Integrated Environmental Assessment and Management — Volume 3, Number 3—pp. 364-372
364 © 2007 SETAC

How Well Can We Predict the Toxicity of Pesticide Mixtures to
Aquatic Life?
Jason B Belden,*1 Robert J Gilliom,§ and Michael J Lydy#

tDepartment of Environmental Studies, Baylor University, Waco, Texas 76798, USA
8§US Geological Survey, Sacramento, California 95819, USA
tFisheries and lllinois Aquaculture Center and Department of Zoology, Southern lllinois University, Carbondale, lllinois 62901, USA

(Received 6 September 2006; Accepted 11 February 2007)

ABSTRACT

Results of published pesticide mixture toxicity experiments conducted with aquatic organisms were compiled and
evaluated to assess the accuracy of predictive mixture models. Three types of models were evaluated: Concentration addition
(CA), independent action (lA), and simple interaction (SI). The CA model was the most often tested (207 experiments),
followed by SI (59) and IA (37). The reviewed experiments are listed in the Supplemental material to provide a resource for
future investigators. The predictive accuracy of each model was quantified for each experiment by the model deviation ratio
(MDR), which was calculated by dividing the predicted toxicity by the observed toxicity. Eighty-eight percent of all
experiments that evaluated the CA model had observed effective concentrations within a factor of 2 of predicted values
(MDR values from 0.5-2.0). The median MDR was 1, about 5% of MDRs were less than 0.5, and about 5% were greater than
2, indicating unbiased estimates overall. The predictive accuracy of CA and IA models was influenced, however, by the
different modes of action (MOA) of the pesticides. For experiments with pesticides with the same MOA, CA more accurately
predicted effective concentrations for more experiments compared to IA, which tended to underpredict toxicity. The IA
model was somewhat more accurate than the CA model for most mixtures with different MOAs, but in most cases there
were relatively small differences between the models. Additionally, 80% of SI experiments had an MDR value below 2.0
despite a bias towards experiments that are likely to have an interaction. Thus, results indicate that the CA model may be
used as a slightly conservative, but broadly applicable model with a relatively small likelihood of underestimating effects due
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INTRODUCTION

Concerns over the potential of combined effects from co-
occurring pesticides in aquatic systems have lead to numer-
ous studies of pesticide mixtures during the past 30 y.
Assessment of streams throughout the United States and
Europe showed that pesticides frequently are detected and
most often occur in mixtures (Gilliom et al. 1999; Chevre et
al. 2006; Gilliom et al. 2006). Toxicity studies have
examined the effects of mixtures of multiple pesticides
following laboratory exposures (references listed throughout
text and Supplemental material), evaluated mixtures at a
mesocosm level (Hoagland et al. 1993; Fairchild et al. 1994;
Carder and Hoagland 1998; Cuppen et al. 2002; Boone and
James 2003), and evaluated pesticides as potential toxic
components of more complex mixtures that include other
types of contaminants (Norberg-King et al. 1991; Amweg et
al. 2006). This study focuses on the effects of mixtures of
pesticides, recognizing, however, that pesticides represent
only 1 class of stressors that organisms may be exposed to in
the environment.

Due to the large number of different pesticide mixtures
that are present in the environment (Gilliom et al. 2006), it
is not feasible to test toxicologically each potential mixture.
Thus, robust predictive models are needed that can estimate
the toxicity of mixtures with acceptable accuracy (Vighi et
al. 2003; Lydy et al. 2004). Furthermore, in order for
mixture models to be useful in ecological risk assessments,
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knowledge of the uncertainty and potential bias of the
models is necessary. Although nearly all experiments
reviewed for this study tested a predictive model and
provided a measure of deviation from that model, many
different techniques and approaches were used. To compare
results among studies, predictive models must be grouped on
the basis of general experimental design, and a uniform scale
must be used to express deviations between predictions and
observations.

The primary objective of this study was to evaluate the
accuracy of toxicity models for predicting the toxicity of
pesticide mixtures. Although the predictive accuracy of
specific models was discussed in nearly every publication of
mixture studies and in previous reviews (Deneer 2000; Lydy
et al. 2004), the quantitative measures that have been used
are inconsistent and difficult to compare among studies. In
the present study, a uniform approach was used to evaluate
the predictive accuracy of mixture models across exper-
imental designs and terminologies. A 2nd objective was to
provide a readily accessible compilation of published
pesticide mixture experiments and the findings of individual
experiments that evaluated mixture toxicity models.
Although 2 previous reviews addressed pesticide mixtures
in aquatic systems, Deneer (2000) addressed only concen-
tration addition (CA) models, Lydy et al. (2004) focused
primarily on the broad issues regarding the future regulation
of pesticide mixtures, and neither developed an accessible
database for specific pesticide mixtures and specific aquatic
organisms.
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METHODS: DEVELOPMENT OF A PESTICIDE
MIXTURE DATABASE

Identification of experiments

Manuscripts that describe experiments with pesticide
mixtures were identified from previous reviews (Deneer
2000; Altenburger et al. 2003; Lydy et al. 2004), searches of
bibliographic databases (such as Web of Science, Thomson
Scientific and Healthcare, Stamford CT, USA; Agricola, US
Department of Agriculture, Washington DC, USA; First
Search/WorldCat, HW Wilson, Bronx, NY, USA), and
through cited literature searches (Web of Science) of key
manuscripts that have been cited heavily (Faust et al. 1993;
Pape-Lindstrom and Lydy 1997; Altenburger et al. 2000;
Backhaus et al. 2000; Faust et al. 2000). Only mixture
experiments that were conducted with mixtures of active
ingredients were included. Studies that evaluated active
ingredients applied in pure form versus applied in formula-
tions were not included in the database. Testing of formula-
tions that contain adjuvants requires each individual adjuvant
to be tested and included in the predictive model. Addition-
ally, specific criteria were used to avoid biasing the database
with similar experiments from a single study. For example,
experiments conducted with a particular pesticide combina-
tion and species were included if they reflected independent
experiments and were reported in different manuscripts, but
duplicate experiments in the same manuscript were entered
as a single entry. Second, within a manuscript, if multiple
ratios of the same pesticides were evaluated (such as in
isobole studies), only the mixture closest to equipotent, as
calculated from the median lethal concentration, was
considered. However, if different ratios were used to test
different predictive models, both models were represented in
the database. Similarly, if several concentrations of a
compound were tested for potentiation, only the highest
concentration was entered as a worst-case scenario. Selection
of 1 ratio per experiment prevented biasing the database
towards experiments that used multiple ratios, as the primary
synthesis of the database was based on pesticide combinations
and species tested and not on differences in results based on
ratios. Third, if a single experiment was used to evaluate 2
predictive models, the data were entered twice, once for each
model. Finally, the experiment had to be conducted in a way
that a model deviation ratio (MDR) could be calculated.

Information collected for each experiment

Several key types of information were identified for each
experiment, including pesticides involved, species tested,
higher taxonomic classification, endpoint of the toxicity test,
duration of the toxicity test, the model tested (CA,
independent action [[A], or simple interaction [SI]), the
MDR value, reports of significant deviation from model, and
the reference of the manuscript. Broader quality-control
considerations, such as the reliability of measured concen-
trations and the adequacy of experimental controls, were not
included in the current evaluation.

A necessary step in assessing pesticide mixtures is defining
specific classification schemes. Pesticides can be classified in a
variety of ways. In the most general sense, they can be
organized by the type of pest targeted, defined as pesticide
use groups, such as insecticides and herbicides. In a more
detailed framework, pesticides can be grouped into classes of
compounds that have similar chemical structures and modes
of action. The term mode of action (MOA) is defined as a
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series of key processes that begins with the interaction of a
pesticide with a receptor site and proceeds through opera-
tional and anatomical changes in an organism that result in
sublethal or lethal effects (USEPA 2000). For this study, both
general (based on major pesticide use groups) and specific
(based on MOA) classification schemes were used.

Classification of predictive models

Methods and terminology used in mixture studies have
changed steadily during the time frame that the reviewed
studies were conducted (1973 to 2006). Despite such changes,
most of the studies could be placed within the general the-
oretical framework proposed by Hewlett (1969). Within this
framework, toxicants may act independently or jointly and
may or may not interact. On the basis of these categories, each
experiment was placed in 1 of 3 groups, CA, IA, or SI, ac-
cording to the type of predictive model that was used as a test.

The 1st group of experiments is based on CA, the concept
that when toxicants have a similar MOA, they act jointly in an
additive manner after normalizing for potency (reviewed by
Altenburger et al. 2003). Following normalization for
potency, the concentrations of all toxicants can be summed
to obtain a value that can be used to predict toxicity.
According to the CA model, the total concentration of a
mixture at which a certain effect is expected can be calculated
using the following equation (Faust et al. 2000):

-1
~ pi

where ECx,,;, is the total concentration of the mixture that
causes x effect; p; indicates the proportion of component i in
the mixture; n indicates the number of components in the
mixture, and ECx; indicates the concentration of component i
that would cause x effect.

In practice, many experiments in the CA group have used a
normalized toxicant concentration scale (toxic units [TU])
that allows addition of the concentrations of each toxicant.
TUs can be calculated as follows:

sumTU = - (2)
; ECQQ

where C; is the exposure concentration of the ith chemical in
the mixture and EC,; and the other variables are defined as
stated for Equation 1.

The 2nd group of experiments is based on IA, the concept
that toxicants that have dissimilar MOA act independently.
Conceptually, this model is a statistical approach to predict
the likelihood that 1 of multiple possible events will occur
(reviewed by Altenburger et al. 2003). Accordingly, the effect
of the total mixture concentration can be predicted by the
expected effect of each component, using the following
equation (Faust et al. 2000):

n

E(cmir) =1 = JJ(1 - E()) (3)

i1
where E(c,i,) is the total effect of the mixture and E(c;) is the
effect expected from component i. Although special cases
have been described with complete or no correlation of
sensitivity within the population (resulting predictive toxicity
ranging from the effect of the most toxic component to
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straight effect addition), this information rarely is known and
thus is not useful in an a priori evaluation of toxicity.

The 3rd group of experiments is based on the concept of
interaction. Each of these experiments was designed such that
1 of the toxicants was evaluated at a concentration well below
that necessary to add to toxicity through either CA or IA
models. Because only interaction toxicity is tested, the
experiments are referred to as SI. An interaction is defined
as 1 of the toxicants influencing the toxicity of the other
toxicant through an indirect mechanism. The most studied
examples of interaction in ecotoxicology are changes in
toxicokinetics. For example, atrazine has been shown to
increase the transformation rate of organophosphate insecti-
cides; thus increasing toxicity (Belden and Lydy 2000,
reviewed by Lydy et al. 2004), and organophosphate
insecticides (OPs) have been shown to inactivate esterase,
resulting in reduced detoxification of other OPs and pyreth-
roids insecticides, which results in greater toxicity than would
be expected (Denton et al. 2003; Belden and Lydy 2006).

Although specific examples have been well studied, models
to predict interactions are not available. In most cases,
interactions are not tested for directly, but are discovered as
deviations from CA or IA models. However, in some studies,
an alternative study design is used in which one of the
toxicants is applied at a concentration that is too low to
appreciably influence overall toxicity according to either CA
or IA models. For example, in a recent study, chlorpyrifos was
evaluated as an interactive agent when applied with esfenval-
erate at a concentration of chlorpyrifos that was below an
EC1 value (Belden and Lydy 2006). This type of design
typically is employed to evaluate potential interactions, which
sometimes is referred to as potentiation or synergism because
most experiments tend to focus on higher-than-expected
toxicity. Because interaction currently cannot be predicted,
the assumed model is the concentration-response curve of the
toxicant that is expected to cause toxicity (Belden and Lydy
2006).

Size and breadth of database

Forty-five published manuscripts detailing 303 experiments
were identified that tested predictive mixture models and
contained sufficient data for calculating MDR values. Sum-
mary data from these experiments are compiled in the
Supplemental Material section to provide a resource for
investigators seeking empirical results for specific mixtures.
From the identified experiments, 207 were classified as CA
(Supplemental Tables 1-3), 37 as IA (Supplemental Table 4),
and 59 as SI (Supplemental Table 5). References for these
manuscripts are listed in the Supplemental Tables. The
number of experiments retained in the database is similar to
the number reviewed by Deneer (2000), who identified 26
studies involving 202 mixture experiments all reportedly
based on CA. The current study included 37 studies involving
207 mixture experiments for CA. The reduction in experi-
ments relative to overall studies results from the different
acceptance criteria that were used.

Further delineation of experiments indicated that most
studies tested pesticides from the same pesticide use group
(i-e., all herbicides or all insecticides) with 113 and 17 experi-
ments conducted for CA and IA, respectively (Supplemental
Tables 1 and 4). Mixtures of pesticides from different use
groups (i.e., an herbicide with an insecticide) ranked 2nd in
the number of experiments conducted, with 64 and 13
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experiments conducted for CA and IA, respectively (Supple-
mental Tables 2 and 4). The least frequent scenario was the
testing of compound mixtures with the same MOA, with 30
and 7 experiments conducted for CA and IA, respectively
(Supplemental Tables 3 and 4). Studies testing SI were not
separated based on MOA, because the basis for the
interaction is generally through a secondary affect on the
organism.

For nearly all studies conducted using CA and SI models,
MDR values could be calculated because the studies were
based on effective concentrations and changes in effective
concentrations (see later description of MDR). However, over
50 other studies evaluating mixtures using IA or simplified
effect addition models only evaluated shifts in effect (e.g.,
Macek 1975; Hayes et al. 2006), which did not allow for
calculation of an MDR and resulted in exclusion of the study
from the database. Understanding changes in effect has
limited utility because risk assessments are conducted on
the basis of effective concentrations. In order to test IA in a
way that MDRs can be calculated, the method design must
allow predicted and observed effective concentrations, such as
median lethal concentration, to be calculated. Examples of
this approach are contained in Belden and Lydy (2006),
Cedergreen and Striebig (2005), and Faust et al. (2000).

The study designs and quality control varied among the
experiments included in the compiled database. All studies
were presented in peer-reviewed publications. However,
because the current study did not include evaluations of
measured versus nominal concentration or on other standard
quality-control protocols, users of the data should refer to the
original references for further details. An additional factor
that was not evaluated was whether or not individual toxicity
tests were conducted concurrently within each mixture study.
If tests were not conducted concurrently, shifts in health of
the test organisms or other factors may influence the outcome
of the study. Few studies that were reviewed directly stated
that tests were conducted concurrently.

The reviewed experiments tested many different pesticides
and a variety of test organisms. One hundred twenty seven
active pesticide ingredients were tested (listed in Supplemen-
tal Table 6). Several pesticides have been tested extensively.
For example, atrazine was a component of a mixture in 17%
of the experiments (50 of 303) and chlorpyrifos was a
component in 15% (44 of 303). However, several combina-
tions that are frequent contaminants in surface water have not
been tested at all. For example, a recent study investigating
pesticide occurrence in streams near corn/soybean cropping
systems found that triazine and acetanilide herbicides form
combinations that are of the greatest toxicological concern in
regard to green algae and duckweed endpoints (Belden et al.
2007). Despite the predictability of their co-occurrence due
to applications in the same crop settings, combinations of
these groups have not been studied extensively. Prioritization
of pesticide mixtures using systematic strategies based on
occurrence and potential toxicity can be used to identify
needs and priorities for future testing (Belden et al. 2007).

Several higher taxonomic groups, including fish, amphib-
ians, bivalves, insects, crustaceans, green algae, and duck-
weed, have been used for mixture toxicity tests (Table 1);
however, a few species have dominated testing. For example,
Scenedesmus vacuolatus (green algae), Lemna minor (duck-
weed), and Chironomus tentans (aquatic invertebrate) ac-
counted for 27%, 19%, and 18% of experiments, respectively
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Table 1. The number of experiments testing concentration
addition (CA), independent action (IA), and simple inter-
action (SI) models for each taxonomic group. n = 303

Predictive model

Higher taxonomic group CA 1A SI

Amphibia 4 — 3
Bivalvia 2 — —
Chlorophyta 87 10 —
Crustacea 20 4 14
Insecta 16 1 39
Liliopsida 38 19 —
Osteichthyes 38 1 3

(Supplemental Table 7). L. minor was the only vascular plant
tested. Overall for CA experiments, 77% of experiments were
conducted with 1 of 5 species and 90% of experiments were
conducted with 1 of 10 species. For IA, other than 2
community level tests (photosynthesis inhibition as end-
point), all other tests were conducted on 7 species, with the
majority of experiments utilizing green algae and duckweed
(37 total tests, Supplemental Table 7). In SI experiments,
nearly all work has been based on triazine herbicide
potentiation of insecticides. Additionally, nearly all of these
studies have been conducted on 1 of 2 organisms—the insect
Chironomus tentan and the crustacean Hyalella azteca
(Supplemental Table 7).

Endpoints used in most of these studies were acute in
nature, with mobility or lethality evaluated for animals and
simple short-term growth measurements evaluated for plants.
Generally, only these few commonly measured endpoints
were evaluated for most studies. Although experimental
evidence with duckweed has suggested that selection of
specific endpoints can greatly influence the results of
mixtures studies (Cedergreen and Siebig 2005), resource
limitations usually limit mixture studies. For example, most
mixture experiments involve evaluation of at least 50
experimental units; thus, it often is not deemed feasible to
run long-term studies. In addition, nearly all tests have been
performed using single species and only a few studies have
attempted to use CA models to predict toxic response at a
community level (Vighi et al. 2003; Arrhenius et al. 2004).
Further testing is needed to evaluate predictive models using
chronic and multiple species designs.

Assessment of model accuracy

Several methods have been developed to express the
deviation of observed toxicity from the toxicity predicted
by models. Generally, approaches either use a linear scale that
allows for even distribution of values above and below
predicted or they use a simple ratio. In this study, emphasis
has been placed on a simple ratio, the MDR, for expressing
deviation throughout the dataset. MDR is defined as

Expected
Observed “)

where Expected is the effective concentration of the mixture
that would be predicted by the model and Observed is the

MDR =
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effective concentration for the mixture obtained from toxicity
testing (Belden and Lydy 2006). In the current study, the
effective concentration to 50% of the population (EC50) or
lethal concentration to 50% of the population (LC50) were
used as the effective concentration. The MDR values were
chosen as the reference scale because of the simplicity of
adjusting values from predictive models. Risk assessors can
simply divide the level of potential toxicity that is predicted
by a mixture model by the MDR to adjust empirical data for
the mixture of interest. If a linear scale is needed for better
visualization of model fit, MDR values can be plotted on a log
scale to achieve linearity. Similarly, in order to facilitate
discussion, MDR ranges also are expressed as factors of the
predicted values. Thus, observed values that fall within a
factor of 2 of the predicted value (2X) are those with MDR
values between 0.5 and 2.0.

The MDR values were obtained from the experiments
reviewed for this study via the following approaches, depend-
ing on the information reported for each experiment.

Approach 1: Used as reported in the experimental results as
MDR, interactivity ratio, or synergistic ratio—Interactivity
ratios (Denton et al. 2003) and synergistic ratios (Belden
and Lydy 2000) are equivalent to the MDR and the numbers
are used directly as are reported MDR values (Belden and
Lydy 2006).

Approach 2: Computed from observed and predicted values—
If experiments provide the expected and observed effective
concentrations, then MDR values can be calculated using
Equation 4 (Altenburger et al. 2000).

Approach 3: Computed from TU values—Observed TU
values have been calculated by determining the TU value at
which 50% effect occurred during experimentation (Eqn. 3;
Pape-Lindstrom and Lydy 1997). The expected value would
be 1 TU. The reciprocal of the TU value is equivalent to
MDR.

Approach 4: Computed from the additive index reported for
the experiment—The additive index ([AI]; Marking and Mauck
1975) is similar to the TU in the initial calculation: A, /A; +
B,./B;=S, where A and B are LC50 values for toxicants in the
mixture (m) and individually (I). Thus, S is basically a toxic
unit from Approach 3. However, the additive index further
transforms S as follows:

If S <1, then the AL=1/S-1.0

IfS > 1, then the Al = S(=1) + 1

Thus, if the Al is negative,

MDR = 1/(Al - 1)(~1)
If the Al is positive,
MDR = Al +1

Approach 5: Computed from the isobologram approach or
other approaches that provide LC50 for each toxicant and for a
mixture of known ratio—The ratio of toxicants in the mixture
is used to divide the LC50 of the mixture into individual
concentrations for each component. The individual concen-
trations then can be transformed into TUs based on the
individual LC50 values. Approach 3 then can be used to
calculate the MDR. Example experiments include Norberg-
King et al. (1991) and Cedergreen and Streibig (2005).

For some studies, the above information was not available
and MDR values could not be calculated. These studies were
not used in calculations presented within the study.
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Figure 1. The cumulative distribution of model deviation ratios (MDR) for all
207 concentration addition experiments. An MDR of 1.0 indicates perfect fit
to the model. Greater than 1 indicates greater toxicity than expected, and less
than 1 indicates less toxicity than expected. The double-lined box delineates
values that are within a factor of 2 from the predictive model. Each triangle
indicates an MDR value.

RESULTS: ANALYSIS OF MODEL PREDICTIONS
CA and IA

Model deviation ratios for CA experiments are summarized
in Figures 1 and 2 and provided individually in the
Supplemental Tables. In all Figures, the MDR range from
0.5 to 2.0 is indicated. MDR values within this range indicate
that observed values were within a factor of 2 of predicted
values. Although arbitrary, the range provides a benchmark
for discussing the accuracy of the models. Considering all
experiments evaluating the CA model, regardless of MOA
and pesticide target groups, 88% had observed effective
concentrations within the MDR range of 0.5 and 2.0. The
median MDR was near 1, only about 5% of MDRs were less
than 0.5, and about 5% were greater than 2, indicating
unbiased estimates overall (Figure 1).

After sorting experiments based on similar MOA and
pesticide use group (Figure 2), the best overall agreement
between CA predictions and observed toxicity, as expected
from results of previous studies, was for pesticides with the
same MOA (highest proportion of MDRs close to 1.0).
Similar to the combined results in Figure 1, more than 85% of
these same-MOA experiments had MDR values between 0.5
and 2.0. However, there was a general tendency for the actual
toxicity of the same-MOA mixtures to be greater than
predicted by CA, with about 70% of the experiments having
MDR values of greater than 1, and about 10% of experiments
having MDR values of greater than 2 (Figure 2). In groups
with different MOAs, including those in the same pesticide
group and those from different pesticide groups, the MDR
distributions were relatively similar. The CA model had more
of a tendency to overpredict toxicity for these 2 different-
MOA groups (compared to the same MOA group), with 66%
and 47% rates of overprediction, respectively. Although the
majority of experiments within either group had MDR values
within a range of 0.5 to 2.0, the values tended to be more
variable than found for experiments with compounds of the
same MOA (Figure 2).

All experiments that tested the IA model used method-
ologies that allowed calculation of the CA model as well
(Altenburger et al. 2003 for methods; Belden and Lydy 2006).
Through analysis of this subset of experiments, direct

Model Deviation Ratio (MDR)

Figure 2. The cumulative distribution of model deviation ratios (MDR) for
concentration addition experiments grouped by mixtures with the same
mode of action ([MOA]; n = 30, indicated by diamond symbol), mixtures of
the same pesticide use group and different MOA (n = 113, indicated by
square symbol), and mixtures of different pesticide use groups and different
MOA (n = 64, indicated by square symbol). The double-lined box delineates
values that are within a factor of 2 from the predictive model. An MDR of 1.0
indicates perfect fit to the model. Greater than 1 indicates greater toxicity
than expected and less than 1 indicates less toxicity than expected.

comparisons of the methods based on MDR distributions
were made and are shown for same-MOA pesticides, different
MOA but same group, and different MOA and different
group (Figure 3). In each MOA and pesticide group, IA
tended to somewhat overpredict toxic concentrations, thus
underestimating toxicity compared to the CA model. This
difference was greatest for mixtures with the same MOA for
which CA predictions resulted in MDR values from 0.75 to
2.0, although IA resulted in MDRs in exceedance of 2.0 in 3
of 7 experiments (Figure 3). Conversely, for mixtures having
different MOAs, but that were from the same pesticide group,
the 2 models were very similar in prediction results (Figure
3). Both models tended to overpredict toxicity, with greater
than 70% of MDR values less than 1.0. Finally, for mixtures
from different pesticide groups, the models also had relatively
similar distributions of MDRs, with nearly all experiments
having MDR values within a factor of 2 of predicted toxicity.
However, IA was somewhat more accurate, with a near equal
distribution of values above and below predicted values,
whereas CA tended to overpredict toxicity (Figure 3).

Separations of pesticides based on MOA are complicated
due to overlapping physiology effects among pesticide classes
and secondary modes of actions for many pesticides. The
relationship between related, but different, MOAs and
predictability of toxicity by IA and CA has not been well
tested. It should be noted that, in this study, only pesticides
within the same chemical class and that had the same target
receptor site were classified as having the same MOA. This
division is the least subjective split because chemical classes of
pesticides generally are less disputed than the extent to
overlapping modes of action among products.

Multicomponent mixtures

Mixture studies can be conducted using either simple
binary or tertiary mixtures, or more complex, multiple-
component mixtures (Supplemental Tables 1-3). Previous
investigators have suggested that a funneling effect tends to
make the CA model a reasonable approximation for complex
mixtures (Warne and Hawker 1995; Deneer 2000). In other
words, although some specific mixtures may not fit the CA
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Figure 3. The cumulative distribution of model deviation ratios (MDR) that
evaluated both independent action ([IA], indicated by diamonds) and
concentration addition ([CA], indicated by triangles) models for pesticide
mixtures that (A) contained pesticides with the same mode of action (n=7);
(B) contained pesticides with different modes of action, but the same
pesticide group (17); and (C) contained pesticides from different pesticide
groups (n = 13). An MDR of 1.0 indicates perfect fit to the model and the
double-lined box delineates values that are within a factor of 2 from the
predictive model. Greater than 1 indicates greater toxicity than expected and
less than 1 indicates less toxicity than expected.

model, when they occur in a multicomponent mixture these
nonadditive combinations will have a negligible effect when
combined with other pesticide mixtures that are mostly
additive. Although this theory is not well tested, results from
this study suggest that the theory has merit. All 11 studies
that tested complex multicomponent mixtures (4 or more
components) had MDR values from 0.75 to 2.0, and 9 of
these studies had MDR values that closely matched the CA
model with MDR values from 0.75 to 1.5. Although the
dataset is small, this suggests better predictions by CA for
these complex mixtures than would be expected based on the
entire range of mixtures included in the complete dataset
(Figure 1). However, care should be taken not to select
models and evaluate uncertainties based solely on the multi-
component studies. Studies evaluating field exposures often
have indicated that most toxicity likely is due to a few

are unable to predict if an interaction will occur for most
mixtures. The experiments reviewed for this study indicate
that interactions do not routinely result in large differences in
toxicity from the CA model, because the majority of MDR
values fell less than 2.0 (Figures 1 and 2).

Of specific concern is the potential that a contaminant
present at concentrations below its expected effect level (as
an individual contaminant or its contribution to a mixture
through CA or IA) is a synergist such that it acts to increase
the toxicity of the combination of contaminants. Currently,
risk assessments conducted a priori are not capable of dealing
with this scenario. Thus, studies evaluating this possibility
through the SI approach are of interest. Figure 4 shows the
distribution of MDR values for experiments evaluating SI.
Nearly all experiments demonstrated MDR values of 1.0 or
greater, and more than 20% of experiments indicated MDR
values greater than 2.0. Taken at face value, this result would
raise a concern that mixtures of contaminants, although
individually at low concentrations, frequently may increase
the toxicity of the mixture as a whole. However, this dataset is
biased due to a large number of studies evaluating whether
atrazine and other triazine herbicides may potentiate organo-
phosphate insecticides based on initial work by Pape-
Lindstrom and Lydy (1997; Supplemental Table 5). Other
studies in the dataset also were conducted based on previous
indications that specific combinations may result in an
interaction. Due to inadequate data and toxicological knowl-
edge, it is not currently possible to estimate how frequently
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Table 2. Percentile values for model deviation ratios (MDR) for each group of concentration addition experiments. MOA =
mode of action

Group

All

Same MOA

Same pesticide use group, different MOA

Different pesticide use group

this type of interaction occurs from pesticide mixtures that
commonly occur rather than in mixtures that were specifi-
cally chosen based on potential for an interaction to occur.

CURRENT APPLICABILITY OF MIXTURE MODELS AND
MDR TO RISK ASSESSMENT PRACTICES

Model selection

The Ist consideration prior to incorporation of mixture
toxicity into risk assessments is model selection. The subset of
data comparing the CA and IA models, presented in
Supplemental Tables 3 through 5, generally support the
conclusion of several studies that suggest that mixtures of
contaminants with the same MOA tend to be best modeled by
CA and the mixtures with different MOA tend to be best
modeled by IA (Faust et al. 2000; Altenburger 2003; Backhaus
et al. 2004). This finding was especially significant for
mixtures with the same MOA, where CA accurately predicted
toxicity and IA underpredicted toxicity (Figure 3). However,
the differences between the models for experiments with
different MOAs were not great, and model selection may be
governed more appropriately by the goal of selecting the more
conservative of the models; the CA model has the overall
tendency to provide conservatively high estimates of toxicity
compared to the IA model, yet with quite similar overall
predictive accuracy. It also should be noted that this subset
summarizes only 37 experiments (Figure 3).

In contrast to the small dataset available for testing both
models, a much larger dataset (207 experiments) is available
for CA (Figures 1 and 2). In these experiments, the CA model
predictions are relatively accurate and unbiased relative to
observed toxicity. Furthermore, CA tends to be the more
conservative model compared to IA (Figure 3), as has been
theorized previously to occur when dose-response slopes are
steep (Drescher and Boedeker 1995), which is likely for most
aquatic pesticide exposures. Because of the larger dataset, the
generally conservative nature of CA, and the greater ease of
use, this model is probably the best choice for most risk-
assessment applications at this time, especially when the
emphasis of the assessment is based on conservatively
indicating potential risks to the environment, such as in a
proactive or screening-level risk assessment.

Although no previous reviews have been conducted using
IA or SI, 2 other reviews have evaluated the accuracy of CA
(Deneer 2000; Lydy et al. 2004). In both of these studies,
deviation from models generally was considered to be 3X or
less, thus generally matching the current study. However,
Deneer (2000) did not fully describe how deviation from CA
was determined and, because it was published in 2000, does
not include results from recent experiments. Lydy et al.

Percentile
80 920 95 99
1.40 1.69 2.58 4.19
1.31 2.91 7.08 104
1.32 1.51 1.77 3.55
1.65 1.81 2.66 3.90

(2004) focused more on the mechanisms of mixture risk
assessment and provided only a qualitative assessment of
deviations from the CA model.

Use of empirical data

Direct observations from laboratory experiments with
pesticide mixtures are necessary to completely understand
the potential joint action and interactions for specific
mixtures that previously have not been studied. Although
numerous toxicity studies have been performed with pesti-
cide mixtures, as reviewed by this study, the amount of data
available is small compared to the large number of mixtures
that occur in the environment. In order to enhance our
understanding of the interactions between and among
individual pesticides and combinations of pesticides, more
studies of mixture toxicities are needed and these studies
should assess the mixtures of greatest potential importance
(occurrence and toxicity) in aquatic ecosystems (Belden et al.
2007), including the testing of more species and acute and
chronic endpoints. The dataset provided in the Supplemental
Material section provides the start to obtaining a uniform
source of empirically derived uncertainties for specific
mixtures.

Empirical data also can be used to help us understand the
types of compounds that may interact and thus may be
important to consider even if the individual compounds are
present at concentrations well below toxic levels. For
example, numerous studies have found interactions among
organophosphate insecticides and triazine herbicides (re-
viewed by Lydy et al. 2004), thus indicating that mixtures
of these pesticides may warrant a higher degree of scrutiny.

Accounting for uncertainty

The frequency distributions of the MDR values compiled in
this study provide a means to account for uncertainty in
estimates from predictive models. For example, Table 2 lists
MDR values for several specific percentiles from the datasets
based on the CA model (Figures 1 and 2). These values can be
used to determine safety factors to account for potential
deviations from mixture models and limit the potential for
error to a particular probability. For example, if the goal is to
limit the risk of underestimating toxicity with the CA model
to 10%, then the 90th percentile MDR of 1.69 (assuming
mixed MOAs and pesticide groups) can be multiplied by the
CA estimate of toxicity (or divided into the estimated
toxicity-normalized total concentration of the mixture).

Note that the percentiles listed in Table 2 only account for
uncertainty from mixture models and not for mixtures
entirely. For example, Belden et al. (2007) noted that the
summed TU value of mixtures was generally not higher than a
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factor of 2 above the highest toxicity quotient (highest
individual TU) for green algae and duckweed in corn-soybean
row crop systems under nonstorm event conditions. However,
the current paper indicates that a deviation of 2.61 may occur
from CA (all data, 95%; Table 2); thus, the overall uncertainty
related to the presence of mixtures as compared to only the
most toxic component would be greater than a factor of 5 for
this pesticide-usage landscape in low-flow conditions if
toxicity is attributed only to the toxicant present at the
highest individual TU. It would be expected that other
pesticide-usage landscapes that utilize a greater variety of
active ingredients might have larger uncertainty factors.

Future research needs

Assessment of the effects of pesticide mixtures on aquatic
ecosystems is still in developmental stages. Additional studies
are needed to further develop predictive models, such as
combined IA/CA approaches (Altenburger et al. 2004;
Olmstead and LeBlanc 2005) and to evaluate the perform-
ance of mixture models for predicting mixture toxicity when
evaluating community endpoints, long-term exposure, and
no-observed-effect levels. Furthermore, approaches for pre-
dicting the occurrence or likelihood of interactions need to be
developed. Approximately 10% of all studies that were
evaluated had MDRs greater than 2.0 for the CA model,
indicating the potential of synergistic interactions. If there are
specific combinations of pesticides that account for these
most extreme deviations, then these specific combinations are
important to further examine with regard to their toxicity and
their frequency of occurrence in the environment. As
modeling and mechanistic refinements are being developed,
concurrent efforts are warranted to further develop risk-
assessment procedures based on our current knowledge of the
composition of pesticide mixtures that occur in the environ-
ment and by applying available models using approaches that
account for model bias and uncertainty.
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SUPPORTING INFORMATION

Table S1. Experiments conducted testing a concentration
addition model using pesticides with the same mode of
action. The model deviation ratio (MDR) is calculated by
dividing the expected median effective concentration by the
measured median effective concentration of the mixture.
Refer to text for MDR Methods. Deviation from the model is
based on reporting from the original paper.

Table S2. Experiments conducted testing a concentration
addition model using pesticides from the same class but with
differing modes of action. The model deviation ratio (MDR)
is calculated by dividing the expected median effective
concentration by the measured median effective concentra-
tion of the mixture. Refer to text for MDR Methods.
Deviation from the model is based on reporting from the
original paper.

Table S3. Experiments conducted testing a concentration
addition model using pesticides from different classes. The
model deviation ratio (MDR) is calculated by dividing the
expected median effective concentration by the measured
median effective concentration of the mixture. Refer to text

for MDR Methods. Deviation from the model is based on
reporting from the original paper.

Table S4. Experiments conducted testing independent action
models. The model deviation ratio (MDR) is calculated by
dividing the expected median effective concentration by the
measured median effective concentration of the mixture.
Refer to text for MDR Methods. Deviation from the model is
based on reporting from the original paper.

Table S5. Experiments conducted testing if interactions are
occurring. The model deviation ratio (MDR) is calculated by
dividing the expected median effective concentration by the
measured median effective concentration of the mixture. The
expected model is the concentration response curve of the
toxicant applied at known toxic level. The potential “syner-
gist” or interactive agent is shown in bold and was only
present at concentrations below that expected to cause
toxicity by either the CA or IA models.

Tables S1-S5 found at DOI: 10.1897/2006-046.51 (86 KB
PDF)

Table S6. Alphabetical list of pesticides that were evaluated in
mixture toxicity tests. The number of studies that used each
pesticide is shown based on experimental design (CA =
concentration addition; IA = independent action; SI = simple
interaction). The CA studies also are divided by pesticide
mode of actions (MOA) and classes as described in the paper.

Table S7. Alphabetical list of species that were evaluated in
mixture toxicity tests. The number of studies that used each
species is shown based on experimental design (CA =
concentration addition; IA = independent action; SI = simple
interaction). The CA studies also are divided by pesticide
mode of actions (MOA) and classes as described in the paper.

Tables S6 and S7 found at DOI: 10.1897/2006-046.S2 (pages
el-e5, web-only html)
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