FINAL

2000 AIR EMISSIONS INVENTORY

GREAT SMOKY MOUNTAINS NATIONAL PARK TENNESSEE/NORTH CAROLINA

U.S. NATIONAL PARK SERVICE

OCTOBER 2002

FINAL

2000 AIR EMISSIONS INVENTORY

GREAT SMOKY MOUNTAINS NATIONAL PARK TENNESSEE/NORTH CAROLINA

Prepared for:

National Park Service WASO - Air Resources Division 12795 West Alameda Parkway Denver, CO 80228

Prepared by:

EA Engineering, Science, and Technology, Inc. 15 Loveton Circle Sparks, MD 21152 (410) 771-4950

OCTOBER 2002

CONTENTS

Page 1

FIGU	RES	
TABI	LES	·····iv
1.	INTR	ODUCTION
	1.1	Background
	1.2	Typical Air Emission Sources
	1.3	Inventory Methodology
	1.4	Park Description
	1.5	Air Quality Status
2.	STAT	TIONARY AND AREA SOURCE EMISSIONS
	2.1	Stationary Sources
		2.1.1 Space and Water Heating Equipment
		2. I.2 Generators
		2.1.3 Fuel Storage Tanks
		2.1.4 Wastewater Treatment Plants10
	2.2	Area Sources10
		2.2.1 Woodstoves/Fireplaces
		2.2.2 Campfires
		2.2.3 Prescribed Burning and Wildfires10
		2.2.4 Miscellaneous Area Sources
	2.3	Summary of Stationary and Area Source Emissions11
3.	MOB	LE SOURCE EMISSIONS13
	3.1	Highway VehiclesI3
		3.1.1Visitor Vehicles133.1.2NPS Highway Vehicles15
	3.2	NPS Nonroad Vehicles16
	3.3	Summary of Mobile Source Emissions

CONTENTS (Continued)

		Page
4.	GREA	AT SMOKY MOUNTAINS AND REGIONAL EMISSIONS
	4.1	Great Smoky Mountains NP Summary18
	4.2	Regional Air Emissions
•	COM	PLIANCE AND RECOMMENDATIONS21
	5.1	Compliance21
	5.2	Recommendations
j.	REFE	RENCES24
APPE APPE	NDIX A NDIX B	 A - FUEL DATA, EMISSION FACTORS, AND EMISSION CALCULATIONS B - DEVELOPED AREAS EN GREAT SMOKY MOUNTAINS NATIONAL PARK
APPE	NDIX (C AIR QUALITY MONITORING SITES AND DATA IN GREAT SMOKY MOUNTAINS NATIONAL PARK

FIGURES

<u>Numb</u>	er <u>Title</u>	<u>Page</u>
1	Great Smoky Mountains National Park Location	
2	Great Smoky Mountains National Park	
	TABLES	
1	Great Smoky Mountains NP Developed Areas	3
	Heating Equipment at Great Smoky Mountains NP	5
3	2000 Actual Air Emissions from Heating Equipment at Great Smoky Mountains NP	6
4	2000 Potential Air Emissions from Heating Equipment at Great Smoky Mountains NP	7
5	2000 Actual Great Smoky Mountains NP Generator Criteria Emissions	9
	2000 Potential Great Smoky Mountains NP Generator Criteria Emissions	9
	2000 Great Smoky Mountains NP Fuel Gasoline Storage Tank Emissions	8
8	2000 Campfire Air Emissions from Great Smoky Mountains NP	10
9	Prescribed Burning Air Emissions from Great Smoky Mountains NP	11
10	Summary of 2000 Stationary and Area Source Emissions at Great Smoky Mountains NF	? 12
11	Estimated Visitor Vehicle Travel in Great Smoky Mountains NP	13
12	NPS Road Vehicles at Great Smoky Mountains NP	16
13	NPS Nonroad Vehicles at Great Smoky Mountains NP	16
14	Summary of 2000 Mobile Source Emissions at Great Smoky Mountains NP	17
15	Estimated Annual Emissions from Great Smoky Mountains NP	18
16	Estimated Annual Emissions from Great Smoky Mountains NP, Surrounding Counties, and the States of Tennessee and North Carolina	19
17	Estimated 1999 Emissions from Region 4 and the U.S	20
18	Estimated Emissions with Low Sulfur/Biodiesel Vehicle Fuels	23

1. INTRODUCTION

1.1 BACKGROUND

In August of 1999, the National Park Service (NPS) embarked on the Natural Resource Challenge, a major effort to substantially improve how the NPS manages the natural resources under its care. As part of Natural Resource Challenge, the NPS Air Resources Division (ARD) was tasked with the responsibility of expanding efforts to monitor and understand air quality and related values in the parks. In addition, the NPS Environmental Leadership policy directs the NPS to manage the parks in a manner "that demonstrates sound environmental stewardship by implementing sustainable practices in all aspects of NPS management...." In order to achieve both of these objectives, it is necessary to gain an understanding of air pollution emissions that result from activities within the park. Development of an in-park air emissions inventory for Great Smoky Mountains National Park (NP) serves three functions in this regard. First, it provides a baseline and an understanding of the sources and magnitude of in-park emissions and a basis for contrasting them with emissions from the surrounding area. Second, it identifies existing and potential strategies to mitigate in-park air emissions. Finally, it evaluates and ensures the compliance status of the park relative to state and federal air pollution regulations.

1.2 **TYPICAL** AIR EMISSION SOURCES

Typical air emission sources within NPS units include stationary, area, and mobile sources. Stationary sources can include fossil fuel-fired space and water heating equipment, generators, and fuel storage tanks. Area sources may include prescribed burning, woodstoves and fireplaces, campfires, and miscellaneous visitor activities. Mobile sources may include vehicles operated by visitors, tour operators, and NPS and concessionaire employees, and nonroard vehicles and equipment.

1.3 INVENTORY METHODOLOGY

The methodology to accomplish the air emissions inventory consisted of a site survey in March 2002, interviews with Great Smoky Mountains NP¹ and concessionaire personnel, review of applicable park records, emission calculations, and report preparation. The data were used in conjunction with a number of manual and computer software computational tools to calculate emissions. Computational tools included U.S. Environmental Protection Agency (USEPA) emission factors such as the Factor Information Retrieval System (FIRE) database, USEPA

National Park Service

¹ Jim Renfro, Great Smoky Mountains NP, Air Resource Specialist (865) 436-1708

TANKS 4.0 model, U.S. Forest Service *First Order Fire Effects Model (FOFEM) 4.0* model, and USEPA *MOBILE5band PARTS* mobile source emissions model. It should be noted that emissions are expected to vary from year to year due to fluctuations in visitation, prescribed and wildland fires, and other activities. Additional information on emission estimation methodology, including emission factors, are provided in Appendix A.

1.4 PARK DESCRIPTION

Great Smoky Mountains National Park, in the states of North Carolina and Tennessee (Figure 1), encompasses over 800 square miles or 521,490 acres of which 95 percent are forested. World renowned for the diversity of its plant and animal resources, the beauty of its ancient mountains, the quality of its remnants of Southern Appalachian mountain culture, and the depth and integrity of the wilderness sanctuary within its boundaries, it is one of the largest protected areas in the east. It was established as a National Park in 1934 and was designated an International Biosphere Reserve in 1976 and a World Heritage Site 1983. A map of the park is depicted in Figure 2.

FIGURE 1. GREAT SMOKY MOUNTAINS NATIONAL PARK LOCATION

Information on developed areas in the park is summarized in Table 1, and site maps of many of these developed areas are provided in Appendix B. The only lodging in the park are rustic cabins and lodge on top of Mount LeConte that can be reached only by hiking trails.

Name/Location	Function/Facilities
Sugarlands	Visitor Center, Park Headquarters, Maintenance Shops, Employee Housing
Twin Creeks	Natural Resources Center, Resource Management & Science Division
Cades Cove/Cable Mill	Visitor Center, Ranger Station, Maintenance Shop, Water Plant, Employee Housing
LeConte Lodge	Cabins and Lodge
Deep Creek	Seasonal Quarters, Ranger Station, Maintenance Shop
Look Rock	Maintenance Yard, Campgrounds, Picnic Area, Air Quality Station
Cataloochee	Ranger Station, Maintenance Yard
Oconaluftee	Visitor Center, Maintenance Yard, Employee Housing
Cosby	Campground, Ranger Station, Maintenance Yard
Occurate the Lab Course	Administrative Office, Dormitories, Dining Hall, Training Facility, Laundry, Dispensary,
Oconaluitee Job Corps	Gymnasium
Institute at Tremont	Administrative Offices, Dormitory, Dining Hall, Seasonal Apartments, Director's House
Campgrounds	See Section 2, Table 8

TABLE 1: GREAT SMOKY MOUNTAINS NP DEVELOPED AREAS

1.5 AIR **QUALITY STATUS**

Great Smoky Mountains NP is located in Blount, Sevier, and Cocke Counties, TN and Swain and Haywood Counties, NC. The Tennessee Department of Environment and Conservation and North Carolina Department of Environment and Natural Resources are the governing authorities for regulating air pollution. All the counties currently are classified as attainment for all the National Ambient Air Quality Standards (NAAQS); however, with the exception of Cocke County, TN, it has been recommended by the governors of Tennessee and North Carolina that the park be designated as nonattainment for the 8-hour ozone standard. Data from five ozone monitoring stations throughout the park indicate that the 8-hour ozone standard was exceeded for a peak of 52 days in 1999, which declined to 31 and 14 days in 2000 and 2001 days, respectively. However, data for 2002 indicate 43 exceedences up to October 2002. Information on the air quality monitoring sites, equipment, and data are provided in Appendix C.

Great Smoky Mountains NP is one of 49 NPS units that are designated as Class I areas by the Clean Air Act and its Amendments. A Class I area is one that receives the most stringent degree of air quality protection within and around its borders. For example, potential new or modified sources of significant pollution that plan to locate near a Class I area must obtain a permit from the applicable air quality regulatory agency. The NPS has significant input to the permitting process to ensure that potential air emissions do not pose a threat to visibility or other park air quality related values.

2. STATIONARY AND AREA SOURCE EMISSIONS

This section summarizes emissions from sources at Great Smoky Mountains NP for the year 2000. The discussion is divided into sections covering emissions from combustion sources, fuel storage sources, and area sources. The following emissions were calculated for each source: particulate matter (PM_{10}), sulfur dioxide (SO_2), nitrogen oxides (NO_X), carbon monoxide (CO), and volatile organic compounds (VOCs). Emission factors used in the calculations are provided in Appendix A.

2.1 STATIONARY SOURCES

2.1.1 Space And Water Heating Equipment

Stationary combustion sources at Great Smoky Mountains NP include No. 2 fuel oil and propane space and water heating units, and Table 2 provides an inventory of these heating units. Criteria air emissions were calculated using the appropriate residential and commercial unit emission factors. For example, PM emissions from a No. 2 fuel oil boiler at the Sugarlands Visitor Center are calculated as follows:

$$4,922 \text{ gal/yr x} \quad \begin{array}{c} 2.0 \text{ lb PM} \\ 1,000 \text{ gal} \end{array} = 10 \text{ lb PM/yr} \end{array}$$

Actual criteria pollutant emissions from space and water heating equipment are summarized in Table 3. Potential emissions also were calculated by assuming that the heating units were operated continuously during the year or 8,760 hours per year, and these emissions are summarized in Table 4.

Location	Capacity (Btu/hr)	Number	Fuel Type								
National Park Service											
Sugarlands Visitor Center	85,000	5	No. 2 fuel oil								
Park Headquarters	1,000,000	1	No. 2 fuel oil								
Twin Creeks Area	250,000	1	No. 2 fuel oil								
Cades Cove Ranger Station	80,000	1	Propane								
Cades Cove Maintenance Building	100,000	1	Propane								
Cades Cove Maintenance Building	200,000	2	Propane								
Cable Mill Visitor Center	80,000	1	Propane								
Cable Mill Visitor Center	28,000	1	Propane								
Cable Mill Comfort Station	100,000	1	Propane								
Cable Mill Comfort Station	60,000	1	Propane								
Cable Mill Sewer Building	28,000	1	Propane								
Cable Mill Water Plant	28,000	1	Propane								
	Tremont Institute										
Dorm	120,000	4	Propane								
Dorm	200,000	1	Propane								
Kitchen	100,000	2	Propane								
Kitchen	120,000	1	Propane								
Office/Maintenance	125,000	1	Propane								
Staff Quarters	60,000	1	Propane								
Directors House	90,000	1	Propane								

TABLE 2: HEATING EQUIPMENT AT GREAT SMOKY MOUNTAINS NP

Location	Fuel Type	Consumption (gallyr)	PM ₁ 0 (lbs/yr)	SO ₂ (lbs/yr)	NOa (lbs/yr)	CO (lbs/yr)	VOC (lbs/yr)							
	National Park Service													
Sugarlands Visitor Center	No. 2 oil	4,922	10	349	98	25	2							
Park Headquarters	No. 2 oil	11,582	23	822	232	58	4							
Twin Creeks Area	No. 2 oil	2,896	1	206	52	14	2							
No. 2 O	il Subtotal	19,400	34	1,377	382	97	8							
Cades Cove Ranger Station	Propane	1,027	0	0	14	2	0							
Cades Cove Maintenance Building	Propane	1,283	1	0	18	3	0							
Cades Cove Maintenance Building	Propane	5,133	2	0	72	10	2							
Cable Mill Visitor Center	Propane	1,027	0	0	14	2	0							
Cable Mill Visitor Center	Propane	359	0	0	5	1	0							
Cable Mill Comfort Station	Propane	1,283	1	0	18	3	0							
Cable Mill Comfort Station	Propane	770	0	0	11	2	0							
Cable Mill Sewer Building	Propane	359	0	0	5	1	0							
Cable Mill Water Plant	Propane	359	0	0	5	1	0							
Propane	e Subtotals	11,600	4	0	162	25	2							
Natio	nal Park Se	rvice Subtotals	38	138	544	122	10							
		Trer	nont Institu	te										
Dorm	Propane	6,162	2	0	86	12	2							
Dorm	Propane	2,568	1	0	36	5	1							
Kitchen	Propane	2,568	1	0	36	5	1							
Kitchen	Propane	1,541	1	0	22	3	0							
Office/Maintenance	Propane	1,605	1	0	22	3	0							
Staff Quarters	Propane	770	0	0	11	2	0							
Directors House	Propane	1,155	0	0	16	2	0							
Tremont Institute Subtotals		16,369	7	0	229	33	5							
		Totals	45	1,378	774	153	16							

TABLE 3: 2000 ACTUAL CRITERIA EMISSIONS FROM HEATING EQUIPMENTAT GREAT SMOKY MOUNTAINS NP

Location	Fuel	Consumption	PM_{10}	SO_2	NOx (Ibs/yr)	CO (lbs/yr)	VOC (lbs/yr)					
National Park Service												
Sugarlands Visitor Center	No. 2 oil	26,593	53	1,888	532	133	9					
Park Headquarters	No. 2 oil	62,571	125	4,443	1,251	313	21					
Twin Creeks Area	No. 2 oil	15,643	6	1,111	282	78	11					
No. 2 O	il Subtotal	104,807	184	7,441	2,065	524	41					
Cades Cove Ranger Station	Propane	7,659	3	0	107	15	2					
Cades Cove Maintenance Building	propane	9,574	4	0	134	19	3					
Cades Cove Maintenance Building	^p ropane	38,295	15	0	536	77	11					
Cable Mill Visitor Center	Propane	7,659	3	0	107	15	2					
Cable Mill Visitor Center	Propane	2,681	1	0	38	5	1					
Cable Mill Comfort Station	Propane	9,574	4	0	134	19	3					
Cable Mill Comfort Station	Propane	5,744	2	0	80	11	2					
Cable Mill Sewer Building	Propane	2,681	1	0	38	5	1					
Cable Mill Water Plant	Propane	2,681	1	0	38	5	1					
Propar	ne Subtotal	86,547	35	2	1,212	173	26					
Natio	onal Park S	ervice Subtotals	218	7,443	3,277	695	67					
		Tre	nont Institu	ite								
Dorm	Pro an e	45,954	18	1	643	92	14					
Dorm	Propane	19,148	8	0	268	38	6					
Kitchen	Propane	19,148	8	0	268	38	6					
Kitchen	Propane	11,489	5	0	161	23	3					
Office/Maintenance	Propane	11,967	5	0	168	24	4					
Staff Quarters	Prole	5,744	2	0	80	11	2					
Directors House	Propane	8,616	3	0	121	17	3					
Tremont Institut	e Subtotals	122,066	49	2	1,709	244	37					
		Totals	268	7,445	4985	941	104					

TABLE 4: 2000 POTENTIAL CRITERIA EMISSIONS FROM HEATING EQUIPMENTAT GREAT SMOKY MOUNTAINS NP

2.1.2 Generators

2.1.2.1 Generator Emissions - Actual

Emissions were calculated by multiplying the unit rating (kW) of the generators by an estimated annual run time (hr/yr) to get the kW-hr/yr, and the appropriate emission factors were then applied. For example, PM emissions from the two 45 kW generators at the Water Plant are calculated as:

Actual generator criteria emissions are summarized in Table 5.

2.1.2.2 Generator Emissions - Potential

Potential emissions were also calculated for the generators, and the same emission factors that were used to calculate the actual emissions were used to calculate these potential emissions. Potential criteria generator emissions also are summarized in Table 6.

2.1.3 Fuel Storage Tanks

Great Smoky Mountains NP has eight aboveground gasoline storage tanks, and information on these tanks is provided in Tables 7. Emissions from fuel storage tanks were calculated using the EPA *TANKS 4.0* model. The gasoline tanks are equipped with Phase I vapor emission controls that capture vapors displaced from the vapor space in the tank when it is refilled. Emissions associated with gasoline dispensing are accounted for in the mobile source model.

There are two basic types of VOC emissions from storage tanks: working losses and standing losses. Working losses are composed of both withdrawal and refilling loss emissions. Withdrawal loss emissions result from the vaporization of liquid fuel residue on the inner surface of tank walls as the liquid levels in the tank are decreased and air is drawn into the tank. Refilling losses refer to fuel vapor releases to the air during the process of refilling the tank as the liquid level in the tank increases and pressurizes the vapor space. Standing losses describe those tank emissions from the vaporization of the liquid fuel in storage due to changes in ambient temperatures. VOC losses are also a direct function of the annual product throughput or turnovers. VOC emissions from gasoline storage tanks are summarized in Tables 7.

Location	Number	Туре	Volume (gal)	Throughput (gal/yr)	VOC (lbs/yr)							
National Park Service North District												
Park Headquarters	2	AST	2,000	27,623	752							
Park Headquarters	1	AST	1,000	13,811	416							
Cosby Maintenance	1	AST	1,000	13,811	416							
Cades Cove Maintenance												
Tank #1	1	AST	1,000	7,620	313							
Tank #2	1	AST	1,000	2,825	278							
Tank #3	1	AST	1,000	5,647	299							
	Look F	Rock Mair	ntenance									
Tank #1	1	AST	1,000	2,450	276							
Oconaluftee Maintenance												
Tank #1	1	AST	2,000	30,613	682							
			Totals	104,400	3,432							

TABLE 7: GREAT SMOKY MOUNTAINS NP GASOLINE STORAGE TANK EMISSIONS

TABLE 5: 2000 ACTUAL GREAT SMOKY MOUNTAINS NP GENERATOR CRITERIA EMISSIONS

Facility	Fuel	Number	Rating (kW)	Run Time (hrs/yr)	Output (kW-hr/yr)	PM 10 (Ibs/yr)	SO ₂ (lbs/yr)	NOx (lbs/yr)	CO (Ibs/yr)	VOC (lbs/yr)
Water Plant	Propane	2	45	3,650	328,500	68	596	1,554	379	85

TABLE 6: 2000 POTENTIAL GREAT SMOKY MOUNTAINS NP GENERATOR CRITERIA EMISSIONS

Facility	Fuel	Number	Rating (kW)	Run Time (hrs/yr)	Output (kW-hr/yr)	PM ₁₀ (lbs/yr)	SO ₂ (lbs/yr)	NOx (lbs/yr)	CO (Ibs/yr)	VOC (lbs/yr)
Water Plant	Propane	2	45	8,760	788,400	163	1,430	3,730	909	203

2.1.4 Wastewater Treatment Plants

There were no data available on wastewater treatment plants at Great Smoky Mountains NP.

2.2 **AREA SOURCES**

2.2.1 Woodstoves/Fireplaces

There are no woodstoves or fireplaces in Great Smoky Mountains NP.

2.2.2 Campfires

There are ten frontcountry campgrounds with about 900 campsites and about 100 in the backcountry in Great Smoky Mountains NP. These sites were occupied between 150 to 365 days a year, and it was estimated that approximately 50 percent had an evening or morning campfire at each site. Assuming that each campfire site consumes approximately 10 lbs of wood, air emissions from campsites in 2000 were calculated and are summarized in Table 8.

Location	Campfires	Fuel (tons/yr)	PM ₁₀ (lbs/yr)	SO ₂ (lbs/yr)	NO _X (lbs/yr)	CO (lbs/yr)	VOC (lbs/yr)
Abrams Creek	1,688	8	292	3	22	2,131	1,932
Balsam Mountain	3,450	17	597	7	45	4,357	3,950
Big Creek	1,350	7	234	3	18	1,705	1,546
Cades Cove	29,383	147	5,083	59	382	37,110	33,643
Calaloochee	3,038	15	525	6	39	3,836	3,478
Cosby	18,563	93	3,211	37	241	23,444	21,254
Deep Creek	9,660	48	1,671	19	126	12,201	11,061
Elkmont	28,050	140	4,853	56	365	35,427	32,117
Look Rock	2,310	12	400	5	30	2,918	2,645
Smokemont	25,915	130	4,483	52	337	32,731	29,673
Total	123,405	617	21,349	247	1,604	155,861	141,299
					tons/yr		
			10.67	0.12	0.80	77.93	70.65

TABLE 8: 2000 GREAT SMOKY MOUNTAINS NP CAMPFIRE EMISSIONS

2.2.3 Prescribed and Wildland Fires

Wildland fires are ignited naturally, usually by lightning and are typically suppressed, while prescribed fires are ignited intentionally in order to achieve fire management objectives. Prescribed burning is a land treatment process to accomplish natural resource management

objectives, including reducing the potential for destructive wildfires, eliminating excessive fuel buildup, controlling insects and disease, improving wildlife habitat and forage production, maintaining natural succession of plant communities, and restoring natural processes. Only prescribed burning emissions are considered as anthropogenic emissions; however, to the extent that prescribed burning is conducted to achieve ecological benefit, the emissions could be considered natural.

The First Order Fire Effects Model (FOFEM) was used to estimate emissions from prescribed fires. FOFEM is a computer program developed by the Intermountain Fire Sciences Lab, U.S. Forest Service to predict the effects of prescribed fire and wildfire in forests and rangelands throughout the U.S. In particular, it quantifies emissions of PM ₁₀, PM_{2.5}, CH₄, and CO, which are summarized in Table 9 for prescribed fires only.

TABLE 9: AIR EMISSIONS FROM PRESCRIBED FIRES IN 2000IN GREAT SMOKY MOUNTAINS NP IN 2000

Fire Name	Acres	PM _{IO} (Ibs/yr)	PM 2.5 (Ibs/yr)	VOC (ibs/yr)	CO (lbs/yr)
Cades Cove Fields	664	5,976	4,648	1,328	11,952
Ski Mtn Pile	4	436	371	212	4,496
Total	668	6,412	5,019	1,540	16,448

As methane (CH $_4$)

It should be noted that annual variations in emissions from prescribed burning are dependent on the number of acres burned in a given year, and to a lesser extent on meteorological conditions.

2.2.4 Miscellaneous Area Sources

Miscellaneous area sources include food preparation, degreasers, paints and other surface coatings, lighter fluid consumption, consumer solvents, propane use by visitors in recreational vehicles, and highway maintenance, such as paving materials. However, few data on these activities and products were available.

2.3 SUMMARY OF STATIONARY AND AREA SOURCE EMISSIONS

Table 10 summarizes the stationary and area source emissions calculated above in a format that allows comparison between the various sources as well as providing totals for each pollutant or pollutant category under consideration.

	Particu	lates	Sulfur	Dioxide	Nitrogen	Oxides	Carbon Monoxide		VOCs	
Activity	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
Stationary Combustion Sources										
Space and Water Heating Units	45	0.02	1,378	0.69	774	0.39	153	0,08	16	< 0.01
Generators	68	0.03	596	0.30	1,554	0.78	379	0.19	85	0.04
Gasoline Storage Tanks									3,432	1.72
Stationary Sources Subtotal	113	0.06	1,974	0.99	2,328	1.16	532	0.27	3,533	1.77
			Area Sc	ources						
Campfires	21,349	10.67	247	0.12	1,604	0.80	155,861	77.93	141,299	70.65
Prescribed Fires	6,412	3.21					16,448	8.22	1,540	0.77
Area Sources Subtotal	27,761	11.01	247	0.12	1,604	0.80	172,309	86.15	142,840	71.42
			Tota	ıls						
	Particu	lates	Sulfur	Dioxide	Nitrogen	Oxides	Carbon M	Ionoxide	VOC	s
	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr
Totals without Prescribed Burning	21,462	10.73	2,221	1.11	3,932	1.97	156,393	78.20	144,832	72.42
Totals with Prescribed Burning	27,874	13.94	2,221	1.11	3,932	1.97	172,841	86.42	146,372	73.19

As methane

3. MOBILE SOURCE EMISSIONS

This section summarizes emissions from mobile sources at Great Smoky Mountains NP for 2000. Mobile emission sources include highway and nonroad vehicles.

3.1 HIGHWAY VEHICLES

3.1.1 Visitor Vehicles

The park maintains statistics on the number of vehicles entering the park from the three principal entrances at Gatlinburg, Cherokee, and Townsend, as well as eleven outlying entrances. In order to calculate visitor vehicle miles traveled (VMT) for this analysis, a number of broad assumptions were made. For example, visitor studies indicate that approximately 50 percent of visitors travel to the Cades Cove area (University of Idaho, 1997). For this analysis, it was assumed that 50 percent of visitor vehicles entering from the three principal entrances traveled to Cades Cove and exited from the same entrance. The remaining 50 percent traveled through the park and exited from another principal entrance. The vehicles entering from the outlying areas were assumed to exit from the same outlying entrance. Vehicles operating on the East and West Foothills Parkway were assumed to travel its length one-way. These assumptions are summarized in Table 11.

	T:4	Vel	Miloa	
Entrance	Exit	Summer	Winter	Ivilles
Catlinhana	Gatlinburg via Cades Cove	617,098	78,130	65
Gatlinburg	Cherokee	617,098	78,130	34
	Townsend via Cades Cove	283,909	37,039	30
Townsend	Cherokee	283,909	37,039	52
	Cherokee via Cades Cove	419,970	54,329	125
Cherokee	Gatlinburg	419,970	54,329	34
Abrams Creek	Abrams Creek	48,835	6,738	2
Big Creek	Big Creek	37,398	5,160	2
Cataloochee	Cataloochee	39,980	5,516	10
Cherokee Orchard	Cherokee Orchard	43,799	6,043	2
Foothills Parkway East	Foothills Parkway East	230,866	31,855	15
Cosby	Cosby	26,220	3,618	5
Twentymile	Twentymile	1,981	273	1
Foothills Parkway West	Foothills Parkway West	144,683	19,963	5
Greenbrier	Greenbrier	92,030	12,698	6
Deep Creek	Deep Creek	106,743	14,728	2
Bryson City	Bryson City	23,866	47,663	2
	Total	3,438,355	493,251	

TABLE 11: ESTIMATED VISITOR VEHICLE TRAVEL IN GREAT SMOKY MOUNTAINS NP

The majority of mobile source emissions can be categorized as either exhaust or evaporative emissions. Exhaust emissions are related to the combustion of fuel in the engine and include VOC, NOx, CO, and PM 10. Exhaust emissions are dependent on a number of factors, including engine load, engine design and age, combustion efficiency, emissions equipment such as catalytic converters, and other factors. Evaporative emissions, which can occur while the vehicle is running or at rest, are related to the volatilization of fuel from vapor expansion, leaks and seepage, and fuel tank vapor displacement. Evaporative emissions are primarily dependent on daily temperature cycles and fuel volatility. In addition to vehicle exhaust, PM 10 emissions also result from brake and tire wear, as well as the re-entrainment of dust from paved and unpaved roads (referred to as fugitive dust)....;

Emission factors produced by the USEPA MOBILE5b model were used in conjunction with VMT data in order to estimate mobile source emissions for VOC (both exhaust and evaporative NOx, and CO for visitor vehicles. Similarly, emission factors produced by the PARTS model were used in conjunction with VMT data to estimate PM ₁₀ emissions. MOBILE5b produces exhaust and evaporative emission factors for the following classes of vehicles: Light Duty Gasoline Vehicles (LDGV), Light Duty Gasoline Trucks 1 (LDGT1), Light Duty Gasoline Trucks 2 (LDGT2), Heavy Duty Gasoline Vehicles (HDGV), Light Duty Diesel Vehicles (LDDV), Light Duty Diesel Trucks (LDDT), Heavy Duty Diesel Vehicles (HDDV), and Motorcycles. It also produces a composite emission factor for all vehicles based on the vehicle VMT mix supplied to the model. Inputs to the model include average vehicle speed, vehicle VMT mix, annual mileage accumulation rates and registration distributions by age, inspection and maintenance (I/M) program information, fuel information, ambient temperature data, and others.

Both the MOBILE5b and PARTS models are typically used to support planning and modeling efforts in urban or regional areas and include default inputs suited for these applications. Therefore, it is suitable for applications over large, regional transportation networks. Application of the MOBILE5b model required the utilization of unique inputs that were representative of mobile source activity within the park. In particular, it was necessary to utilize unique inputs for the visitor vehicle VMT mix and the vehicle age distribution. The Center for Environmental Research and Technology within the College of Engineering at the University of California's Riverside Campus (CE-CERT) established park-specific vehicle fleet characterizations in developing air emission inventories for Zion National Park (CE-CERT, 2001). CE-CERT found that the distribution of vehicle ages in the park reflected a larger fraction of newer vehicles compared to the general vehicle population. The park-specific mix vehicle types and vehicle age

distribution developed by CE-CERT have been applied in the mobile modeling for Great Smoky Mountains NP.

In addition to park-specific age distribution, CE-CERT also developed park-specific modeling inputs for driving patterns that differ significantly from the default driving patterns typically used in mobile modeling, such as the Federal Test Procedure (FI'P). In particular, they found that the FTP reflects both higher speeds and a wider range of speeds than observed in national parks. However, since the MOBILE5b model is not designed to readily incorporate unique driving pattern data, the default driving cycle remains the basis for the mobile source emission estimates provided here.

Other important mobile modeling inputs that can significantly affect mobile emission factors are the average speed, fuel characteristics, and I/M program parameters. The average speed input to the mobile model was 35 mph, fuel volatility was assumed to be Reid vapor pressure (RVP) 9, and reformulated gasoline (RFG) was not assumed to be present. Finally, I/M program inputs were not included since there are no I/M programs in the areas near the park.

In order to account for seasonal differences in mobile emissions, separate MOBILE5b runs were performed to produce emission factors for winter and summer. A composite emission factor for each season, reflecting a park specific VMT mix adapted from CE-CERT, served as the basis for mobile source emission estimates. Additional particulate emissions (or entrained road dust) from vehicles operating on paved roads in Great Smoky Mountains NP also were calculated based on VMT.

A summary of visitor vehicle emissions is provided in Table 14 at the end of this section.

3.1.2 NPS Highway Vehicles

Great Smoky Mountains NP operates a fleet of highway vehicles that are owned by the NPS, but no vehicles are leased from the General services Administration (GSA), which is a common practice among many NPS units. There were some data on the annual VMT for light-duty and heavy-duty trucks, and these data were extrapolated to the other vehicle categories for purpose of this analysis. A summary of NPS and concessionaire vehicles and their estimated annual mileage is provided in Table 12, and emissions are summarized in Table 14 at the end of this section.

Vehicle Type	Number	Annual Usage (mi/yr)
Light-Duty Gasoline Vehicles	29	145,000
Light-Duty Gasoline Trucks	165	495,000
Medium Duty Diesel Trucks	25	75,000
Heavy Duty Gasoline Vehicles	15	32,600

TABLE 12: NPS ROAD VEHICLES AT GREAT SMOKY MOUNTAINS NP

3.2 NPS NONROAD VEHICLES

The NPS also owns and operates nonroad motorized equipment that is used to maintain roads and grounds and for other. purposes., There are records of the Great Smoky Mountains NP equipment inventory, and the larger pieces of equipment for which there are usage data are noted in Table 13. Emission factors from the USEPA nonroad emission database were used to calculate annual emissions, and it was assumed that each piece of equipment was operated approximately 100 hours per year. Estimated emissions are provided in Table 14.

Vehicle Type	Number	Annual Usage (hrs/yr)
Tractors	13	1,300
Backhoe	9	900
Grader	4	400
Sweeper	4	400
Forklift	3	100
Roller/Compactor	1	100
Utility Vehicle	11	1,100
Riding Mower	7	700
Bobcat	1	100
Dozer	1	100
Chipper	3	100

TABLE 13: NPS NONROAD VEHICLES AT GREAT SMOKY MOUNTAINS NP

3.3 SUMMARY OF MOBILE SOURCE EMISSIONS

Table 14 summarizes the mobile source emissions calculated above in a format that allows comparison between the various sources as well as providing totals for each pollutant or pollutant category under consideration.

A	Partici	Particulates'		Sulfur Dioxide		Nitrogen Oxides		Carbon Monoxide		VOCs	
Activity	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	
			Road Ve	ehicles							
Visitor Vehicles	354,834	157.10			368,436	184.22	3,468,631	1,734.32	372,217	186.11	
NPS Road Vehicles	1,497	0.75			1,738	0.87	14,649	7.32	1,512	0.76	
Road Vehicle Emissions Subtotal	356,331	178.17			370,174	185.09	3,483,280	1,741.64	373,729	186.86	
		1	Nonroad '	Vehicles							
NPS Nonroad Vehicles	628	0.31			2.140	n7	1,248	<u>*</u> 6~	714	0.36	
			Tota	als							
Totals	Partic	ulates	Sulfur	Dioxide	Nitroger	n Oxides	Carbon Mo	onoxide	VO	Cs	
	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	lbs/yr	tons/yr	
	356,959	178.48			372,314	186.16	3,484,520	1,742.26	374,443	187.22	

 $^{\prime}$ Includes exhaust PM $_{\rm IO}$ and road dust

4. GREAT SMOKY MOUNTAINS NP AND REGIONAL EMISSIONS

4.1 GREAT SMOKY MOUNTAINS NP SUMMARY

A summary of Great Smoky Mountains NP emissions is provided in Table 15.

TABLE 15: ESTIMATED ANNUAL EMISSIONS FROM GREAT SMOKY MOUNTAINS	NP
---	----

	\mathbf{PM}_{10}	so_2	NOx	со	VOCs
Source	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
		Point Sources			
Space and Water Heaters	0.02	0.69	0.39	0,08	< 0.01
Generators	0.03	0.30	0.78	0.19	0.04
Gasoline Storage Tanks					1.72
Subtotal	0.06	0.99	1.16	0.27	1.77
		Area Sources			
Campfires	10.67	0.12	0.80	77.93	70.65
Prescribed Burning	3.21			8.22	0.77'
Subtotal	11.01	0.12	0.80	86.15	71.42
		Mobile Sources			
Road Vehicles	178.17		185.09	1,741.64	186.86
Nonroad Vehicles	0.31		1.07	0.62	0.36
Subtotal	178.48		186.16	1,742.26	187.22
Totals	189.55	1.11	188.12	1,828.68	260.41

As methane

4.2 **REGIONAL AIR EMISSIONS**

Emission estimates for Blount, Cocke, and Sevier Counties, TN, Haywood and Swain Counties, NC, and the states of Tennessee and North Carolina were obtained from the 1999 National Emission Inventory (NEI) maintained by USEPA. It is important to note that differences may exist between the methodologies used to generate the park emission inventory and those used to generate the NET. For example, here gasoline storage tanks have been included as stationary sources, while the NEI treats them as area sources. Table 16 provides a comparison of Great Smoky Mountains NP emissions with those from the surrounding counties and the two states. For all pollutants, Great Smoky Mountains NP emissions account for less than 1 percent of the surrounding county point and area source emissions.

TABLE 16:ESTIMATED ANNUAL EMISSIONS FROM GREAT SMOKY MOUNTAINS NP,SURROUNDING COUNTIES, AND THE STATES OF TENNESSEE AND NORTH CAROLINA

Area	$\mathbf{PM}_{1}0$	SO_2	NOx	СО	VOC				
- Aita	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)				
Point Sources									
Great Smoky Mountains NP Total	0.06	0.99	1.16	0.27	1.77				
Blount County, TN	1,931	2,840	2,529	5,270	470				
Cocke County, TN	86	203	188	28	10				
Sevier County, TN	18	84	39	5	2				
Haywood County, NC	164	7,550	3,791	2,236	75				
Swain County, NC		15	2	<1	<1				
Surrounding County Total	2,200	10,695	6,550	7,540	558				
Tennessee	26,966	609,058	284,711	106,151	120,220				
North Carolina	27,473	544,445	271,630	80,879	68,306				
Tennessee/North Carolina Total	54,439	1,153,503	556,341	187,030	188,526				
	Α	rea Sources							
Great Smoky Mountains NP Total	11	<1	<1	86	71				
				4 4 5 0	0.150				
Blount County, TN	593	85	100	4,170	2,473				
Cocke County, TN	349	34	46	2,342	1,161				
Sevier County, TN	585	76	85	4,100	1,735				
Haywood County, NC	650	90	59	4,391	1,979				
Swain County, NC	228	19	22	1,561	540				
Surrounding County Total	2,405	304	312	16,564	7,888				
Tennessee	272,941	40,504	49,156	318,682	226,223				
North Carolina	340,059	31,162	30,971	867,428	318,707				
Tennessee/North Carolina Total	613,000	71,666	80,127	1,186,110	544,930				
	M	obile Sources							
Great Smoky Mountains NP Total	178		186	1,742	187				
Blount County, TN	234	342	4,987	31,488	3,338				
Cocke County, TN	115	140	2,603	13,291	1,566				
Sevier County, TN	131	213	3,044	16,482	1,693				
Haywood County, NC	171	234	4,150	17,956	1,950				
Swain County, NC	32	48	568	2,931	351				
Surrounding County Total	683	977	15,352	82,148	8,898				
Tennessee	111,674	36,420	406,655	1,879,125	202,336				
North Carolina	171,063	32,259	373,528	2,208,120	248,798				
Tennessee/North Carolina Total	282,737	68,679	780,183	4,087,245	451,134				

Finally, estimated emissions from the eight states that constitute Region 4 and those from the United States are summarized in Table 17.

TABLE 17: ESTIMATED 1999 EMISSIONS FROM REGION 4 AND THE U.S.

A 100	PM _{I0}	SO ₂	NOa	СО	VOC				
Агеа	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)				
Point Sources									
Tennessee	26,966	609,058	284,711	106,151	120,220				
North Carolina	27,473	544,445	271,630	80,879	68,306				
South Carolina	9,570	272,578	136,304	66,773	49,525				
Kentucky	26,148	698,840	344,319	75,615	63,760				
Georgia	39,711	594,918	242,933	178,368	36,050				
Mississippi	10,226	164,064	158,352	90,578	43,430				
Alabama	46,634	665,668	285,896	207,527	96,960				
Florida	23,225	820,475	373,354	74,422	27,154				
Region 4 Totals	209,953	4,370,046	2,097,499	880,313	505,405				
United States	1,111,756	16,296,167	9,037,572	5,307,982	2,061,167				
	Α	rea Sources							
Tennessee	272,941	40,504	49,156	318,682	226,223				
North Carolina	340,059	31,162	30,971	867,428	318,707				
South Carolina	93,467	13,868	136,304	66,773	49,525				
Kentucky	146,687	54,855	70,723	169,936	129,203				
Georgia	307,592	5,681	64,864	1,316,334	248,555				
Mississippi	180,140	71,135	52,021	442,300	142,759				
Alabama	158,799	43,682	63,506	628,610	151,317				
Florida	204,469	38,115	61,110	979,936	376,167				
Region 4 Totals	1,704,154	299,002	528,655	4,789,999	1,642,456				
United States	9,734,269	1,289,884	2,251,929	16,972,636	7,574,071				
	Mo	bile Sources							
Tennessee	111,674	36,420	406,655	1,879,125	202,336				
North Carolina	171,063	32,259	373,528	2,208,120	248,798				
South Carolina	201,778	16,156	218,302	1,360,805	152,338				
Kentucky	122,815	31,733	280,317	1,262,003	137,257				
Georgia	520,615	35,260	453,921	2,810,844	288,475				
Mississippi	219,254	14,662	194,181	1,013,591	127,336				
Alabama	320,076	20,540	285,785	1,733,273	197,263				
Florida	341,205	65,103	678,983	4,808,725	543,028				
Region 4 Totals	2,008,480	252,133	2,891,672	17,076,486	1,896,831				
United States	12,831,958	1,299,342	14,105,483	75,151,535	8,536,092				
5. COMPLIANCE AND RECOMMENDATIONS

5.1 COMPLIANCE

The Tennessee Department of Environment and Conservation (TNDEC) and North Carolina Department of Environment and Natural Resources (NCDENR) are the governing authorities for regulating air pollution. Park personnel should continue to coordinate with the agency on permit issues relating to stationary sources, as well as prescribed burning activities. Prior to replacing or adding relatively large heating units, generators, and fuel storage tanks, the appropriate agency should be consulted regarding the need to obtain a permit to construct or a permit to operate such sources. For example, North Carolina Air Quality Rule 15A NCAC 2Q.102 (c) exempts the following from permit requirements:

- liquid or gas fueled space heaters used solely for comfort heat
- residential woodstoves, heaters, or fireplaces
- hot water heaters used for domestic purposes only.

Both states also have exemptions to open burning regulations that apply to visitor activities in the park. The Rules of Tennessee DEC Chapter 1200-3-4-04 exempts "fires used for cooking of food or for ceremonial, recreational, or comfort-heating purposes, including barbecues, campfires, and outdoor fireplaces." North Carolina Air Quality Rule 15A NCAC 2D.1903(a)(3) exempts "campfires and fires used solely for outdoor cooking and other recreational purposes or for ceremonial occasions or for human warmth and comfort and which do not create a nuisance and do not use synthetic materials or refuse or salvageable materials for fuel."

With respect to visible emissions, Tennessee DEC Chapter 1200-3-5.01 limits visible emissions from any contaminant source to an opacity of 20 percent or less. NC Rule 15A NCAC 2D.D521 limits 01 limits visible emissions from sources manufactured after 1971 to an opacity of 20 percent or less, and 40 percent for sources manufactured after 1971. Measures to prevent the creation of fugitive dust also must be taken. For example, Tennessee DEC Chapter 1200-3-8-.01 requires that persons handling, transporting, or storing materials take reasonable precautions to prevent particulate matter from becoming airborne.

5.2 **RECOMMENDATIONS**

Actions to promote sustainable development in the design, retrofit, and construction of park facilities have associated air quality benefits. These include actions that reduce or replace consumption of conventional fossil fuels and/or reduce the consumption of other resources.

Reductions in potable and non-potable water consumption also achieve concurrent reductions in energy consumption and associated air emissions. Acquisition of energy efficient appliances whenever possible also is an incremental energy saving measure that has associated air quality benefits.

Opportunities to reduce NOx and VOC emissions, which are the precursors for ozone formation, in Great Smoky Mountains NP are related to the reduction or replacement of conventional fossil fuels. The park has several photovoltaic power units in operation. These include four radio repeaters on Webb, Shuckstack, and Spur Mountains and Clingmans Dome and a unit to power air quality monitoring equipment, op Clingmans Dome. The park, in conjunction with the Tennessee Valley Authority, also has a solar hot water heater at the Sugarlands Visitor Center.

Vehicle emissions are the largest source of emissions in the park. One current investigation is directed at reducing visitor vehicle congestion and associated emissions. The park is participating with the Knoxville Regional Transportation Planning Organization to undertake a Development Concept and Transportation Management Plan for Cades Cove. The Plan will result in a range of alternatives that provide for a comprehensive, long-range approach for managing the natural and cultural resources and improving the quality of visitor experience by providing for greater visitor mobility through a variety of transportation initiatives.

The park has undertaken a project to demonstrate the feasibility of electric vehicles in the Cades Cove and other areas. These vehicles include three John Deere Electric Gators, and Electric tractor "Ox", three Global Electric Motor Cars, four Club Car Carryalls, and three ZAPWorld Electric Bikes (EPRI, 2002). The project will run until March 2003 and will gather baseline fuel use and emission information, identify applicable and feasible electric vehicles, perform an energy efficiency study, and assess supporting infrastructure.

The park is also investigating the use of low sulfur gasoline and diesel fuels and biodiesel fuel for use in its vehicles. An analysis of the emission reductions possible with these fuels are summarized in Table 17. Although these reductions would be minor if such fuels were used by park vehicles only, significant reductions may be possible if these fuels were widely available in the surrounding communities for use by the general public.

TABLE 18: ESTIMATED EMISSIONS WITH LOW SULFUR/BIODIESEL VEHICLE FUELS

Fuel								
F uei	PM _{I0}	SO ₂	NOx	СО	VOC			
Low Sulfur Gasoline	-13	-88	-11	-15	-16			
Low Sulfur Diesel ²	-9	-97	0	0	0			
Biodiesel (20% biomass based oil)	-18	-100	+1	-12.5	-11			
	Emissions (tons/yr)							
Regular Gasoline/Regular Diesel	0.03	0.055	1.51	5.30	0.32			
Low Sulfur Gasoline /Low Sulfur Diesel ²	0.03	<0.01	1.47	4.52	0.27			
Low Sulfur Gasoline /Biodiesel	0.03	< 0.03	1.49	4.50	0.27			

30 ppmw (Tier 2 gasoline rule) versus 300 ppmw

 $^2\;$ 15 ppmw (proposed diesel sulfur rule) versus 500 ppmw

6. REFERENCES

- College of Engineering at the University of California's Riverside Campus (CE-CERT). 2001. *Air Emissions Inventory for Zion National Park.*
- EA Engineering, Science, and Technology. 2001. *Air Emission Inventory Preparation Plan.* Prepared for the National Park Service. November.
- Electric Power Research Institute, 2002. *Planning for the Future. Reducing Energy Use in the National Parks.*
- Great Smoky Mountains National Park. 1996. Environmental Assessment for the Fire Management Plan, Great Smoky Mountains National Park, North Carolina and Tennessee.
- University of Idaho. 1997. Great Smoky Mountains National Park Visitor Studies, Summer and Fall 1996. July.
- USEPA, 1991. Nonroad Engine and Vehicle Emission Study Report. EPA-21A-2001 and EPA460/3-91-02. November.
- USEPA, 1995a. Compilation of Air Pollution Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources.
- USEPA, 1995b. *Highway Vehicle Particulate Emission Modeling Software "PARTS"*. Office of Transportation and Air Quality.
- USEPA, 1997. *MOBILE6 Vehicle Emissions Modeling Software*. Office of Transportation and Air Quality.
- USEPA, 2000a. *Factor Information REtrieval (FIRE) Data System*. Office of Air Quality Planning and Standards.
- USEPA, 2000b. TANKS 4.09a. Office of Air Quality Planning and Standards.
- U.S. Forest Service. 1997. First Order Fire Effects Model (FOFEM) 4.0 User's Guide. January.

APPENDIX A

FUEL DATA, EMISSION FACTORS, AND EMISSION CALCULATIONS

FUEL DATA

Fuel	Heating Value	Sulfur Content
No. 2 Distillate Fuel Oil/Diesel	140,000 Btu/gal	0.05% by weight
Natural Gas	1,050 Btu/ft ³	2,000 grains/10 ⁶ ft ³
Propane	91,500 Btu/gal	0.18 grains/100 ft ³

STATIONARY SOURCE EMISSION FACTORS - BOILERS/HEATING UNITS

DISTILLATE OIL (DF-2) - CRITERIA POLLUTANTS									
	Emiss	Emission Factor (lb/1,000 gal fuel burned)							
Combustor Type	PM ^(a)	SO _Z ^{Cb)}	NO _x ^(c)	СО	VOC ^(d)				
Residential Furnace ^(e)	0.4	142S	18	5	0.713				
Boilers < 100 Million Btu/hr (Commercial/Institutional Combust. ^(°)	2	142S	20	5	0.34				
Boilers < 100 Million Btu/hr (Industrial Boilers ^(g))	2	142S	20	5	0.2				
Boilers > 100 Million Btu/hr (Utility Boilers ^(h))	2	157S	24	5					
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Tables 1.3-1 and 1.3-3.									

Combustor Ture	Emission Eactor ($lb/10^6$ ft ³ fuel burned)							
(MMBtu/hr Heat Input)	p₩Ø>	SO_2	NO _x ^(e)	СО	VOC			
Residential Furnaces (<0.3)								
-Uncontrolled	7.6	0.6	94	40	5.5			
Tangential-Fired Boilers (All Sizes)								
-Uncontrolled	7.6	0.6	170	24	5.5			
-Controlled-Flue gas recirculation	7.6	0.6	76	98	5.5			
Small Boilers (<100)								
-Uncontrolled	7.6	0.6	100	84	5.5			
-Controlled-Low NO _x burners	7.6	0.6	50	84	5.5			
-Controlled-Low NO _x burners/Flue gas recirculation	7.6	0.6	32	84	5.5			
Large Wall-Fired Boilers (>100)								
-Uncontrolled (Pre-NSPS) ^(k)	7.6	0.6	280	84	5.5			
-Uncontrolled (Post-NSPS) ^(k)	7.6	0.6	190	84	5.5			
-Controlled-Low NO _x burners	7.6	0.6	140	84	5.5			
-Controlled-Flue gas recirculation	7.6	0.6	100	84	5.5			

STATIONARY SOURCE EMISSION FACTORS - BOTT.F,RS/HEATING UNITS (Continued)

PROPANE (LPG) - CRITERIA POLLUTANTS									
	Emi	ssion Facto	al fuel burned)						
Combustor Type	PM ^(a)	${{{\rm SO}_2}^\circ}$	NO _x ^(c)	СО	VOC ^{(d})				
Commercial Boilers ⁽⁰	0.4	0.10S	14	1.9	0.3				
Industrial Boilers ^(g)	0.6	0.10S	19	3.2	0.3				
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 1.5-1.									

STATIONARY SOURCE EMISSION FACTORS - GENERATORS

		Emissi						
		2		/				
Fuel Type	PM ·	SO _x	NO _x	[со	VOC			
DF-2	2.20 E-03	2.05 E-03	0.031	6.68 E-03	2.51 E-03			
Gasoline	7.21 E-04	5.91 E-04	0.011	0.439	0.022			
				0 6 7 0 4	1.02 E.04			
Natural Gas/Propane	1.54 E-04	7.52 E-03(S)	3.53 E-03	8.6 E-04	1.92 E-04			
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 3.3-1 and 3.1-1								

For generators rated at less than or equal to 448 kW (600 hp):

For generators rated at greater than 448 kW (600 hp):

	Emission Factor (lb/hp-hr)								
Fuel Type	PM	PM SO _x ^{(b>}		СО	VOC				
DF-2	0.0007	(8.09 E-03)S	0.024	5.5 E-03	6.4 E-04				
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 3.4-1.									

F REPLACE EMISSION FACTORS

Evel Tree		Em	ission Factor (I	b/ton)				
ruei Type	PM ⁰⁾	SO,	VOC					
Wood	34.6	0.4	2.6	252.6	229.0			
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 1.9-1.								

WOODSTOVE EMISSION FACTORS

Stove Type		En						
Stove Type	PM ⁰⁾	SO _x	NOX	СО	VOC			
Conventional	30.6	0.4	2.8	230.8	53			
Noncatalytic	19.6	0.4		140.8 -	12			
Catalytic	20.4	0.4	2.0	104.4	15			
Source: AP-42, 5th Edition, Supplements A, B, C, D, and E, Table 1.10-1.								

STATIONARY SOURCE EMISSION FACTORS - SURFACE COATING OPERATIONS

Surface Coating Type	VOC Emission Factor (lb/gal)					
Paint: Solvent Base	5.6					
Paint: Water Base	1.3					
Enamel: General	3.5					
Lacquer: General	6.1					
Primer: General	6.6					
Varnish/Shellac: General	3.3					
Thinner: General	7.36					
Adhesive: General	4.4					
Source: Calculation Methods for Criteria A ir Pollutant Emission Inventories, AL/OE-TR-1994-0049, July 1994. Armstrong Laboratory.						

- (a) PM = Filterable Particulate Matter.
- (b) These factors must be multiplied by the fuel sulfur content (for example, if the sulfur content is 0.05%, then S equals 0.05).
- (c) Expressed as NO $_2$.
- (d) Emission factors given in AP-42 are actually for non-methane total organic compounds (NMTOC) which includes all VOCs and all exempted organic compounds (such as ethane, toxics and HAPs, aldehydes and semivolatile compounds) as measured by EPA reference methods.
- (e) Unit Rating <300,000 Btu/hr.
- (f) Unit Rating 3300,000 Btu/hr, but <10,000,000 Btu/hr.
- (g) Unit Rating 310,000,000 Btu/hr, but <100,000,000 Btu/hr.
- (h) Unit Rating 3100,000,000 Btu/hr.
- (i) POM = Particulate POM only.
- (j) PM = Filterable Particulate Matter + Condensible Particulate Matter.
- (k) NSPS = New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction, modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction, modification, or reconstruction after June 19, 1984.
- (1) Emission factors are given on a fuel input basis (lb/MMBtu). To convert to a power output basis (lb/hp-hr), use an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr.

2000 ACTUAL CRITERIA	EMISSIONS FROM HEATING UNITS AT	GREAT SMOKY MOUNTAINS NP
----------------------	---------------------------------	--------------------------

Emission	Location	Fuel	Number of	Capacity		Consumption	$\mathbf{P}\mathbf{M}_{1}0$	SO_2	NO_X	СО	CO,	VOC
Source			Sources	(Btu/hr)		(gal/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)	(Ibs/yr)
			N	ational Park S	Service							
Furnace	Sugarlands Visitor Center	No. 2 Fuel Oil	5	85,000	425,000	4,922	10	349	98	25	105,831	2
Boiler	Sugarlands Park Headquarters	No. 2 Fuel Oil	1	1,000,000	1,000,000	11,582	23	822	232	58	249,015	4
Boiler	Twin Creeks Administration	No. 2 Fuel Oil	1	250,000	250,000	2,896	1	206	52	14	62,254	2
		Totals	7	1,335,000	1,675,000	19,400	34	1,377	382	97	417,100	8
Emission Factors	from AP-42, Tables 1.3-1 and 1.3-3 fo	r residential furnac	ces (<300,000	Btu/hr) $S = 0$.5 percent		0.4	I42S	18.0	5.0	21,500	0.7
Emission Factors	from AP-42, Tables 1.3-1 and 1.3-3 fo	r boilers (>300,000	D Btu/hr) S = 0	0.5 percent			2.0	142S	20.0	5.0	21,500	0.3
Formula = Consu	mption (gal/yr) * Emission Factor (lb/1	,000 gal)	,	1								
						1 0 0 5					10.000	
Heater	Cades Cove Ranger Station	Propane	1	80,000	80,000	1,027	0	0	14	2	12,832	0
Heater	Cades Cove Maintenance Building	Propane	1	100,000	100,000	1,283	1	0	18	3	16,040	0
Ceiling Heater	Cades Cove Maintenance Building	Propane	2	200,000	400,000	5,133	2	0	72	10	64,159	2
Fireplace	Cable Mill Visitor Center	Propane	1	80,000	80,000	1,027	0	0	14	2	12,832	0
Wall Heater	Cable Mill Visitor Center	Propane	1	28,000	28,000	359	0	0	5	1	4,491	0
Water Heater	Cable Mill Comfort Station	Propane	1	100,000	100,000	1,283	1	0	18	3	16,040	0
Heater	Cable Mill Comfort Station	Propane	1	60,000	60,000	770	0	0	11	2	9,624	0
Heater	Cable Mill Sewer Building	Propane	1	28,000	28,000	359	0	0	5	1	4,491	0
Wall Heater	Cable Mill Water Plant	Propane	1	28,000	28,000	359	0	0	5	1	4,491	0
		Totals	10		. 904.000	11.600	5	0	162	23	145.000	3
				Tremont Inst	itute					10	77.025	
Heating Unit	Dorm	Propane	4	120,000	480,000	6,162	2	0	86	12	77,025	2
Water Heater	Dorm	Propane	1	200,000	200,000	2,568	1	0	36	5	32,094	1
Heating Unit	Kitchen	Propane	2	100,000	200,000	2,568	l	0	36	5	32,094	I
Heating Unit	Kitchen	Propane	1	120,000	120,000	1,541	1	0	22	3	19,256	0
Heating Unit	Office/Maintenance	Propane	1	125,000	125,000	1,605	1	0	22	3	20,059	0
Heating Unit	Staff Quarters	Propane	1	60,000	60,000	770	0	0	11	2	9,628	0
Water Heater	Directors House	Propane	1	90,000	90,000	1,155	0	0	16	2	14,442	0
		Totals	11		1,275,000	16,368	7	0	229	33	204,598	5
Emission Factors	from AP-42, Tables 1.5-1 for commer	cial boilers, $S = 0.1$	18 grains/100	cu ft			0.4	0.1 *S	14.00	1.90	12,500	0.30
Formula = Consu	umption (gal/yr) * Emission Factor (lb/	1,000 gal)										
<u> </u>	Т	otal Heating Units	28				45	1,378	774	153	766,698	16

Emission Source	Location	Fuel	Number o: Sources	Capacity (Btu/hr) Nati	onal Park Se	Consumption (gal/yr) ervice	PM _] ⁰ (Ibs/yr)	SO 2 (Ibs/yr)	NOx (lbs/yr)	CO (lbs/yr)	CO, (lbs/yr)	VOC (lbs/yr)
Furnace	Sugarlands Visitor Center	No. 2 Fuel Oil	5	85,000	425,000	26,593	53	1,888	532	133	571,746	9
Boiler	Sugarlands Park Headquarters	No. 2 Fuel Oil	1	1.000.000	1,000,000	62,571	125	4,443	1,251	313	1,345,286	21
Boiler	Twin Creeks Administration	No. 2 Fuel Oil	1	250,000	250,000	15,643	6	1,111	282	78	336,321	11
Donor		Totals	; 7	1,335,000	1,675,000	104,807	185	7,441	2,065	524	2,253,354	41
Emission Fac Emission Fac Formula = Co	tors from AP-42, Tables 1.3-1 and 1.3 tors from AP-42, Tables 1.3-I and 1.3- onsumption (gal/yr) * Emission Factor	-3 for residential fu -3 for boilers (>300 (lb/1,000 gal)	urnaces (<30),000 Btu/hr	0,000 Btu/hr) S S = 0.5 perce	S = 0.5 percer nt	ıt	0.4 2.0	1428 1428	18.0 20.0	5.0 5.0	21,500 21,500	0.7 0.3
TT .		D	1	80.000	90.000	7 659	3	0	107	15	95 738	2
Heater	Cades Cove Ranger Station	Propane	1	80,000	100,000	0.574	1	0	134	19	119.672	3
Heater	Cades Cove Maintenance Building	Propane	2	200,000	100,000	29,374	15	1	536	77	478 689	11
Ceiling Heate	er Cades Cove Maintenance Building	Propane	2	200,000	400,000	38,295 7,650	3	0	107	15	95 738	2
Fireplace	Cable Mill Visitor Center	Propane	1	80,000	28,000	7,059	1	0	38	5	33 508	1
Wall Heater	Cable Mill Visitor Center	Propane	1	28,000	28,000	2,081	1	0	124	19	119.672	3
Water Heater	r Cable Mill Comfort Station	Propane	1	100,000	100,000	9,574	4	0	80	11	71.803	2
Heater	Cable Mill Comfort Station	Propane	1	60,000 2 9,000	2 0,000	3,744	2 1	0	20	5	33 508	-
Heater	Cable Mill Sewer Building	Propane	1	28,000	28,000	2,681	1	0	20	5	33,508	1
Wall Heater	Cable Mill Water Plant	Propane	10	28,000	28,000	2,081	25	2	1 212	173	1 091 936	
		Total	s 10	T	904,000	86,547	35	2	1,212	175	1,001,000	20
		D	4	120,000	<u>Institute</u>	45.054	10	1	643	92	574 426	14
Heating Unit	Dorm	Propane	4	200,000	2 00,000	43,934	10	0	268	38	239 344	6
Water Heater	Dorm	Propane	1	200,000	200,000	10,140	0	0	208	38	239,311	6
Heating Unit	Kitchen	Propane	2	100,000	200,000	19,140	0	0	161	23	143 607	3
Heating Unit	Kitchen	Propane	1	120,000	120,000	11,469	5	0	101	23	149,5007	4
Heating Unit	Office/Maintenance	Propane	1	125,000	125,000	11,967	2	0	100	2 4 11	71 803	2
Heating Unit	Staff Quarters	Propane	1	60,000	60,000	5,/44	2	0	00 121	17	107 705	2
Water Heater	Directors House	Propane	1	90,000	90,000	8,616	3	0	1 700	244	1 525 820	37
		Total	s 11		1,2/5,000	122,066	49	Ζ	1,709		1,525,620	
Emission Fac Formula = Co	tors from AP-42, Tables 1.5-1 for com onsumption (gal/yr) * Emission Factor	nmercial boilers, S : (lb/1,000 gal)	= 0.18 grains	s/100 cu ft			0.4	0.1 *S	14.00	1.90	12,500	0.30
	,	Total Heating Unit	s 18				268	7,445	4,985	941	1,082,604	104

2000 POTENTIAL CRITERIA EMISSIONS FROM HEATING UNITS AT GREAT SMOKY MOUNTAINS NP

2000 ACTUAL CRITERIA EMISSIONS FROM GENERATORS AT GREAT SMOKY MOUNTAINS NP

Emission Source	Location	Fuel	Number of Sources	Rating (kW)	Run Time (hrs/yr)	Output (kW-hr/yr)	PM ₁ 0 (Ibs/yr)	SO ₂ (lbs/yr)	NO, (Ibs/yr)	CO (lbs/yr)	VOC (Ibs/yr)
					National Pa	rk Service				•	• • •
Generator	Water Plant	Propane	2	45	3,650	328,500	68	596	1,554	379	85
	Propane Ge	nerator Totals	2	45	3,650	328,500	68	596	1,554	379	85
Emission Factors from AP-42, Chapter 3 Formula = Emission Factor (lb/hp-hr) *		er 3.1-1 for na) * 608 (g/kW-	tural gas turbi -hr / lb/hp-hr)	nes (lb/hp- * Output (hr), S = 0.18 gr kW-hr/yr) / 453	rains/100 cu ft 8.6 (glib)	1.54E-04	7.52E-03*S	3.53E-03	8.60E-04	1.92E-04
					Parl	c Totals (tons/yr)	0.03	0.30	0.78	0.19	0.04

2000 POTENTIAL CRITERIA EMISSIONS FROM GENERATORS AT GREAT SMOKY MOUNTAINS NP

Emission Source	Location	Fuel	Number of Sources	Rating (kW)	Run Time (hrs/yr)	Output (kW-hr/yr)	PM ₁ 0 (Ibs/yr)	SO ₂ (Ibs/yr)	NO,, (Ibs/yr)	CO clbs/rr)	VOC (lbs/yr)
				Nat	ional Park Sei	vice				,	
Generator	Medical Clinic	Propane	2	45	8,760	788,400	163	1,430	3,730	909	203
	Propane Ger	nerator Totals	2	45	8,760	788,400	163	1,430	3,730	909	203 ,
Emission Fact Formula = Em	ors from AP-42, Chapter 3.1-1 for hission Factor (lb/hp-hr) * 608 (g/k	r natural gas tu W-hr / lb/hp-h	urbines (lb/hp- ur) * Output (k	-hr), S = 0. cW-hr/yr) /	18 grains/100 (453.6 (glib)	cu ft	1.54E-04	7.52E-03*S	3.53E-03	8.60E-04	1.92E-04
					Park T	otals (tons/yr)	0.08	0.72	1.87	0.45	0.10

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Knoxville Tennessee NPS Horizontal Tank Tank #1							
Tank Dimensions								
Shell Length (ft):	12.00							
Diameter (ft):	5.25							
Volume (gallons):	2,000.00							
Turnovers:	0.00							
Net Throughput (gal/yr):	27,623.00							
Is Tank Heated (y/n):	N							
Is Tank Underground (y/n):	Ν							
Paint Characteristics								
Shell Color/Shade:	Gray/Medium							
Shell Condition:	Good							
Breather Vent Settings								
Vacuum Settings (psig):	-0.03							
Pressure Settings (psig):	0.03							

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

		Daily Tempe	Pressures (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure				
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avq.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	66.48	56.03	76.93	60.63	4.5963	3.7327	5.6139	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	205.56	546.61	752.17							

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	GRSM Headquarters Knoxville Tennessee NPS Horizontal Tank Tank #2							
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (y/n): Is Tank Underground (yin):	10.75 4.00 1,000.00 0.00 13,811.00 N N							
Paint Characteristics Shell Color/Shade: Shell Condition:	Gray/Medium Good							

Breather Vent Settings

Vacuum Settings (psig):	
Pressure Settings (psig):	

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

-0.03 0.03

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

		Dail Tempe	y Liquid Surf. ratures (deg F)		Liquid Bulk Temp.	Vapor	Pressures (psia	a)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	66.48	56.03	76.93	60.63	4.5963	3.7327	5.6139	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	102.78	313.35	416.13							

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Knoxville Tennessee NPS Horizontal Tank Tank #1							
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput (gal/yr): Is Tank Heated (yin): Is Tank Underground (y/n):	10.75 4.00 1,000.00 0.00 7,620.00 N N							
Paint Characteristics Shell Color/Shade: Shell Condition:	Gray/Light Good							
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	-0.03 0.03							

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

	Daily Liquid Surf. Temperatures (deg F)				Liquid Bulk Temp.	Vapor	Pressures (psia	a) Mov	Vapor Mal.	Liquid Mass Froat	Vapor Mass Fract	Mot. Weight	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	IVIIN.	IVIAX.	weight	Fract.	11401.	weight	Calculations
Gasoline (RVP 8)	All	64.53	55.39	73.67	59.79	4.4237	3.6845	5.2780	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	54.58	258.11	312.68							

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Cades Cove Maintenancel Knoxville Tennessee NPS Horizontal Tank Tank #2					
Tank Dimensions						
Shell Length (ft)	10 75					
Diameter (ft):	4.00					
Volume (gallons):	1.000.00					
Turnovers:	0.00					
Net Throughout (gal/yr):	2 825 00					
ls Tank Heated (v/n):	N					
Is Tank Underground (y/n):	N					
Paint Characteristics						
Shell Color/Shade	Grav/Light					
Shell Condition:	Good					
Breather Vent Settings						
Vacuum Settings (psig):	-0.03					
Pressure Settings (psig):	0.03					

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

		Daily Liquid Surf. Temperatures			Liquid Bulk Temp.	Vapor	Vapor Pressures (psia)			Liquid	Vapor Mass	Mol	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	(deg F)	Max.	(deq F)	Avq.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	64.53	55.39	73.67	59.79	4.4237	3.6845	5.2780	68.0000			92.00	Option 4: RVP=B, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 8)	20.23	258.11	278.34							

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification	
User Identification:	Cades Cove2
City:	Knoxville
State:	Tennessee
Company:	NPS
Type of Tank:	Horizontal Tank
Description:	Tank #3
Tank Dimensions	
Shell Length (ft):	10.75
Diameter (ft):	4.00
Volume (gallons):	1,000.00
Turnovers:	0.00
Net Throughput (gal/yr):	5,647.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig):	0.03

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

Mixture/Component	Month	Daily Tempe Avg	/ Liquid Surf. ratures (deg F) Min.	Max	Liquid Bulk Temp. (deg F)	Vapor Avg.	Pressures (psia Min.) Max.	Vapor Mol. Weight	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (RVP 8)	All	64.53	55.39	73.67	59.79	4.4237	3.6845	5.2780	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)										
Components	Working Loss	Breathing Loss	Total Emissions								
Gasoline (RVP 8)	40.44	258.11	298.55								

TANKS 4.0 **Emissions Report - Summary Format** Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company:	Look Rock Maintenance Knoxville Tennessee N PS
Type of Tank:	Horizontal Tank
Description:	lank #1
Tank Dimensions	
Shell Length (ft):	10.75
Diameter (it):	4.00
Volume (gallons):	1,000.00
Turnovers:	0.00
Net Throughput (gallyr):	2,450.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (yin):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition:	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig):	0.03

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4M Emissions Report - Summary Format Liquid Contents of Storage Tank

		Daily Tempe	/ Liquid Surf. ratures (deg F)	1	Liquid Bulk Temp.	Vapor	Pressures (psia	a)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avq.	Min.	Max.	(deq F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	64.53	55.39	73.67	59.79	4.4237	3.6845	5.2780	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)										
Components	Working Loss	Breathing Loss	Total Emissions								
Gasoline (RVP 8)	17.55	258.11	275.65								

TANKS 4M Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Knoxville Tennessee NPS Horizontal Tank AST							
Tank Dimensions								
Shell Length (ft):	12.00							
Diameter (ft):	5.33							
Volume (gallons):	2,000.00							
Turnovers:	0.00							
Net Throughput (gal/yr):	30,613.00							
Is Tank Heated (y/n):	Ν							
Is Tank Underground (y/n):	Ν							
Paint Characteristics								
Shell Color/Shade:	Gray/Light							
Shell Condition:	Good							
Breather Vent Settings								
Vacuum Settings (psig):	-0.03							
Pressure Settings (psig):	0.03							

Meteorological Data used in Emissions Calculations: Knoxville, Tennessee (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

		Daily I Tempera	Liquid Surf. atures (deg F)		Liquid Bulk Temp.	Vapor F	Pressures (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
_Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 8)	All	64.53	55.39	73.67	59.79	4.4237	3.6845	5.2780	68.0000			92.00	Option 4: RVP=8, ASTM Slope=3
TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 8)	219.26	462.48	681.74				

		Open				PM	SO ₂	NO,	CO	VOC
<u>Location</u>	<u>Campsites</u>	_ <u>Days/Yr</u>	_ <u>Camps</u>	_ <u>Fires/Yr</u>	_ <u>Tons/Yr</u>	(Ibs/yr)	_ <u>(lbs/yr)</u>	(lbs/yr)	_ <u>(lbs/yr)</u>	_(lbs/yr)
Abrams Creek	15	225	3,375	1,688	8	292	3	22	2,131	1,932
Balsam Mountain	46	150	6,900	3,450	17	597	7	45	4,357	3,950
Big Creek	12	225	2,700	1,350	7	234	3	18	1,705	1,546
Cades Cove	161	365	58,765	29,383	147	5,083	59	382	37,110	33,643
Calaloochee	27	225	6,075	3,038	15	525	6	39	3,836	3,478
Cosby	165	225	37,125	18,563	93	3,211	37	241	23,444	21,254
Deep Creek	92	210	19,320	9,660	48	1,671	19	126	12,201	11,061
Elkmont	220	255	56,100	28,050	140	4,853	56	365	35,427	32,117
Look Rock	28	165	4,620	2,310	12	400	5	30	2,918	2,645
Smokemont	<u>142</u>	365	<u>51,830</u> _	<u>25,915</u> _	<u>130</u>	<u>4,483</u>	<u>52</u>	<u>337</u> _	<u>32,731</u>	29,673
	908		246,810	123,405	617	21,349	247	1,604	155,861	141,299
					Tons/Yr	10.67	0.12	0.80	77.93	70.65

2000 ACTUAL EMISSIONS FROM CAMPFIRES AT GREAT SMOKY MOUNTAINS NATIONAL PARK

Assumption: Fifty percent of camp sites have either an evening or morning campfire

Emission	Factors (Ibs/ton)	

34.6 0.4 2.6 252.6 229

TITLE: Results of FOFEM model execution on date: 7/20/2002

FUEL CONSUMPTION CALCULATIONS

egion: Interior_West :over Type: SAF/SRM - SRM 613 - Fescue Grassland Fuel Type: Natural Fuel Reference: SMFDB 335

	FUEL CONSUMPTION TABLE						
Fuel	Preburn	Consumed	Postburn	Percent	Equation		
Component	Load	Load	Load	Reduced	Reference		
Tame	(t/acre)	(t/acre)	(t/acre)	(%)	Number	Moisture	
Litter	0.00	0.00	0.00	0.0	999		
Wood (0-1/4 inch)	0.00	0.00	0.00	0.0	999		
Toad $(1/4-1 \text{ inch})$	0.00	0.00	0.00	0.0	999	25.0	
food (1-3 inch)	0.00	0.00	0.00	0.0	999		
Wood (3+ inch) Sound	0.00	0.00	0.00	0.0	999	20.0	
3->6	0.00	0.00	0.00	0.0			
6->9	0.00	0.00	0.00	0.0			
9->20	0.00	0.00	0.00	0.0			
20->	0.00	0.00	0.00	0.0			
Wood (3+ inch) Rotten	0.00	0.00	0.00	0.0	999	20.0	
3->6	0.00	0.00	0.00	0.0			
6->9	0.00	0.00	0.00	0.0			
9->20	0.00	0.00	0.00	0.0			
20->	0.00	0.00	0.00	0.0			
uff	0.00	0.00	0.00	0.0	2	100.0	
erbaceous	1.56	1.40	0.16	90.0	221		
shrubs	0.00	0.00	0.00	0.0	23		
Crown foliage	0.00	0.00	0.00	0.0	37		
rown branchwood	0.00	0.00	0.00	0.0	38		
Dotal Fuels	1.56	1.40	0.16	90.0			

, IRE EFFECTS ON FOREST FLOOR COMPONENTS

'rest Floor omponent	Preburn Condition	Amount Consumed	Postburn Condition	Percent Reduced	Equation Number	
Duff Depth (in) in Soil Exp (%)	0.0 .0	0.0 21.9	0.0 21.9	$\begin{array}{c} 0.0\\21.9\end{array}$	6 10	

	Emissions flaming	lbs/acre smoldering	total	
"M 10	9	0	9	
'A 2.5	7	0	7	
4	2	0	2	
CO	18	0	18	
r O 2	4994	0	4994	

Co	nsumption	Duration
	tons/acre	hour:min:sec
Flaming:	1.40	00:01:00
Smoldering:	0.00	00:00:00
Total:	1.40	

CITLE: Results of FOFEM model execution on date: 7/20/2002

FUEL CONSUMPTION CALCULATIONS

legion: South_East over Type: SAF/SRM - SAF 059 - Yellow Poplar - White Oak - Northern Red Oak ?uel Type: Natural ?uel Reference: FOFEM 231

		_	FUEL C	ONSUMPTION	TABLE		
Fuel		Preburn	Consumed	Postburn	Percent	Equation	
20mpc	nent	LOAD	(t (agra)	(t (agra)	(%)	Number	Moisturo
\1alle		(l/acre)	(l/acre)	(l/acre)	(0)	NUMBEL	MOISCUIE
Litte	r	2.00	2.00	0.00	100.0	999	
good	(0-1/4 inch)	0.05	0.05	0.00	100.0	999	
good	(1/4-1 inch)	0.45	0.45	0.00	99.9	999	25.0
Mood	(1-3 inch)	0.00	0.00	0.00	0.0	999	
good	(3+ inch) Sound	0.00	0.00	0.00	0.0	999	20.0
-	3->6	0.00	0.00	0.00	0.0		
	6->9	0.00	0.00	0.00	0.0		
	9->20	0.00	0.00	0.00	0.0		
	20->	0.00	0.00	0.00	0.0		
Wood	(3+ inch) Rotten	0.00	0.00	0.00	0.0	999	20.0
	3->6	0.00	0.00	0.00	0.0		
	6->9	0.00	0.00	0.00	0.0		
	9->20	0.00	0.00	0.00	0.0		
	20->	0.00	0.00	0.00	0.0		
Duff		4.00	0.25	3.75	6.4	16	100.0
Herba	ceous	0.05	0.05	0.00	100.0	22	
Shrub	S	0.10	0.00	0.10	0.0	234	
Crown	foliage	0.00	0.00	0.00	0.0	37	
Crown	branchwood	0.00	0.00	0.00	0.0	38	
Total	Fuels	6.65	2.80	3.85	42.2		

FIRE EFFECTS ON FOREST FLOOR COMPONENTS

Forest Floor	Preburn	Amount	Postburn	Percent	Equation
Component	Condition	Consumed	Condition	Reduced	Number
Duff Depth (in)	0.8	0.1	0.7	6.4	16
Min Soil Exp (%)		0.0	0.0	0.0	14

En fla	aming smoldering	ng total
PM 10 PM 2.5 CH 4 CO CO 2 75	13 108 11 92 3 56 28 1221 722 4969	121 103 59 1249 12691

Со	nsumption	Duration
	tons/acre	hour:min:sec
Flaming:	2.17	00:13:00
Smoldering:	2.02	00:13:00
Total:	4.19	

<u>Na</u>	<u>me</u>	Acres	PM10 <u>(Ibs/yr)</u>	PM2.5 <u>(lbs/yr)</u>	CH4 <u>(Ibs/yr)</u>	CO _ <u>(lbs/yr)</u>	PM10 (lbs/acre)	PM2.5 _ <u>(Ibs/acre)</u>	CH4 <u>(lbs/acre)</u>	CO _ <u>(Ibs/acre)</u>
Cades Cove Fields Ski Mtn Pile		664 <u>4</u>	5,976 <u>436</u>	4,648 <u>371</u>	1,328 <u>212</u>	11,952 <u>4,496</u>	9 121	7 103	2 59	18 1,249
	Totals	668	6,412	5,019	1,540	16,448				
				tons/y	<u>'r</u>					
			3.21	2.51	0.77	8.22				

2000 PRESCRIBED FIRE EMISSIONS AT GRAND CANYON NATIONAL PARK

				Abrams			Cherokee	Foothills			Foothills		Deep	Bryson City
	Gatlinburg	Townsend Cherokee		Creek	Big Creek Cataloochee		Orchard	Parkway E	Cosby	Twentymile F	arkway W G	reenbrier	Creek	Fontana Rd
Jan	53,722	19,606	29,122	1,890	1,448	1,548	1,695	8,936	1,015	77	5,600	3,562	4,132	924
Feb	57,841	23,326	39,541	2,544	1,948	2,082	2,281	12,025	1,366	103	7,536	4,794	5,560	1,243
Mar	77,847	34,243	53,440	2,677	2,050	2,192	2,401	12,656	1,437	109	7,931	5,045	5,851	1,308
Apr	121,567	51,838	76,632	3,964	3,035	3,245	3,555	18,738	2,128	161	11,743	7,470	8,664	1,937
May	124,915	55,451	80,051	4,706	3,604	3,853	4,221	22,248	2,527	191	13,943	8,869	10,286	2,300
Jun	161,039	72,659	105,457	5,764	4,414	4,719	5,169	27,248	3,095	234	17,076	10,862	12,598	2,817
Jul	207,710	92,450	136,148	6,883	5,271	5,635	6,173	32,541	3,696	279	20,393	12,972	15,045	3,364
Aug	153,740	64,782	102,277	7,768	5,949	6,360	6,967	36,724	4,171	315	23,015	14,639	16,980	3,796
Sep	139,927	62,351	94,131	6,031	4,619	4,938	5,409	28,512	3,238	245	17,868	11,366	13,183	2,947
Oct	154,123	90,425	125,846	7,230	5,537	5,919	6,485	34,182	3,882	293	21,422	13,626	15,804	3,534
Nov	93,328	43,619	65,958	3,811	2,919	3,120	3,418	18,017	2,046	155	11,291	7,182	8,330	1,863
Dec	44,697	31,146	39,995	2,304	1,765	1,886	2,067	10,893	1,237	93	6,826	4,342	5,036	1,126
	1,390,456	641,896	948,598	55,573	42,558	45,496	49,842	262,720	29,837	2,254	164,646	104,728	121,471	27,159

TOTAL GREAT SMOKY MOUNTAINS NP VISITOR VEHICLES

Great Smoky Mountains NP Winter Visitor Vehicles

				Abrams			Cherokee	Foothills	Foothills				Deep	Bryson City
	Gatlinburg	Townsend Cherokee		Creek	Big Creek Cataloochee		Orchard	Parkway E	Cosby	Twentymile F	Parkway W G	reenbrier	Creek	Fontana Rd
Jan	53,722	19,606	29,122	1,890	1,448	1,548	1,695	8,936	1,015	77	5,600	3,562	4,132	924
Feb	57,841	23,326	39,541	2,544	1,948	2,082	2,281	12,025	1,366	103	7,536	4,794	5,560	1,243
Dec	44,697	31,146	39,995	2,304	1,765	1,886	2,067	10,893	1,237	93	6,826	4,342	5,036	1,126
	156,260	74,078	108,658	6,738	5,160	5,516	6,043	31,855	3,618	273	19,963	12,698	14,728	3,293

Great Smoky Mountains NP Summer Visitor Vehicles

				Abrams			Cherokee Orchard	Foothills			Foothills	Deep	Bryson City	
	Gatlinburg	Townsend Cherokee		Creek	Biq Creek Cataloochee			Parkway E	Cosby	Twentymile F	Parkway W G	reenbrier	Creek	Fontana Rd
Mar	77,847	34,243	53,440	2,677	2,050	2,192	2,401	12,656	1,437	109	7,931	5,045	5,851	1,308
Apr	121,567	51,838	76,632	3,964	3,035	3,245	3,555	18,738	2,128	161	11,743	7,470	8,664	1,937
May	124,915	55,451	80,051	4,706	3,604	3,853	4,221	22,248	2,527	191	13,943	8,869	10,286	2,300
Jun	161,039	72,659	105,457	5,764	4,414	4,719	5,169	27,248	3,095	234	17,076	10,862	12,598	2,817
Jul	207,710	92,450	136,148	6,883	5,271	5,635	6,173	32,541	3,696	279	20,393	12,972	15,045	3,364
Aug	153,740	64,782	102,277	7,768	5,949	6,360	6,967	36,724	4,171	315	23,015	14,639	16,980	3,796
Sep	139,927	62,351	94,131	6,031	4,619	4,938	5,409	28,512	3,238	245	17,868	11,366	13,183	2,947
Oct	154,123	90,425	125,846	7,230	5,537	5,919	6,485	34,182	3,882	293	21,422	13,626	15,804	3,534
Nov	93,328	43,619	65,958	3,811	2,919	3,120	3,418	18,017	2,046	155	11,291	7,182	8,330	1,863
-	1,234,196	567,818	839,940	48,835	37,398	39,980	43,799	230,866	26,220	1,981	144,683	92,030	106,743	23,866

Entrance	Exit	Vehicles	Percent	Vehicles	Length	Annual VMT
		1 224 106	50	617 009	65	40 111 370
Gatlinburg	Gatilinburg via Cades Cove	1,234,190	50	017,090	34	20 081 332
0	Cherokee	1,234,190	50	017,098		20,901,002
Townsend	Townsend via Cades Cove	567,818	50	283,909	30	8,517,270
lownoend	Cherokee	567,818	50	283,909	52	14,763,268
Cherokee	Cherokee via Cades Cove	839,940	50	419,970	125	52,496,250
Cherokee	Gatlinburg	839,940	50	419,970	34	14,278,980
Abrams Creek	Abrams Čreek	48,835	100	48,835	2	97,670
Big Creek	Big Creek	37,398	100	37,398	2	74,796
Cataloochee	Cataloochee	39,980	100	39,980	10	399,799
Cherokee Orchard	Cherokee Orchard	43,799	100	43,799	2	87,597
Foothills Parkway East	Foothills Parkway East	230,866	100	230,866	15	3,462,988
Cosby	Cosby	26,220	100	26,220	5	131,098
Twentymile	Twentymile	1,981	100	1,981	1	1,981
Foothills Parkway West	Foothills Parkway West	144,683	100	144,683	5	723,415
Greenbrier	Greenbrier	92,030	100	92,030	6	552,181
Deep Creek	Deep Creek	106,743	100	106,743	2	213,485
Bryson City	Bryson City	23,866	100	23,866	2	47,732
J J	,,					156,941,211

GREAT SMOKY MOUNTAINS NP SUMMER VISITOR VMT

GREAT SMOKY MOUNTAINS NP WINTER VISITOR VMT

Entrance	Exit	Vehicles	Percent	Vehicles	Length	Annual VMT
Catliphura	Gatlinburg via Cades Cove	156,260	50	78,130	65	5,078,450
Galinburg	Cherokee	156,260	50	78,130	34	2,656,420
Taxana and	Townsend via Cades Cove	74,078	50	37,039	30	1,111,170
Townsend	Cherokee	74,078	50	37,039	52	1,926,028
Cherokee	Cherokee via Cades Cove	108,658	50	54,329	125	6,791,125
Cherokee	Gatlinburg	108,658	50	54,329	34	1,847,186
Abrams Creek	Abrams Creek	6.738	100	6,738	2	13,476
Big Creek	Big Creek	5,160	100	5,160	2	10,320
Cataloochee	Cataloochee	5,516	100	5,516	10	55,164
Cherokee Orchard	Cherokee Orchard	6,043	100	6,043	2	12,087
Foothills Parkway Fast	Foothills Parkway East	31,855	100	31,855	15	477,818
Cosby	Cosby	3,618	100	3,618	5	18,089
Twentymile	Twentymile	273	100	273	1	273
Foothills Parkway West	Foothills Parkway West	19.963	100	19.963	5	99,816
Greenbrier	Greenbrier	12.698	100	12,698	6	76,189
Deen Creek	Deep Creek	14 728	100	14,728	2	29,456
Bryson City	Bryson City	47,663	100	47,663	2	95,326
Dryson Oity	2.9000.9	,	100	,		20,298,393

GREAT SMOKY MOUNTAINS NP VISITOR VEHICLE EMISSIONS

Summer VMT	Winter VMT
156,941,211	20,298,393

	Emissio	n Factors (g/m	ni)		Emissions (tons/yr)						
	NOx	CO	VOC	PM10		NOx	CO	VOC	PM10		
Summer	0.93	8.41	0.95	0.91		160.55	1,451.86	164.00	157.10		
Winter	1.06	12.65	0.99	0.91		23.67	282.45	22.10	20.32		
					Total	184.22	1,734.32	186.11	177.42		

Emissions (lbs/yr)

368,438 3,468,631 372,217 354,834

GREAT SMOKY MOUNTAINS NP-OWNED VEHICLE EMISSIONS

Vehicles	<u>LDGV</u> 29	<u>LDGT</u> 157	<u>LDGT2</u> 8	<u>LDDT</u> 25	— <u>HDGV</u> 15				
VMT	145,000	471,000	24,000	75,000	32,600				
	Emission	Factors (g/r	ni)			/yr)			
-	NOx	CO (voc	PM10		<u>NOx</u>	<u>CO</u>	VOC	<u>PM10</u>
LDGV	0.73	7.65	0.83	0.91		233	2,440	265	29
LDGT	0.93	10.52	1.00	0.91		964	10,901	1,036	94
LDGT2	1.00	10.52	0.97	0.91		53	555	51	4
LDDT	1.13	0.88	0.44	0.91		186	145	73	15
HDGV	4.21	8.46	1.21	0.91		302	607	87	6

14,649 1,512 1,497 Total 1,738 0.76 0.75 tons/yr 0.87 7.32

290 943 48

150 65

2000 GREAT SMOKY MOUNTAINS NP NONROAD VEHICLE EMISSIONS

		Emi	ssion Facto	rs (gm/hp-h	nr)					Emissions	(lbs/yr)	
Vehicle	No.	PM	Nox	CO	VOC	hp	load	hrs/yr	PM	Nox	co	VOC
Utility Vehicle	11	2.04	1.03	2.31	2.19	15	0.55	1100	40.7	20.6	46.1	43.7
Tractors	13	2.04	1.03	2.31	2.19	42.35	0.68	1300	168.0	84.8	190.3	180.4
Backhoe	9	2.04	1.03	2.31	2.19	77	0.55	900	171.1	86.4	193.7	183.6
Riding Mower	7	1.11	10.3	4.8	1.3	15	0.55	700	14.1	130.9	61.0	16.5
Bobcat	1	2.04	1.03	2.31	2.19	15	0.55	100	3.7	1.9	4.2	4.0
Dozer	1	2.04	1.03	2.31	2.19	77	0.55	100	19.0	9.6	21.5	20.4
Grader	4	1.06	9.6	3.8	1.43	172	0.61	400	97.9	886.4	350.9	132.0
Sweeper	4	1.7	14	6.06	1.46	30	0.68	400	30.5	251.3	108.8	26.2
Forklift	3	1.06	9.6	3.8	1.43	172	0.61	300	73.4	664.8	263.1	99.0
Front End Loader	0	1.11	10.3	4.8	1.3	77	0.55	0	0.00	0.00	0.00	0.00
Roller/Compactor	1	2.04	1.03	2.31	2.19	30	0.55	100	7.4	3.7	8.4	7.9
Chipper	3	3.99	0.9	1372	495	30	0.55	0	0.0	0.0	0.0	0.0
							Totals:	(lbs/yr)	626	2,140	1,248	714
								(tons/yr)	0.31	1.07	0.62	0.36

APPENDIX **B**

DEVELOPED AREAS IN GREAT SMOKY MOUNTAINS NATIONAL PARK

SUGARLANDS VISITOR CENTER, PARK HEADQUARTERS, RESIDENTIAL AREA, AND UTILITY AREA

TWIN CREEKS ADMINISTRATION AREA

TWIN CREEKS PICNIC AREA

LECONTE LODGE

DEEP CREEK

Cataloochee Map

 $ma_{(110)}$ t~~r ins a a'

<u>rye</u> e-Y- -

$$c', \circ T$$
 : $8/Z6/a9$
 $\sim Pt9$ (I c-'1PT E. - -t--E. \P^{1} = 1 130a-7N

BIG CREEK DAY USE AREA

BIG CREEK HORSE USE AREA

OCONALUFTEE VISITOR CENTER, MAINTENANCE YARD, AND RESIDENTIAL AREA

ELKMONT CAMPGROUND

BALSAM MOUNTAIN CAMPGROUND

Legend ® Ranger station © Hiking trail Food service Restrooms O Parking ® Amphitheater Interpretive ® Horse trail ® Tra^{iler} sanitary station O Campground Picnic area @ C9t~ppgground shefter

BUILDING LEGEND

- NO. USAGE
- Administration 1
- 2
- Dormitory A Night Staff Office 2A
- Dormitory B Dormitory C Dormitory D 3
- 4
- 5
- 6 Dormitory E
- Education 7
- 8 Counseling/Orientation
 - Dining Hall
- 9 Works 10
- Vocational Training 11 12
- Laundry/Paint Storage Training Kitchen 13
- Supply Dispensary Gymnasium 14
- 15
- 16
- **Recreational Storage** 17
- Vocational & Storage 18
- Flammable Storage 19

<u>cccc</u> tee 100 n 100 <u>CCCC</u>

SCALE IN FEET

<u>2</u>00

APPENDIX C

AIR QUALITY MONITORING SITES AND DATA IN GREAT SMOKY MOUNTAINS NATIONAL PARK

- A NOLAND DIVIDE WATERSHED (5,700') precipitation chemistry, meteorology
- EPA MOUNTAIN ACID DEPOSITION PROGRAM AT CLINGMANS DOME (6.660') NDDN and cloud chemistry/deposition Α
- GASEOUS POLLUTANT MONITORING STATION (NPS, TVA, TN, NC and NOAA)
 - 1. Look Rock (2,700') 03, SO2, CO, NO-NOx, PM 25, visibility (camera, nephelometer, IMPROVE), NDDN, meteorology

 - Look Rock (2,700) 03, SU2, CO, NO-NOX, PM 25, Visibility (camera, heprelometer, IMPROVE), NDDN, r
 Cades Cove (1,850') 03, UV-B, meteorology
 Cove Mountain (4,150') 03, 03 Flux, SO2, CO, NO-NOy, PM25, hydrocarbons, IMPROVE, meteorology
 Clingmans Dome (6,670') 03, meteorology
 Bryson City (1,900') 03, SO2, PM 25
 Cherokee (2,100') CO, PM 25
 Barnett Knob (4,700') 03, visibility (camera), meteorology
 The Durbane (4,700') 03, visibility (camera), meteorology

 - 8. The Purchase (4,900') 0₃, meteorology

2. Clingmans Dome (6,670') 3. The Purchase (4,900') Large Lakes, Rivers REMOTE AREA WEATHER SYSTEM (RAWS) - meteorology Streams 1. Indian Grave (2,600') 2. Cherokee (3,380') Roads PARK WEATHER STATION - temperature, precipitation Trails 1. Cades Cove (1,850') 2. Park Headquarters (1,500') Cities, Towns 3. Mt. LeConte (6,500') 4. Newfound Gap (5,040') 5. Oconaluftee (2,100') State Boundary

2002 Air Quality Monitoring Program at Great Smoky Mountains National Park, Tennessee/North Carolina

Site Name/Location/Cooperators/Start Year	Parameter(s)	Sampling Frequency/Duration
LOOK ROCK-2700' (Blount Co, TN, Ridge) NPS (1984)	03, meteorology	Hourly
NPS (1984)	PM _{2.5} /PM,o	24-hour speciated PM (every day)
NPS, EPA, TN (2002)	$PM_{2.5}$ (mass only) ³	Hourly (TEOM) planned for 2002
NPS (1993)	Nephelometer (Bs $_{at}$) ²	Hourly, 15-minute
NPS (1998)	Dry deposition ⁴	Weekly average (Tue-Tue)
TVA	Speciated M2 5°	Hourly (real-time PM speciation)
CARES COVE-1850 (Blount Co, TN, Valley) NPS, NWS(1994)	O_3 , meteorology" ⁶	Hourly', min/max temp, precip. ^b
NPS, EPA (1996)	UV-B ⁷	Hourly
COVE MTN -4150' (Sevier Co, TN, Ridge) NPS, NOAA (1986)	03, meteorology'• ^{\$} '	Hourly
NPS, TVA (1994)	0 ₃ , SO ₂ , CO, NO-NO,, '	Hourly, 5-minute
NPS, TVA (2000)	РМ25, ^{В~} аt ⁸	Seasonal (daily PM; Hourly Bs _c a,
CLINGMANSDOME-6610'(Sevier Co, TN, Ridge) NPS (1993)	O ₃ , meteorology	Hourly
NPS, EPA, TVA (1998)	Dry deposition	Weekly average (Tue-Tue)
NPS, EPA, TVA (1994)	Cloud deposition	Daily bulk
TVA, NPS (2002)	Mercury deposition ¹⁰	Weekly bulk (Tue-Tue)
UT, W. Carolina U., Emory U. (2002)	PM _{2.5} ' (mass only)	Hourly (portable continuous)
ELKMONT - 1850' (Sevier Co, TN, Valley) NPS (1980)	Wet deposition ¹²	Weekly bulk (Tue-Tue)
NPS, TVA (2002)	Mercury deposition ¹⁰	Weekly bulk (Tue-Tue)
HEADQUARTERS - 1500' (Sevier Co, TN, Valley) NWS, NPS	Meteorology ^{&}	Min/max temp, daily precipitation
MT. LECONTE - 6300' (Sevier Co, TN, Ridge) NWS, NPS	Meteorology ^{&}	Min/max temp, daily precipitation
OCONALUFTEE- 2000' (Swain CO, NC, Valley) NWS, NPS	Meteorology ^{&}	Min/max temp, daily precipitation
PURCHASE KNOB - 4900'(Haywood Co, NC, Ridge) NC, NOAA	(1995) 03 ¹³ , met"	Hourly
BARNETT KNOB - 4700' (Jackson Co, NC, Ridge) NC (1998)	O_3 , meteorology ^{13,15}	Hourly
BRYSON CITY - 1900' (Swain Co, NC, Valley) NC (1995)	03 ¹³	Hourly
NC (1998)	$PM_{2.5}/PM_{10}^{-13}$	24-hour speciated PM (3 ⁻¹ day)
NOLAND DIVIDE-5700'(Swain Co, NC, Ridge) NPS/UT(1991)	Wet/total deosition	Weekly bulk (Tue-Tue)
NPS, UT (2000)	Meteorology	Hourly
NEWFOUND GAP - 5020' (Swain Co, NC, Ridge) UT (2002)	O_3 , meteorology	Hourly (portable), partial day
UT, W. Carolina U., Emory U. (2002)	PM2 5 (mass only)	Hourly (portable), partial day
NWS, NPS	Meteorology ^{&}	Min/max temp, daily precipitation

1 Part of the NPS/GRSMA ir Quality Monitoring Network

Meteorological measurements include wind speed/direction, relative humidity, temperature, solar radiation, and precipitation 2 Part of the Interagency Monitoring of Protected Visual Environments (IMPROVE)

- Speciated particle measurements include filter-based SO₄ NO₃ NH₄, organics, elemental carbon, soil, ions, PM10 3 Planned TEOM with NPS, EPA, TN
- 4 Part of the National Dry Deposition Network (NDDN)
- Measurements include filter-based SO₂, SO₄, NO₃, NH₄ HNO₃
- 5 Possibly planned with WA, Southern Company, DOE, EPRI, and NPS
- 6 Part of the National Weather Service (Remote A rea Weather Stations)
- 7 Part of the Park's Research and Intensive Monitoring of Ecosystems Network (PRIMENet)
- 8 Part of the NPS and WA Enhanced Gaseous Pollutant Monitoring
- 9 Part of the NPS, EPA, TVA Cloud-water Monitoring Program/ Clean Air Status and Trends Network (CASTNet) Measurements include SO₄, NO₃, NH₄, it, Ca, Mg, K, Cl, cloud frequency, liquid water content, particle size
- 10 Part of the Mercury Deposition Network (MDN)
- 11 University of Tennessee, Western Carolina University, and Emory University Adult Day-Hiker Health Study

12 Part of the National Atmospheric Deposition Program (NADP) Measurements include SO₄, NO₃, NH₄, II⁺, inorganic N, pH, conductivity, major cations (Ca, Mg, K), precipitation volume

- 13 Part of the State of North Carolina Air Quality Monitoring Program (available in AIRS)
- 14 Part of National Oceanic and Atmospheric Administration (NOAA) East Tennessee Met Network
- 15 Part of the Cherokee Tribal Utilities Air Quality Monitoring Program

Prepared by Jim Renfro, Air Resource Specialist, National Park Service, Great Smoky Mountains National Park 1314 Cherokee Orchard Rd., Gatlinburg, Tennessee 37738, phone: 865/436-1708, fax: 865/430-4753, email: <u>Jim renfro@nps.gov</u> [Monitoring Info2.doc]

Number of Days Exceeding 8-hour Ozone Standard

at Great Smok, Mountains National Park

