Skip Navigation
National Institute of Environmental Health SciencesNational Institutes of Health
Increase text size Decrease text size Print this page
FOR IMMEDIATE RELEASE:
April 16, 2003
#03-04
NIEHS CONTACT:
Bill Grigg
(301) 402-3378

16 Apr 2003: 'Environome' Studies Gain on Leukemia, Cardiovascular Disease

In a milestone for the Environmental Genome Project, NIEHS Director Ken Olden told reporters April 16 that cooperating scientists have re-sequenced some 200 environmentally responsive genes in representative groups of people, showing the variations that can occur in these genes and identifying their links to conditions such as leukemia and cardiovascular disease that affect the quality and length of life of many Americans.

Olden said the announcement was appropriately timed to the 50th anniversary of the Watson-Crick description of DNA. "It is clear that even with the human genome known, we haven't solved the problem of human disease... and that it will take studies such as the Environmental Genome Project to show the gene-environment interactions at the base of most complex diseases - the major causes of morbidity and mortality today."

In the first phase, NIEHS Deputy Director Sam Wilson told the news conference, "we decided to do (look at the variations of) 200 of just over 500 known environmentally sensitive genes. And we're right on the money - completing this first phase of the project on time and at a cost of about 25 percent of the $60 million anticipated when we planned the project in the late 90's."

The findings are on NIEHS and other websites available as what Wilson called "200 research tools" for scientists probing the interactions of genes and the environment in causing disease.

In phase two, variations of the rest of 500-some susceptibility genes will we studied, Olden and Wilson said. In further studies, just in their early stages, these variations will be associated with exposures and diseases in groups of people and then, in phase three, in the general population. In the third and final phase, screening will identify high-risk persons.

Two speakers at the symposium suggested with some amusement that science has entered the world of the "environome" - a contraction of the Environmental Genome Project.

In other reports at the meeting, which Wilson organized:

  • Mary-Claire King, Professor at the University of Washington said that although variations of the BRCA1 and 2 genes explain some clusters of breast cancer in families, many such clusters can't be explained by these genes. So other gene variations or gene-gene or gene-environment interactions are being sought. But she said she believes recent increases in breast cancer are due to environmental causes: well-fed girls have menarche at 12 instead of 15 and working women having their first children later in life. Deborah Nickerson, also of the University of Washington: In the BRCA1 gene, there have been 300 SNPs (variations) shown, many within a significant block-like structure, whose significance is currently not known.
  • Clement Furlong, Medical Genetics Research Professor at the University of Washington, said a plasma enzyme PON1 that metabolizes pesticides and drugs also appears to be associated with a risk of carotid artery clogging.
  • Martyn Smith, Professor at U.C. Berkeley, said that his research shows that a small minority of individuals with two mutated copies of the MTHFR gene were up to five times less likely to develop acute lymphocytic leukemia than people without the mutation. In short, the mutated MTHFR gene changes the way that folic acid is used in the body. Instead of being utilized in other cellular processes, the mutation directs more folic acid towards DNA synthesis. This reduces the chance that dividing cells will suffer the genetic damage that causes them to become cancerous. By consuming more folic acid-rich foods or taking supplements, Dr. Smith said, people may significantly reduce the risk for leukemia and other types of cancer. (Folic acid is the B vitamin advised for women of child-bearing age to reduce the risk of spina bifida in their children.)
  • Charles Rotimi, the Nigerian-born Director of Genetic Epidemiology at Howard University, said there is a bigger difference between the high blood pressure rates of Nigerians and blacks in the United States than the well-known difference between the rates of African Americans and U.S. whites. He said this suggests that what may appear to be racial health disparities reflect changes in the environment. Similarly, a "thrifty genotype" that helps people survive in a feast-famine African environment may result in the high rates of diabetes among well-fed African Americans.
  • Lynn Jorde, Professor of Human Genetics at the University of Utah, reported on the use of genetic variations to track the history of humankind. He said that genetic diversity is greatest in the African population. This appears to confirm, he said, that this is the parent population from which a subset (with fewer genetic variations) populated Europe and Asia.
  • Jeffrey Trent of the Translational Genomics Research Institute in Phoenix: Proposed the use of gene array technology to identify those patients with advanced metastatic melanoma who can benefit from IL-2, a useful therapy for some but an ineffective ordeal for others.

The Meeting Summary can be found at http://www.niehs.nih.gov/news/releases/news-archive/2003/docs/gesymp03.pdf (http://www.niehs.nih.gov/news/releases/news-archive/2003/docs/gesymp03.pdf)  Download Adobe Reader.

For meeting questions, contact Dr. Leslie Reinlib, NIEHS - reinlib@niehs.nih.gov 919-541-4998.

USA.gov Department of Health & Human Services National Institutes of Health
This page URL: http://www.niehs.nih.gov/news/releases/news-archive/2003/genenv3.cfm
NIEHS website: http://www.niehs.nih.gov/
Email the Web Manager at webmanager@niehs.nih.gov
Last Reviewed: June 18, 2007