
Forest Inventory and Analysis Information Delivery Architecture

B. Tyler Wilson
North Central Research Station

USDA Forest Service
St. Paul, Minnesota, USA

barrywilson@fs.fed.us

Wim S. Ibes
Pillar Applications Group, Inc.
New Richmond, Wisconsin, USA
wibes@pillarapplications.com

Abstract

The Forest Inventory and Analysis program of the

Forest Service, U.S. Department of Agriculture, is
developing a new generation of tools based on XML,
designed as a service-oriented architecture, and
written in Java using established open standards and
toolkits. This effort is in response to the opportunity
provided by Web services technologies to create an
enterprise software development environment of
loosely connected applications and services. When
based on communication standards rather than
specific implementation technologies, these
applications and services are capable of a great
degree of interoperability and reuse. The U.S. E-
Government initiative is aligned with this paradigm
and calls for an information architecture that is
service-oriented, highly interoperable, and standards-
based. This document presents the organizational
context and technical details of the N-tier, service-
oriented architecture being developed to support this
effort.

1. Introduction

The Forest Inventory and Analysis (FIA) program

of the United States Department of Agriculture
(USDA) Forest Service has been a source of
comprehensive information for over 70 years for the
assessment of the past, present, and future conditions
of the United States’ forests. The program is currently
comprised of a set of related surveys covering aspects
of forest monitoring, forest ownership, timber
products output, and tree utilization. The data
collected from these surveys have broad applicability
for addressing multi-resource, multi-purpose issues at
state, regional, and national scales.

FIA data users include researchers in academia,
state foresters, consultants, forest industry,
environmental advocacy groups, policymakers, and

concerned citizens. These users possess a variety of
means and abilities for accessing and analyzing data.

To satisfy users’ diverse needs, FIA and its
cooperators have developed several data and
information analysis and delivery products [1]. The
Forest Inventory and Analysis database (FIADB) [2]
and the Forest and Rangeland Renewable Resources
Planning Act database (RPADB) [3] allow for
sophisticated analyses by knowledgeable users
utilizing their own processing tools. Freely available
desktop applications such as RPA Data Wiz [4] and
FIAMODEL [5] permit users to explore the RPADB
by creating maps and complex tables. Web
applications such as Mapmaker [6], Ramiform [7],
COLE/SOLE/MOLE [8], and the University of
Georgia, USA, mapping tools [9] enable users with
little analytical training to create tables, charts, and
maps from the FIADB, RPADB, and Timber Products
Output (TPO) database using only a Web browser.

Unfortunately, there has been much duplication of
effort and little reuse of the various application code
outside of the respective development groups. While
many users guides are available, documentation
targeted at developers is generally not. Also, these
applications were developed using disparate
technologies and programming languages, some of
which are not supported by the Forest Service’s
proposed information technology (IT) infrastructure.
Furthermore, most were designed as stand alone
applications, each with its own data, business logic,
and presentation tiers. This combination of barriers
has made it difficult for programmers outside of the
original development groups to add new functionality
to the existing applications.

2. Key architecture drivers

The FIA program is not unique in the application

development environment described in the
introduction. Many governmental organizations, from
federal to local, have historically followed similar ad-
hoc development models focused on building software

to solve the particular business problem at hand
without much concern for the software’s function in
the context of the whole organization.

Shifting the focus from individual projects to the
enterprise for application development and delivery is
one of the primary goals of some key federal
initiatives on information technology that affect the
Forest Service. The Clinger-Cohen Act of 1996 [10],
Government Paperwork Elimination Act of 1998 [11],
and the E-Government Act of 2002 [12] were enacted
to make federal government business processes more
efficient through better integration of both intraagency
and interagency software applications. It is envisioned
that these goals will be accomplished, at least in part,
by adhering to interoperability standards, coordinating
investments in technology, designing reusable
components in decoupled systems, and utilizing
forward-thinking technology.

Shortly after the announcement of the E-
Government Initiative, the USDA and the Forest
Service began developing plans for their enterprise
architectures. Both are aligned with the Federal
Enterprise Architecture reference models [13]
developed by the Office of Management and Budget.
Some of the most pertinent recommendations to come
out of the Forest Service Enterprise Architecture
Project, as they relate to the development effort
described in this paper, are to create a service-oriented
architecture, implement an N-tier Web framework,
and build data-aware applications while using
commercial off-the-shelf (COTS) or Open Source
software where possible.

3. FIA Information Delivery Architecture

In response to the drivers described in the

previous section, the FIA program began a project to
develop a new generation of data and information
analysis and delivery products. This project represents
a significant movement away from the creation of
stand alone applications and toward an architecture
where interacting software components are designed
to be interoperable in a loosely coupled manner,
providing improved scalability and flexibility.

This section describes the critical software
components and tiers in the FIA Information Delivery
Architecture (FIDA) project and some of the details of
their implementation. While technically an N-tier
architecture, the various services in the FIDA project
have been grouped here for clarity into the more
familiar data, business, and presentation tiers.

3.1. Application development environment

The decision was made early in the project to use

Java as the principal application programming
language. There were several reasons behind the

decision, including compliance with the agency’s IT
infrastructure, integration with the Oracle® Database
Management System (DBMS), relative vendor
neutrality, availability of numerous COTS and Open
Source tools for developing and deploying the
envisioned architecture, natural linkages with existing
development efforts, excellent support through a large
user base, and potentially low software costs.

Eclipse [14] was chosen as the Integrated
Development Environment (IDE) for many of the
same reasons. Its extensive use of plug-ins enables
efficient execution of many project tasks including
coding, debugging, compiling, versioning, systems
administration, database access, and working with
Extensible Markup Language (XML). Furthermore,
because it is not targeted for use with any particular
vendor’s products, it provides a development
environment that naturally encourages programmers to
write Java code in an open, vendor-neutral way.

3.2. Web services environment

The FIDA project implemented a service-oriented

architecture by means of Web services, as illustrated
in Figure 1. The services were built upon the industry
standard stack of XML-based Web service protocols:
Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Universal
Description, Discovery, and Integration (UDDI).

Figure 1. FIDA data flow

As stated earlier, one of the most attractive
features of using Java as the programming
environment was the existence of many, high quality
applications and toolkits for almost any programming
task. One of the most critically important applications
was a software component for handling the SOAP and
WSDL protocols. The Apache Axis project [15]
provides a Java implementation of a SOAP server and

Presentation
Tier

Proxy

Caterer

Client Applications

Business
Tier

Data
Tier

Web
Service

Logic
Repository

DBMS

Bridge

XML Cache

client. For the FIDA project, the Axis SOAP server
runs as a Java servlet inside of the Jakarta Tomcat
servlet container, which itself runs behind the Apache
Web server.

3.3. Data tier

Within FIDA, survey data are stored as an XML
document, the structure of which is described in detail
by a series of XML Schema Definition (XSD)
documents. The data tier accepts XQuery and XPath
expressions for returning information stored in this
XML document in much the same way as a DBMS
accepts SQL requests against its internal tables.

Because FIA uses a DBMS for data storage, the
FIDA data tier incorporates a bridge in conjunction
with a proxy to move data from the DBMS into the
XML document. This design ensures that the data in
the XML document can be synchronized with the
DBMS data source. Because the XML document is
generated from the original DBMS source, it is
actually a cache. To facilitate regeneration, the cache
is logically segmented and can be recreated
periodically as needed, either due to memory
limitations or based on timestamps.

In addition to utilizing the hierarchical nature of
FIA data to optimize retrievals, this design eliminates
latencies that occur in the creation of connections to
the database and in the execution of SQL queries.
FIDA uses the Apache XMLBeans framework [16] to
store and access the XML cache in memory. The
cache contains no additional information that cannot
readily be obtained by going directly to the DBMS.

The data tier passes all XQuery and XPath
expressions through a proxy, which ensures that
enough of the XML document has been loaded into
the cache to fulfill the request. The proxy then passes
the request to the XMLBeans XQuery engine for
processing.

At the lowest level, access to the database is
managed by XQuark [17], which acts as a bridge
between XQuery and Structured Query Language
(SQL). When a segment of the cache needs to be
loaded, the proxy sends an XQuery request to XQuark.
XQuark translates the request into SQL, passes the
SQL to the DBMS through the servlet engine’s
database connection, and translates the result to an
XML document fragment. This fragment is
subsequently loaded into the cache segment by the
proxy.

Some business logic must be introduced into the
data tier to translate proxy requests into SQL.
Additional logic is required to transform the result
coming from XQuark into the appropriate XML cache
segments. However, the logic applied in the data tier
will be easily understood by users moderately familiar
with the FIA dataset and can be compared to joining

tables or doing simple sums in a standard SQL query.
Simple XML configuration files control all business
logic resident in the data tier.

3.4. Business tier

The primary purpose of the business tier is to

receive client requests, convert them to one or more
XQuery statements, and submit the statements to the
XML document cache in the data tier. The resultant
data are then wrapped in a SOAP envelope and
returned to the client. The business tier also gives
applications access to the XSD documents describing
the FIDA XML cache. These documents are imported
into the WSDL that describes the Web service.

All communication with the Web service is
conducted through a series of exchanges known
collectively as a dialogue within FIDA. This dialogue
continues until the client sends a complete exchange to
the server, i.e., an exchange with sufficient
information for it to be fulfilled.

In order to bootstrap a dialogue between the client
and Web service, the client sends an empty exchange.
The server responds with a prototype exchange that, in
conjunction with the WSDL file describing the Web
service, contains all the information necessary for a
client to continue the dialogue.

If the client sends a non-empty but incomplete
exchange, the server responds with a similar prototype
exchange, appropriately filtered by the information
that has been supplied by the client. It should be noted
that the exchange is devoid of presentation logic and
requires no human interaction with the system. The
entire process can be handled by relatively simple
algorithms.

In addition to its primary role as client request
broker, the business tier acts as a repository for
specific business logic components. Examples range
from supplying textual descriptions for specific
response elements to calculating population estimates
based on sample plot data.

The functionality stored in this repository is
written in Java so that the methods can easily be
incorporated into an Oracle® database as stored
functions for use in standard SQL queries. This
repository is intended to be the sole provider of
business logic for all systems in use by FIDA and its
clients.

3.5. Presentation tier

The primary mechanism by which the raw XML

data generated by the Web service is converted to a
human-readable format is through Extensible
Stylesheet Language (XSL) protocols. The XSL
family of languages includes XSL Transformations
(XSLT) and XSL Formatting Objects (XSL-FO).

There are two types of FIDA client applications:
those capable of internally transforming XML through
XSL and those that are not. If the client supports XSL,
it can transform the raw XML response into a human-
readable format. Many standard stylesheets will be
available on the FIDA server; however, clients can
also create custom stylesheets as necessary.

Clients that cannot transform XML documents
using XSL are directed to a Web service known within
FIDA as the caterer. The purpose of the caterer is to
dispatch requests from the client to the primary FIDA
Web service, reformat the response using XSL
stylesheets, and return the result to the client.

Interactive clients are built as wrapper
applications that use XSL stylesheets to guide end-
users through the Web service dialogue. The
applications are based on workflows and presented to
the end-user in the common wizard form.

The focus of the FIDA project for client
development has been on browser-based interfaces,
according to the recommendations of some of the
architectural drivers mentioned previously. To
facilitate and standardize these Web applications, the
FIDA project developed a Web client framework that
requires only that the browser have an XML parser
plug-in. To make use of the FIDA Web mapping
components, the browser must also have a Scalable
Vector Graphics (SVG) [18] viewer plug-in.

Upon initialization, the Web client framework
sends an empty exchange to the Web service and
receives the prototype exchange in return. This
exchange is placed in an ECMAScript XML
Document Object Model (DOM) and stored in a
permanent HTML frame. This document becomes the
event dispatcher for all user interactions. When the
user makes a selection, the change is relayed to the
DOM. The DOM in turn triggers an event so that
other elements of the page can respond to the change.
For example, if a page has both a list of states and a
map of states, the user may select from either the list
or the map. Through the DOM and the event
dispatcher, both elements will remain synchronized.
When an exchange is sent to the Web service, the
DOM is transformed into XML, inserted into a SOAP
envelope, and then submitted either to the caterer or
directly to the server.

4. Architecture products

The FIDA project has created several software

products that serve the needs of FIA data users. One
of the primary outcomes has been the development of
Web services that give users access to forest sample
plot data from the FIADB. These data can also be
processed to compute population estimates and
sampling errors of forest attributes from the sample
data for a defined set of populations, based on FIA

recommended post-stratification procedures. For
example, through these services users can request
estimates and sampling errors of the area of forest land
by county and ownership group for the State of
Minnesota, USA.

The FIDA project has designed and developed
client applications that consume these Web services.
Many users of FIA data utilize Microsoft® Office
products in their analyses, especially the Excel
spreadsheet program. To facilitate access to FIA Web
services for these users, a Visual Basic® for
Applications (VBA) client was developed within
Excel. Through a series of forms, the user is able to
specify the data to be retrieved and the ways in which
the data are to be processed, if at all. The results are
then placed into a spreadsheet, where they can be
further manipulated.

Because of the ubiquity and ease of use of Web
browsers, much effort was expended in developing a
browser interface to the FIA Web services. Much like
the VBA client, the Web browser interface permits the
user to specify which data are to be retrieved and how
they should be compiled. Through the use of
stylesheets, these data can then be presented in several
alternate formats. From the example given earlier, the
county-level summaries for the State of Minnesota
could be presented as tables, charts, or choropleth
maps.

The choropleth maps generated through the Web
interface are useful products on their own. However,
they are often even more useful when combined with
other maps, because these geospatial data put the
choropleth maps into a different context. The
mapping component of the Web interface allows the
user to combine geospatial data from a number of
Open GIS Consortium Web Map Services [19] with
the maps generated from the FIA plot data.

5. Future work

In the near term, future phases of the FIDA

project will incorporate additional FIA databases into
the architecture. Additional services and clients will
be developed to enable users to generate tables, charts,
and maps from the TPO and Woodland Owners
databases, as well as forest health data from the
FIADB. New logic will be added to compute
estimates and sampling errors from these data for user-
defined populations of interest.

In the longer term, as more Web services are
deployed by federal agencies, a national UDDI
registry will need to be constructed. Once this registry
is completed, new FIDA client applications will be
developed that consume services from external
sources and integrate them with FIA data to perform
new analyses. For example, a Web application could
be built to combine data from Web services provided

by the U.S. Bureau of the Census with FIA plot data to
explore the socioeconomic dimensions of forestry.

Looking ahead even further, it is hoped that the
FIDA project will feed into the Federal Chief
Information Officers Council’s vision of semantic
interoperability within the government sector [20]. By
defining ontologies for FIA Web services using XML-
based standards such as the Resource Description
Framework Schema (RDFS) and the Web Ontology
Language for Services (OWL-S), Semantic Web
services could be created [21]. In conjunction with
WSDL and UDDI, these protocols would enable
software agents that consume these services to better
“understand” what is being exchanged and to “infer”
additional information from these services, further
enabling automation and interoperability.

References
[1] “Forest Inventory and Analysis National Program—
Tools and Data”, U.S. Dept. of Agriculture, Forest Service,
http://fia.fs.fed.us/tools-data/.
[2] P.D. Miles, G.J. Brand, C.L. Alerich, L.F. Bednar, S.W.
Woudenberg, J.F. Glover, and E.N. Ezell, The Forest
Inventory and Analysis database description and users
manual, version 1.0, General Technical Report NC-218,
U.S. Dept. of Agriculture, Forest Service, North Central
Research Station, St. Paul, MN, 2001.
[3] W.B. Smith, P.D. Miles, J.S. Vissage, and S.A.
Pugh, Forest resources of the United States, 2002, General
Technical Report NC-241, U.S. Dept. of Agriculture, Forest
Service, North Central Research Station, St. Paul, MN,
2004.
[4] S.A. Pugh, RPA Data Wiz users guide, version 1.0,
General Technical Report NC-242, U.S. Dept. of
Agriculture, Forest Service, North Central Research Station,
St. Paul, MN, 2004.
[5] S.A. Pugh, D.D. Reed, K.S. Pregitzer, and P.D. Miles,
FIAMODEL: users guide, version 3.0, General Technical
Report NC-223, U.S. Dept. of Agriculture, Forest Service,
North Central Research Station, St. Paul, MN, 2002.
[6] P.D. Miles, Forest Inventory Mapmaker users
guide, General Technical Report NC-221, U.S. Dept. of
Agriculture, Forest Service, North Central Research Station,
St. Paul, MN, 2001.
[7] “Ramiform Home Page”, U.S. Dept. of Agriculture,
Forest Service, http://ncrs2.fs.fed.us/zope/ramiform/.
[8] “NCASI Statistics and Model Development Group”,
National Council for Air and Stream Improvement,
http://ncasi.uml.edu/.
[9] “Georgia Forest Maps”, University of Georgia,
http://www.growthandyield.com/main/maps.htm.
[10] United States Congress Senate, S. 1124, National
Defense Authorization Act for Fiscal Year 1996, 104th
Congress, 2nd sess., 3 January 1996,
http://www.access.gpo.gov/nara/publaw/104publ.html;
DOCID: f:publ106.104.
[11] United States Congress House, H.R. 4328, Making
omnibus consolidated and emergency appropriations for the
fiscal year ending September 30, 1999, and for other
purposes, 105th Congress, 21 October 1998,
http://www.access.gpo.gov/nara/publaw/105publ.html;
DOCID: f:publ277.105.

[12] United States Congress House, H.R. 2458, E-
Government Act of 2002, 107th Congress, 2nd sess., 17
December 2002,
http://www.access.gpo.gov/nara/publaw/107publ.html;
DOCID: f:publ347.107.
[13] U.S. Office of Management and Budget, “Federal
Enterprise Architecture”, The White House,
http://www.whitehouse.gov/omb/egov/a-1-fea.html.
[14] “The Eclipse Project”, The Eclipse Foundation,
http://www.eclipse.org/eclipse/.
[15] “The Apache Axis Project”, The Apache Software
Foundation, http://ws.apache.org/axis/.
[16] “The Apache XMLBeans Project”, The Apache
Software Foundation, http://xmlbeans.apache.org/.
[17] “The XQuark project: open source information
integration components based on XML and XQuery”,
XQuark Group, http://xquark.objectweb.org/.
[18] “Scalable Vector Graphics (SVG) 1.1 Specification”,
W3C®, http://www.w3.org/TR/SVG/.
[19] “Web Map Service Implementation Specification”,
Open Geospatial Consortium, Inc.,
http://www.opengeospatial.org/docs/01-068r2.pdf.
[20] “Knowledge Management Working Group”, U.S. CIO
Council, http://www.km.gov/.
[21] “Semantic Web Services Interest Group”, W3C®,
http://www.w3.org/2002/ws/swsig/.

(All Web references accessed on May 24, 2005)

