Concepts and Values in organic agriculture relevant to plant breeding techniques

Edith T. Lammerts van Bueren
Organic Plant Breeding
Wageningen University & Louis Bolk Instituut,
The Netherlands, OSA 2008

Plant breeding techniques

OA and its certification system are process based.

So, also the breeding process should comply with OA principles

> How to assess, what criteria?

Outline of this presentation

- Societal context of ethical discussions in Europe
- Concept of naturalness
- Concept of integrity of plants
- Consequences for organic plant breeding

Developments in EU Organic Agriculture

- Ban on GMOs
 - required underlying viewpoints and criteria to assess also other breeding techniques on their compatibility for organic plant breeding (*in-vitro* techniques, etc)
- New generation of GMO techniques (cis- or intragenesis, etc).
 - How to assess them for OA? Product or process based?

Ethical discussions in agriculture in NL

- 1981 intrinsic value of animals became an issue in Dutch politics
- 1992 concept of integrity of animals was introduced;
- 1993 State Commission explored ethical aspects of plant biotechnology;
- 2007 Animal Party in Dutch parliament!

Societal context

There is an ongoing shift in society towards a biocentric bio-ethical frame work of action:

- Anthropocentric
- Zoocentric
- Biocentric
- Ecocentric

- (only) people are ethically relevant
- also higher animals
- all living entities
- including ecosystems

Ethically relevant

Ethically relevant implies, that:

respect for their 'otherness', their dignity, their autonomy, or their intrinsic value is taken into account.

And that has consequences for the way of interference/handling in agriculture.

Concept of naturalness

Organic agriculture claims to be more 'natural' than conventional agriculture.

The concept of naturalness includes (Verhoog et al., 2002):

- non-chemical approach;
- agro-ecological approach;
- integrity of life approach.

Non-chemical approach

- Soil bound production, no artificial growing media (no hydroponics, no *in-vitro* culture);
- Organic fertilizers
 (no mineral fertilisers; no synthetic growth hormones);
- Organic crop protectants (no synthetic-chemical pesticides);
- Organic seed treatments (no post-harvest chemical treatments);
- Mechanical weed management (no chemical-synthetic herbicides).

Agro-ecological approach

- Managing a farm as an agro-ecosystem
- Striving for a closed nutrient cycle
- Stimulating a high degree of internal self regulation
- Exploiting and supporting biodiversity at all levels:
 - farm
 - crop
 - between and within varieties.

Integrity of life approach (1)

- Integrity of life is the operational dimension of the concept of intrinsic value (value or worth of a living entity as such vs the extrinsic/instrumental value),
- Integrity of cultivated plants refers to their inherent nature, wholeness, completeness, species-specific characteristics, and their being in balance with their (organically farmed) environment.

Integrity of life approach (2)

In organic chicken husbandry respect for integrity of life leads to:

- no debeaking
- free range,

so that chicken can act according their natural behavior.

Integrity of plants

Integrity of life on four levels:

- life-typic autonomy, self-regulation& self-reproduction ability
- plant-typic ability to adapt to & interact with its environment
- genotypic reproductive barriers
- phenotypic balanced crop and seed production

Assessment of breeding techniques for OA

Are breeding techniques in compliance with the concept of naturalness?

Plant level – yes;

Breeding beyond whole cell level: no!

Breeding directly at DNA level: NO!

Applying criteria to plant breeding techniques (1)

Organization level	Approaches (partly cumulative)		
	Non-	Agro-	
	chemical	ecological	Integrity
Plant/crop level	+	++	+++
(Organized) cell level	+ or –	+ or	
DNA level	_		

Applying criteria to plant breeding techniques (2)

Organization level	Approaches (partly cumulative)		
	Non-	Agro-	
	chemical	ecological	Integrity
Plant/crop level	+	++	+++
(Organized) cell level	+ or –	+ or	
DNA level	_		

Consequences for IFOAM draft standards (1)

- Breeding, maintenance and propagation under organic conditions;
- Only those techniques that allow crossing, pollination, fertilization and seed formation on the whole plant itself under organic growing conditions;
- Respect for natural crossing barriers;
- No in-vitro techniques, no protoplast fusion, no GMOs;
- No male sterility (cms) without restorer genes;
- No patents on life, and respecting farmers' and breeders' rights.

Novel techniques: Cis- or intragenesis = GM=no

Trans-gene Vector

Cis-gene Vector

T-DNA vector

T-DNA vector

Plant-derived T-DNA transfer fragments

Plant-derived selection marker

"Cis" gene

courtesy Michel Haring

Cisgenesis and EU definition of GMO

EU regulation on GMOs is both product and process based!

Only two categories: GMO and non-GMO

regulated (transgenesis)

non-regulated (protoplastfusion, mutagenesis)

Cisgenesis and EU definition of GMO

- EU regulation on GMOs is both product and process based!
- Only two categories: GMO and non-GMO

regulated (transgenesis)

non-regulated (protoplastfusion, mutagenesis)

including cisgenesis

New GMO categories?

Rommens et al., Trends in Plant Science 12 (9): 377-432

Completely new variety assortment?

The degree of overlap between conventional and organic suited varieties depends on:

- the crop requirements
- applied breeding techniques

conventional varieties

organic varieties

Development over time

Time	Activity
Current	no use of gmo's
	no chem. seed treatments
Short term	organic propagation
	org. seed treatment
Mid term	organic variety-testing
	including ecological criteria
Long term	in conv. breeding programmes whole breeding cycle organic incl. concept of integrity

Product

conv. varieties, untreated seeds

conv. varieties, org. propagation

low-input varieties org. propagation

organic varieties organic seeds

Future?

Pluralism in society: different approaches

- Regulations, norms, standards are derived from underlying values.
- Evaluation of values from time tot time, see IFOAM process of Principles 2005.
- Intrinsic value and respect for integrity of living entities only makes sense from a holistic point of view.

Conclusions

- OA is in development and requires improved varieties better adapted to the ecological <u>and</u> ethical principles of OA.
- OA challenges science to support the development of alternative, <u>plant-worthy</u> breeding concepts and strategies!

