions only during the take-off and landing cycle. These take-off and landing emissions were calculated using *EDMS*, and they are summarized in Table 14.

3.6 SUMMARY OF MOBILE SOURCE EMISSIONS

Table 14 summarizes the mobile source emissions calculated above in a format that allows comparison between the various sources as well as providing totals for each pollutant or pollutant category under consideration.

2000 A ir Emissions Inventory

	Particula	tes (PM i0)	Sulfur	Dioxide	Nitrogen	Oxides	Carbon M	onoxide	VOC	s
Activity	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
			Road Vo	ehicles						
Visitor Vehicles	80,160 ¹	40.08			415,940	207.97	1,090,240	545.12	71,540	35.77
Visitor Buses	60 ¹	0.03			760	0.38	100	0.05	20	0.01
NPS/GSA Road Vehicles	2,400	1.20			17,380	8.69	48,220	24.11	2,800	1.40
Road Vehicle Emission Subtotal	82,620 ¹	41.31			434,080	217.04	1,138,560	569.28	74,360_	37.18
		1	Nonroad	Vehicles						
NPS Nonroad Vehicles	3,629	1.81			20,170	10.08	9,651	4.83	4,405	2.20
Public Marine Vessels	226,297	113.15			311,506	155.75	19,318,294	9,659.2	3,940,418	1,970.2
NPS Marine Vessels	14,200	7.10			2,195	1.10	426,492	213.25	214,629	107.31
Aircraft					28	0.01	8,610	4.31	210	0.11
Nonroad Vehicle Emission Subtotal	244,126	122.06			333,899	166.95	19,763,047	9,881.5	4,159,662	2,079.8
			Tota	als						
	Particula	tes (PM, 0)	Sulfur	Dioxide	Nitrogen	Oxides	Carbon M	onoxide	VOC	S
	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
Totals	326,746	163.37			767,979	383.99	20,901,607	10,450	4,234,022	2,117.0

TABLE 14: SUMMARY OF 2000 MOBILE SOURCE EMISSIONS AT LAKE MEAD NRA

Includes exhaust PM₁o and road dust

4. LAKE MEAD NRA AND REGIONAL EMISSION SUMMARY

4.1 LAKE **MEAD** NRA **SUMMARY**

A summary of Lake Mead NRA emissions is provided in Table 15.

Source			NO _X (tons)	CO (tons)	VOCs (tons)
		Point Sources			
Space and Water Heaters	< 0.01	0	0.21	0.03	< 0.01
Generators	0.14	0.13	1.94	0.42	0.16
Gasoline Storage Tanks					21.55
Subtotal	0.14	0.13	2.15	0.45	21.71
		Area Sources			
Campfires	2.95	0.03	0.22	21.56	19.55
Prescribed Burning	0.72			3.70	0.25
Subtotal	3.68	0.03	0.22	25.26	19.80
	Γ	Mobile Sources			
Road Vehicles	41.31		217.04	569.28	37.18
Nonroad Vehicles	1.81		10.08	4.83	2.20
Marine Vessels	120.25		156.85	9,872.45	2,077.51
Aircraft			0.01	4.31	0.11
Subtotal	163.37	-=	383.98	10,450.87	2,117
	·	Totals			
Totals	167.19	0.16	386.35	10,476.58	2,158.51

TABLE 15: ESTIMATED ANNUAL EMISSIONS FROM LAKE MEAD NRA

As methane

4.2 **Regional Air Emissions**

Emission estimates for Clark County, NV and Mohave County, AZ and the State of Nevada were obtained from the 1999 National Emission Inventory (NEI) maintained by USEPA. It is important to note that differences may exist between the methodologies used to generate the park emission inventory and those used to generate the NEI. For example, here gasoline storage tanks have been included as stationary sources, while the NEI treats them as area sources. Table 16 provides a comparison of Lake Mead NRA emissions with those from the surrounding counties and the state. For all pollutants, Lake Mead NRA emissions account for less than 1 percent of the surrounding county point source emissions. However, compared to total mobile sources in the two counties, mobile sources operating on park property account for approximately 5, 3, and 1 percent of VOC, CO, and PM ₁₀ emissions, respectively.

	PM~p	SO ₂	NO _X	СО	VOC
Area	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
	Po	oint Sources	· •	× • •	\$ ¥ *
Lake Mead NRA Total	0.14	0.13	2.15	0.45	21.71
Clark County, NV	2,758	42,763	31,562	13,478	228
Mohave County, AZ	17	3	670	62	79
Surrounding County Total	2,775	42,766	32,232	13,540	307
Nevada Total	13,608	51,470	46,557	15,226	899
Arizona Total	32,013	175,796	173,171	26,577	22,718
Anzona Totai	,	rea Sources	175,171	20,377	22,710
Lake Mead NRA Total	3.68	0.03	0.22	25.26	19.80
Lake Mead NKA Totai	5.08	0.05	0.22	23.20	19.80
Clark County, NV	50,606	1,425	2,679	27,690	17,690
Mohave County, AZ	399	69	966	3,730	2,849
Surrounding County Total	51,005	1,494	3,645	31,420	20,539
			0.0.10		
Nevada Total	90,458	3,232	8,969	86,207	38,900
Arizona Total	18,226	3,259	51,240	163,548	106,814
		bile Sources			2.115
Lake Mead NRA Total	163.37		383.98	10,450.87	2,117
Clark County, NV	13,902	6,443	60,170	309,235	35,995
Mohave County, AZ	379	528	8,765	47,358	5,307
Surrounding County Total	14,281	6,971	68,935	356,593	41,302
Surrounding County Total	17,201	0,771	00,755	550,595	+1,502
Nevada Total	82,602	10,109	109,020	547,460	64,720
Arizona Total	13,757	19,231	236,151	1,263,163	137,114

TABLE 16: ESTIMATED ANNUAL EMISSIONS FROM LAKE MEAD NRA,SURROUNDING COUNTIES, AND THE STATE OF NEVADA

5. COMPLIANCE AND RECOMMENDATIONS

5.1 COMPLIANCE

The Clark County Department of Air Quality Management (DAQM) is the governing authority for regulating air pollution in the park. Park personnel should continue to coordinate with the agency on permit issues relating to stationary sources, as well as prescribed burning activities. Prior to replacing or adding relatively large heating units, generators, and fuel storage tanks, the appropriate agency should be consulted regarding the need to obtain a permit to construct or a •peiniit to operate such sources. For example, the Air Quality Regulations of DAQM Section 0 excludes from its definition of stationary sources:

- Fuel burning equipment that aggregates to a maximum input rate of less than 10 million Btu per hour
- Emergency standby generators with a brake horsepower rating of less than 500 hp or 373 kW.
- Stationary internal combustion engines with a brake horsepower rating of less than 35 hp or 26 kW.

The park's Utility Branch indicated that it began operating a 60 kW generator at Echo Bay for four hours a day beginning in March 2001. Since this unit is greater than 26 kW and does not appear to be just an emergency standby generator, park officials should investigate the need to obtain a permit from the Clark County DAQM for its continued use.

The Clark County DAQM also has exemptions to open burning regulations that may apply to visitor activities in the park. Section 42 of the AQR exempts "small fires for recreational, educational, ceremonial, cooking purposes, including barbecues and outdoor fireplaces." Measures to prevent the creation of fugitive dust also must be taken. For example, Section 41 of the AQR requires that persons handling, transporting, or storing materials take reasonable precautions to prevent particulate matter from becoming airborne. These regulations are included in Appendix E of this report. Generally, the park is in compliance with these regulations with the possible exception of the new generator at Echo Bay, as noted above.

5.2 RECOMMENDATIONS

An initial recommendation is for the park to institute a more detailed recordkeeping system to monitor its energy use and cost by fuel type and end consumer (e.g., work-related buildings, residences, and vehicles). The FY2001 Energy Management Data Report, which is a park-wide

annual energy reporting form, for Lake Mead NRA contained data for electricity consumption by buildings and other facilities and diesel fuel consumed by vehicles. However, there were no data for propane consumption by facilities or generators or gasoline by park equipment. Although park road vehicles are refueled off-site at commercial facilities, it would be of interest to track total gasoline usage over time to ascertain increasing or decreasing gasoline consumption trends. In addition, these data provide a baseline against which to measure gasoline displacement by newly acquired CNG vehicles. Gasoline is also used within the park by nonroad equipment, such as grounds keeping equipment, and this should also be tracked. Finally, with the installation of a CNG refueling station, the consumption of CNG should be tracked and reported on the annual energy data form.

Actions to promote sustainable development in the design, retrofit, and construction of park facilities have associated air quality benefits. These include actions that reduce or replace consumption of conventional fossil fuels and/or reduce the consumption of other resources. Reductions in potable and non-potable water consumption also achieve concurrent reductions in energy consumption and associated air emissions. Acquisition of energy efficient appliances whenever possible also is an incremental energy saving measure that has associated air quality benefits.

The park has undertaken several actions that reduce emissions and the use of energy and water. These include:

- A 1.2 kW photovoltaic/hybrid system at the remote Shivwets Ranger Station.
- 12 solar parking lot lights at the South Cove boat launch and parking area.
- Construction of one of four planned 2.5 kW photovoltaic roof-mounted arrays to provide solar-generated power to four entrance stations.
- Solar lighting on public courtesy docks at six locations, including Overton Beach, Echo Bay, Cailville Bay, Government Wash, Hemenway Harbor, and Temple Bar.
- Installation of waterless urinals.

With respect to alternative fuel vehicles, the park recently procured nine compressed natural gas (CNG) bi-fuel vehicles, including eight pickups and one sedan. In February 2002, the park opened a slow-fill CNG refueling facility that can refuel six vehicles simultaneously. The park is a member of the Las Vegas Regional Clean Cities Coalition that consists of approximately 100 stakeholders representing over 50 public and private organizations in the area. Through 2001, there were over 3,000 alternative fuel vehicles operating in the Las Vegas Valley.

The park also should consider the utilization of biodiesel fuels for its diesel-fueled equipment. Many of the National Park units, particularly in the western states, have implemented B20, a mixture of 20 percent biodiesel and 80 percent petroleum diesel. In addition to Yellowstone and Grand Teton NPs, Grand Canyon NP is planning to implement B20. The primary benefit of B20 is a reduction of 10, 11, and 21 percent of PM $_{10}$, CO, and VOC emissions, respectively, relative to petroleum diesel (EPA 2002). Emissions of NOx, however, increase by approximately 2 percent. The park could learn from the implementation experience of Grand Canyon NP and utilize the resources available from Las Vegas Regional Clean Cities Coalition to locate convenient, cost-efficient supplies of B20 locally.

The majority of the marine vessels operated by the NPS are equipped with 2-stroke engines. As these engines and vessels are replaced, models with 4-stroke engines should be procured. Four-stroke engines produce significantly lower PM $_{10}$ and VOC emissions compared to 2-stroke models. However, NOx and CO emissions would increase.

Marine engines are estimated to produce about 95 percent of both CO and VOC emissions that are generated by stationary, area, and mobile sources within the park. Except for NOx emissions, emissions from marine vessels operated by the public on Lake Meredith NRA far exceed emissions from visitor road vehicles. However, over time levels of VOC emissions will decrease as new marine gasoline engines that meet 1996 EPA standards are phased in. Covered by the rule are outboard engines and gasoline marine engines used in personal watercraft and jet boat applications. Once the program is fully implemented, VOC emissions from outboard and personal watercraft (OB/PWC) marine engines are expected to be reduced by over 75 percent from present levels. Since the reduction in the inventory depends on sales of these newer technology engines, EPA expects to achieve a 50 percent reduction in VOC emissions from marine engines by the year 2020 and a full phase in by the year 2025.

6. REFERENCES

- College of Engineering at the University of California's Riverside Campus (CE-CERT). 2001. *Air Emissions Inventory for Zion National Park.*
- EA Engineering, Science, and Technology. 2001. *Air Emission Inventory Preparation Plan.* Prepared for the National Park Service. November.
- National Park Service. 2001. Lake Management Plan, Lake Mead National Recreational Area. June.
- National Park Service. 2002a. Entrance Station Construction and Road Realignment, Overton Beach Area, Environmental Assessment. January.
- National Park Service. 2002b. Lake Management Plan Final Environmental Impact Statement, Lake Mead National Recreational Area. December.
- Pennsylvania State University. 1997. An Analysis of Recreational Use and Associated Impacts at the Lake Mead National Recreational Area, A Social and Environmental Perspective. August.
- USEPA, 1995a. Compilation of Air Pollution Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources.
- USEPA, 1995b. *Highway Vehicle Particulate Emission Modeling Software "PARTS"*. Office of Transportation and Air Quality.
- USEPA, 1995c. Calculating Potential to Emit (PTE) for Emergency Generators. Office of Air Quality Planning and Standards. September 6.
- USEPA, 1997. *MOBILE5b Vehicle Emissions Modeling Software*. Office of Transportation and Air Quality.
- USEPA, 2000. *Factor Information REtrieval (FIRE) Data System*. Office of Air Quality Planning and Standards.
- USEPA, 2000b. TANKS 4.09a. Office of Air Quality Planning and Standards.
- USEPA, 2002. A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions. EPA420-P-02-001. October.

APPENDIX A

FUEL DATA AND EMISSION FACTORS

FUEL DATA

Fuel	Heating Value	Sulfur Content
No. 2 Distillate Fuel Oil/Diesel	140,000 Btu/gal	0.05% by weight
Natural Gas	1,050 Btu/ft ³	2,000 grains/10 ⁶ ft ³
Propane	91,500 Btu/gal	0.18 grains/100 ft ³

STATIONARY SOURCE EMISSION FACTORS - BOILERS/HEATING UNITS

DISTILLATE OIL (DF-2) - CRITERIA	POLLU	ΓANTS			
Combustor Type	Emiss	ion Factor	(lb/1,000	gal fue	l burned)
Combusion Type	PM ^(a)	502 ^(b)	NO _X ^{,e)}	CO	VOC ^(d)
Residential Furnace ^(e)	0.4	142S	18	5	0.713
Boilers < 100 Million Btu/hr (Commercial/Institutional Combust.)	2	142S	20	5	0.34
Boilers < 100 Million Btu/hr (Industrial Boilers ^(s))	2	142S	20	5	0.2
Boilers > 100 Million Btu/hr (Utility Boilers ^(h))	2	157S	24	5	
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Tables 1.2	3-1 and 1	.3-3.	1	1	1

Combustor Type	Emission Factor (lb/10 ⁶ ft ³ fuel burned)						
(MMBtu/hr Heat Input)	PM ^{U)}	SOS	NO _x ce>	СО	VOC		
Residential Furnaces (<0.3)							
-Uncontrolled	7.6	0.6	94	40	5.5		
Tangential-Fired Boilers (All Sizes)							
-Uncontrolled	7.6	0.6	170	24	5.5		
-Controlled-Flue gas recirculation	7.6	0.6	76	98	5.5		
Small Boilers (<100)							
-Uncontrolled	7.6	0.6	100	84	5.5		
-Controlled-Low NO _X burners	7.6	0.6	50	84	5.5		
-Controlled-Low NO_X burners/Flue gas recirculation	7.6	0.6	32	84	5.5		
Large Wall-Fired Boilers (>100)							
-Uncontrolled (Pre-NSPS) ^(k)	7.6	0.6	280	84	5.5		
-Uncontrolled (Post-NSPS) ^(k)	7.6	0.6	190	84	5.5		
-Controlled-Low NO _x burners	7.6	0.6	140	84	5.5		
-Controlled-Flue gas recirculation	7.6	0.6	100	84	5.5		

STATIONARY SOURCE EMISSION FACTORS - BOILERS/HEATING UNITS (Continued)

PROPANE (LPG) - CRITERIA POLLUTANTS											
	Emi	ssion Factor	r (1b/1,000	al fuel bur	ned)						
Combustor Type	PM ^(a)	SOP ⁾	NO,, ^(c)	СО	VOC ^(d)						
Commercial Boilers ^(f)	0.4	0.10S	14	1.9	0.3						
Industrial Boilers ^(g)	0.6	0.10S	19	3.2	0.3						
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E	, Table 1.5-	1.									

STATIONARY SOURCE EMISSION FACTORS - GENERATORS

		Emissi	on Factor (lb/ł	ıp-hr)	
Fuel Type	PM	SOx	NO,,	СО	VOC
DF-2	2.20 E-03	2.05 E-03	0.031	6.68 E-03	2.51 E-03
Gasoline	7.21 E-04	5.91 E-04	0.011	0.439	0.022
Natural Gas/Propane	1.54 E-04	7.52 E-03(S)	3.53 E-03	8.6 E-04	1.92E-04
Source: AP-42, 5th Editio	n, Supplements	A, B, C, D, and I	E, Table 3.3-1 a	and 3.1-1	

For generators rated at less than or equal to 448 kW (600 hp):

For generators rated at greater than 448 kW (600 hp):

		Emissio	n Factor (lb/hp-	hr)	
Fuel Type	PM	SO _X ^(b)	NO _X	СО	VOC
DF-2	0.0007	(8.09 E-03)S	0.024	5.5 E-03	6.4 E-04
Source: AP-42	2, 5th Edition, Su	upplements A, B, C	C, D, and E, Tab	le 3.4-1.	-

FIREPLACE EMISSION FACTORS

Fuel Type		Em	ission Factor (l	b/ton)	
Fuel Type	PM°)	SO _X	NO _X ^{(>}	СО	VOC
Wood	34.6	0.4	2.6	252.6	229.0
Source: AP-42,	, 5th Edition, Su	pplements A, l	B, C, D, and E,	Table 1.9-1.	

WOODSTOVE EMISSION FACTORS

Stove Type		En	nission Factor (lb/ton)	
	PM ^(j)	SO,	NO, ^(,)	СО	VOC
Conventional	30.6	0.4	2.8	230.8	53
Noncatalytic	19.6	0.4		140.8	12
Catalytic	20.4	0.4	2.0	104.4	15
Source: AP-42,	5th Edition, Su	pplements A,]	B, C, D, and E,	Table 1.10-1.	1

STATIONARY SOURCE EMISSION FACTORS - SURFACE COATING OPERATIONS

Surface Coating Type	VOC Emission Factor (lb/gal)
Paint: Solvent Base	5.6
Paint: Water Base	1.3
Enamel: General	3.5
Lacquer: General	6.1
Primer: General	6.6
Varnish/Shellac: General	3.3
Thinner: General	7.36
Adhesive: General	4.4
Source: Calculation Methods for Criteria Air Polluto July 1994. Armstrong Laboratory.	Int Emission Inventories, AL/OE-TR-1994-0049,

- (a) PM = Filterable Particulate Matter.
- (b) These factors must be multiplied by the fuel sulfur content (for example, if the sulfur content is 0.05%, then S equals 0.05).
- (c) Expressed as NO_2 .
- (d) Emission factors given in AP-42 are actually for non-methane total organic compounds (NMTOC) which includes all VOCs and all exempted organic compounds (such as ethane, toxics and HAPs, aldehydes and semivolatile compounds) as measured by EPA reference methods.
- (e) Unit Rating <300,000 Btu/hr.
- (0 Unit Rating 2300,000 Btu/hr, but <10,000,000 Btu/hr.
- (g) Unit Rating 310,000,000 Btu/hr, but <100,000,000 Btu/hr.
- (h) Unit Rating 3100,000,000 Btu/hr.
- (i) POM = Particulate POM only.
- (j) PM = Filterable Particulate Matter + Condensible Particulate Matter.
- (k) NSPS = New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction, modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction, modification, or reconstruction after June 19, 1984.
- (^I) Emission factors are given on a fuel input basis (lb/MMBtu). To convert to a power output basis (lb/hp-hr), use an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr.

APPENDIX B

EMISSION CALCULATIONS

Location	Fuel	Number of	Capacity		Consumption	PM	\mathbf{SO}_2	NOx	CO	VOC
		Sources	(Btu/hr)		(gal/yr)	(Ibs/yr)	(Ibs/yr)	(lbs/yr)	(lbs/yr)	(Ibs/yr)
Lake Mead Drive Entrance Station	Propane	1	80,000	80,000	2,719	1	0	38	5	Ĭ
Lake Mead Blvd Entrance Station	Propane	1	80,000	80,000	2,532	1	0	35	5	1
Callville Bay Marina Maintenance	Propane	1	50,000	50,000	400	0	0	6	1	0
Callville Bay Marina Housing	Propane	30	50,000	1,500,000	12,300	5	0	172	25	4
Lake Mohave Resort Heating Equipment	Propane	1	80,000	80,000	12,000	5	0	168	24	4
	Totals	34		1,790,000	29,951	12	0	419	60	9
Emission Factors from AP-42, Tables Formula = Consumption (gal/yr) ' Emis		,	.05			0.4	0.01	14.00	1.90	0.30

2000 ACTUAL CRITERIA EMISSIONS FROM HEATING UNITS AT LAKE MEAD NRA

Location	Fuel	Number of	Capacity		Consumption	PM	SO_2	NO_h	CO	VOC
		Sources	(Btu/hr)		(gal/yr)	(lbs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)
Lake Mead Drive Entrance Station	Propane	1	80,000	80,000	7,659	3	0	107	15	2
Lake Mead Blvd Entrance Station	Propane	1	80,000	80,000	7,659	3	0	107	15	2
Callville Bay Marina Maintenance	Propane	1	50,000	50,000	4,787	2	0	67	10	1
Callville Bay Marina Housing	Propane	30	50,000	1,500,000	I43,607	57	1	2,010	287	43
Lake Mohave Resort Heating Equipment	Propane	1	80,000	80,000	7,659	3	0	107	15	2
• •	Totals	34		1,790,000	171,370	69	Ι	2,399	343	51
Emission Factors from AP-42, Tables 1 Formula = Consumption (gal/yr) * Emi			05			0.4	0.01	14.00	1.90	0.30

2000 POTENTIAL CRITERIA EMISSIONS FROM HEATING UNITS AT LAKE MEAD NRA

Emission Source	Location	Fuel	Number of	Rating	Run Time	Output	PM (lba/ur)	SO ₂	NO,	CO,	CO	VOC
Source			Sources	(kW)	(hrs/yr) Natio	(kW-hr/yr) nal Park Service	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
Generator	Boulder City Headquarters	Propane	1	15	26	390	0	1	2		0	C
Generator	Lake Mead Blvd Station	Propane	1	10	26	260	0	0	1		0	C
Generator	Lake Mead Drive Station	Propane	1	10	26	260	0	0	1		0	(
Generator	Shivwits Plateau Ranger Stn	Propane	1	20	26	520	0	1	2		1	(
	Propane Gene	rator Totals	4	55			0	3	7		2	0
Emission F	actors from AP-42, Chapter 3.1	-1 for natura	al gas large ur	controlled	l gas turbines (l	b/hp-hr), S ⁼ .18	1.54E-04 7	7.52E-03*S	3.53E-03		8.60E-04	1.92E-04
Formula = 1	Emission Factor (lb/hp-hr) * 60	08 (g/kW-hr	/ lb/hp-hr) * 0	Output (kW	V-hr/yr) / 453.6	(g/Ib)						
Generator	Echo Bay	Diesel	1	60	1,460	87,600	258	241	3,639	134,992	784	295
Generator	Callville Bay	Diesel	1	50	25	1,250	4	3	52	1,926	11	4
Generator	Callville Bay	Diesel	1	125	25	3,125	9	9	130	4,816	28	11
Generator	Lake Mead Cruises	Diesel	1	50	26	1,300	4	4	54	2,003	12	4
	Diesel Gene	rator Totals	4		1,536	93,275	275	256	3,875	143,737	835	314
	actors from AP-42, Chapter 3.3 Output (kW-hr/yr) * 1.34 (hp/k		-		ss than 448 kW		2.20E-03	0.00205	3.10E-02	1.15E+00	6.68E-03	2.51 E-03
					Par	rk Totals (lbs/yr)	275	259	3,881		837	314
					Park	c Totals (tons/yr)	0.14	0.13	1.94		0.42	0.16

2000 ACTUAL CRITERIA EMISSIONS FROM GENERATORS AT LAKE MEAD NRA

Emission Source	Location	Fuel	Number of Sources	Rating (kW)	Run Time (hrs/yr)	Output (kW-hr/yr)	PM (lbs/vr)	SO ₂ (Ibs/yr)	NO, (lbs/yr)	CO ₂ (Ibs/yr)	CO (Ibs/yr)	VOC (Ibs/yr)
						ark Scrvice	-		25		0	2
Generator	Boulder City Headquarters	Propane	1	15	500	7,500	2	14	35		9	2
Generator	Lake Mead Blvd Station	Propane	1	10	500	5,000	1	9	24		6	1
Generator	Lake Mead Drive Station	Propane	1	10	500	5,000	• 1	9	24		6	1
Generator	Shivwits Plateau Ranger Stn	Propane	1	20	500	10,000	2	18	47		12	3
		nerator Totals	4	55			6	50	130		32	7
	ors from AP-42, Chapter 3.1-1 fo ission Factor (lb/hp-hr) * 608 (g/l	•	•	0		, S=.18	1.54E-04	7.52E-03*S	3.53E-03		8.60E-04	1.92E-04
Generator	Echo Bay	Diesel	1	60	8,760	525,600	1,549	1,444	21,833	809,950	4,705	1,768
Generator	Callville Bay	Diesel	1	50	500	25,000	74	69	1,039		224	84
Generator	Callville Bay	Diesel	1	125	500	62,500	184	172	2,596		559	210
Generator	Lake Mead Cruises	Diesel	1	50	500	25,000	74	69	1,039		224	84
<u>ound</u>		nerator Totals	4				1,881	1,753	26,507		5,712	2,146
	ors from AP-42, Chapter 3.3 Tab tput (kW-hr/yr) * 1.34 (hp/kW) *	-			48 kW		2.20E-03	0.00205	3.10E-02		6.68E-03	2.51E-03
					Park	Totals (lbs/yr)					C	Ica
					Park T	otals (tons/yr)	0.94	0.90	13.32		2.87	1.08
					Park T	otals (tons/yr)	0.00	0.00	0.01		0.00	0.00

2000 POTENTIAL CRITERIA EMISSIONS FROM GENERATORS AT LAKE MEAD NRA

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank:	Boulder Beach Las Vegas Nevada NPS Horizontal Tank
Description:	10000
Tank Dimensions	
Shell Length (ft):	17.00
Diameter (ft):	10.00
Volume (gallons):	10,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	250,000.00
Is Tank Heated (yin):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig):	0.03

Meteorological Data used in Emissions Calculations: Las Vegas, Nevada (Avg Atmospheric Pressure = 13.6 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

Liquid Daily Liquid Surf. Bulk Vapor Liquid Vapor													
_Mixture/Component	Month		eratures (deg F)	Temp. (deg FL	Vapor Avg.	Pressures (psia Min.	a) Max.	Mol. Weight	Mass Fract.	Mass Fract.	Mot. Weight	Basis for Vapor Pressure Calculations
Gasoline (RVP 8)	All	75.96	64.37	87.56	69.31	5.5126	4.4098	6.8262	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline _(R VP 8)	2,231.27	3,109.00	5,340.27					

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification:	Callville Bay
City:	Las Vegas
State:	Nevada
Company:	NPS
Type of Tank:	Horizontal Tank
Description:	

Tank Dimensions

Shell Length (ft):		47.00
Diameter (ft):		11.25
Volume (gallons):		35,000.00
Turnovers:		0.00
Net Throughput (gal/yr):		377,656.00
Is Tank Heated (yin):	Ν	
Is Tank Underground (y/n):	Y	

Paint Characteristics

Shell Color/Shade: Shell Condition:

Breather Vent Settings

Vacuum Settings (psig):	
Pressure Settings (psig):	

Meteorological Data used in Emissions Calculations: Las Vegas, Nevada (Avg Atmospheric Pressure = 13.6 psia)

0.00 0.00

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

		Daily Liquid Surf. Temperatures (deg F)			Liquid Bulk Temp.	Vapor Pressures (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	66.51	66.51	66.51	66.07	4.5990	4.5990	4.5990	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 8)	2,812.00	0.00	2,812.00					

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Callville Bayl Las Vegas Nevada NPS Horizontal Tank 12000 Gal UST
Tank Dimensions Shell Length (ft): Diameter (ft):	20.50 10.00
Volume (gallons):	12,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	125,885.00
Is Tank Heated (yin):	N
Is Tank Underground (y/n):	Y
Paint Characteristics	

Shell Color/Shade:

Shell Condition:

Breather Vent Settings

Vacuum Settings (psig):	0.00
Pressure Settings (psig):	0.00

Meteorological Data used in Emissions Calculations: Las Vegas, Nevada (Avg Atmospheric Pressure = 13.6 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

Mixture/Com ment	Month		ly Liquid Surf. eratures (deg F) Min	Мах	Liquid Bulk Temp. (deg F)	Vapor Avg	Pressures (psia Min.	a) Max.	Vapor Mol. Weight	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (RVP 8)	All	66.51	66.51	66.51	66.07	4.5990	4.5990	4.5990	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 8)	937.33	0.00	937.33						

Identification

User Identification:	Cottowood Cove
City:	L
State:	Nevada
Company:	NPS
Type of Tank:	Horizontal Tank
Description:	23000 gal AST

Tank Dimensions

Shell Length (ft):		38.00
Diameter (ft):		10.00
Volume (gallons):		23,000.00
Turnovers:		0.00
Net Throughput (gal/yr):		292,172.00
Is Tank Heated (yin):	Ν	
Is Tank Underground (y/n):	Y	

Paint Characteristics

Shell Color/Shade: Shell Condition:

Breather Vent Settings

Vacuum Settings (psig):	0.00
Pressure Settings (psig):	0.00

			/ Liquid Surf. ratures (deg F)	Liquid Bulk Temp. Vapor Pressures (psia)			a)	Vapor Mal.	Liquid Mass	Vapor Mass Mal.		Basis for Vapor Pressure
Mixture/Component	Month_	Avg_	Min.	Max.	(gF_)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	
Gasoline (RVP 8)	All	66.51	66.51	66.51	66.07	4.5990	4.5990	4.5990	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	2,175.49	0.00	2,175.49							

Identification User Identification: City: State: Company: Type of Tank: Description:	Echo Bay Las Vegas Nevada NPS Horizontal Tank 10000 gal UST
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	17.00 10.00 0.00 259,093.00 N Y
Paint Characteristics Shell Color/Shade: Shell Condition:	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	0.00 0.00

		Daily Liquid Surf Temperatures (deg		Liquid Bulk Temp.	Vapor	Pressures (psia)	1	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
_Mixture/Component	Month	Avg Min.	Max.	Sdeg	<u>Avg.</u>	Min.	Max.	Weight	Fract.	Fract.	Weight	<u>Calculations</u>
Gasoline (RVP 8)	All	66.51 66.51	66.51	66.07	4.5990	4.5990	4.5990	68.0000			92.00	Option RVP=8, ASTM Slope=3

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline_(HVP 8)	1,929.19	0,00	1,929.19						

Identification

User Identification: City: State: Company: Type of Tank: Description:	Lake Mohave Resort Las Vegas Nevada NPS Horizontal Tank 12000 gal UST
Tank Dimensions	
Shell Length (ft):	20.50
Diameter (ft):	10.00
Volume (gallons):	12,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	400,000.00
Is Tank Heated (yin):	Ν
Is Tank Underground (y/n):	Y
Paint Characteristics Shell Color/Shade: Shell Condition:	

Breather Vent Settings

Vacuum Settings (psig):	0.00
Pressure Settings (psig):	0.00

			ly Liquid Surf. eratures (deg F)	1	Liquid Bulk Temp. Vapor Pressures (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min	Max.	(deg F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (AVP 8)	All	66.51	66.51	66.51	66.07	4.5990	4.5990	4.5990	68.0000			92.00	Option 4: AVP=8, ASTM Slope=3

	Losses(lbs)										
Components	Working Loss	Breathin_g Loss	Total Emissions								
Gasoline (RVP 8)	2,978.37	0.00	2,978.37								

Identification

User Identification: City: State: Company: Type of Tank: Description:	Las Vegas Boat Las Vegas Nevada NPS Horizontal Tank 15000 gal AST
Tank Dimensions	
Shell Length (ft):	25.50
Diameter (ft):	10.00
Volume (gallons):	15,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	21,760.00
Is Tank Heated (yin):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03

Meteorological Data used in Emissions Calculations: Las Vegas, Nevada (Avg Atmospheric Pressure = 13.6 psia)

0.03

Pressure Settings (psig):

		Daily	/ Liquid Surf.		Liquid Bulk				Vapor	Liquid	Vapor		
_ <u>Mixture/Component</u>	Month	Tempe <u>Avg.</u>	ratures (deg F <u>Min.</u>) Max	Temp. ~deg_F1	Vapor <u>Avg</u>	Pressures (psia) <u>Min.</u>	Max.	Mol. Weight	Mass Fract.	Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (RVP 8)	All	78.42	65.06	91.77	70.15	5.7717	4.4705	7.3600	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

	Lossesl_s)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	203.34	5,763.47	5,966.81							

Identification

Identification									
User Identification:	Las Vegas Boati								
City:	Las Vegas								
State:	Nevada								
Company:	NPS								
Type of Tank:	Horizontal Tank								
Description:	6000 gal AST								
Description.	0000 gai AST								
Tank Dimensions									
Shell Length (ft):	16.00								
Diameter (ft):	8 00								
Volume (gallons):	6,000.00								
Turnovers:	0.00								
Net Throughput (gal/yr):									
	86,400.00								
Is Tank Heated (yin):	N								
Is Tank Underground (y/n):	N								
Deint Chanastanistias									
Paint Characteristics									
Shell Color/Shade:	Gray/Medium								
Shell Condition:	Good								
Breather Vent Settings									
Vacuum Settings (psig):	-0.03								
Pressure Settings (psig):	0.03								

Daily Liquid Surf. B Temperatures (deg F) Tem						Liquid Bulk Temp. Vapor Pressures (psia)			Vapor Mol.	Liquid Mass			Mal. Basis for Vapor Pressure	
Mixture/Component	Month	Avg	Min	Max.	(deg F)	Avg	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations	
Gasoline (RVP 8)	All	78.42	65.06	91.77	70.15	5.7717	4.4705	7.3600	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3	

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	807.38	2,632.82	3,440.20							

Identification

User Identification: City: State: Company: Type of Tank: Description:	Las Vegas Boat2 Las Vegas Nevada NPS Horizontal Tank 1000 gal AST
Tank Dimensions	
Shell Length (ft):	10.75
Diameter (ft):	4.00
Volume (gallons):	1,000.00
Turnovers:	0.00
Net Throughput (gai/yr):	16,000.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig):	0.03

			y Liquid Surf. eratures (deg F)	Liquid Bulk Temp.	Vapor	Pressures (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg Fes_	Avg.	Min.	_Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	78.42	65.06	91.77	70.15	5.7717	4.4705	7.3600	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

	Losses(lbsL										
Components	Working Loss	Breathing Loss	Total Emissions								
Gasoline (RVP 8)	149.51	610.09	759.61								

Identification

User Identification: City: State: Company:	NV Wildlife Las Vegas Nevada NPS
Type of Tank: Description:	Horizontal Tank 5000 gal AST
Tank Dimensions	
Shell Length (ft):	13.25
Diameter (ft):	8.00
Volume (gallons):	5,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	12,000.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade: Shell Condition:	Gray/Medium Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig):	0.03

			y Liquid Surf. ratures (deg F)		Liquid Bulk Temp.	Vapor	Pressures (psia	1)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg_	Min.	Max.	(deg F)		Min.	Max.	_Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	78.42	65.06	91.77	70.15	5.7717	4.4705	7.3600	68.0000				Option 4: RVP=8, ASTM Slope=3

	Losses(lbs)								
Components	Working Loss	_ Breathing Loss	Total Emissions						
Gasoline (RVP)	112.14	2,180.31	2,292.44						

Identification

User Identification:	Overton Beach 1
City:	Las Vegas
State:	Nevada
Company:	NPS
Type of Tank:	Horizontal Tank
Description:	10000 gal UST

Tank Dimensions

Shell Length (ft):		17.00
Diameter (it):		10.00
Volume (gallons):		10,000.00
Turnovers:		0.00
Net Throughput (gai/yr):		180,000.00
Is Tank Heated (y/n):	Ν	
Is Tank Underground (y/n):	Y	

Paint Characteristics

Shell Color/Shade:
Shell Condition:

Breather Vent Settings

Vacuum Settings (psig):	0.00
Pressure Settings (psig):	0.00

			ly Liquid Surf. eratures (deg F))	Liquid Bulk Temp.	Vapor	Pressures (psia	a)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avq.	Min.	Max,	(deg F)	Avg.	Min.	Max.	Weight_	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	66.51	66.51	66.51	66.07	4.5990	4.5990	4.5990	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

		Losses(lbs)	
Components	Working Loss	Breathing Loss	<u>Total Emissions</u>
Gasoline (RVP 8)	1,340.27	0.00	1,340.27

Identification

Identification	
User Identification:	Temple Bar
City:	Las Vegas
State:	Nevada
Company:	NPS
Type of Tank:	Horizontal Tank
Description:	12000 gal AST
Tank Dimensions	
Shell Length (ft):	20.50
Diameter (ft):	10.00
Volume (gallons):	12,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	308,000.00
Is Tank Heated (y/n):	N
Is Tank Underground (yin):	Ν
Daint Chanacteriation	
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	0.00
o (1 o)	
Pressure Settings (psig):	0.00

			y Liquid Surf. eratures (deg F		Liquid Bulk Temp.	ulk		a)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol. Basis for Vapor Pressure	
Mixture/Component	Month		Min.	Max.	de F	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight Calculations	
Gasoline (RVP 8)	All	78.42	65.06	91.77	70.15	5.7717	4.4705	7.3600	68.0000			92.00 Option 4: RVP=8, ASTM Slope=3	

	Losses(lbs)							
Components	W orkingILoss	Breathing Loss	Total Emissions					
Gasoline (RVP 8)	2,878.15	4,710.46	7,588.61					

Identification

User Identification: City: State: Company: Type of Tank: Description:	Willow Beach Harbor Las Vegas Nevada Horizontal Tank 8000 gal AST
Tank Dimensions	
Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (yin): Is Tank Underground (y/n):	21.30 8.00 8,000.00 0.00 80,000.00 N N
Paint Characteristics Shell Color/Shade:	Gray/Light
Shell Condition: Breather Vent Settings	Good
Vacuum Settings (psig): Pressure Settings (psig):	-0.03 0.03

			y Liquid Surf. eratures (deg F)	1	Liquid Bulk Temp.	Bulk			Vapor Mol.	Liquid Mass	Vapor Mass		Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	75.96	64.37	87.56	69.31	5.5126	4.4098	6.8262	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

Components	Losses(lbs) Breathing Loss_ 2828.92	<u>Total Emissions</u> <u>3,542.93</u>
------------	---	---

Identification

Identification	
User Identification:	Willow Beach Harborl
City:	Las Vegas
State:	Nebraska
Company:	NPS
Type of Tank:	Horizontal Tank
<i></i>	
Description:	4000 gal AST
Tank Dimensions	
Shell Length (ft):	19.00
Diameter (ft):	6.00
Volume (gallons):	4,000.00
	,
Turnovers:	0.00
Net Throughput (gal/yr):	40,000.00
Is Tank Heated (yin):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Crow/light
	Gray/Light
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig):	0.03
r ressure Settings (psig).	0.05

Mixture/Component	Month		y Liquid Surf. eratures (deg F) Min	Max.	Liquid Bulk Temp. (deg F)	Vapor	Pressures (psia Min.	a) Max.	Vapor Mol. Weight	Liquid Mass Fract.	Vapor Mass Fract.	Mol.	Basis for Vapor Pressure Calculations
	Wonth		IVIIII.	WidA.	(deg F)	Avq.	IVIII1.	IVIdX.	weight	FIdUL.	FIdUL.	Weight	Calculations
Gasoline (RVP 8)	All	75.96	64.37	87.56	69.31	5.5126	4.4098	6.8262	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

	Losses(lbsL							
Components	Working_Loss_	Breathing Loss	Total Emissions_					
Gasoline (AVP3) –	357.00	1,640.44	1_997.45					

2000 ACTUAL EMISSIONS FROM CAMPFIRES AT LAKE MEAD NRA

	Total	Tent				PM	SO ₂	NO,,	CO	VOC
Location	Campers	Campers	Camps	Fires/Yr ²	Tons/Yr ³	(lbs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(lbs/yr)
NPS Campgrounds	223,931	55,983	22,393	11,197	56	1,937	22	146	14,141	12,820
NPS Backcountry	288,659	72,165	28,866	14,433	72	2,497	29	188	18,229	16,526
Concessionaires	170,233	42,558	17,023	8,512	43	1,473	17	111	10,750	9,746
Totals	682,823	170,706	68,282	34,141	171	5,906	68	444	43,120	39,092
					-	_ <u>tons/yr</u>	tons/yr	<u>tons/yr</u>	<u>tons/yr</u>	_ <u>tons/yr</u>
						2.95	0.03	0.22	21.56	19.55
Assumptions: ² Fifty percent of camp sites have either an evening or morning campfire ³ Assumes 10 lbs wood per fire										

Emission Factor (Ibs/ton)	34.60	0.40	2.60	252.60	229.00
---------------------------	-------	------	------	--------	--------

FUEL CONSUMPTION CALCULATIONS

Region: Interior West Cover Type: SAF/SRM - SRM 406 - Low Sagebrush Fuel Type: Natural Fuel Reference: FOFEM 461

Fuel Component Name	Preburn Load (t/acre)	FUEL C Consumed Load (t/acre)	ONSUMPTION Postburn Load (t/acre)	TABLE Percent Reduced (१)	Equation Reference Number	Moisture
	0.05					
Litter	0.07	0.07	0.00	100.0	999	
Wood $(0-1/4 \text{ inch})$	0.00	0.00	0.00	0.0	999	
Wood $(1/4-1 \text{ inch})$	0.00	0.00	0.00	0.0	999	25.0
Wood (1-3 inch)	0.00	0.00	0.00	0.0	999	
Wood (3+ inch) Sound	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Wood (3+ inch) Rotten	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Duff	0.00	0.00	0.00	0.0	2	100.0
Herbaceous	0.45	0.45	0.00	100.0	22	100.0
Shrubs	1.26	0.63	0.63	50.0	232	
Crown foliage	0.00	0.00	0.00	0.0	37	
Crown branchwood	0.00	0.00	0.00	0.0	38	
Total Fuels	1.78	1.15	0.63	64.6		

FIRE EFFECTS ON FOREST FLOOR COMPONENTS

Forest Floor	Preburn	Amount	Postburn		Equation
Component	Condition	Consumed	Condition		Number
Duff Depth (in)	0.0	0.0	0.0	0.0	6
Min Soil Exp (%)		21.9	21.9	21.9	10

		lbs/acre smoldering	total
PM 10	7	4	11
PM 2.5	6	3	9
CH 4	2	2	4
CO	14	42	56
CO 2	3841	172	4013

Cor	nsumption tons/acre	Duration hour:min:sec
Flaming: Smoldering:	1.08 0.07	00:01:00 00:01:00
Total:	1.15	

TITLE: Results of FOFEM model execution on date: 1/3/2003

FUEL CONSUMPTION CALCULATIONS

Region: Interior West Cover Type: SAF/SRM - SRM 414 - Salt Desert Shrub (moderate shrub cover) Fuel Type: Natural Fuel Reference: FOFEM 321

		FUEL C	ONSUMPTION	TABLE		
Fuel Component	Preburn Load	Consumed Load	Postburn Load	Percent Reduced	Equation Reference	
Name	(t/acre)	(t/acre)	(t/acre)	(%)	Number	Moisture
Litter	0.11	0.11	0.00	100.0	999	
Wood (0-1/4 inch)	0.00	0.00	0.00	0.0	999	
Wood (1/4-1 inch)	0.00	0.00	0.00	0.0	999	25.0
Wood (1-3 inch)	0.00	0.00	0.00	0.0	999	
Wood (3+ inch) Sound	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Wood (3+ inch) Rotten	0.00	0.00	0.00	0.0	999	20.0
3->6	0.00	0.00	0.00	0.0		
6->9	0.00	0.00	0.00	0.0		
9->20	0.00	0.00	0.00	0.0		
20->	0.00	0.00	0.00	0.0		
Duff	0.00	0.00	0.00	0.0	2	100.0
Herbaceous	0.20	0.20	0.00	100.0	22	
Shrubs	2.28	1.82	0.46	80.0	231	
Crown foliage	0.00	0.00	0.00	0.0	37	
Crown branchwood	0.00	0.00	0.00	0.0	38	
Total Fuels	2.59	2.13	0.46	82.4		_

FIRE EFFECTS ON FOREST FLOOR COMPONENTS

Forest Floor	Preburn	Amount	Postburn		Equation
Component	Condition	Consumed	Condition		Number
Duff Depth (in)	0.0	0.0	0.0	0.0	6
Min Soil Exp (%)		21.9	21.9	21.9	10

		lbs/acre smoldering	total	
PM 10 PM 2.5 CH 4 CO CO 2	12 11 3 26 7199	6 5 3 66 270	18 16 92 7469	

Сол	nsumption	Duration
	tons/acre	hour:min:sec
Flaming:	2.02	00:01:00
Smoldering:	0.11	00:01:00
Total:	2.13	

Fuel Type	Acres	$\begin{array}{ccc} PM_{10} & PM_{2.5} & CH_4 & CO \\ (lbs/yr) & (lbs/yr) & (lbs/yr) & (lbs/yr) \end{array}$			CO, (lbs/yr)			
Sagebrush	50	550	450	200	2,800	200,650		
Salt Desert Shrub	50	900	800	300	4,600	373,450		
Totals	100	1,450	1,250	500	7,400	574,100		
		tons/yr						
		0.73	0.63	0.25	3.70	287		
			Totals					
			Emis	ssion Factors				
		\mathbf{PM}_{10}	PM 25	CH_4	CO	CO_2		
		(lbs/acre)	(lbs/acre)	(lbs/acre)	(lbs/acre)	(lbs/acre)		
Sagebrush		11	9	4	56	4,013		
Salt Desert Shrub		18	16	6	92	7,469		

2001 FIRES EMISSIONS AT LAKE MEAD NATIONAL RECREATION AREA

User has enabled STAGE II REFUELING.

 Reading Registration Distributions from the following external * data file: REGDATA.D M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 warning: 0.999 MYR sum not = 1. (will normalize) M 49 warning: 0.999 MYR sum not = 1. (will normalize) м 49 warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M 49 Warning: 0.999 MYR sum not = 1. (will normalize) M615 Comment: User supplied VMT mix.

* It # It # # If # # # A^t # # # # # # # It # # # # # # # # #

* Lake mead winter Conditions.

* File 1, Run 1, Scenario 1.

The user supplied area wide average speed of 35.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways, freeway ramps, arterial/collector and local roadways for all hours of the day and all vehicle types.

LAKEMEAD

Reading PM Gas carbon ZML Levels from the external data file PMGZML.CSV Reading PM Gas Carbon DR1 Levels from the external data file PMGDR1.CSV Reading PM Gas Carbon DR2 Levels from the external data file PMGDR2.CSV Reading PM Diesel Zero Mile Levels from the external data file PMDZML.CSV Reading the First PM Deterioration Rates from the external data file PMDDR1.CSV Reading the second PM Deterioration Rates from the external data file PMDDR2.CSV User supplied gasoline sulfur content = 300.0 ppm. M616 Comment: user has supplied post-1999 sulfur levels. M 48 Warning: there are no sales for vehicle class HDGV8b Reading Ammonia (NH3) Basic Emissiion Rates from the external data file PMNH3BER.D Reading Ammonia (NH3) sulfur Deterioration Rates from the external data file PMNH3SDR.D calendar Year: 2001 Month: Jan. Altitude: Low 30.0 (F) Minimum Temperature: 57.0 (F) Maximum Temperature: Absolute Humidity: 75. grains/lb Nominal Fuel RVP: 14.4 psi 14.4 psi weathered RVP: Fue] Sulfur Content: 299. ppm Exhaust I/M Program: No Evap I/M Program: No ATP Program: NO Reformulated Gas: NO LDGT34 Vehicle Type: LDGV LDGT12 LDGT >6000 (A11) <6000 GVWR:

HDGV

LDDV

LDDT

HDDV

MC

All Veh

				LA	KEMEAD					
VMT Distribution:	0.I339	0.3439	0.1595		U.I0]]	0.0001	0.0025	0.2567	0.0000	1.0000
[nmposite Emission F	actors (g/mi	.):								
Composite VOC : composite Co: Composite NOX:	0.919 16.46 0.791	1.101 21.67 1.I39	0.988 19.69 1.329	1.065 21.04 1.199	0.754 8.82 4.501	0.365 I.I14 1.254	0.439 0.834 1.232	0.396 1.800 14.652	0.00 0.00 0.00	0.840 I4.172 4.950
Veh. _{Type} :	LDGT1	LDGT2	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0790	0.2549	0.1094	0.0502	0.0001	0.0024				
Composite Emission F		.):								
Composite mO[: Composite CO : Composite NOX :	1.040 20.90 0.894	1.119 21.90 I.2I2	0.965 19.57 1.I98	1.040 18.84 1.613	1.825 3.I24 2.602	0.385 0.745 1.179				
veh. _{Type} :	HDGV2B	_HDGV]	_HDGV4	_HDGV5	HDGV6	HDGV7	HDGV8A	_HD_GV_8B		
VMT Mix:	0.0871	0.0028	0.0009	0.0032	0.0063	0.0026	0.0000	0.0000		
[omposite Emission F	actors (g/mi	.):								
Composite VOC : Composite CO : Composite NOX:	0.731	0.737 8.83 4.716	0.819 9.06 4.304	0.894 10.44 4.951	0.889 10.36 4.918	0.960 I1.45 5.422	I.048 I2.46 5.875	0.000 0.00 0.000		
Veh. _{Type} :	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0299	0.0092	0.0081	0.0038	0.0187	0.0274	0.0330	0.1190		
Composite Emission F	actors (g/mi	.):								
Composite VO[: Composite CO Composite NOX:	0.184 0.788 4.068	0.208 0.920 4.602	0.243 1.069 5.408	0.265 1.162 5.826	0.379 1.I54 8.883	0.467 1.43I 1I.009	0.404 2.03I I7.636	0.456 2.302 I9.963		

T.AKEMEAD

Lake mead Summer Conditions. File 1, Run 1, Scenario 2. M584 warning: The user supplied area wide average speed of 35.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways, freeway ramps, arterial/collector and local roadways .~] for all hours of the day and all vehicle types.

Reading PM Gas Carbon ZML Levels

from the external da	ta file PMG	ZML.CSV		LAK	EMEAD					
Reading PM Gas carbo from the external da	n DR1 Level ta file PMG	s DR1.CSV								
Reading PM Gas carbo from the external da	n DR2 Level ta file PMG	s idr2.csv								
Reading PM Diesel ze from the external da	ro mile Lev ta file PMD	els DZML.CSV								
Reading the First PM from the external da	Deteriorat ta file PMD	ion Rates DR1.CSV								
Reading the second P from the external da M616 Comment: User ha	M Deteriora ta file PMD s supplied	DR2.CSV		els.						
M 48 Warning:	e no sales									
Minimum Maximum Absolu Nomin we	lendar Year Month Altitude Temperature Temperature te Humidity al Fuel RVI eathered RVF fur content	n: July 2: Low 2: 72.0 (1 2: 105.0 (1 7: 75. g P: 9.0 ps 2: 8.2 ps	rains/lb mi							
Evap	I/M Program I/M Program ATP Program mulated Gas	n: NO n: NO								
vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (AII)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.1339	0.3439	0.1596		0.1034	0.0001	0.0025	0.2566	0.0000	1.0000
composite Emission Fa Composite VOC: t,Composite CO : Composite NOX :	ctors (g/mi 0.935 13.72 0.799	i): 1.037 16.17 1.050	1.000 15.97 1.333	1.025 16.11 1.140	0.818 8.11 4.445	0.343 1.101 1.157	0.459 0.853 1.256	0.393 1.786 14.042	$0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.828 11.246 4.747
Veh. Type:	LDGT1 	LDGT2	LDGT3	LDGT4 	LDDT12	LDDT34				

VMT Mix:	0.0790	0.2649	0.1094	LA 0.0502	KEMEAD 0.0001	0.0024			
Composite Emission Fa Composite VOC: Composite CO: Composite NOX:	actors (g/m 0.998 15.76 0.832	i): 1.048 16.29 1.115	0.982 15.88 1.201	1.039 16.18 1.620	1.893 3.247 2.621	0.412 0.774 1.211			
Veh. Type:	HDGV2B	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	
VMT Mix:	0.0874	0.0028	0.0009	0.0031	0.0062	0.0026	0.0000	0.0000	
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m 0.795 7.86 4.386	i): 0.784 8.13 4.568	0.911 8.30 4.106	0.962 9.58 4.732	0.958 9.50 4.698	1.023 10.50 5.182	1.122 11.40 5.607	0.000 0.00 0.000	
Veh. Type:	HDDV2B	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	
VMT Mix:	0.0296	0.0092	0.0081	0.0039	0.0188	0.0274	0.0330	0.1190	
Composite Emission Fa Composite VOC : Composite CO : Composite NOX :	actors (g/m 0.182 0.794 3.997	i): 0.206 0.925 4.527	0.241 1.075 5.320	0.263 1.167 5.732	0.377 1.145 8.586	0.466 1.420 10.645	0.402 2.012 16.830	0.453 2.278 19.026	

MOBILE6.2 Draft (21-Mar-2002) Input file: LAKEMEAD.IN (file 1, run 1). :::::fif*'......*4f"::4:q:&****'fdf****'.f****dfdf'f::;f...::f4:if4.......f'fi;'.fX:fi:':::&df****dC'.r'.'.fif:Cdf'f'..'*** Lake mead winter conditions. File 1, Run 1, Scenario 1. Calendar Year: 2001 Month: Jan. Gasoline Fuel sulfur content: 299. ppm Diesel Fuel sulfur content: 500. ppm Particle size Cutoff: 10.00 Microns Reformulated Gas: NO vehicle Type: LDGT12 HDGV LDDV LDDT HDDV MC LDGT34 LDGV LDGT <6000 >6000 GVWR: (A11) 0.1596 0.0025 0.2567 0.0000 0.3439 0.1033 0.0001 VMT Distribution: 0.1339 Composite Emission Factors (g/mi): 0.0000 0.0000 0.0000 0.0000 0.0000 Lead: 0.0000_____ 0.0044 0.0046 0.0520 0.0205 0.0042 ____ GASPM: 0.0047 0.1198 0.0502 0.1268 ECARBON: _____ ____ ____ ____ 0.0338 0.0722 0.0657 ____ _____ ____ ____ OCARBON: 0.0049 0.0109 0.0049 0.0105 0.0000 0.0049 0.0047 0.0306 S04: 0.0028 Total Exhaust PM: 0.0096 0.0091 0.0095 0.0629 0.1584 0.1330 0.2231 0.0205 0.0071 0.0125 0.0125 0.0125 0.0125 0.0125 0.0000 0.0125 Brake: 0.0125 0.0125 0.0080 0.0086 0.0080 0.0080 0.0257 0.0000 Tire: 0.0080 0.0080 0.0080 0.1790 Total PM: 0.0276 0.0302 0.0296 0.0300 0.0841 0.1535 0.2614 0.0205 0.0934 0.2017 0.4376 0.0000 S02: 0.0684 0.0804 0.1134 0.0908 0.1666 0.0068 0.0068 0.0270 0.0000 0.0451 NH3: 0.1016 0.1005 0.1015 0.1008Idle Emissions (/hr) PM Idle: -1.0438 LDDT12 LDGT2 LDGT3 LDGT4 LDDT34 Veh. Type: LDGT1 - - -_ _ _ - - -0.0001 0.0024 0.0790 0.2649 0.1094 0.0502 VMT Mix: Composite Emission Factors (g/mi): 0.0000 0.0000 0.0000 0.0000 Lead: 0.0047 0.0044 0.0044 GASPM: 0.0047 0.1498 0.0463 ECARBON: _____ _____ _____ _____ 0.2156 _____ 0.0667 OCARBON: _____ _____ _____ 0.0049 0.0049 0.0047 0.0047 0.0062 0.0107 S04: 0.0096 0.0096 0.0091 0.0091 0.37170.1237 Total Exhaust PM:

All veh

1.0000

0.0000

0.0083

0.0327

0.0170

0.0118

0.0699

0.0125

0.0126

0.0950

0.1849

0.0760

0.2680

					BMEAO.PM					
Brake Ti re: Total PM: S02: NH3:	0.0125 0.0080 0.0302 0.0804 0.1005	0.0125 0.0080 0.0302 0.0804 0.1005	0.0125 0.0080 0.0296 0.1134 0.1015	0.0125 0.0080 0.0296 0.1134 0.1015	0.0125 0.0080 0.3922 0.1196 0.0058	0.0125 0.0080 0.1443 0.2049 0.0058				
Idle Emissions (^g /hr) PM Idle:										
veh. _{Type:}	HDGV2B_	HDGV3	_HDGV4	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B		
VMT Mix:	0.0871	0.0028	0.0009	0.0032	0.0063	0.0026	0.0000	0.0000		
composite Emission Factors }:										
Lead: GASPM: ECARBON:	0.0000 0.0523	0.0000	0.0000 0.0503	0.0000 0.0504	0.0000 0.0503	0.0000 0.0503	0.0000 0.0503	0.0000 0.0000		
OCARBON: SO4: Total Exhaust PM: Brake: Tire: Total PM: SO2: NH3:	0.0118 0.0640 0.0125 0.0080 0.0848 0.1603 0.0451	0.0118 0.0841 0.0125 0.0120 0.0887 0.1730 0.0451	0.0049 0.0553 0.0125 0.0120 0.0798 0.1764 0.0451	0.0050 0.0554 0.0125 0.0120 0.0799 0.2054 0.0451	0.0050 0.0553 0.0125 0.0120 0.0799 0.2026 0.0451	0.0049 0.0553 0.0125 0.0120 0.0798 0.2213 0.0451	0.0048 0.0551 0.0125 0.0300 0.1036 0.2339 0.0451	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
Idle Emissions (g/hr) PM Idle:										
Veh. Type:	HDDV2B	HDDV3	_HDDV4 _	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B		
VMT Mix:	0.0299	0.0092	0.0081	0.0038	0.0187	0.0274	0.0]]0	0.1190		
Composite Emission Fac Lead: G4SPM:	ctors (g/m	i): 								
ECARBON: OCARBON: S04: Total Exhaust PM: Brake: Tire: Total PM: S02: NH3:	0.0513 0.0534 0.0172 0.1219 0.0125 0.0080 0.1424 0.2452 0.0270	0.0486 0.0506 0.0190 0.1182 0.0125 0.0120 0.1427 0.2722 0.0270	0.0475 0.0495 0.0217 0.1189 0.0125 0.0120 0.1434 0.3107 0.0270	0.0466 0.0485 0.0224 0.1175 0.0125 0.0120 0.1420 0.3208 0.0270	0.1058 0.0831 0.0254 0.2143 0.0125 0.0120 0.2389 0.]6]7 0.0270	0.1043 0.0819 0.0294 0.2156 0.0125 0.0120 0.2401 0.4200 0.0270	0.1234 0.0970 0.0]]7 0.2540 0.0125 0.0360 0.3036 0.4813 0.0270	0.1676 0.0529 0.0]5] 0.2558 0.0I25 0.0360 0.3043 0.5043 0.0270		
Idle Emissions (^g /hr) PM Idle:	1.8607	1.0424	1.0459	1.0391	1.0381	1.0402	I.0381	1.0417		

LAKEMEAD.PM

	e Fuel Sul: Fuel Sul Particle	llendar Yean Month fur Content fur Content size cutoff mulated Gas	h: July 299. ^p t: 500. ^p f: 10.00 m							
Vehicle ^{Type:} GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.1]]9	0.3439	0.1595		0.1094	0.0001	0.0025	0.2556	0.0000	I.0000
Composite Emission Fau Lead: GASPM: ECARBON: OCARBON: S04: Total Exhaust PM: Brake: Tire: Total PM: 502: NH3: Idle Emissions (g/hr) PM Idle:	ctors (g/m 0.0000 0.0042 0.0038 0.0070 0.0125 0.0080 0.0275 0.0684 0.I016 	i): 0.0000 0.0046 0.0049 0.0095 0.0125 0.0080 0.0300 0.0300 0.0804 0.1007	0.0000 0.0044 0.0047 0.0091 0.0125 0.0080 0.0297 0.1134 0.1015	0.0000 0.0046 0.0040 0.0094 0.0125 0.0080 0.0299 0.0299 0.0908 0.1009	0.0000 0.0520 0.0113 0.0633 0.0125 0.0086 0.0845 0.1063 0.0451 	0.1150 0.0324 0.0040 0.1522 0.0125 0.0080 0.1728 0.0924 0.0068	0.0496 0.0714 0.0106 0.1316 0.0125 0.0080 0.1522 0.2022 0.0068	0.1241 0.0841 0.0306 0.3187 0.0125 0.0258 0.2570 0.4374 0.0270 I.0356	0.0000 0.0205 0.0000 0.0205 0.0000 0.0205 0.0000 0.0205 0.0000 0.0000	0.0000 0.0082 0.0330 0.0160 0.0118 0.0687 0.0125 0.0125 0.0126 0.0038 0.1840 0.0700 0.2657
Veh. Type:	LDGT1_	LDGT2 _	LDGT3	LDGT4	LDDT12	LDDT34				
VMT Mix:	0.0790	0.2649	0.1094	0.0502	0.0001	0.0024				
Composite Emission Fa Lead: GASPM: E[ARBUN: OCARBON: SO4: Total Exhaust PM: Brake: Tire: Total PM: SO2: NH3: Idle Emissions (g/hr)	ctors (g/m 0.0000 0.0046 0.0049 0.0095 0.0125 0.0080 0.0300 0.0300 0.0804 0.1007	i): 0.0000 0.0046 0.0049 0.0095 0.0125 0.0080 0.0300 0.0300 0.0804 0.1007	0.0000 0.0044 0.0047 0.0091 0.0125 0.0080 0.0297 0.1I34 0.I015	0.0000 0.0044 0.0047 0.0091 0.0125 0.0080 0.0397 0.1134 0.1015	0.1498 0.2156 0.0062 0.3717 0.0125 0.0080 0.3922 0.1196 0.0088	0.0483 0.0867 0.0107 0.1237 0.0125 0.0080 0.1443 0.2049 0.0058				

Idle Emissions (g/hr)

PM Idle:

LAKEMEAD.PM

Veh. Type:	HDGV2B	HDGV3	HDGV4	 HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B
VMT Mix:	0.0874	0.0028	0.0009	0.0031	0.0062	0.0026	0.0000	0.0000
Composite Emission Fac	tors (g/m	i):						
Lead:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
GASPM: ECARBON:	0.0523	0.0523	0.0506	0.0506	0.0506	0.0506	0.0505	0.0000
OCARBON:								
s04:	0.0120	0.0121	0.0061	0.0062	0.0062	0.0062	0.0060	0.0000
Total Exhaust PM:	0.0643	0.0644	0.0567	0.0568	0.0568	0.0568	0.0565	0.0000
Brake:	0.0125 0.0080	0.0125 0.0120	0.0125	0.0125	0.0125	0.0125	0.0125	0.0000
Tire: Total PM:	0.0080	0.0120	0.0120 0.0813	0.0120 0.0814	0.0120 0.0814	0.0120 0.0813	0.0360 0.1051	0.0000 0.0000
so2:	0.1601	0.1728	0.1758	0.2049	0.2021	0.2208	0.2332	0.0000
NH3:	0.0451	0.0451	0.0451	0.0451	0.0451	0.0451	0.0451	0.0000
Idle Emissions (g/hr)								
PM Idle:								
Veh. Type:	HDDV2B		HDDV4					HDDV8B
VMT Mix:	0.0296	0.0092	0.0081	0.0039		0.0274	0.0330	0.1190
Composite Emission Fa	ctors (a/m	ni):						
Lead:								
GASPM:								
ECARBON:	0.0502	0.0478	0.0468	0.0459	0.1020	0.1004	0.1214	0.1647
OCARBON: S04:	0.0523 0.0171	0.0497 0.0190	0.0487 0.0217	0.0477 0.0224	0.0802 0.0254	0.0789 0.0294	0.0954 0.0337	0.0520 0.0352
Total Exhaust PM:	0.1196	0.1165	0.1172	0.0224 0.1161	0.2076	0.2087	0.2504	0.0552
Brake:	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125	0.0125
Tire:	0.0080	0.0120	0.0120	0.0120	0.0120	0.0120	0.0360	0.0360
Total PM:	0.1402	0.1410	0.1417	0.1406	0.2322	0.2332	0.2990	0.3005
s02:	0.2449	0.2719	0.3106	0.3207	0.3635	0.4199	0.4810	0.5038
NH3:	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270	0.0270
Idle Emissions (/hr) PM Idle:	1.0495	1.0341	1.0377	1.0321	1.0309	1.0326	1.0307	1.0338

Entrance	Visitors	Vehicles	Road Length (miles roundtrip)	Annual VMT
Boulder Beach Access from US 90	2,130,427	645,584	4	2,582,336
Lakeshore Road Eastbound	2,038,311	617,670	25	15,441,750
Lake Mead Boulevard	1,121,567	339,869	14	4,758,163
Kingman Wash	12,693	3,846	20	76,927
Northshore Road (Southbound/Overton)	470,921	142,703	32	4,566,507
Valley of Fire Access Road	300,826	91,159	8	729,275
Temple Bar Access Road	161,788	49,027	40	1,961,067
South Cove - Pearce Ferry Road	159,553	48,349	32	1,547,181
Miscellaneous Access to Lake Mead	870,600	263,818	10	2,638,182
Willow Beach Access Road	199,942	60,588	8	484,708
Cottonwood Cove Access Road	138,713	42,034	14	588,479
Katherine Access Road	1,032,490	312,876	10	3,128,758
Miscellaneous Access to Lake Mohave	134,758	40,836	12	490,029
	8,772,589	2,658,360	229	38,993,361
All Buses		1,370	18	24,133

LAKE MEAD NATIONAL RECREATION AREA TOTAL VISITOR VMT

Annual VMT		Bus VMT		_		
38,993,361		24,133				
		Emission Fac	tors (glmi	i) - All Vehic	cles	
					PM ₁ 0	
				Exhaust, Brake,		
	NOx	СО	VOC	and Tire	Fugitive	Total
Summer	4.75	11.25	0.83	0.0938	0.84	0.9338
Winter	4.95	14.17	0.84	0.0950	0.84	0.9350
Average	4.85	12.71	0.83			0.934
		Emissions	(tons/yr) -	All Vehicle	S	
	NOx	со	VOC			PM ₁ 0
	207.97	545.12	35.77			40.08

LAKE MEAD NATIONAL RECREATION AREA VISITOR VEHICLE EMISSIONS

Emission Factors (glmi) - Buses

PM₁0

				Exhaust, Brake,	I					
	NOx	СО	VOC	and Tire	Fugitive	Total				
Summer	14.042	1.786	0.393	0.257	0.840	1.097				
Winter	14.652	1.800	0.396	0.261	0.840	1.101				
Average	14.347	1.793	0.395			1.099				
	Emissions (tons/yr) - Buses									
	<u>NOx</u>	<u></u>	_ <u>voc</u>			<u>PM ₁ o</u>				
	0.38	0.05	0.01			0.03				
	<u>Emissions (tons/yr) - Total</u>									
	<u>NOx</u>	<u></u>	VOC			<u>PM</u> 10				
	208.35	545.17	35.78			40.11				

			AD NRA NP	S AND GS	A VEHICLES		
		LDGV	LDGT	HDGV	HDDV	Total	
	Total Miles	249,585	955,221	464	41,900	1,247,170	
			Emi	ssion Fact	ors (glmi) - ∟Do		
					Exhaust,	PM ₁₀	
		NOx	со	voc	Brake, and Tire	Fugitive	Total
Summer		0.799	13.720	0.935	0.028	0.840	0.868
Winter		0.791	16.460	0.919	0.028	0.840	0.868
Average		0.795	15.090	0.927			0.868
			E	missions (tonslyr) - LDGV		
		<u>NOX</u> 0.22	<u>– co</u> 4.14	<u>voc</u> 0.25			PM _t 0 0.24
		0.22	4.14	0.25			
			Em	ission Fact	tors (glmi) - LDG	ат РМн	
					Exhaust,		
		NOx	со	VOC	Brake, and Tire	Fugitive	Total
Summer		13.720	16.170	1.037	0.030	0.840	0.870
Winter		1.139	21.670	1.101	0.032	0.840	0.872
Average		7.430	18.920	1.069			0.871
					tonslyr) - ∟DG⊤		
		<u>NOx</u> 7.81	<u>CO</u> 19.88	1.12			PM,. 0.92
			Emi	ssion Fact	ors (glmi) - нос		
					Exhaust,	PM ₁ 0	
		NOx	со	VOC	Brake, and Tire	Fugitive	Total
Summer		4.445	8.110	0.818	0.085	0.840	0.925
Winter		4.601	8.820	0.754	0.084	0.840	0.924
Average		4.523	8.465	0.786			0.924
Ū			E	missions (tonslyr) - н D G∨		
		<u>NOx</u>	<u></u>	<u>VOC</u>	.,		<u>PM 10</u>
		0.00	0.00	0.00			0.00
			Em	ission Fact	tors (glmi) - HDI	DV PM.0	
			-		Exhaust,	PM.0	
		NOx	СО	VOC	Brake, and Tire	Fugitive	Total
Summer		14.042	1.786	0.393	0.257	0.840	1.097
Winter		14.652	1.800	0.396	0.261	0.840	1.101
Average		14.347	1.793	0.395			1.099
- 0 -		-			(tonslyr) - HDDV	,	
		NOx	CO	VOC		_	PM,0
		0.66	0.08	0.02			0.05
				Emissions VOC	(tonslyr) - Total		
		NOx	CO	v00			PM₁0

LAKE MEAD NRA NPS AND GSA VEHICLES

 CO
 VOC
 PM10

 24.11
 1.40
 1.20

NOx

8.69

2000 LAKE MEAD NRA NP NONROAD VEHICLE EMISSIONS

Vehicle	No.	Emi PM	ssion Factor		r) VOC	h-2	lood	bro /ur	5.4	Emissions (
Utility Cart	28	2.04	Nox 1.03	CO 2.31	2.19	hp 15	load 0.55	hrs/yr 10,590	PM 392	<u>Nox</u> 198	<u>CO</u> 444	
Tractors	0	2.04	1.03	2.31	2.19	42.35	0.68	0	0	0	0	0
Backhoe	15	2.04	1.03	2.31	2.19	77	0.55	4,238	806	0 407	0 912	865
Riding Mower	0	1.11	10.3	4.8	1.3	15	0.55	0	0	0	0	0
Brush Mower	0	1.11	10.3	4.8	1.3	15	0.55	0	0	0	0	0
Bobcat	0	2.04	1.03	2.31	2.19	15	0.55	0	0	0	0	0
Dozer	3	2.04	1.03	2.31	2.19	77	0.55	912	173	88	196	186
Grader	0	1.06	9.6	3.8	1.43	172	0.61	0	0	0	0	0
Power Pruner	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Stihl Brushcutters	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Stihl 14 Quick Cut Saw	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Post Hole Digger	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Case Plate Tamper	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Tamper Rammer	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Pionjar	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Wacker Trash Pump	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Generators	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Welder-Arc-Generator	0	3.99	0.9	4.8	1.3	5	0.55	0	0	0	0	0
Air Compressor	13	3.99	0.9	4.8	1.3	5	0.55	400	10	2	12	3
Sweeper	2	1.7	14	6.06	1.46	30	0.68	60	5	38	16	4
Leaf Blowers	0	3.99	0.9	4.8	1.3	1.2	0.55	0	0	0	0	0
Chainsaws	57	3.6	0.96	4.8	1.3	3	0.55	6,285	82	22	110	30
Trimmer	0	3.99	0.9	4.8	1.3	1.2	0.55	0	0	0	0	0
Weed Wacker	0	3.99	0.9	4.8	1.3	1.2	0.55	0	0	0	0	0
50 gallon Sprayer	0	1.7	14	6.06	1.46	9	0.55	0	0	0	0	0
Forklift	14	1.06	9.6	3.8	1.43	172	0.61	8,020	1,962	17,772	7,035	2,647
Front End Loader	0	1.11	10.3	4.8	1.3	77	0.55	0	0	0	0	0
Roller/Compactor	0	2.04	1.03	2.31	2.19	30	0.55	0	0	0	0	0
Skid Loader	0	1.11	10.3	4.8	1.3	77	0.55	0	0	0	0	0
Chipper	0	3.99	0.9	1372	495	30	0.55	0	0	0	0	0
Crane	2	1.06	9.6	3.8	1.43	172	0.61	200	49	443	175	66
ATVs	4	1	8	5	1.22	350	0.65	300	150	1,201	751	183
							Totals:	(lbs/yr)	3,629	20,170	9,651	4,405
								(tons/yr)	1.81	10.08	4.83	2.20
Snowmobiles	0	2.7	0.86	300	110	48	0.34	0	0	0	0	0
							Totals:	(Ibs/yr)	0	0	0	0
								(tons/yr)	0.00	0.00	0.00	0.00

LAKE MEAD NRA PUBLIC MARINE VESSEL EMISSIONS

Diesel Engine Emission Factors¹

Units	HC	CO	NO x	PM	SO ₂		
(g/hp-hr)	1.26	1.91	8.92	0.563	0.352	1 g =	0.002202
(lb/hp-hr)	0.003	0.004	0.020	0.001	0.001	BSFC =	0.367

 Source: Exhaust Emission Factors for Nonroad Engine Modeling -Compression-Ignition EPA Report No., NR-009A; Table 1

2-Stroke Gasoline Engine Emission Factors ³

Units	HC	CO	NO,	PM	SO ₂
(g/hp-hr)	116.38	231.26	1.19	7.7	0.000
(lb/hp-hr)	0.256	0.509	0.003	0.017	0.000

4-Stroke Gasoline Engine Emission Factors ³

Units	HC	CO	NOx	PM	SO ₂
(g/hp-hr)	14.92	339.18	7.46	0.06	0.000
(lb/hp-hr)	0.033	0.747	0.016	0.000	0.000

³ Source: Nonroad Emission Inventory Model, Draft, June 17, 1998

Criteria Pollutant Emissions³

	Number	No. of	Engine	Hours of	Load	HC	CO	NO _x	PM	SO ₂
Vessel Type	of Trips	Engines	Power (hp) Operation	Factor	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
<30 HP Outboard	2,982	1	20	13,846	0.21	14,900	29,609	152	986	0
>30 HP Outboard	7,047	1	50	38,829	0.21	104,464	207,582	1,068	6,912	0
4-Stroke Outboard ²	15,373	1	90	65,553	0.21	40,697	925,183	20,349	164	0
Inboard/Outboard ²	64,155	1	200	371,881	0.21	513,056	11,663,433	256,528	2,063	0
Inboard ²	21,961	1	200	122,263	0.21	1,315,726	2,614,495	13,453	87,052	0
Inboard Jet ^t	4,896	1	200	26,320	0.21	283,241	562,832	2,896	18,740	0
Personal Watercraft	39,447	1	155	170,009	0.21	1,417,895	2,817,515	14,498	93,812	0
Personal Watercraft ²	5,991	1	155	30,028	0.21	250,437	497,646	2,561	16,570	0
					Total	3,940,418	19,318,294	311,506	226,297	0
							+	onswoor		

	tor	ns/year		
1,970.21	9,659.15	155.75	113.15	0.00

Assumes 2-stroke engine

²Assumes 4-stroke engine

Emissions = Emission Factor * No. of Engines * Engine Power * Hours of Operation *Load Factor

LAKE MEAD NRA NPS MARINE VESSEL EMISSIONS

Diesel Engine Emission Factors

Units	HC	CO	NOx	PM	SO ₂		
(g/hp-hr)	1.26	1.91	8.92	0.563	0.352	1 g =	0.0022016 lbs
(lb/hp-hr)	0.003	0.004	0.020	0.001	0.001	BSFC =	0.367 lb/hp-hr

 Source: Exhaust Emission Factors for Nonroad Engine Modeling --Compression-Ignition EPA Report No., NR-009A; Table 1

2-Stroke Gasoline Engine Emission Factors³

Units	HC	CO	NO _x	PM	SO ₂
(^{g/hp} _ ^{hr})	116.38	231.26	1.19	7.7	0.000
(lb/hp-hr)	0.256	0.509	0.003	0.017	0.000

4-Stroke Gasoline Engine Emission Factors³

Units	нс	CO	NO _x	PM	SO ₂
(g/hp-hr)	14.92	339.18	7.46	0.06	0.000
(lb/hp-hr)	0.033	0.747	0.016	0.000	0.000

³ Source: Nonroad Emission Inventory Model, Draft, June 17, 1998

Criteria Pollutant Emissions³

Criteria Pollutant Emiss	ions [°]							NO	514	~~
		No. of	Engine	Hours of	Load	HC	CO	NOx	PM	SO2
NPS Vessel	Number	Engines	Power (hp) Operation	Factor	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)
	7	1	150	500	0.21	4,036	8,019	41	267	0
	1	1	550	600	0.21	17,756	35,284	182	1,175	0
	4	1	225	700	0.21	8,475	16,840	87	561	0
Barge	3	1	60	625	0.21	2,018	4,010	21	134	0
	1	1	90	15	0.21	73	144	1	5	0
	2	1	115	100	0.21	619	1,230	6	41	0
	4	1	220	800	0.21	9,470	18,818	97	627	0
Motor Boat	6	1	25	3,000	0.21	4,036	8,019	41	267	0
motor Boat	8	1	40	3,200	0.21	6,887	13,686	70	456	0
Chase Boat	4	1	150	5,000	0.21	40,355	80,191	413	2,670	0
Ferry Boat	5	1	125	5,000	0.21	33,630	66,826	344	2,225	0
5	1 '	1	200	5,000	0.21	53,807	106,921	550	3,560	0
Fire Boat	1 2	1	70	350	0.21	1,318	2,620	13	87	0
	7	1	15	700	0.21	565	1,123	6	37	0
Fishing Boat	2	1	40	100	0.21	215	428	2	14	0
Tishing Boat	4	1	25	280	0.21	377	748	4	25	0
Float Boat	8	1	60	9,600	0.21	30,993	61,586	317	2,051	0
					Total	214,629	426,492	2,195	14,200	0
								tons/year		
								ions/year		

		JIIS/year			
107.31	213.25	1.10	7.10	0.00	

Assumes 2-stroke engines

²Assumes 4-stroke engine

Emissions = Emission Factor * No. of Engines * Engine Power * Hours of Operation *Load Factor

EDMS 3.23 Emissions Inventory Report

Study Name: Lake Mead

Airport: MC CARRAN INTL

Report Date: 11/06/02

SUMMARY (Tons/Year)							
CO	HC	NOx	SOx	PM10			
4 305	.105	014	000	.000			
.000	.000	.000	.000	.000			
4.305	.105	.014	.000	.000			
		(Tons/Yea CO HC 4.305 .105 .000 .000	(Tons/Year) CO HC NOx 4.305 .105 .014 .000 .000 .000	(Tons/Year) CO HC NOx SOx 4.305 .105 .014 .000 .000 .000 .000 .000			

AIRCRAFT EMISSIONS

(Tons/Year)

Aircraft	Engine	Mode	СО	HC	NOx	SOx	PM10
Cessna 150	0-200	TAXI	.000	.000	.000	.000	.000
Cessna 150	0-200	TKOF	.137	.003	.001	.000	.000
Cessna 150	0-200	CLMB	2.283	.049	.011	.000	.000
Cessna 150	0-200	APCH	1.885	.053	.002	.000	.000
Cessna 150	0-200	APU	.000	.000	.000	.000	.000
Cessna 150	0-200	GSE	.000	.000	.000	.000	.000

" Denotes User Created Aircraft

Date: Friday, December 20, 2002 Study Created: Wednesday, November 06, 2002 Study Pathname: C:\EDMS\LAKE MEAD\Lake Mead.EDM

Airport: MC CARRAN INTL, NV LAS Airport Location (lat / lon): 36-04-49.859N 115-09-03.956W Field elevation: 2175 Metric airport layout units selected Average temperature: 58. Mixing Height: 3000 Vehicle fleet year: 2002

Hourly Pr							
Hour	Fraction	of Peak	Hour	Fraction	of Peak	Hour	Fraction of Peak
1	1.000		9	1.000		17	1.000
2	1.000		10	1.000		18	1.000
3	1.000		11	1.000		19	1.000
4	1.000		12	1.000		20	1.000
5	1.000		13	1.000		21	1.000
6	1.000		14	1.000		22	1.000
7	1.000		15	1.000		23	1.000
8	1.000		16	1.000		24	1.000
Daily Pro DEFAUL		Franking			Devi		
Day		Fraction	от Реак		Day Eridov		Fraction of Peak
Monday Tuesday		1.000 1.000			Friday Saturday		1.000 1.000
Wednesd	av	1.000			Sunday		1.000
Thursday	•	1.000			Ounday		1.000
maroday		1.000					
Monthly F							
Month		Fraction of	of Peak		Month		Fraction of Peak
January		1.000			July		1.000
February		1.000			August		1.000
March		1.000			Septemb	er	1.000
April		1.000			October		1.000
May		1.000			Novembe	er	1.000
June		1.000			Decembe	er	1.000
Aircraft:							
Aircraft N	ame	Engine Ty	/pe	Aircraft C	ategory	Identificat	ion
Cessna 1	50	0-200		SGPP		#1	
	Annual L	TO: 00000	0001250				
	TGO:	0					
	A nonual A	Vorogo Tox	Time	0.00			

Annual Average Taxi Time: 0.00 Annual Average Queue Time: 0.00 Hourly Profile: DEFAULT Daily Profile: DEFAULT Monthly Profile: DEFAULT Assigned Gate: Aircraft does not use configurations Assigned Taxiway 1: -NONE-Assigned Taxiway 2: -NONE-Assigned Taxiway 3: -NONE-Assigned Runway: Assigned GSE/AGE: GSE Op Time

Advanced Dispersion Settings Urban vs. Rural flag set to urban Aircraft Settings Aircraft Size: Small Large Heavy Initial Sigma Y: 6 15 25 Initial Sigma Z: 2 4 7 Stationary Source Settings Initial Sigma Y: 2

Initial Sigma Z: 2

APPENDIX C

PUBLIC USE DATA

UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE LAKE MEAD NATIONAL RECREATION AREA 601 NEVADA HIGHWAY BOULDER CITY, NEVADA 89005-2426

VISITOR AND VISITOR USE STATISTICS FOR: DECEMBER, 2001

	This Month	Year to Date
1. Recreational Visitors	350,687	8,772,589

2. Travel Trends: December 2001 under December 2000 by 20.4%. December 2001 under November 2001 by 41%. 2001 year to date under 2000 by 3.3%.

	DISTRIBUTION			
	DECEMBER	DECEMBER	2001 Year	2000 Year
	2001	2000	To Date	To Date
LAKE MEAD				
1. Boulder Beach access from US 93	88,727	109,280	2,130,427	2,198,088
2. Lakeshore Road (Eastbound)	111,276	104,702	2,038,311	2,224,819
3. Lake Mead Boulevard	56,579	62,769	1,121,567	1,295,084
4. Kingman Wash	475	673	12,693	13,323
5. Northshore Road (Southbound/Overton)	22,292	31,511	470,921	485,539
5. Valley of Fire access road	6,544	17,982	300,826	276,306
7. Temple Bar access road	4,877	7,494	161,788	196,816
3. South Cove - Pearce Ferry Road	7,913	3,868	159,553	169,050
9. Miscellaneous access to Lake Mead	4,875	45,911	870,600	522,307
Lake Mohave				<i>.</i>
1. Willow Beach access road	7,270	10,900	199,942	216,400
2. Cottonwood Cove access road	4,208	9,900	138,713	202,218
3. Katherine access road	28,951	29,400	1,032,490	1,119,537
Miscellaneous access to Lake Mohave	6,700	6,286	134,758	153,058
Fotal	350,687	440,676	8,772,589	9,072,545
Informational entries (included in above totals):				
Lake Mead Marina access road	42,606	41,342	802,683	1,074,430
Las Vegas Bay Marina access road	30,479	33,264	722,660	635,363
Callville Bay access road	16,500	16,500	664,998	504,904
Echo Bay access road	11,256	29,288	270,022	344,581
Overton Beach access road	13,844	12,659	317,214	337,585
	SPECIAL TRAVEL D	DATA		
U.S. 93 Eastbound-Hoover Dam	561,000	561,059	7,526,802	7,827,363
U.S. 93 Westbound-Hoover Dam	615,120	615,242	7,928,745	8,396,860
Nevada Highway 163 Eastbound-Davis Dam	25,895	37,511	1,370,959	1,490,200
Nevada Highway 68 Westbound-Davis Dam	53,028	14,469	1,529,289	1,303,693
Fotal	1,255,043	1,228,281	18,355,795	19,018,116
Recreational Visitors (No. 1 above)	350,687	440,676	8,772,589	9,072,545
TOTAL TRAVEL: Lake Mead N. R. A.	1,605,730	1,668,957	27,128,384	28,090,661

UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE LAKE MEAD NATIONAL RECREATION AREA Boulder City, Nevada 89005

SUMMARY OF VISITOR TRAVEL FOR THE CALENDAR YEARS 1937 THROUGH 2001

	Total	Cumulative	Number Over or Under	Percent Over or Under
Year	Travel	Total	Previous Year	Previous Year
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1950 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1966 1967 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985	Travel 552, 128 533, 914 649, 624 668, 027 844, 733 338, 778 214, 190 263, 533 587, 436 1, 165, 369 1, 426, 831 1, 654, 004 1, 423, 552 1, 798, 280 2, 053, 619 1, 946, 706 2, 220, 940 2, 112, 724 2, 675, 371 2, 672, 774 2, 955, 257 3, 190, 580 3, 390, 574 2, 254, 185 2, 219, 960 2, 688, 745 3, 349, 565 3, 462, 580 3, 594, 065 3, 720, 485 4, 102, 335 4, 751, 795 5, 614, 940 4, 897, 135 4, 570, 229 4, 888, 636 5, 534, 315 5, 939, 533 6, 219, 220 6, 948, 611 6, 529, 848 6, 879, 870 6, 378, 341 5, 145, 699 5, 406, 184 5, 565, 467 6, 128, 254 6, 504, 206 7, 204, 295	Total 552,128 1,086,042 1,735,666 2,403,693 3,248,426 3,587,204 3,801,394 4,064,927 4,652,363 5,817,732 7,244,563 8,898,567 10,322,119 12,120,399 14,174,018 16,120,724 18,341,664 20,454,388 23,129,759 25,802,533 28,757,790 31,948,370 35,338,944 37,593,129 39,813,089 42,501,834 45,851,399 49,313,979 52,908,044 56,628,529 60,730,864 65,482,659 71,097,599 75,994,734 80,564,963 85,453,599 90,987,914 96,927,447 103,146,667 10,095,278 116,625,126 123,504,996 129,883,337 135,029,036 140,435,220 146,000,687 152,128,941 158,633,147 165,837,442	or Under	or Under
1979 1980 1981 1982 1983 1984 1985 1986	6,879,870 6,378,341 5,145,699 5,406,184 5,565,467 6,128,254 6,504,206 7,204,295 8,034,542	123,504,996 129,883,337 135,029,036 140,435,220 146,000,687 152,128,941 158,633,147 165,837,442 173,871,984	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001	8,392,419 8,629,895 8,803,414 8,893,495 8,751,312 9,343,549 9,265,520 9,913,705 10,195,546 9,689,997 8,837,742 9,106,793 9,351,237 9,072,545 8,772,589	182,264,403 190,894,298 199,697,712 208,591,207 217,342,519 226,686,068 235,951,588 245,865,293 256,060,839 265,750,836 274,588,578 283,695,371 293,046,608 302,119,153 310,891,742	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Month	Recreation Visits	Non- Recreation Visits	Total Visits	Concessioner Lodging	Concessioner Campgrounds	Tent Campers	RV Campers	Total RV/Tent Campers	Back- country Campers	Misc. Campers	Non-Rec Overnight Stays	Total Overnight Stays
January]	469,6521	17,0341	486,6861	2,8131	19,9361	9,3531	11,9041	21,2571	13,4421	7,590	23,445	88,483
February	551,0791	19,9871	571,0661	2,3041	15,0421	13,7831	17,5421	31,3251	26,7701	12,9071	22,6751	111,023
March'	601,7621	21,8261	623,5881	3,1451	19,0251	12,1531	15,4681	27,6211	16,5541	7,7581	21,6831	95,786
April	861,2631	31,2381	892,5011	4,8091	16,0241	15,9961	20,3591	36,3551	18,1091	14,153	20,6471	1 10,097
May	I 850,4091	30,8441	881,253	5,8471	15,2861	10,9711	" 13,964	24,935	37,1701	15,0251	22,742	121,005
June1	1,165,1541	42,2591	1,207,4131	5,5431	15,2041	9,5011	12,0931	21,594'	41,5011	9,9541	23,2491	1 17,045
Julys	871,2951	31,6011	902,8961	8,5391	16,2721	6,5751	8,3681	14,9431	60,121	14,787	27,5621	142,224
Augusts	850,7221	30,8551	881,5771	9,6051	15,567	6,1561	7,834	13,9901	31,8261	14,0621	27,715	1 12,765
September	741,7961	26,9051	768,7011	6,575	13,3581	7,0281	8,9451	15,9731	38,6831	14,025	22,012	1 10,626
October!	770,4981	27,9461	798,4441	5,601	14,5841	II,0341	14,0431	25,0771	30,3421	13,566	22,1791	1 1 1,349
November	596,1231	21,62 I	617,7441	2,204	14,5831	6,8161	8,6761	15,4921	1 1,9841	8,0161	22,0451	74,324
December!	425,2521	15,424!	440,6761	1,2201	14,0621	5,0671	6,4481	11,5151	12,4531	14,672	22,8191	76,741
ITotals:	8,755,0051	317,5401	9,072,5451	58,2051	188,943!	114,4331	145,644'	260,0771	338,9551	146,515	278,7731	1,271,468

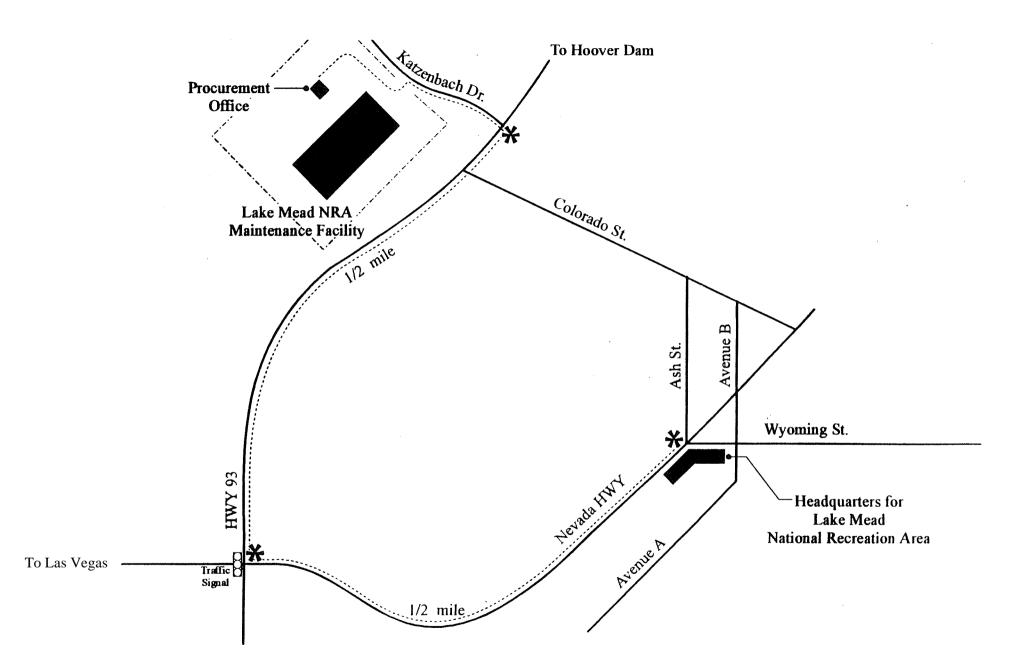
Visitor Use Reporting

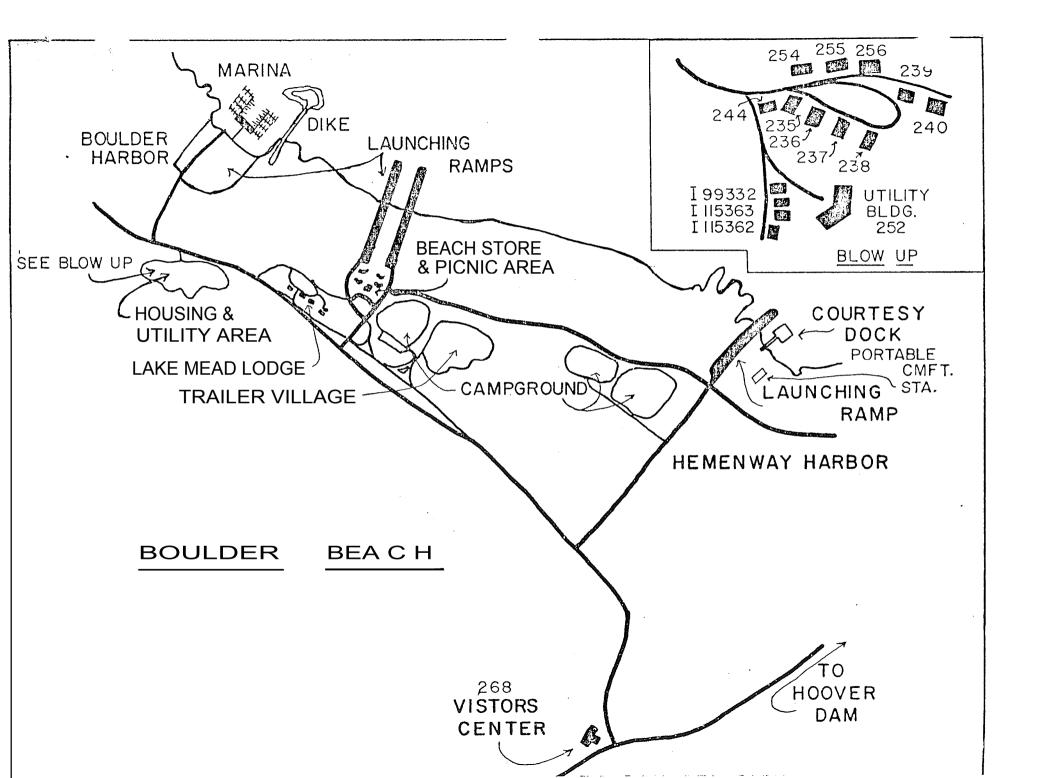
Appendix 9

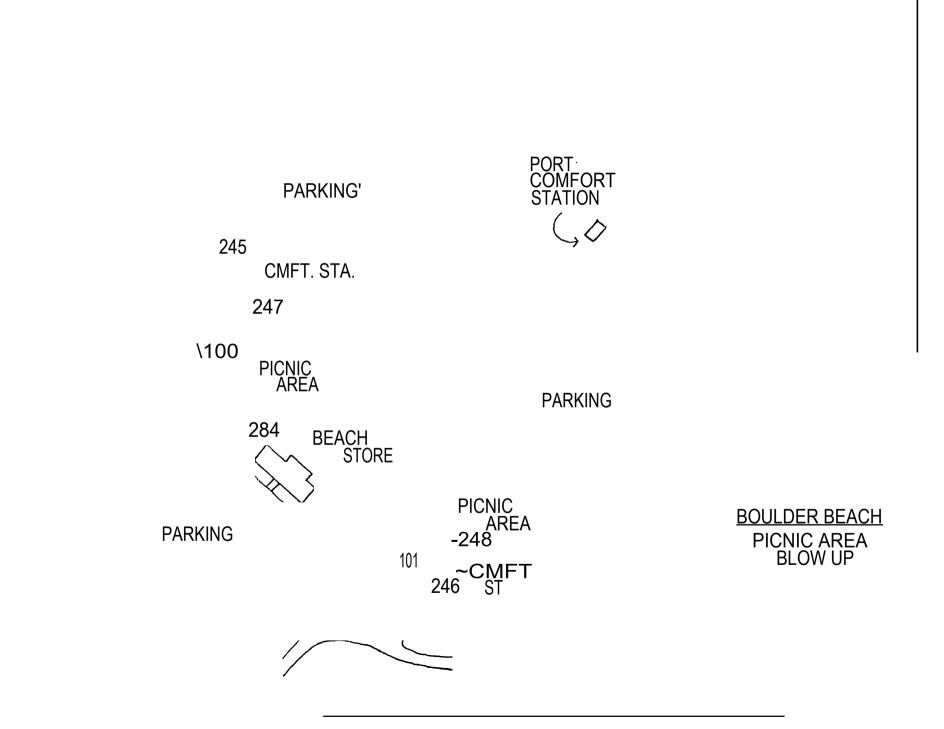
Tents and Recreational Vehicles

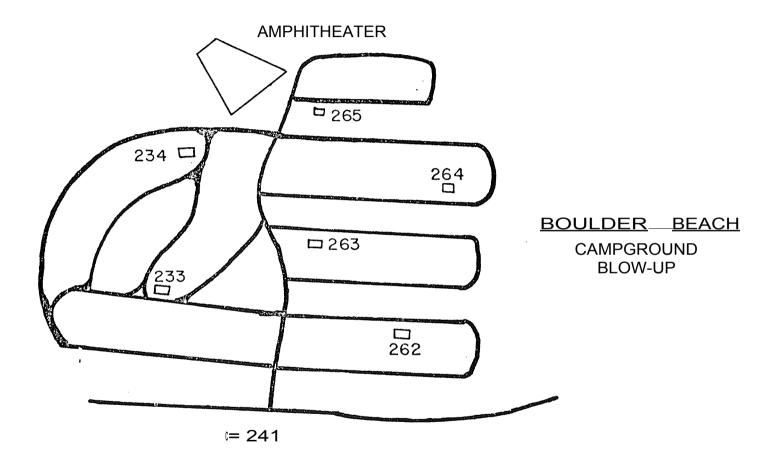
The percentage of Total National Park Service Campers using tents and recreational vehicles for each month are as follows:

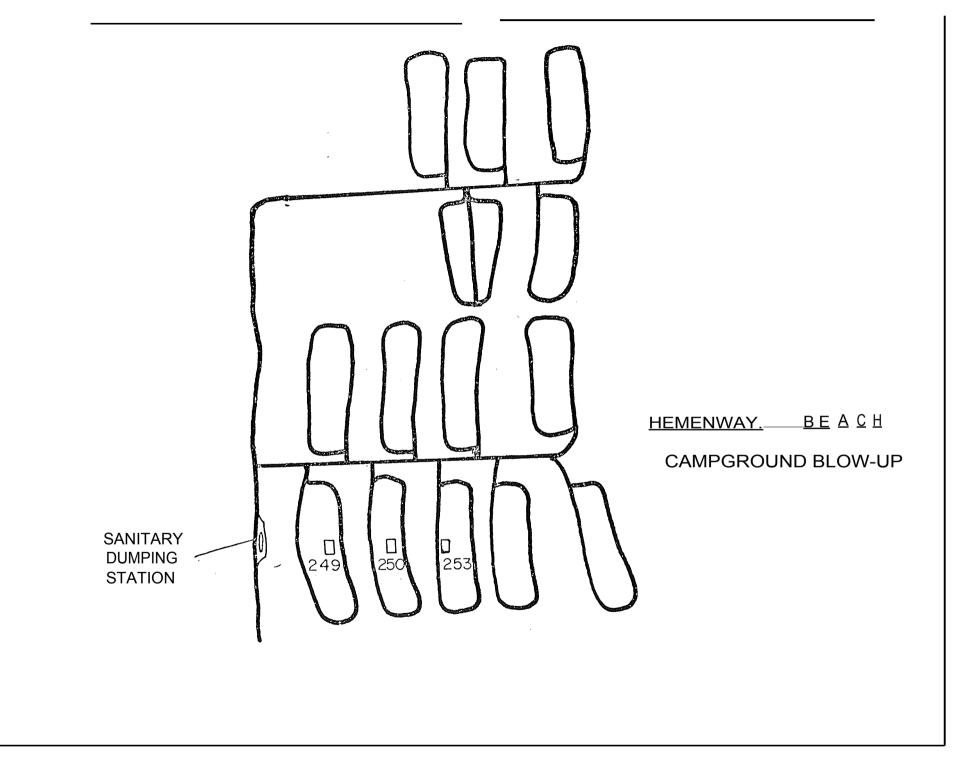
 MONTH	TENT %	RV %
JANUARY	10%	90%
FEBRAURY	12%	88%
MARCH	21%	79%
APRIL	28%	72%
MAY	27%	73%
JUNE	28%	72%
JULY	44%	56%
AUGUST	43%	57%
SEPTEMBER	27%	73%
OCTOBER	27%	73%
NOVEMBER	21%	79%
DECEMBER	15%	85%
		75 .

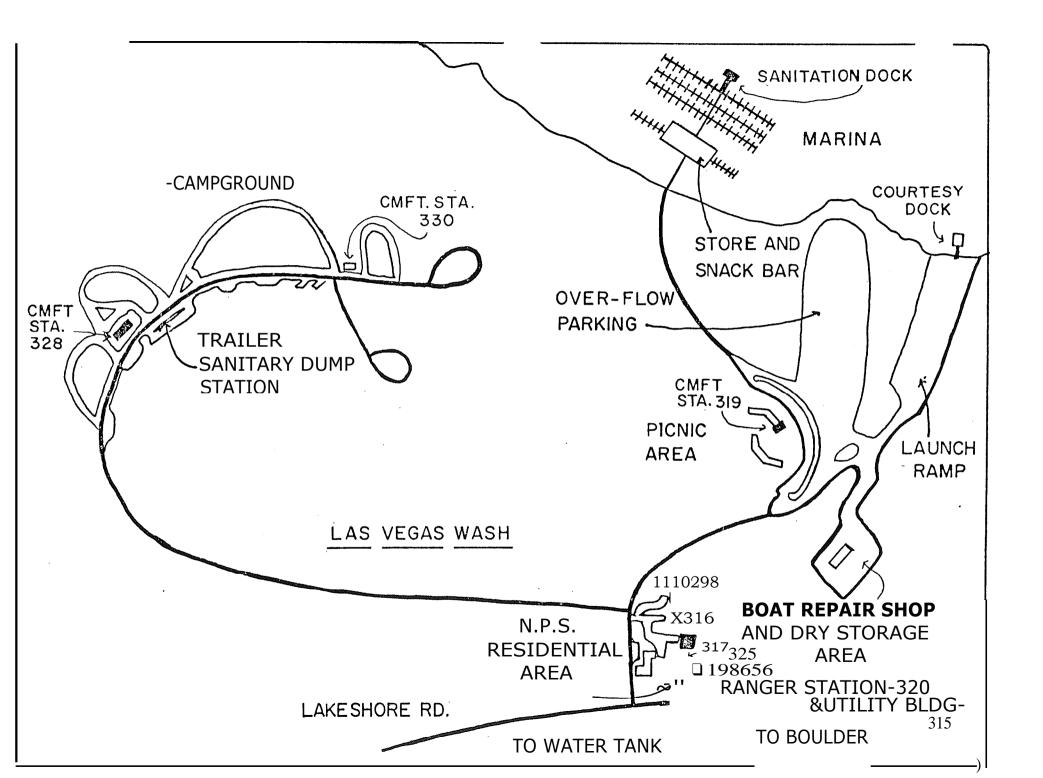

75 c

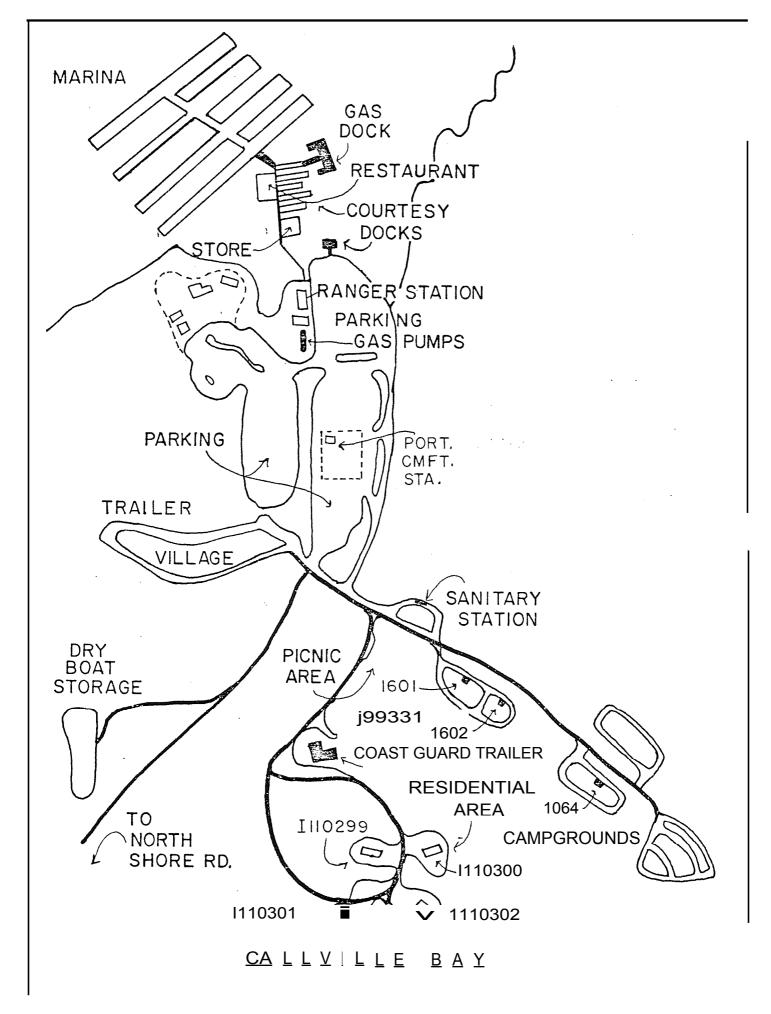

Tents =- % of total National Park Service campers for each month

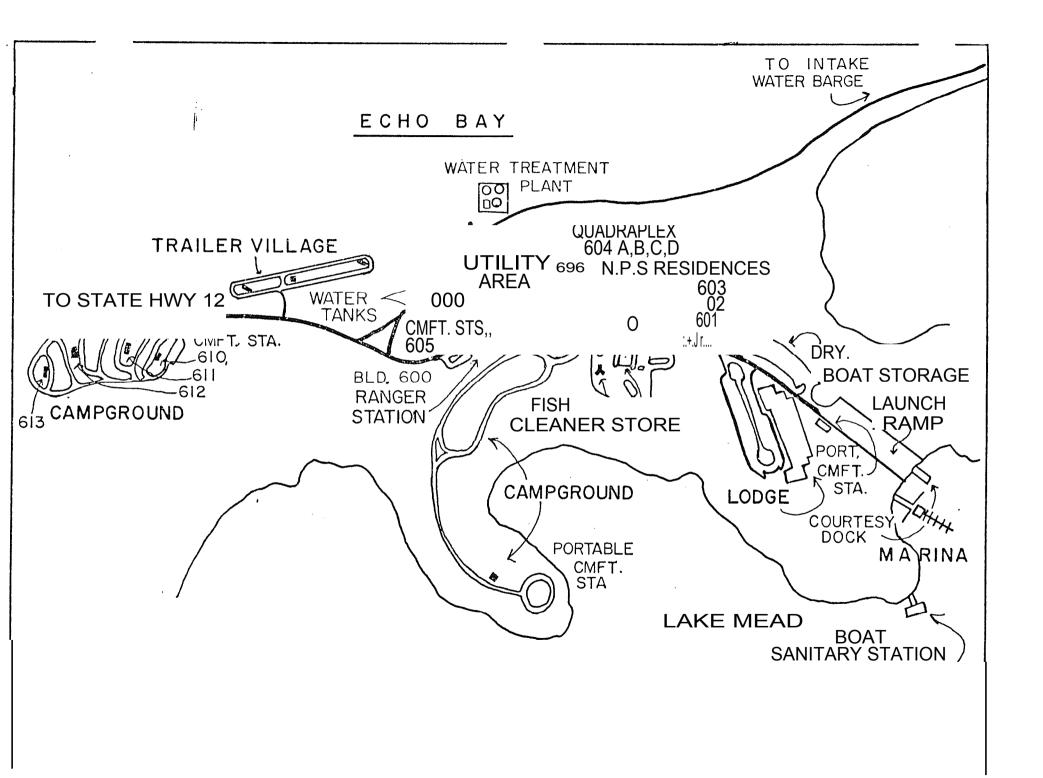

Recreational vehicles =____% of total National Park Service campers for each month.

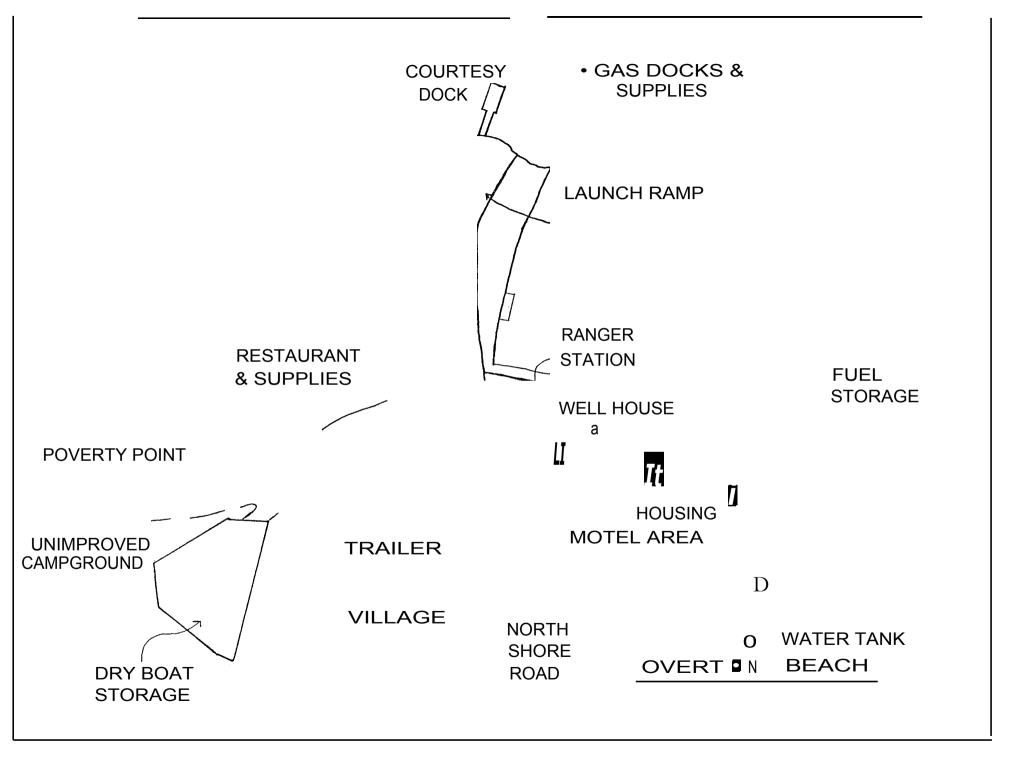

APPENDIX D

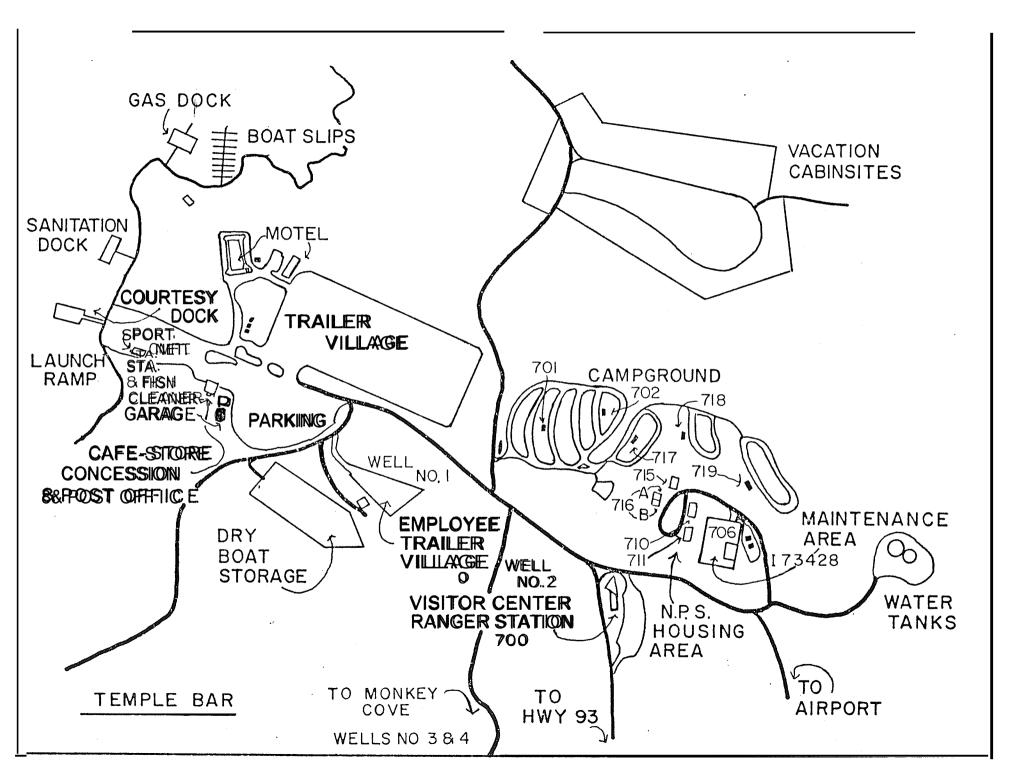

DEVELOPED AREAS IN LAKE MEAD N RA, NV/AZ

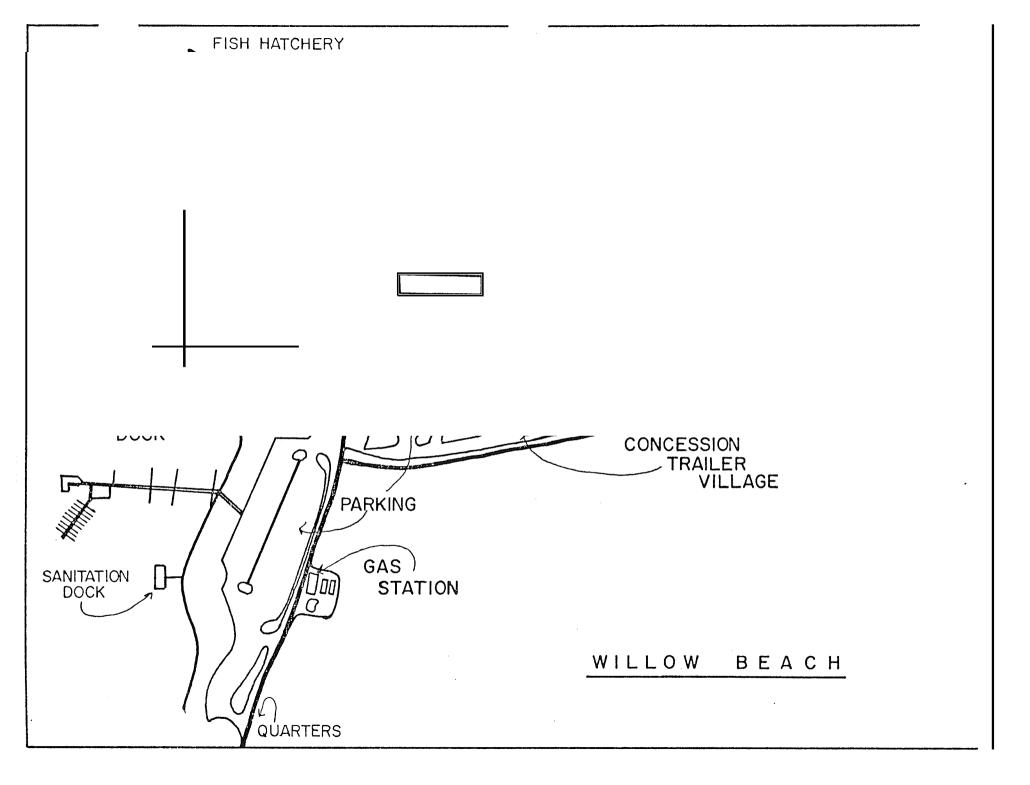


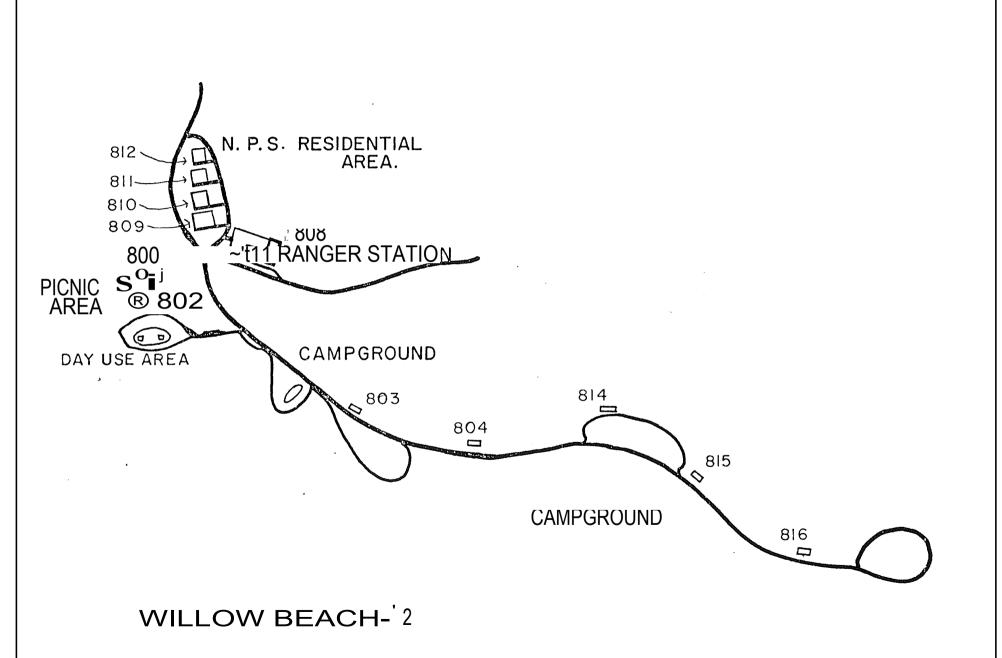


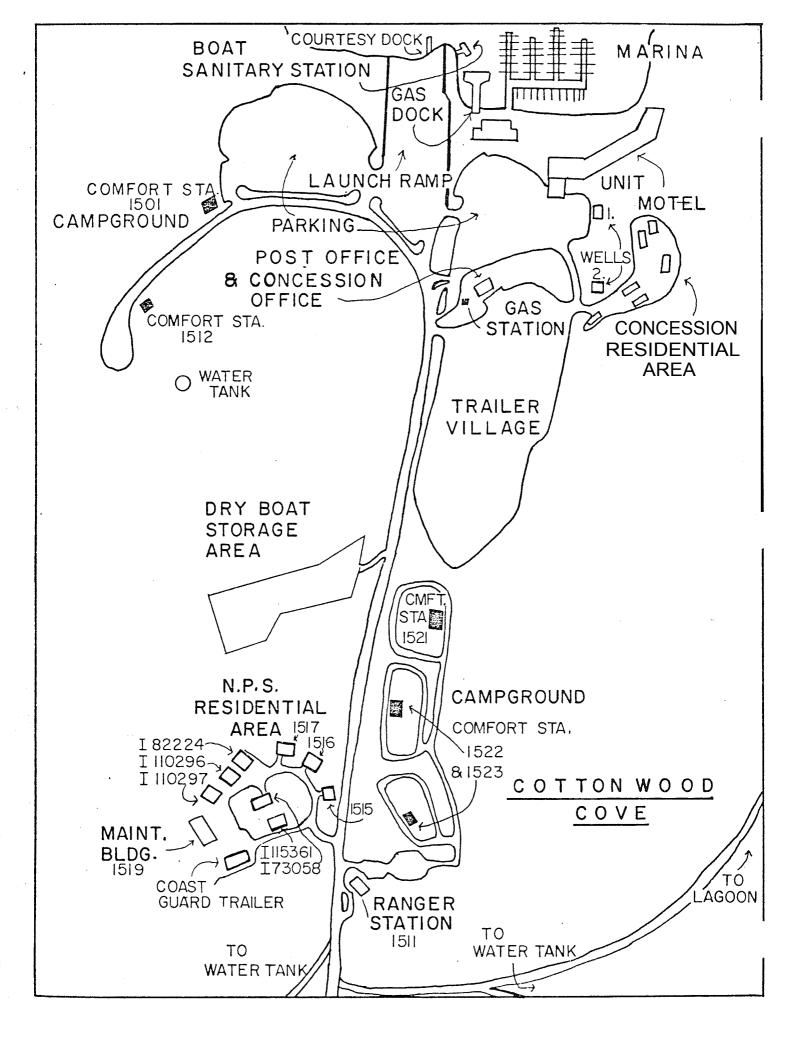


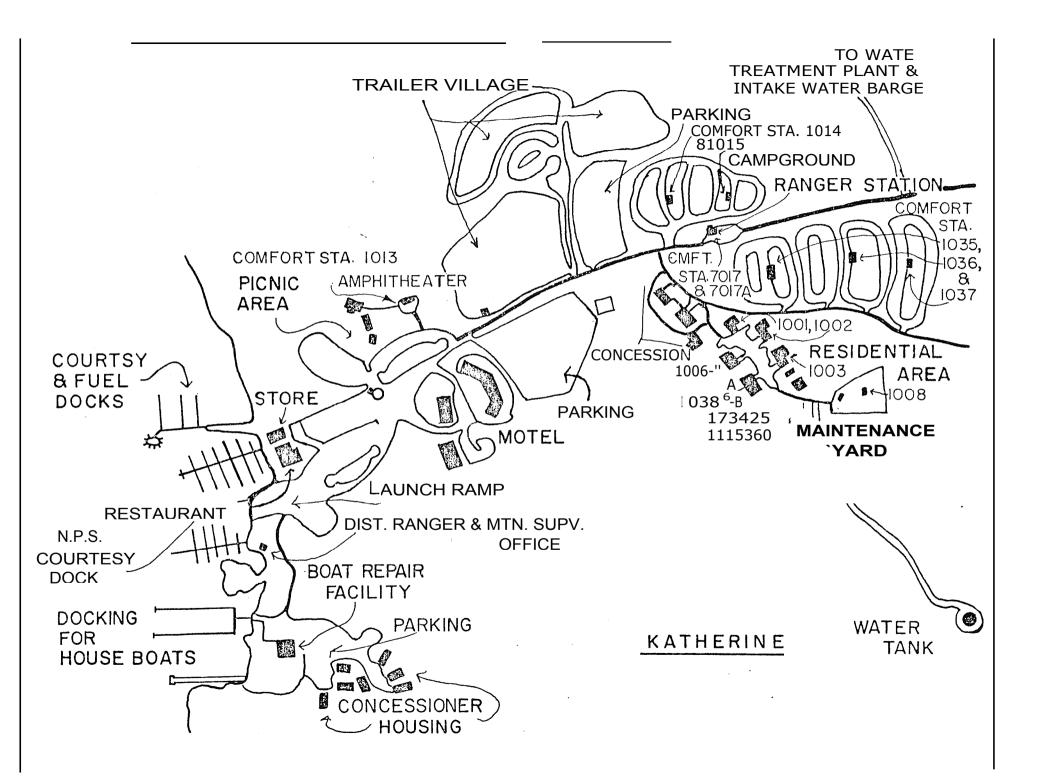












APPENDIX E

SELECTED CLARK COUNTY, NV AIR QUALITY REGULATIONS

AIR QUALITY REGULATIONS

SECTION 40 - PROHIBITIONS OF NUISANCE CONDITIONS

40.1 No PERSON shall cause, suffer or allow the discharge from any source whatsoever such quantities of air contaminants or other material which cause a NUISANCE.

AIR QUALITY REGULATIONS

SECTION 42 - OPEN BURNING

- 42.1 No PERSON shall cause, suffer, allow, or permit the burning of any combustible material in any open fire except as provided in this section and then only when such burning has been approved in advance by the CONTROL OFFICER. Such exceptions are as follows:
- 42.1.1 When in the judgment of the CONTROL OFFICER, no other safe method for the disposal of combustible, explosive, or dangerous material exists or can reasonably be obtained;
- 42.1.2 Small fires for recreational, educational, ceremonial, cooking purposes and warmth of human beings, including barbecues and outdoor fireplaces provided they do not create a public nuisance;
- 42.1.3 Where fire is set either by OFFICERS of governmental agencies, in performance of their official duties or for the purposes of training and instruction of fire-fighting and fire-rescue personnel;
- 42.1.4 Outside the Las Vegas Valley, when such fire is set on a field used for growing crops in the course of disposing of unused portions of a crop and intermingled weeds resulting from an agriculture operation;
- 42.1.5 Domestic burning of material originating on premises, exclusive of garbage, at a property used exclusively as a private residence or dwelling where there is no collection service available for such material.
- 42.2 Notwithstanding Subsection 42.1, any burning so permitted by this section must be controlled so that public nuisance or traffic hazards are not created as a result of the air contaminants being emitted.
- 42.3 Nothing in this section shall be construed to prohibit or make unlawful the construction and use of private barbecue pits, grills, or outdoor fireplaces for the preparation of food for consumption by individuals; nor shall any permit from the CONTROL OFFICER be required therefor.

42.4 Open burning shall be prohibited during air pollution episode conditions as defined in Section 6 of the Implementation Plan for the State of Nevada entitled, EMERGENCY EPISODE PLAN.

AIR QUALITY REGULATIONS

SECTION 41 - FUGITIVE DUST

41.1 **Prohibitions**:

- 41.1.1 Any PERSON engaged in activities involving the dismantling or demolition of buildings, grubbing, grading, clearing of land, public or private construction, the operation of machines and equipment, the grading of roads, trenching operations, the operation and use of UNPAVED PARKING facilities, AGRICULTURAL OPERATIONS, use and operation of live stock arenas, horse arenas and feed lots, and operation and use of raceways for MOTOR VEHICLES shall take all reasonable precautions to abate FUGITIVE DUST from becoming airborne from such activities. Reasonable precautions may include, but are not limited to the conditions agreed upon in the AQD permit for the project, sprinkling, compacting, enclosure, chemical, or asphalt sealing, cleaning up, sweeping, or such other measures as the CONTROL OFFICER may specify to accomplish satisfactory results;
- 41.1.1.1 The following circumstances represent examples of FUGITIVE DUST becoming airborne:
 - a) a visible plume of dust, resulting from construction activities, which extends more than 100 yards from the point of origin or beyond the nearest property line, whichever is less;

visible dust EMISSIONS on an unpaved road at a construction site being used by haul trucks;

- c) visible dust EMISSIONS generated by vehicles traveling over mud and dirt carried out to a paved road near or adjacent to a construction site.
- 41.1.1.2 A visible plume of dust resulting from construction activities which extends more than 50 yards from the point of origin, but less than 100 yards and which has not crossed the nearest property line may be subject to an issuance of a Notice of Violation including an Order to take Corrective Action for which no penalty will be assessed.

41-1

Clark County Health District, P.O. Box 3902, Las Vegas, Nevada 89127

- 41.1.2 No person shall cause or permit the handling, transporting, or storage of any material in a manner which allows or may allow controllable particulate matter to become airborne;
- 41.1.3 Sand and abrasive blasting operation will not be permitted unless effective enclosures or other such dust control devices including but not limited to the injection of water have been installed to prevent excessive sand and dust dispersal.

41.2 Off-road vehicle and motocross racing;

- 41.2.1 No person shall cause, permit, or allow the conduct of off-road vehicle racing or motocross racing within the designated boundaries of the Non-Attainment Area as defined in Section 1 of these Regulations unless adequate dust control measures are provided and approved in advance by the CONTROL OFFICER.
- 41.2.2 Motocross racing will only be permitted at permanent motocross race courses within the Non-Attainment Area.
- 41.2.3 Permanent motocross race courses, within the Non-Attainment Area as defined in Section 1 of these Regulations, shall be registered with and permitted by the CONTROL OFFICER in accordance with Subsections 15.1 and 15.6.

41.3 Correction of condition:

41.3.1 If loose sand, dust, or dust particles are found to exist in excess of acceptable limits, as determined by the CONTROL OFFICER, the CONTROL OFFICER shall notify the owner, lessee, occupant, operator, or user of said land that said situation is to be corrected within a specified period of time, dependent upon the scope and extent of the problem. The failure to correct said situation within the specified period of time shall be in violation of this section.

41.4 Remedial Action:

41.4.1 The CONTROL OFFICER, his designated agent, or any other authorized representative of the Health Department, after due notice shall be further empowered to enter upon any said land where any sand or dust problem exists, and to take such remedial and corrective action as may be deemed appropriate to cope with and relieve, reduce, or remedy the existent sand and dust situation and condition, when the OWNER, occupant, OPERATOR, or

any tenant, lessee, or holder of any possessory interest or right in the involved land fails to do so.

41.5 Costs:

41.5.1 Any cost incurred in connection with any such remedial or corrective action by the Health Department or any person acting for the Health Department shall remain in full force and effect until any and all such costs shall have been fully paid.

AIR QUALITY REGULATIONS

SECTION 17 - DUST CONTROL PERMIT FOR CONSTRUCTION ACTIVITIES INCLUDING SURFACE GRADING AND TRENCHING

17.1 **Prohibitions**:

- 17.1.1 No OWNER, lessee, occupant, operator, user, or any other PERSON shall engage in CONSTRUCTION ACTIVITIES, including disturbing the TOPSOIL, grading, clearing and grubbing operations, TRENCHING or excavate, or the addition or removal of dirt or fill for CONSTRUCTION of a building or dwelling unit(s) on property in excess of a) an aggregate of one-quarter acre or more; b) or a TRENCH at least 100 feet in length if the aggregate is less than one quarter acre of any property or contiguous properties within Clark County, Nevada or any incorporated city therein prior to the issuance of a Dust Control Permit for CONSTRUCTION ACTIVITIES including Surface Grading and TRENCHING by the CONTROL OFFICER and then only if said permit is current and valid.
- 17.1.2 No PERSON shall engage in CONSTRUCTION ACTIVITIES, including disturbing the TOPSOIL, grading, clearing and grubbing operations, TRENCHING or the addition or removal of dirt or fill in excess of an aggregate of a) one-quarter acre or more b) or a TRENCH at least 100 feet in length if the aggregate is less than one quarter acre of any property or contiguous properties within Clark County, Nevada or any incorporated city therein at the request of or under contract to the OWNER, lessee, occupant, user or any other PERSON until he has in his possession a copy of the Dust Control Permit required by Subsection 17.1.1.
- 17.1.3 NO PERSON shall engage in the destruction, demolition or removal of any structure, 1000 square feet or larger, located on any property within Clark County, Nevada or any incorporated city therein prior to the issuance of Dust Control permit by the CONTROL OFFICER and then only if said permit is current and valid.
- 17.1.4 Dust Control Permits will not be issued for any real property, regardless of size, within Clark County, Nevada or any incorporated city therein which is

to remain unoccupied, unused, vacant or undeveloped unless it is certified by the Chief Health Officer, or the Departments of Police, Fire, Building or Public Works, in their jurisdiction, that an adverse health or safety hazard exists that can only be corrected by this method.

17.2 Exceptions:

- 17.2.1 The requirement for Dust Control permits in this section shall not apply to:
 - (a) agricultural operations
 - (b) landscaping by a PERSON at his place of residence
 - (c) routine maintenance activities conducted by government agency personnel on publicly maintained roads and road shoulders
 - (d) routine maintenance activities conducted by government agency personnel on flood control channels
 - (e) other maintenance activities conducted by government agency personnel

17.3 Permit Applications:

17.3.1 Applications for Dust Control permits will be obtained from the Office of the Air Quality CONTROL OFFICER, 625 Shadow Lane, Las Vegas, Nevada 89106, and will be filed with the CONTROL OFFICER. The permit shall only be issued to the OWNER, lessee, developer, or prime contractor.

17.4 Each application will be accompanied by payment of a fee in accordance with Subsection 18.6.

17.5 Conditions of Dust Control Permit:

- 17.5.1 Said permit is to be granted subject to the right of inspection of such land and determination by the CONTROL OFFICER of any present or potential sand, dust, or dust particle problems. The permit shall be granted subject, but not limited, to the following conditions.
- 17.5.1.1 The applicant is responsible for ensuring his contractor and/or subcontractor, TRENCHING subcontractor and all other PERSONS abide by the conditions of the permit. The applicant is responsible for supplying copies of the Dust Control Permit for CONSTRUCTION ACTIVITIES including Surface Grading and TRENCHING and Section 41 to all of his subcontractors.
- 17.5.1.2 The applicant presents and agrees to implement an acceptable method to prevent PARTICULATE MATTER from becoming airborne.

- 17.5.1.3 The applicant presents and agrees to implement an acceptable method of securing the TOPSOIL when the project is finished.
- 17.5.1.4 The applicant agrees in writing to take additional precautions as may be reasonably prescribed by the CONTROL OFFICER, consistent with the provisions of this section of the Regulations.
- 17.5.1.5 The applicant agrees in writing to suspend all or part of these activities, which are related or which may be contributing to a violation of Section 41 of the Regulations, if he cannot provide satisfactory control of airborne particles, or upon notification by the CONTROL OFFICER or his representative.
- 17.5.1.6 Signage Requirement (Effective Date is March 1, 1997):
 - (a) For each Dust Control Permit aggregating less than or equal to ten (10) acres:
 - (1) The applicant shall install a sign on such property prior to COMMENCING CONSTRUCTION ACTIVITY which is visible to the public that meets the following requirements:
 - (i) Such sign shall measure at least four (4) feet wide by four (4) feet high; and
 - (ii) conform to the District's policy on Dust Control Permit Design and Posting of Signage.
 - (b) For each Dust Control Permit aggregating over ten (10) acres:
 - (1) The applicant shall install a sign on such property prior to COMMENCING CONSTRUCTION ACTIVITY which is visible to the public that meets the following requirements:
 - (i) Such sign shall measure at least eight (8) feet wide by four (4) feet high; and
 - (ii) conform to the District's policy on Dust Control Permit Design and Posting of Signage.
- 17.5.1.7 As an additional condition to the issuance of a permit under Section 17 of these Regulations, the CONTROL OFFICER may require the posting of a surety bond in a form acceptable to him. Any such bond must be executed by the applicant for the permit as principal with a corporation authorized to

transact surety business in the STATE of Nevada, and shall be conditioned upon faithful performance of all other conditions of the permit and faithful compliance with the provisions of these Regulations. The amount of each bond required by this section shall be fixed by the Air Quality CONTROL OFFICER with reference to the applicant's financial and professional responsibility and the magnitude of his operations, but shall not be less than \$500.00 or more than \$20,000.00.

17.5.1.8 The permittee's signature or that of his authorized agent on the permit shall constitute agreement by the permittee to accept responsibility for meeting the conditions of the permit.

17.6 Suspension or Revocation of Permit:

- 17.6.1 The CONTROL OFFICER Or his representative may suspend or revoke the permit if he finds that any of its conditions are not being fulfilled. Non-fulfillment of any condition set forth in the permit shall be in violation of this section. Upon suspension or revocation of a permit, that work which gives rise to violation to the terms of the permit will cease. The CONTROL OFFICER shall post notices of suspension or revocation conspicuously on The notice shall indicate the date and time of the property involved. suspension or revocation and shall state the reasons therefore. The suspension or revocation will remain in effect until such time as rescinded by the CONTROL OFFICER and a new permit is issued upon payment of a fee in accordance with Section 18 provided that the permittee shall have a right to hearing before the HEARING BOARD within five (5) working days from date of issuance of the suspension or revocation.
- 17.6.2 Any PERSON aggrieved by a decision of the CONTROL OFFICER pursuant to this section may appeal to the HEARING BOARD as provided in Section 7 of these Regulations.

17.7 Processing Permit Applications:

17.7.1 Permit applications will be processed by the CONTROL OFFICER as rapidly as possible. Plat or plot plans will be submitted to the CONTROL OFFICER for

review at the time of application. Permits will be issued from approved applications.

17.7.2 Permits will not be issued to an applicant who has outstanding unpaid penalties imposed by the AQD HEARING BOARD Or HEARING OFFICER.

17.8 Information:

17.8.1 The CONTROL OFFICER shall keep local government planning, engineering, and building agencies, and contractors' associations supplied with a written summary of the dust control and permit requirements of Sections 17 and 41.