The Forest Inventory and Analysis Database: Database Description and Users Guide Version 1.7

Carol L. Alerich, Laurie Klevgard, Charles Liff, and Patrick D. Miles

Foreword

Forest Inventory and Analysis (FIA) is a continuing endeavor mandated by Congress in the Forest and Rangeland Renewable Resources Planning Act of 1974 and the McSweeney-McNary Forest Research Act of 1928. FIA's primary objective is to determine the extent, condition, volume, growth, and depletions of timber on the Nation's forest land. Before 1999, all inventories were conducted on a periodic basis. With the passage of the 1998 Farm Bill, FIA is required to collect data on 20 percent of the plots annually within each State. This kind of up-todate information is essential to frame realistic forest policies and programs. USDA Forest Service regional research stations are responsible for conducting these inventories and publishing summary reports for individual States.

In addition to published reports, the Forest Service can also provide portions of the data collected in each inventory to those interested in further analysis. This report describes a standard format in which data can be obtained. This standard format, referred to as the Forest Inventory and Analysis Database (FIADB) structure, was developed to provide users with as much data as possible in a consistent manner among States. FIADB files can be obtained for any State inventory conducted after 1988 (Eastern U.S.) or 1994 (Western U.S.). Files for many State inventories conducted before this time may also be available; however, some data fields may be empty or the items may have been collected or computed differently. Annual inventories begun after 1998 use a common plot design and common data collection procedures nationwide, resulting in greater consistency among FIA units than earlier inventories. Data field definitions note inconsistencies caused by different sampling designs and processing methods.

As well, there has been an ongoing effort to develop a National Information Management System (NIMS) to process and store annual inventory data. Changes in the FIADB structure have allowed for data processing and storage with NIMS. Members of the team that developed NIMS, led by Charles Liff, are Carol L. Alerich, Larry L. Bednar, Gary J. Brand, Kurt Campbell, Laurie Klevgard, Kevin Nimerfro, Larry Royer, Mark E. Rubey, Geetha Sendhil, Ron Wanek, Charles Washington, Shirley Waters, and Sharon W. Woudenberg. Bryan L. Lanier and Richard Teck of the National Forest System were liaisons to the team.

Acknowledgments

The material in this document is based on previous efforts to provide a uniform database for multiple FIA units (Hansen et al. 1992, Woudenberg and Farrenkopf 1995, Miles et al. 2001).

We thank William Bechtold, Mark Hansen, and other members of the Statistics band for their valuable assistance.

CONTENTS

Chapter 1 - The FIA Database 1
Chapter 2 - FIA Sampling and Estimation Procedures 3
Remote Sensing 3
Ground Sampling 3
Accuracy Standards 5
Chapter 3 - Database Structure 6
Table Descriptions 6
Core Optional Variables 6
Data Storage and Format 7
Fuzzing and Swapping 7
Summary of Condition Proportions 8
Regional Variables 9
Survey Table 10
County Table 14
Plot Table 16
Subplot Table 30
Condition Table 33
Tree Table 56
Seedling Table 81
Site Tree Table 85
Boundary Table 89
Estimation Unit Stratum Table 93
Plot Population Stratum Assignment Table 97
Subplot Condition Table 100
Chapter 4 - Algorithms for Summarizing Data 103
Algorithms That Will Work On All Inventories 105
Examples of SQL Statements That Will Work On All Inventories 108
Algorithms That Will Work On All Annual Inventories Begun After 1998 112
Examples of SQL Statements That Will Work On All
Annual Inventories Begun After 1998 114
Algorithms That Can Be Applied To The Second
Annual Inventory Cycle Begun After 1998 115
Examples of SQL Statements That Can Be Applied To The Second Annual Inventory Cycle Begun After 1998 116
Calculating Population Estimates Using Phase 1 and Phase 2 Data 117
Literature Cited 119
Appendix A - Index of Column Names 121
Appendix B - FIADB Standard Presentation Tables 133
Appendix C - State, Survey Unit, and County Codes 145
Appendix D - Forest Type Codes and Names 177
Appendix E - National Forest Codes and Names 179
Appendix F - Tree Species Codes, Names, and Occurrences 183
Appendix G - Tree Species Group Names 189

Chapter 1 -- The FIA Database

This document describes a database that has a uniform data structure for FIA inventories nationwide. Its creation is part of an ongoing effort by FIA to produce consistent inventory data and summaries nationwide. Specifically, the intent is to provide data to:

1) Produce standard FIA tables of timber resource statistics (refer to Appendix B),
2) Meet Resource Planning Act Assessment data requirements,
3) Provide users with a common source for integrated FIA plot and tree data, and
4) Estimate changes in forest land area and timber volume between successive FIA inventories.

The FIADB replaces two FIA regional databases, one for the Eastern States (Eastwide database) and the other for the Western States (Westwide database), which are documented in separate documents (Hansen et al. 1992, Woudenberg and Farrenkopf 1995). A new national plot design provided the impetus for replacing these two databases. FIA units adopted this design in all State inventories initiated after 1998. An overview of the design is presented in Chapter 2.

This user's guide describes a "second generation" of the FIADB. With the ongoing effort to develop and use NIMS to process and store annual inventory data, the original FIADB structure, as described in the document "The Forest Inventory and Analysis Database: Database description and Users Manual Version 1.0," was modified. Several of the variables that have been added to the FIADB data structure are variables needed to process data in NIMS. Some of these variables are regionally specific and are identified by region, both in the table structure description and in the variable description. See Chapter 3 for the description of the database.

Although specifically intended to store data collected with the new design, the FIADB also stores data from FIA inventories completed before the adoption of the annual inventory method, the national plot design, common data collection procedures, and common processing and storage of annual inventory data. These older inventories are always included in the database if they are the most recently completed inventory in a State. Optionally, FIA units may include data from other older inventories. The level of data consistency among these older inventories varies depending on when, where, and how the data were collected and compiled. Generally, notes are provided in Chapter 3 indicating when a data element differs among FIA units or between successive inventories. We have also noted when differences occur between these older inventories and those conducted using the new national plot design. We recommend that users contact the FIA unit that produced any of these older inventories for additional details.

The database contains extensive data on forest area attributes and on the status of live and standing dead trees. However, it does not include all data collected and compiled by FIA units. In particular, data on dead and down trees, understory (non-tree) vegetation, and many abiotic attributes are not included. Users should contact individual FIA units to see if these data are available.

Users needing estimates of change in seedling density, forest land area, or timberland volume should note the following cautions. Tree lists contained in this database may be significantly truncated on plots that sample very young stands predominantly stocked with seedlings (trees less than 1 inch at the point of diameter measure). Seedlings often are tallied in FIA inventories only to the extent necessary to determine if some minimum number of them are present, which
means that seedlings are often underreported. The database is not designed to provide valid estimates of change in forest land area between successive inventories that predate the new national plot design. Computations of various components of volume change should carefully mimic the examples given in Chapter 4.

Data for individual States are available through the Internet at: http://www.fs.fed.us. This is the Internet address for the Forest Service's National Headquarters and should remain unchanged for the immediate future. From this page, users should click on "Research \& Development", then "Forest Inventory and Analysis", and finally "Online databases". Users accessing the FIA Web site can either download the data as comma-delimited files in FIADB format or use a Web-based program to generate their own customized reports.

Chapter 2 describes FIA sampling and estimation procedures and Chapter 3 provides detailed documentation of the database. Chapter 4 presents algorithms on how to compute estimates of area; current timber volume; biomass; number of trees; and annual timber volume growth, mortality, and removals.

Chapter 2 -- FIA Sampling and Estimation Procedures

To understand the types of data available, FIADB users need a basic concept of FIA sampling and estimation procedures. A general discussion of these sampling procedures follows. Before the new common sampling design, specific sampling methods varied among FIA units and even among States within an FIA unit. Users who require additional information about sampling procedures for a specific State should contact the group responsible for that State's inventory. As new inventories are completed, the common sampling design being implemented will produce greater consistency in the compiled data.

Remote Sensing

Each State inventory begins with the interpretation of a remotely sensed, or "phase 1," sample that classifies the land by various remote sensing classes. The total area of a sample comes from outside sources (usually Bureau of Census reports). The remote sensing classifications are based on land use (such as pasture, cropland, urban). For forested land, more detailed classes are sometimes defined based on criteria such as forest type, volume per acre, stand size, stand density, ownership, and/or stand age. Then, ground plots are measured to adjust the remote sensing sample for changes since its acquisition date and to correct any misclassification. Ground plots also provide estimates that cannot be made from a remotely sensed sample. The remote sensing classification of these ground plots, together with the area estimates from the remote sensing sample, is used to assign area expansion factors to all ground plots. These area expansion factors are used to weight plot-level estimates when computing estimates for selected strata of the population. Selection criteria for remote sensing classes and computation of area expansion factors differ from State to State. Users interested in the details of how these expansion factors were assigned to the ground plots for a particular State should contact the appropriate FIA unit.

Ground Sampling

FIA ground plots, or "phase 2" plots, are designed to cover a 1-acre sample area; however, not all trees on the acre are measured. Recent inventories use a national standard, fixed-radius plot layout for sample tree selection. Various arrangements of fixed-radius and variable-radius (prism) subplots were used to select sample trees in older inventories. Ground plots may be new plots that have never been measured, or remeasurement plots that were measured during a previous inventory. For all plots, several observations are recorded for each sample tree, including its diameter, species, and other measurements that enable the prediction of the tree's volume, growth rate, and quality. These tree measurements form the basis of the data on the tree records in the FIADB.

Some of the data items in the FIADB come directly from field measurements; others are computed from tree measurements. Net cubic-foot volume is a computed item. Each FIA unit uses a volume equation to compute this volume based on diameter, taken either at breast height (d.b.h.) or root collar (d.r.c.), and other tree and/or stand attributes. Although equations vary from State to State, they were all designed to estimate the same volume. Users interested in the details of equations for a particular State should contact the appropriate FIA unit.

One important computed item is the tree expansion factor. This item expresses the number of trees per acre that each sampled tree represents in the current inventory. It is the inverse of the size of the plot the tree was sampled on. For example, if the plot design samples trees under 5 inches DBH on a single fixed-radius plot covering $1 / 100$ th acre, this item would have the value of 100 trees per acre for a tree less than 5 inches DBH. If trees 5 inches DBH and larger are sampled with ten 37.5 BAF (English) prism points, as was common with FIA plots in the Eastern U.S., the expansion factor would depend on the DBH of the tree. Under such a sample, a 14.0inch tree would have an expansion factor of 3.51 trees per acre, again the inverse of the plot size ${ }^{1}$.

A national plot design was adopted in the mid-1990's. Now all FIA units have implemented a common sampling design consisting of four 24.0 -foot radius subplots (each subplot is approximately $1 / 24$ th acre) for trees at least 5 inches in diameter and four 6.8 -foot radius microplots (each microplot is approximately 1/300th acre) for smaller trees. Therefore, tree expansion factors are approximately 6 for trees at least 5 inches in diameter and approximately 75 for the smaller trees. Subplot 1 is the center of the cluster with the other three subplots located 120 feet away at azimuths of $360^{\circ}, 120^{\circ}$, and 240°, respectively. Another characteristic of the new design is the mapping of differing forest conditions. Reserved status, owner group, forest type, stand-size class, regeneration status, and stand density define a forest condition. If two or more conditions occur within a plot, the boundary between them is mapped and the proportion of the plot in each condition is recorded or calculated.

Data items collected for a condition are estimates of average attributes for the portion of the plot in that condition. Previous inventories did not map conditions. Instead, some attributes were assigned the value determined for the plot center, or subplots were shifted so that they fell within the same stand as the plot center.

Computed expansion factors are needed to estimate growth, mortality, and removals. Growth can be estimated by measuring the tree at two times, by measuring growth rings on an increment core, or by using a model. The method used, along with the sampling design, determines the value for the expansion factors needed to compute growth. Mortality can also be estimated from remeasured or new plots. With inventories that have remeasurement plots, mortality is based on trees that die during the remeasurement period. In cases where new plots provide estimates of mortality, mortality is estimated from either a mortality prediction equation that predicts the probability that a tree will die over some time period, or from a field estimate of mortality based on the measurement of dead trees and an estimate of when they died. Depending on the inventory design, removals may be estimated from observations of trees cut on either new or remeasured plots.

We have tried with the FIADB to provide as consistent data as possible from one State to another. Therefore, although differences in field and estimation procedures do exist among States, the data in the FIADB for different States are compatible. Differences that do exist are

[^0]The plot size of this tree on a ten point cluster would be ten times this or .285 acres, producing an expansion factor of 3.51 .
minor and should have little or no impact on most uses of these data. Consistency will increase as inventories incorporating the new common sampling design are completed.

Accuracy Standards

Forest inventory plans are designed to meet sampling error standards for area, volume, growth, and removals provided in the Forest Service Handbook (FSH 4809.11). These standards, along with other guidelines, are aimed at obtaining comprehensive and comparable information on timber resources for all parts of the country. FIA inventories are commonly designed to meet the specified sampling errors at the State level at the 67 percent confidence limit (one standard error). The Forest Service Handbook mandates that the sampling error for area cannot exceed 3 percent error per 1 million acres of timberland. Five percent (Eastern U.S.) or 10 percent (Western U.S.) error per 1 billion cubic feet of growing stock on timberland is applied to volume, removals, and net annual growth. Unlike the mandated sampling error for area, sampling errors for volume, removals, and growth are only targets.

FIA inventories are extensive inventories that provide reliable estimates for large sampling areas. As data are subdivided into smaller and smaller areas, such as a geographic unit or a county, the sampling errors increase and the reliability of the estimates goes down. For example, a State with 5 million acres of timberland would have a maximum allowable sampling error of 1.3 percent $\left(3 \% \mathrm{x}(1,000,000)^{.5} /(5,000,000)^{.5}\right)$, a geographic unit within that State with 1 million acres of timberland would have a 3.0 percent maximum allowable sampling error ($3 \% \mathrm{x}(1,000,000)^{.5}$ / $\left.(1,000,000)^{.5}\right)$, and a county within that State with 100 thousand acres would have a 9.5 percent maximum allowable sampling error $\left(3 \% \mathrm{x}(1,000,000)^{.5} /(100,000)^{.5}\right)$ at the 67 percent confidence level.

Chapter 3 -- Database Structure

The FIA Database is a relational database structured for the Oracle Database Management System. By the nature of the way FIA data are collected and compiled, these Oracle tables are hierarchical. This structure makes it easy to produce flat files for customers who do not have access to, or the capability of, database management on their computer system.

Table Descriptions

There are twelve tables in the FIA Database (SURVEY, COUNTY, PLOT, SUBPLOT, COND, TREE, SEEDLING, SITETREE, BOUNDARY, ESTN_UNIT_STRATUM, PLOT_POP_STRATUM_ASSGN and SUBP_COND). The SURVEY table provides information on where and when surveys were conducted. The SURVEY table is for reference use only. The COUNTY table is merely a lookup table for the county and unit names. The ESTN_UNIT_STRATUM and PLOT_POP_STRATUM_ASSGN tables provide summarized stratified phase 1 information that can be used with the field data to generate stratified random sampling estimates and associated sampling errors. The SUBP_COND table contains information about the proportion of a subplot in a condition. The other seven tables closely reflect the manner in which data are collected on a field plot. A row in the PLOT table provides information relevant to the entire 1 -acre plot. A row in the SUBPLOT table describes the features of a single subplot. A row in the COND table provides information on the discrete combination of landscape attributes that define the condition (a condition will have the same land class, reserved status, owner group, forest type, stand-size class, regeneration status, and stand density). A row in the TREE table is used to describe each tree 1 inch in diameter and larger found on a microplot or subplot. A row in the SEEDLING table provides a count of the number of trees of a species found on a microplot that are less than 1 inch in diameter but at least 6 inches in length for conifer species or at least 12 inches in length for hardwood species. A row in the SITETREE table provides information on one of the site trees collected to provide site index information for a condition. A row in the BOUNDARY table provides a description of the demarcation line between two conditions that occur on a single subplot.

For each column or variable in a table, there is a section that describes the unabbreviated name and detailed description of the variable. Coded items also include a list of the codes and their meanings.

Core Optional Variables

Several variables throughout this guide are indicated as CORE OPTIONAL. Items or codes specified as CORE OPTIONAL are not required by individual units; however, if the item is collected or coded, it is done as specified in the "Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.7," which is cited in the Literature Cited Section.

Throughout this document are references to the macroplot. This is a CORE OPTIONAL plot design where data are collected on four 58.9 foot radius macroplots, rather than on the CORE plot design of four 24.0 foot radius subplots. This plot design is used primarily by the Pacific Northwest Research Station, but may be used by other stations; for information about a particular state, contact the appropriate FIA unit for more information.

Data Storage and Format

FIA uses the Oracle Database Management System to store the FIADB data. In this system, a variable may be of type VARCHAR2 (a character variable) or type NUMBER (a number variable, which may be integer or real). An example of a VARCHAR2(28) variable is SURVEY.STATENM, which contains the state names, up to 28 characters; 'Pennsylvania’ would be a valid value. An example of a NUMBER variable is TREE.AZIMUTH, which stores the values of tree azimuth, and is defined as a NUMBER(3) variable. The range of values that could be stored in a NUMBER(3) variable is -999 to 999; however, in this document, only valid values are described. Valid values for TREE.AZIMUTH, as described in the field guide and in this document, are 001 to 360 , but the database will store these values as 1 to 360 . When the data are retrieved as output from the database, they should be displayed as 001 to 360 to accurately represent the data as collected by the field crews. With a simple selection of the data and with a lack of formatting of the data by the user, the data will not appear as described; the output must be formatted to correctly display the data. This may be accomplished with any number of software packages; In Excel, for example, this can be done by customizing the cell formats accordingly.

Fuzzing and Swapping

In its amendment of the Food Securities Act, Congress directed FIA to ensure that FIA plot data cannot be linked to its owner. This ensures the privacy of the owner. Because plot coordinates can be used to identify the owner, FIA stopped providing public access to these coordinates. However, a revised policy has been released and new methods for making approximate coordinates available for all plots have been developed.

FIA customers want to know where the plots are in order to perform analyses by user-defined polygons and for relating FIA plot data to other map-based information, such as soils maps and satellite imagery. In order to accommodate this need, FIA will provide approximate coordinates for all plots - both public and private. The general methods that FIA uses to provide these coordinates are described below.

In the past, FIA provided approximate coordinates for its periodic data in the FIADB. These coordinates were within 1.0 miles of the exact plot location (this is called fuzzing). However, due to the large size of many ownerships, the data could be linked to these owners. The original coordinates are restored to the FIADB but up to 20% of the private plot coordinates are swapped with another similar private plot within the same county. This ensures that county summaries and any breakdowns by categories, such as ownership class, will be the same as before. This is because only the coordinates of the plot are swapped - all the other plot characteristics remain the same. The only difference will be when users want to subdivide the county using a polygon. Even then, results will be similar because swapped plots are chosen to be similar based on attributes such as forest type, stand-size class, latitude and longitude (each FIA unit has chosen its own attributes for defining similarity).

For the plot data collected under the new annual system, plot numbers are reassigned to sever the link from the unswapped coordinates stored in the FIADB prior to the change in the law. Private
plots are also swapped using the method described above - remeasured annual plots are swapped independently of the periodic data. All annual plot coordinates are fuzzed, but less than before within 0.5 miles for most plots and up to 1.0 miles on a small subset of them. This was done to make it difficult to locate the plot on the ground, while maintaining a good correlation between the plot data and map-based characteristics.

All variables on the data that are assigned by laying a Geographic Information System layer over the plot locations, such as COND.CONGCD, would be assigned using the fuzzed and swapped coordinate.

Summary of Condition Proportions

There are several variables that deal with condition proportions in this database. Because of the way in which this database was built (newer variables were appended to the previously established structure), these variables are spread throughout the database structure. Below is listing of all the condition proportion variables, with the location of each variable in the COND table. In all listings below, the CONDPROP variables are based on the subplot if COND.PROP_BASIS equals "SUBP"; they are based on the macroplot if COND.PROP_BASIS equals "MACR."

The condition proportions below are unadjusted (i.e. any outside-of-the-population, deniedaccess, or hazardous conditions are not excluded but are given a proportion of the area of the plot); used for classification such as forest type and stand-size class.

Location in

Variable	COND table	Plot type
CONDPROP	9	Subplot or macroplot (see PROP_BASIS)
MICRPROP	50	Microplot
MACRPROP	63	Macroplot
SUBPPROP	71	Subplot

The condition proportions below are adjusted over the stratum to exclude outside-of-thepopulation plots and conditions; used for the estimate of total area, including denied-access and hazardous area.

Location in

Variable	COND table	Plot type
CONDPROP_ALL	73	Subplot or macroplot (see PROP_BASIS)
MICRPROP_ALL	79	Microplot
MACRPROP_ALL	76	Macroplot
SUBPPROP_ALL	90	Subplot

The condition proportions below are adjusted over the stratum to exclude outside-of-thepopulation, denied-access, and hazardous plots and conditions; used for estimates of forest land and timberland that exclude denied-access and hazardous area.

	Location in COND table	Plot type
Variable	75	Subplot or macroplot (see PROP_BASIS)
CONDPROP_CURR	81	Microplot
MICRPROP_CURR	78	Macroplot
MACRPROP_CURR	92	Subplot

The condition proportions below are adjusted over the stratum to exclude outside-of-thepopulation, denied-access, and hazardous plots and conditions; also excludes plots that are not remeasured; used for estimates of change on forest land and timberland where denied-access and hazardous areas are not reported on.

Location in

Variable	COND table	Plot type
CONDPROP_CHNG	74	Subplot or macroplot (see PROP_BASIS)
MICRPROP_CHNG	80	Microplot
MACRPROP_CHNG	77	Macroplot
SUBPPROP_CHNG	91	Subplot

The condition proportions below are adjusted at the plot level to exclude outside-of-thepopulation, denied-access, and hazardous conditions on the plot; used to evaluate the data at the plot level rather than at the population level (e.g. for making "per acre" maps).

Location in

Variable	COND table	Plot type
CONDPROP_SAMP	86	Subplot or macroplot (see PROP_BASIS)
MICRPROP_SAMP	87	Microplot
MACRPROP_SAMP	88	Macroplot
SUBPPROP_SAMP	89	Subplot

Regional Variables

Variables that have been added to the data structure in this "second generation" of FIADB are those needed to process data in NIMS. Some of these variables are regionally specific, and are identified, by region, both in the table structure description (e.g. the variable is labeled with "(NERS)") and in the variable description (e.g. the variable description text contains the phrase "Specific to Northeastern Research Station.").

For regionally specific questions about the data, please contact the following persons:

Research Station	RSCD	States	Contact	Phone
Rocky Mountain (RMRS)	22	AZ,CO,ID,MT,NV,NM,UT,WY	Mark Rubey	$801-625-5647$
North Central (NCRS)	23	IL,IN,IA,KS,MI,MN,MO,NE,ND,SD,WI	Gary Brand	$651-649-5170$
Northeast (NERS)	24	CT,DE,ME,MD,MA,NH,NJ,NY,OH,PA, RI,VT,WV	Carol Alerich	$610-557-4068$
Pacific Northwest (PNWRS)	26,27	AK,CA,HI,OR,WA	Ron Wanek	$503-808-2048$
Southern (SRS)	33	AL,AR,FL,GA,KY,LA,MS,NC,OK,SC, TN,TX,VA	Larry Royer	$828-257-4370$

	Column Name	Oracle data type	Value or unit of measure	Key data item
1	TABLENM	VARCHAR2 (8)	SURVEY	
2	STATECD	NUMBER (4)	Coded	X
3	CYCLE	NUMBER (2)	Number	X
4	SUBCYCLE	NUMBER (2)	Number	X
5	STATEAB	VARCHAR2 (2)	Name	
6	STATENM	VARCHAR2 (28)	Name	
7	INVYR	NUMBER (4)	Year (YYYY)	
8	MODDATE	NUMBER (8)	Month-Day-Year (MMDDYYYY)	
9	CENSUSYR	NUMBER (4)	Year (YYYY)	
10	NFSYR	NUMBER (4)	Year (YYYY)	
11	RSCD	NUMBER (2)	Coded	
12	NUMPANEL	NUMBER (2)	Number	
13	NOTES	VARCHAR2 (2000)	Character	
14	CN	VARCHAR2(34)	Character	PK
15	SUBDIVCD	NUMBER (4)	Number	
16	CYCLELEN	NUMBER (2)	Years	
17	NUMSUBPANEL	NUMBER (2)	Number	
18	CREATED_BY	VARCHAR2 (30)	Character	
19	CREATED_DATE	DATE	DD-MON-YYYY	
20	CREATED_IN_INSTANCE	NUMBER (6)	Number	
21	MODIFIED_BY	VARCHAR2 (30)	Character	
22	MODIFIED_DATE	DATE	DD-MON-YYYY	
23	MODIFIED_IN_INSTANCE	NUMBER (6)	Number	

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'SURVEY.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. STATEAB State abbreviation. The two-character State abbreviation. Refer to table 1 at the end of the description of the SURVEY table.
6. STATENM State name. Refer to table 1 at the end of the description of the SURVEY table.
7. INVYR Inventory year. The calendar year that best represents when the inventory data were collected (e.g., 1994). FIA data are often collected over more than 1 year; however, a specific year is selected that best represents the inventory cycle's subcycle. FIA publications based on an inventory are said to be an analysis of the forest resource as of this date.
8. MODDATE Modification date. Date the data were last modified for this State, cycle, and subcycle. Initially this is the date when the data are first loaded into the database. If any modifications are made to any of the records (Survey, County, Plot, Subplot, Condition, Tree, Seedling, Site Tree, Boundary, Estimation Unit Stratum, Plot Population Stratum Assignment, or Subplot Condition), MODDATE will be changed to the date the modification was made.
9. CENSUSYR Census year. The year (e.g., 1990 or 2000) of the Bureau of the Census area figures to which total State area is reconciled.
10. NFSYR National Forest System Area Control Year. The Forest Service produces an annual report entitled "Land Areas of the National Forest System." Forest Inventory area estimates of lands administered by the Forest Service are reconciled to match, at a minimum, the State total reported numbers. Area for individual National Forests may not match if part of a Forest is administered by another Forest. FIA reports area by administered Forest and the Land Area report is based on proclaimed Forest. NFSYR is the year of the report that is associated with the collection dates of the inventory data (null if not applicable).
11. RSCD Region or Station Code. Identification number of the Forest Service Region or Station that provided the inventory data. Refer to table 1 at the end of the description of the SURVEY table.

Code Region or Station and phone number.
1 Region 1, Northern Region
2 Region 2, Rocky Mountain Region
3 Region 3, Southwestern Region
4 Region 4, Intermountain Region
5 Region 5, Pacific Southwest Region
6 Region 6, Pacific Northwest Region

8 Region 8, Southern Region
9 Region 9, Eastern Region
10 Region 10, Alaska Region
22 Rocky Mountain Research Station
23 North Central Research Station
24 Northeastern Research Station
26 Pacific Northwest Research Station
27 Alaska - Pacific Northwest Research Station
33 Southern Research Station
12. NUMPANEL Number of panels. All states were divided into 5 panels for the annual inventory system, in which 20 percent of the plots in a cycle are measured in a panel. Equal to 5 for annual inventories; null for periodic inventories.
13. NOTES Notes. An optional item where notes about the inventory may be stored.
14. CN Sequence number. A unique sequence number used to identify a survey record.
15. SUBDIVCD Subdivision code. This variable is used to indicate that part of a State survey has been temporally intensified. For example, in California the National Forest System plots in Region 5 were collected over a five year period while the rest of the plots in the state were collected over a ten year period. Two different Subdivision codes would be used for California. Set to one if subdivisioning is not done.
16. CYCLELEN Cycle length. Indicates the number of years taken to complete the cycle. The 1998 Farm Bill contained an unfunded mandate that annual inventories be conducted over a 5 year period. Therefore, CYCLELEN frequently equals 5 . However, if funding is insufficient, the cycle length may exceed five years (especially likely in the western U.S. and Alaska); if extra funding is available, the cycle length may be shortened to less than five years.

17. NUMSUBPANEL

Number of subpanels. A subpanel is used for spatial de-intensification of the sampling grid. Western states decompose each panel into two subpanels to accommodate a ten year cycle. This means that 10 percent of the plots are measured in each subpanel. Null if subpaneling is not used.
18. CREATED_BY The user who created the record.
19. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.

20. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
21. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.

22. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.

23. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.

Table 1. Codes used for STATENM, STATEAB, and STATECD. Also listed is the Region or Station code (RSCD) of the FIA unit responsible for collecting data in that state or area under U.S. sovereignty.

STATENM	STATEAB	STATECD	RSCD	STATENM	STATEAB	STATECD	RSCD
Alabama	AL	01	33	Nebraska	NE	31	23
Alaska	AK	02	27	Nevada	NV	32	22
Arizona	AZ	04	22	New Hampshire	NH	33	24
Arkansas	AR	05	33	New Jersey	NJ	34	24
California	CA	06	26	New Mexico	NM	35	22
Colorado	CO	08	22	New York	NY	36	24
Connecticut	CT	09	24	North Carolina	NC	37	33
Delaware	DE	10	24	North Dakota	ND	38	23
District of Columbia	DC	11	24	Ohio	OH	39	24
Florida	FL	12	33	Oklahoma	OK	40	33
Georgia	GA	13	33	Oregon	OR	41	26
Hawaii	HI	15	26	Pennsylvania	PA	42	24
Idaho	ID	16	22	Rhode Island	RI	44	24
Illinois	IL	17	23	South Carolina	SC	45	33
Indiana	IN	18	23	South Dakota	SD	46	23
Iowa	IA	19	23	Tennessee	TN	47	33
Kansas	KS	20	23	Texas	TX	48	33
Kentucky	KY	21	33	Utah	UT	49	22
Louisiana	LA	22	33	Vermont	VT	50	24
Maine	ME	23	24	Virginia	VA	51	33
Maryland	MD	24	24	Washington	WA	53	26
Massachusetts	MA	25	24	West Virginia	WV	54	24
Michigan	MI	26	23	Wisconsin	WI	55	23
Minnesota	MN	27	23	Wyoming	WY	56	22
Mississippi	MS	28	33	Puerto Rico	PR	72	33
Missouri	MO	29	23	U.S. Virgin Islands	VI	78	33
Montana	MT	30	22				

County Table (Oracle table name is COUNTY)

			Value or	Key
	name	Oracle	unit of	data
data type	measure	item		
1	TABLENM	VARCHAR2 (8)	COUNTY	
2	STATECD	NUMBER (4)	Coded	X
3	UNITCD	NUMBER (2)	Coded	X
4	COUNTYCD	NUMBER (3)	Coded	X
5	COUNTYNM	VARCHAR2 (50)	Name	
6	CN	VARCHAR2 (34)	Character	PK
7	CREATED_BY	VARCHAR2 (30)	Character	
8	CREATED_DATE	DATE	DD-MON-YYYY	
9	CREATED_IN_INSTANCE	NUMBER (6)	NUMBER	
10	MODIFIED_BY	VARCHAR2 (30)	Character	
11	MODIFIED_DATE	DATE	DD-MON-YYYY	
12	MODIFIED_IN_INSTANCE	NUMBER (6)	Number	

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'COUNTY.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
4. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
5. COUNTYNM County name. County name as recorded by the Bureau of the Census, 1990, for individual counties, or the name given to a similar governmental unit by the FIA program. Only the first 28 characters of the name are used. Refer to Appendix C for names.
6. CN Sequence number. A unique sequence number used to identify a county record.
7. CREATED_BY The user who created the record.
8. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
9. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
10. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
11. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.

12. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.

Plot Table (Oracle table name is PLOT)

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'PLOT.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. MEASYEAR Measurement year. The year in which the plot was completed. This year may differ from INVYR in the SURVEY table.
9. MEASMON Measurement month. The month in which the plot was completed.

Code	Description
01	January
02	February
03	March
04	April
05	May
06	June
07	July
08	August
09	September
10	October
11	November
12	December

10. MEASDAY Measurement day. The day of the month in which the plot was completed.
11. REMPER Remeasurement period. The number of years between measurements of remeasured plots. For data processed with NIMS, REMPER is the number of years between measurements (to the nearest 0.1 year); it is null for new or other plots that are not used for growth, removals, or mortality estimates. For data processed with systems other than NIMS, remeasurement period is based on the number of growing seasons between measurements; it is either null or zero for new or other plots that are not used for growth, removals, or mortality estimates. Allocation of parts of the growing season by month is different for each FIA program. Contact the appropriate FIA program for information on how this is done for a particular State. NOTE: it is not valid to use REMPER to estimate periodic change.
12. KINDCD Sample kind code. Indicates whether the plot is being measured for the first time, had been measured in a previous cycle and is being remeasured, or had been remeasured previously but could not be relocated and this is the replacement.

Code Description

0 Periodic inventory plot
1 Initial plot establishment of the National design plot
2 Remeasurement of a previously established National design plot field visited or remotely classified
3 Replacement of a previously established National design plot
4 Modeled
9 Not sampled
13. DESIGNCD Plot design code. Indicates the type of plot design used to collect the data. Contact appropriate FIA program for specific code descriptions.

Code Description

001 National FIA mapped plot design consisting of 4 fixed-radius subplots
100-199 Northeastern Station (NERS)
200-299 Southern Station (SRS)
300-399 North Central Station (NCRS)
Code Description
333 a plot created for area control and gaps in FIA sampling
400-499 Rocky Mountain Station (RMRS)
500-599 Pacific Northwest Station (PNWRS)
600-699 Alaska
14. RDCD Trails or roads code. The type of trail or road that is closest to the plot and within 1 mile of plot center. If two or more roads are the same distance away, the higher quality one is recorded. New in 1999.

Code Description
0 None within 1 mile
1 Paved road or highway
2 Improved gravel road
3 Improved dirt road
4 Unimproved dirt or four-wheel drive road
5 Human access trail primarily for recreational use
15. RDDISTCD Horizontal distance to improved road code. The straight-line distance from plot center to the nearest improved road, which is a road of any width that is maintained as evidenced by pavement, gravel, grading, ditching, and/or other improvements. New in 1999.

Code Description
1100 ft . or less
2101 ft . to 300 ft .
3301 ft . to 500 ft .
4501 ft . to 1000 ft .
51001 ft . to $1 / 2$ mile
$6 \quad 1 / 2$ to 1 mile
71 to 3 miles
83 to 5 miles
9 Greater than 5 miles
16. RDUSECD Road access (road use restrictions) code. The kind of access restrictions placed on roads used to travel to the plot starting point. New in 1999.

Code Description
0 None
1 Road blocked by locked gate or cable across road
2 Road blocked by a human-made obstruction across road (ditch, mound, etc.)
3 Road blocked by natural occurrences (trees blown over onto road, road or bridge washed out)
4 Posted no motorized vehicle signs; road present, but restricted area such as Wilderness or National Park where vehicles are not allowed.
9 Other - specified in plot-level notes.
17. PUBUSECD Public use restrictions code. Restrictions posted near or on the plot that limits use of the area containing the plot. New in 1999.

Code Description
0 None - no public use restrictions
1 Keep out / no trespassing
2 No hunting or fishing
3 No dumping
9 Other - specified in plot-level notes.
18. REUSECD1 Recreation use code 1. Primary recreation use within the accessible forest land portion of any of the four subplots, based on evidence such as campfire rings, compacted areas (from tents), hiking trails, bullet or shotgun casings, and tree stands. Recreational use that has had the most significant impact on the plot area is recorded. For example, in general, numerous four-wheel drive or ATV trails would be coded before camping, camping before hiking, and hiking before fishing. The coding system provided is in order of significance. Physical recreation evidence must be present to code 1-9. Dumping of trash is ignored when no evidence of recreation is present. New in 1999.

Code Description

0 No evidence of recreation use
1 Motor vehicle (four wheel drive, ATV, motorcycle, snowmobile)
2 Horse riding, dog team trails, ski trails
3 Camping
4 Hiking
5 Hunting/shooting
6 Fishing
7 Boating - physical evidence such as launch sites or docks
9 Other - recreation use where evidence is present, such as human litter, but purpose is not clear or does not fit into above categories.
19. REUSECD2 Recreation use code 2. The second most significant recreational use. Same codes as REUSECD1 are used.
20. REUSECD3 Recreation use code 3. The third most significant recreational use. Same codes as REUSECD1 are used.
21. WATERCD Water on plot code. Water body less than 1 acre in size or a stream less than 30 feet wide that has the greatest impact on the area within the forest land portion of the four subplots. The coding hierarchy is listed in order from large permanent water to temporary water. New in 1999.

Code Description

0 None - no water sources within the accessible forest land CONDITION CLASS
1 Permanent streams or ponds too small to qualify as noncensus water
2 Permanent water in the form of deep swamps, bogs, marshes without standing trees present and less than 1.0 ac in size, or with standing trees
3 Ditch/canal - human made channels used as a means of moving water, e.g., for irrigation or drainage, which are too small to qualify as noncensus water
4 Temporary streams

5 Flood zones - evidence of flooding when bodies of water exceed their natural banks
9 Other temporary water - specified in plot-level notes.
22. LAT Latitude NAD 83 datum. The approximate latitude of the plot in decimal degrees. The precision of this item along the meridian is $\pm 1542 \mathrm{~m}$ at latitude 45 degrees north. However, in some cases the county centroid may be entered when the actual location is not available. Actual plot locations cannot be released.
23. LON Longitude NAD 83 datum. The approximate longitude of the plot in decimal degrees. The precision of this item along the parallel is $\pm 1094 \mathrm{~m}$ at latitude 45 degrees. However, in some cases the county centroid may be entered when the actual location is not available. Actual plot locations cannot be released.
24. ELEV Elevation. The distance the plot is located above sea level, recorded in feet (NAD 83 datum). Negative values indicate distance below sea level.
25. EXPCURR Current area expansion factor. The number of acres the sample plot represents for making current estimates of area, where the sample excludes outside-of-the-population, denied-access, and hazardous plots. This expansion factor is calculated with data found in the EUS table; the link to that table is through the variable RSCD_EVALID_EXPCURR. The sum of EXPCURR over all plot-level records (excluding outside-of-the-population, denied-access, and hazardous plots) for a particular State is the total area of the State. The number of acres a condition represents can be determined by multiplying EXPCURR times CONDPROP_CURR (in the COND table). See Chapter 4 for calculation algorithms.
26. EXPVOL Current volume expansion factor. The number of acres the sample plot represents for making current estimates of volume, biomass, and number of trees; where the sample excludes outside-of-the-population, deniedaccess, and hazardous plots. This expansion factor is calculated with data found in the EUS table; the link to that table is through the variable RSCD_EVALID_EXPVOL. For example, growing-stock volume would be "expanded" over the appropriate acreage by multiplying EXPVOL times the product of VOLCFNET (in the TREE table) and the trees per acre item (TPACURR in the TREE table). See Chapter 4 for calculation algorithms.
27. EXPGROW Growth expansion factor. The number of acres the sample plot represents for estimating growth. This expansion factor is calculated with data found in the EUS table; the link to that table is through the variable RSCD_EVALID_EXPGROW. Growth will be "expanded" over the appropriate acreage by multiplying EXPGROW times the product of the growth item (GROWCFGS, GROWBFSL, or GROWCFAL in the TREE table) and the growth trees per acre item (TPAGROW in the TREE table).

Total growth in a State is calculated by summing these expanded estimates from all trees on all plots in a particular State in the FIADB. Some plots may have a value of zero in this field. For example, in a State where both remeasured and new plots exist for a cycle, growth estimates might only be based on remeasurement plots. Therefore, new or other plots that are not used for growth estimates would have a value of zero in EXPGROW. See Chapter 4 for calculation algorithms.
28. GROWCD Type of annual volume growth code. Indicates how volume growth is estimated. Current annual growth is an estimate of the change in volume that occurred in a 1-year period ending when the plot was measured. Periodic annual growth is an estimate of the average annual change in volume occurring between two measurements, usually the current cycle and previous cycle.

Code Description
1 Current annual
2 Periodic annual
29. EXPMORT Mortality expansion factor. The number of acres the sample plot represents for estimating mortality. This expansion factor is calculated with data found in the EUS table; the link to that table is through the variable RSCD_EVALID_EXPMORT. Mortality will be "expanded" over the appropriate acreage by multiplying EXPMORT times the product of the mortality item (MORTCFGS, MORTBFSL, or MORTCFAL in the TREE table) and the mortality trees per acre item (TPAMORT in the TREE table). Total mortality in a State is calculated by summing these expanded estimates from all trees on all plots in a particular State in the FIADB. Some plots may have a value of zero in this field. For example, in a State where both remeasured and new plots exist for a cycle, mortality estimates might only be based on remeasurement plots. Therefore, new or other plots that are not used for mortality estimates would have a value of zero in EXPMORT. See Chapter 4 for calculation algorithms.
30. MORTCD Type of annual mortality volume code. Indicates how mortality volume is estimated. Current annual mortality is an estimate of the volume of trees dying during a 1 -year period ending when the plot was measured. Periodic annual mortality is an estimate of the average annual volume of trees dying between two measurements, usually the current cycle and previous cycle.

Code Description
1 Current annual
2 Periodic annual
31. EXPREMV Removals expansion factor. The number of acres the sample plot represents for estimating removals. This expansion factor is calculated with data found in the EUS table; the link to that table is through the
variable RSCD_EVALID_EXPREMV. Removals will be "expanded" over the appropriate acreage by multiplying EXPREMV times the product of the removal item (REMVCFGS, REMVBFSL, or REMVCFAL in the TREE table) and the removal trees per acre item (TPAREMV in the TREE table). In inventories where removals are only estimated on remeasurement plots, EXPREMV=0 for new, temporary, or other plots that are not used for removals estimates. See Chapter 4 for calculation algorithms.
32. EXPCHNG Periodic change expansion factor. The number of acres that the sample plot represents for estimating periodic area change.
33. P2PANEL
34. P3PANEL Phase 3 panel number. Forest Health Monitoring panel number. A panel is a sample in which the same elements are measured on two or more occasions. FIA divides the plots in a cycle into five panels that can be used to independently sample the population. Forest Health Monitoring was designed to monitor, assess, and report on long-term status, changes, and trends in forest ecosystem health on a regional and national basis. Before 2000, FHM and FIA were distinct programs and the plots were not necessarily co-located. FIA and FHM field plots are co-located for inventories begun after 1999. The FHM suite of data are now collected on a subset of FIA plots and are referred to as phase 3 data. The value for P3PANEL ranges from 1 to 5 for those plots where phase 3 data were collected.
35. ECOSUBCD Ecological subsection code. An area of similar surficial geology, lithology, geomorphic process, soil groups, subregional climate, and potential natural communities. Subsection boundaries usually correspond with discrete changes in geomorphology. Subsection information is used for broad planning and assessment. Subsection codes may consist of up to six characters and were developed by the Forest Service as part of the National Hierarchical Framework of Ecological Units.
36. CONGCD Congressional district code. A territorial division of a State from which a member of the U.S. House of Representatives is elected. Based on the current Census, congressional districts in the United States are apportioned to the States based on population; each State receives at least one congressional district. The congressional district code assigned to a plot (regardless of when it was measured) is for the most recent Congress; the assignment is made based on the plot's approximate coordinates. CONGCD is a four-digit number. The first two digits are the State FIPS
code and the last two digits are the congressional district number. If a State has only one congressional district the congressional district number is 00 . If a plot's congressional district assignment falls in a state other than the plot's actual state due to using the approximate coordinates, the congressional district code ends in 99.
37. MANUAL Field guide (manual) version number. Version of the National Field Guide used to describe procedures for collecting data on the plot. New in 1999. This is the version of the guide with which the data were collected. Value is 0.0 if data were collected with a regional field guide.
38. CN Sequence number. A unique sequence number used to identify a plot record.
39. SRV_CN Survey sequence number. Foreign key linking the plot record to the survey record.
40. CTY_CN County sequence number. Foreign key linking the plot record to the county record.
41. SUBPANEL Subpanel assignment for plot for those regions using subpaneling. Null if subpaneling is not used.

42. RSCD_EVALID_EXPCURR

Link to the appropriate evaluation method that is used for calculating EXPCURR. The value of EXPCURR can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPCURR. The first two digits of RSCD_EVAL_EXPCURR are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the ESTN_UNIT_STRATUM table. Further information describing the evaluation used to compute the stored EXPCURR may be found in the ESTN_UNIT_STRATUM table.

43. RSCD_EVALID_EXPVOL

Link to the appropriate evaluation method that is used for calculating EXPVOL. The value of EXPVOL can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPVOL. The first two digits of RSCD_EVAL_EXPVOL are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the
ESTN_UNIT_STRATUM table. Further information describing the
evaluation used to compute the stored EXPVOL may be found in the ESTN_UNIT_STRATUM table.

44. RSCD_EVALID_EXPGROW

Link to the appropriate evaluation method that is used for calculating EXPGROW. The value of EXPGROW can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPGROW. The first two digits of RSCD_EVAL_EXPGROW are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the ESTN_UNIT_STRATUM table. Further information describing the evaluation used to compute the stored EXPGROW may be found in the ESTN_UNIT_STRATUM table.

45. RSCD_EVALID_EXPMORT

Link to the appropriate evaluation method that is used for calculating EXPMORT. The value of EXPMORT can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPMORT. The first two digits of RSCD_EVAL_EXPMORT are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the ESTN_UNIT_STRATUM table. Further information describing the evaluation used to compute the stored EXPMORT may be found in the ESTN_UNIT_STRATUM table.
46. RSCD_EVALID_EXPREMV

Link to the appropriate evaluation method that is used for calculating EXPREMV. The value of EXPREMV can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPREMV. The first two digits of RSCD_EVAL_EXPREMV are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the ESTN_UNIT_STRATUM table. Further information describing the evaluation used to compute the stored EXPREMV may be found in the ESTN_UNIT_STRATUM table.
47. RSCD_EVALID_EXPCHNG

Link to the appropriate evaluation method that is used for calculating EXPCHNG. The value of EXPCHNG can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPCHNG. The first two digits of RSCD_EVAL_EXPCHNG are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the ESTN_UNIT_STRATUM table. Further information describing the evaluation used to compute the stored EXPCHNG may be found in the ESTN_UNIT_STRATUM table.
48. RSCD_EVALID_EXPALL

Link to the appropriate evaluation method that is used for calculating EXPALL. The value of EXPALL can be computed in many different ways, but only one may be stored in the database. This variable provides the connection to the information about the evaluation found in the ESTN_UNIT_STRATUM table that is used to compute the stored EXPALL. The first two digits of RSCD_EVAL_EXPALL are equivalent to RSCD (the Region or Station code) and the last six digits are equivalent to the EVALID (evaluation identifier) found in the ESTN_UNIT_STRATUM table. Further information describing the evaluation used to compute the stored EXPALL may be found in the ESTN_UNIT_STRATUM table.
49. EXPALL Current area expansion factor. The number of acres the sample plot represents for making current estimates of area, where the sample excludes outside-of-the-population plots, but includes denied-access and hazardous plots. The sum of EXPALL over all plot-level records (including denied-access and hazardous plots) for a particular State is the total area of the State. The number of acres a condition represents when the sample includes denied-access and hazardous plots can be determined by multiplying EXPALL times CONDPROP_ALL (in the COND table). See Chapter 4 for calculation algorithms.
50. LASTCYCLEMEAS

Previous inventory cycle number. Identifies the most recent prior cycle number.

51. LASTSUBCYCLEMEAS

Previous inventory subcycle number. Identifies the most recent prior subcycle number.
52. KINDCD_NC Sample kind code. Specific to North Central Research Station. All other Stations record null for this variable. Contact North Central Research Station for codes and more information.
53. QA_STATUS The code indicates the type of plot data collected.

Code Description
1 Standard production plot
2 Cold check
3 Reference plot (off grid)
4 Training/practice plot (off grid)
5 Botched plot file (disregard during data processing)
6 Blind check
$7 \quad$ Production plot (hot check)
54. CREW_TYPE A code identifying the type of crew measuring the plot.

Code Description
1 Standard field crew
2 QA crew (any QA crew member present collecting data)
55. MANUAL_DB Version of the National Field Guide used to describe procedures for collecting data on the plot. New in 1999. The data in the database have been standardized to this version. The current version of the Field Guide is Version 1.7. See the Literature Cited Section for more details about this document.
56. CREATED_BY The user who created the record.
57. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
58. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
59. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
60. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
61. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
62. NOTES Plot-level notes. An optional item where notes about the plot may be stored.
63. P3HEX P3 hexagon number. Unique number indicating the phase 3 hexagon to which this plot is assigned, if it is a phase 3 plot. A hexagonal grid was formed for the purpose of tessellating the FIA Phase 3 inventory sample. Each hexagon in the phase 3 base grid has an area of approximately 96,000 acres and contains one phase 3 inventory plot. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
64. P3PLOT Phase 3 plot number. The sequence number assigned to the phase 3 plot that is associated with the P3HEX. The sequence number is 1 for the initial phase 3 plot, but if that plot is replaced, the sequence number for the newly assigned phase 3 plot is incremented by 1 .
65. MICROPLOT_LOC

Microplot location. Values are 'OFFSET' or 'CENTER' The offset microplot center is located 12 feet due East (90 degrees) of subplot center. The current standard described in Version 1.7 of the Field Guide is that the microplot is located in the 'OFFSET' location, but some earlier inventories, including some early panels of the annual inventory, may contain data where the microplot was located at the 'CENTER' location.
66. P2HEX Phase 2 hexagon number. Unique number indicating the phase 2 hexagon to which this plot is assigned. A hexagonal grid was formed for the purpose of tessellating the FIA phase 2 inventory sample. Each hexagon in the phase 2 base grid has an area of approximately 5900 acres and contains one phase 2 inventory plot. THIS VARIABLE IS NOT POPULATED AT THIS TIME.

Subplot Table (Oracle table name is SUBPLOT)

	Column Name	Oracle data type	Value or unit of measure	Key data item	Field Guide Item\#
1	TABLENM	VARCHAR2 (8)	SUBPLOT		
2	STATECD	NUMBER (4)	Coded	X	
3	CYCLE	NUMBER (2)	Number	X	
4	SUBCYCLE	NUMBER (2)	Number	X	
5	UNITCD	NUMBER (2)	Coded	X	
6	COUNTYCD	NUMBER (3)	Coded	X	
7	PLOT	NUMBER (5)	Number	X	
8	SUBP	NUMBER (3)	Number	X	4.1
9	SUBPCOND	NUMBER (1)	Number		4.2
10	MICRCOND	NUMBER (1)	Number		4.3
11	SLOPE	NUMBER (3)	Percent		4.4
12	ASPECT	NUMBER (3)	Degrees		4.5
13	WATERDEP	NUMBER $(2,1)$	Feet		4.6
14	CN	VARCHAR2 (34)	Character	PK	
15	PLT_CN	VARCHAR2 (34)	Character	FK	
16	MACRCOND	NUMBER (1)	Number		
17	CREATED_BY	VARCHAR2 (30)	Character		
18	CREATED_DATE	DATE	DD-MON-YYYY		
19	CREATED_IN_INSTANCE	NUMBER (6)	Number		
20	MODIFIED_BY	VARCHAR2 (30)	Character		
21	MODIFIED_DATE	DATE	DD-MON-YYYY		
22	MODIFIED_IN_INSTANCE	NUMBER (6)	Number		
23	STATUSCD	NUMBER (1)	Number		4.7
24	CONDLIST	NUMBER (4)	Number		4.8

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'SUBPLOT.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. SUBP Subplot number. Number of the subplot. Annual inventories have subplot number values of 1 through 4. Periodic inventories subplot numbers will vary. For more information, contact the appropriate FIA unit.
9. SUBPCOND Subplot center condition. Condition number for the condition at the center of the subplot.
10. MICRCOND Microplot center condition. Condition number for the condition at the center of the microplot.
11. SLOPE Subplot slope. The angle of slope, in percent, of the subplot, determined by sighting along the average incline or decline of the subplot. If the slope changes gradually, an average slope is recorded. If the slope changes across the subplot but is predominately of one direction, the predominant slope is recorded. Valid values are 000 through 155.
12. ASPECT Subplot aspect. The direction of slope, to the nearest degree, of the subplot, determined along the direction of slope. If the aspect changes gradually, an average aspect is recorded. If the aspect changes across the subplot but is predominately of one direction, the predominant aspect is recorded. North is recorded as 360 . When slope is less than 5 percent, there is no aspect; is recorded as 000 .
13. WATERDEP Snow/water depth. The approximate depth in feet of water or snow covering the subplot when data were collected. New in 1999.
14. CN Sequence number. A unique sequence number used to identify a subplot record.
15. PLT_CN Plot sequence number. Foreign key linking the subplot record to the plot record.
16. MACRCOND Macroplot center condition. Condition number for the condition at the center of the macroplot. Null if macroplot is not measured.
17. CREATED_BY The user who created the record.
18. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
19. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
20. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
21. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
22. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
23. STATUSCD Subplot/macroplot status code. A code to indicate whether forest land was sampled on the subplot/macroplot or not.

Code Description

0 No accessible forest land condition class sampled
1 At least one accessible forest land condition class sampled
24. CONDLIST Subplot/macroplot condition list. This is a listing of all condition classes located within the 24.0/58.9 ft. radius around the subplot/macroplot center. A maximum of four conditions is permitted at any individual subplot/macroplot. CORE OPTIONAL.

Condition Table (Oracle table name is COND)

	Column Name	Oracle data type	Value or unit of measure		Mapped design recorded on1	Other designs	Field Guide Item\#
1	TABLENM	VARCHAR2 (8)	COND				
2	STATECD	NUMBER (4)	Coded	X	A	A	
3	CYCLE	NUMBER (2)	Number	X	A	A	
4	SUBCYCLE	NUMBER (2)	Number	X	A	A	
5	UNITCD	NUMBER (2)	Coded	X	A	A	
6	COUNTYCD	NUMBER (3)	Coded	X	A	A	
7	PLOT	NUMBER (5)	Number	X	A	A	
8	CONDID	NUMBER (1)	Number	X	A	A	2.2.1
9	CONDPROP	NUMBER $(5,4)$	Proportion		A	A	
10	LANDCLCD	NUMBER (1)	Coded		A	A	2.2.2
11	RESERVCD	NUMBER (2)	Coded		F	F	2.4.1
12	OWNCD	NUMBER (2)	Coded		F	F	2.4.7
13	OWNGRPCD	NUMBER (2)	Coded		F	F	2.4.2
14	FORINDCD	NUMBER (2)	Coded		F	F	2.4.8
15	ADFORCD	NUMBER (4)	Coded		P	P	
16	FORTYPCD	NUMBER (3)	Coded		F	F	
17	FLDTYPCD	NUMBER (3)	Coded		F	F	2.4.3
18	MAPDEN	NUMBER (1)	Coded		F		2.4.6
19	STDAGE	NUMBER (4)	Years		F	O	2.4.10
20	STDSZCD	NUMBER (2)	Coded		F	T	
21	FLDSZCD	NUMBER (2)	Coded		F	T	2.4.4
22	SITECLCD	NUMBER (2)	Coded		F	F	
23	SICOND	NUMBER (3)	Feet		F	O	
24	SIBASE	NUMBER (3)	Years		F	O	
25	SISP	NUMBER (3)	Coded		F	O	
26	STDORGCD	NUMBER (2)	Coded		F	O	2.4.5
27	STDORGSP	NUMBER (3)	Coded		F		2.4.9
28	SLOPE	NUMBER (3)	Percent		F	F	
29	ASPECT	NUMBER (3)	Degrees		F	F	
30	PHYSCLCD	NUMBER (2)	Coded		F		2.4.23
31	GSSTKCD	NUMBER (2)	Coded		F	T	
32	ALSTKCD	NUMBER (2)	Coded		F	O	
33	TRTOPCD	NUMBER (2)	Coded		N	N	
34	DSTRBCD1	NUMBER (2)	Coded		F		2.4.11
35	DSTRBYR1	NUMBER (4)	Year		F		2.4.12

36	DSTRBCD2	NUMBER (2)	Coded		F		2.4.13
37	DSTRBYR2	NUMBER (4)	Year		F		2.4.14
38	DSTRBCD3	NUMBER (2)	Coded		F		2.4.15
39	DSTRBYR3	NUMBER (4)	Year		F		2.4.16
40	TRTCD1	NUMBER (2)	Coded		F		2.4.17
41	TRTYR1	NUMBER (4)	Year		F		2.4.18
42	TRTCD2	NUMBER (2)	Coded		F		2.4.19
43	TRTYR2	NUMBER (4)	Year		F		2.4.20
44	TRTCD3	NUMBER (2)	Coded		F		2.4.21
45	TRTYR3	NUMBER (4)	Year		F		2.4.22
46	PASTNFCD	NUMBER (2)	Coded		F		2.4.24
47	PRESNFCD	NUMBER (2)	Coded		NF		2.4.25
48	NFYEAR	NUMBER (4)	Year		NF		2.4.26
49	BALIVE	NUMBER $(9,4)$	Square feet		F		
50	MICRPROP	NUMBER $(5,4)$	Proportion		A		
51	DAMINDEX	NUMBER $(5,2)$	Number		F		
52	CN	VARCHAR2 (34)	Character	PK	A	A	
53	PLT_CN	VARCHAR2 (34)	Character	FK	A	A	
54	FLDAGE	NUMBER (4)	Number		F		
55	ALSTK	NUMBER (7,4)	Percent		F		
56	GSSTK	NUMBER $(7,4)$	Percent		F		
57	PREVCOND	NUMBER (5)	Number		F		
58	CONDPROPUN (SRS)	NUMBER $(5,4)$	Proportion		A		
59	FORTYPCDCALC	NUMBER (3)	Character		F		
60	HABTYPCD1 (RMRS)	NUMBER (7)	Character		F		
61	HABTYPCD2 (RMRS)	NUMBER (7)	Character		F		
62	MIXEDCONFCD (PNWRS)	VARCHAR2 (1)	Character		F		
63	MACRPROP	NUMBER $(5,4)$	Proportion		A		
64	CREATED_BY	VARCHAR2 (30)	Character		A	A	
65	CREATED_DATE	DATE	DD-MON-YYYY		A	A	
66	CREATED_IN_INSTANCE	NUMBER (6)	Number		A	A	
67	MODIFIED_BY	VARCHAR2 (30)	Character		A	A	
68	MODIFIED_DATE	DATE	DD-MON-YYYY		A	A	
69	MODIFIED_IN_INSTANCE	NUMBER (6)	Number		A	A	
70	VOL_LOC_GRP	VARCHAR2 (200)	Character		F		
71	SUBPPROP	NUMBER $(5,4)$	Proportion		A		
72	PROP_BASIS	VARCHAR2(12)	Character		A		
73	CONDPROP_ALL	NUMBER $(5,4)$	Proportion		P		
74	CONDPROP_CHNG	NUMBER $(5,4)$	Proportion		S		

75	CONDPROP_CURR	NUMBER (5,4)	Proportion	S	
76	MACRPROP_ALL	NUMBER (5,4)	Proportion	P	
77	MACRPROP_CHNG	NUMBER (5,4)	Proportion	S	
78	MACRPROP_CURR	NUMBER (5,4)	Proportion	S	
79	MICRPROP_ALL	NUMBER (5,4)	Proportion	P	
80	MICRPROP_CHNG	NUMBER (5,4)	Proportion	S	
81	MICRPROP_CURR	NUMBER (5,4)	Proportion	S	
82	SITECLCDEST	NUMBER (2)	Coded	F	
83	SITETREE_TREE	NUMBER (4)	Number	F	
84	SITECL_METHOD	NUMBER (2)	Number	F	
85	COND_STATUS_CD	NUMBER (1)	Number	A	2.2.2
86	CONDPROP_SAMP	NUMBER (5,4)	Proportion	S	
87	MICRPROP_SAMP	NUMBER (5,4)	Proportion	S	
88	MACRPROP_SAMP	NUMBER (5,4)	Proportion	S	
89	SUBPPROP_SAMP	NUMBER (5,4)	Proportion	S	
90	SUBPPROP_ALL	NUMBER (5,4)	Proportion	P	
91	SUBPPROP_CHNG	NUMBER (5,4)	Proportion	S	
92	SUBPPROP_CURR	NUMBER (5,4)	Proportion	S	
$1 \mathrm{~A}=$ all conditions regardless of condition class status					
$\mathrm{P}=$ all conditions excluding outside-of-the-population conditions					
$\mathrm{S}=$ all conditions in the sample (excluding outside-of-the-population, denied-access, and hazardous conditions)					
$\mathrm{F}=$ all forested conditions (LANDCLCD $=1$)					
$\mathrm{T}=$ all timberland conditions (LANDCLCD $=1$, SITECLCD <7)					
	$\mathrm{N}=$ nonindustrial private timberland RPA requirement, optional on all other timberlan conditions				
$\mathrm{O}=$ optional on forested conditions, not collected on nonforest conditions NF = nonforest conditions					

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'COND.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. CONDID Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1 . Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
9. CONDPROP Condition proportion, based on the sampling design. Unadjusted proportion of the plot that is in the condition. The sum of all condition proportions for a plot equals 1.0000. The value in column PROP_BASIS determines if CONDPROP is based on the subplot or the macroplot. Used to classify condition attributes, such as forest type and stand size class.
10. LANDCLCD Condition class status code, formerly known as "land class code". Indicates the basic land cover. See also COND_STATUS_CD. Starting with annual inventory protocols, land class code was renamed condition class status code. To maintain a link to periodic data, both variables, LANDCLCD and COND_STATUS_CD, are maintained. Both have the same value.

Code Description

1 Land that is within the population of interest, is accessible, is on a subplot that can be occupied at subplot center, can safely be visited, and meets at least one of the two following criteria: (a) the condition is at least 10-percent stocked by trees of any size or has been at least 10 -percent stocked in the past. Additionally, the condition is not subject to nonforest use(s) that prevent normal tree regeneration and succession such as regular mowing, intensive
grazing, or recreation activities; or (b) in several western woodland types where stocking cannot be determined, and the condition has at least 5 percent crown cover by trees of any size, or has had at least 5 percent cover in the past. Additionally, the condition is not subject to nonforest use that prevents normal regeneration and succession such as regular mowing, chaining, or recreation activities. To qualify as forest land, the prospective condition must be at least 1.0 ac in size and 120.0 ft wide measured stem-to-stem. Forested strips must be 120.0 ft wide for a continuous length of at least 363.0 ft in order to meet the acre threshold. Forested strips that do not meet these requirements are classified as part of the adjacent nonforest land.
2 Nonforest land is any land within the sample that does not meet the definition of accessible forest land or any of the other types of basic land covers. To qualify, the area must be at least 1.0 ac in size and 120.0 ft wide, with some exceptions that are described in the document "Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.7". Evidence of "possible" or future development or conversion is not considered. A nonforest land condition will remain in the sample and will be examined at the next occasion to see if it has become forest land.
3 Noncensus water: Lakes, reservoirs, ponds, and similar bodies of water 1.0 ac to 4.5 ac in size. Rivers, streams, canals, etc., 30.0 ft to 200 ft wide (1990 U.S. Census definition). This definition was used in the 1990 census and applied when the data became available. Earlier inventories defined noncensus water differently.
4 Census water: Lakes, reservoirs, ponds, and similar bodies of water 4.5 ac in size and larger; and rivers, streams, canals, etc., more than 200 ft wide (1990 U.S. Census definition).
5 Denied access: Any area within the sampled area on a plot on which access is denied by the legal owner of the land the plot falls on, or by an owner of the only reasonable route to the plot. There are no minimum area or width requirements for a condition class delineated by denied access. Because a denied-access condition can become accessible in the future, it remains in the sample and is re-examined at the next occasion to determine if access is available.
6 Hazardous: Any area within the sampled area on plot that cannot be accessed because of a hazard or danger, for example cliffs, quarries, strip mines, illegal plantations, temporary high water, etc. Although the hazard is not likely to change over time, a hazardous condition remains in the sample and is re-examined at the next occasion to determine if the hazard is still present. There are no minimum size or width requirements for a condition class delineated by a hazardous condition.
7 Not in the sample: Any area within the sampled area on a plot that is not within the boundaries of the sample population of interest.

Examples of areas out of the sample would be plots or portions of plots falling in Mexico or Canada. A condition outside the sample area remains in the potential population of interest and is reexamined at the next occasion to determine if it becomes part of the population of interest. There are no minimum size or width requirements for a condition class delineated as out of the sample.
11. RESERVCD Reserved status code. Reserved land is land that is withdrawn by law(s) prohibiting the management of the land for the production of wood products.

Code Description

0 Not reserved
1 Reserved
12. OWNCD Owner class code. Indicates the class in which the landowner (at the time of the inventory) belongs.

Code Description

11 National Forest : Lands administered by USDA Forest Service, National Forest System
12 National Grassland
13 Other Forest Service
21 National Park Service: Lands administered by USDI National Park Service
22 Bureau of Land Management: Lands administered by USDI Bureau of Land Management
23 Fish and Wildlife Service
24 Department of Defense/Energy
25 Other federal
31 State
32 Local (County, Municipal, etc)
33 Other non-federal public
41 Corporate
42 Non-governmental conservation/natural resources organization
43 Unincorporated local partnership/association/club
44 Native American (Indian)
45 Individual
46 Undifferentiated private (assigned when there are too few privately-owned plots in a population where an estimate of land area by owner class code may violate the landowners' privacy)
13. OWNGRPCD Owner group code. A broader group of landowner classes.

Code Description

10 Forest Service (OWNCD 11, 12, 13)
20 Other federal (OWNCD 21, 22, 23, 24, 25)
30 State and local government (OWNCD 31, 32, 33)
14. FORINDCD Private owner industrial status code. Indicates whether the landowner owns and operates a primary wood processing plant. A primary wood processing plant is any commercial operation that originates the primary processing of wood on a regular and continuing basis. Examples include: pulp or paper mill, sawmill, panel board mill, post or pole mill.

Code Description

0 Land is not owned by industrial owner with wood processing plant
1 Land is owned by industrial owner with wood processing plant
15. ADFORCD Administered forest code. Identifies the administrative unit (Forest Service Region and National Forest) in which the condition is located. The first two digits of the four digit code are for the Region number and the last two digits are for the Administered National Forest number. Refer to Appendix E for codes. Recorded in coordination with plot measurement date.
16. FORTYPCD Forest type code, derived by algorithm. The forest typing algorithm is a hierarchical procedure. The algorithm begins by comparing the live tree stocking of softwoods and hardwoods and continues in a stepwise fashion comparing successively smaller subgroups of the preceding aggregation of initial types. The aggregated initial type groups used at each step of the process are called combined type groups. Each initial type group can occur in more than one of these combined groups. The stepwise progression proceeds in most cases until a plurality of an initial type group is identified. In certain situations, the algorithm may revert to the field call. These situations are what would cause this variable to differ from FORTYPCDCALC. Refer to Appendix D for a detailed list of forest type codes. Information on how data are assigned to these types for a particular State can be obtained by contacting the appropriate FIA unit. Nonstocked forest land has a live tree stocking < 10 .
17. FLDTYPCD Forest type code (assigned by the field crew). Forest type is based on the tree species or species groups forming a plurality of all live stocking. Refer to Appendix D for a detailed list of forest type codes. Information on how data are assigned to these types for a particular State can be obtained by contacting the appropriate FIA unit. Nonstocked forest land has a live tree stocking <10.
18. MAPDEN Tree density class code. Code that indicates the relative density classification of the condition. Delineation by density class is done only when the less-dense condition is 50 percent or less as dense as the denser condition. Codes other than 1 are used to indicate that tree density is the only factor differentiating two conditions. New in 1999.

Code Description

1 Initial tree density class
2 Density class 2 - density different than density of the condition assigned a tree density class of 1
3 Density class 3 - density different than densities of the conditions assigned tree density classes of 1 and 2
19. STDAGE Stand age. For inventories begun in 1999, STDAGE is equal to the FLDAGE, which is based on the age of two or three dominant or codominant trees from the overstory. Each tree is weighted to give trees that best represent the stand more weight in the calculation of stand age. Refer to "Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.7", which is cited in the Literature Cited Section. In periodic inventories, stand age is the average total age, to the nearest year, of the trees (plurality of all live trees not overtopped) in the predominant stand-size class of the condition, determined using local procedures. Any inventory dated 1999 or later will contain stand ages recorded to the nearest year. For some older inventories, stand age was recorded in 10-year classes for stands < 100 years old, 20-year age classes for stands between 100 and 200 years, and 100 -year age classes if older than 200 years. The value recorded is the midpoint of the age class. Age is difficult to measure and therefore stand age may have large measurement errors. Stand age for nonstocked stands is recorded as 000 .
20. STDSZCD Stand-size class code (derived by algorithm). A classification of the predominant (based on stocking) diameter class of live trees within the condition. Large diameter trees are at least 11.0 inches diameter for hardwoods and at least 9.0 inches diameter for softwoods. Medium diameter trees are at least 5.0 inches diameter but not as large as large diameter trees. Small diameter trees are less than 5.0 inches diameter.

Code Description

1 Large diameter: Stands with an all live stocking of at least 10 (base 100); with more than 50 percent of the stocking in medium and large diameter trees; and with the stocking of large diameter trees equal to or greater than the stocking of medium diameter trees
2 Medium diameter: Stands with an all live stocking of at least 10 (base 100); with more than 50 percent of the stocking in medium and large diameter trees; and with the stocking of large diameter trees less than the stocking of medium diameter trees
3 Small diameter: Stands with an all live stocking value of at least 10 (base 100) on which at least 50 percent of the stocking is in small diameter trees
4 Chaparral: Forest land with all live stocking less than 10 and at least 5 percent cover by species that make up chaparral communities
5 Nonstocked: Forest land with all live stocking less than 10
21. FLDSZCD Stand-size class code (assigned by the field crew). A classification of the predominant (based on stocking) diameter class of live trees within the condition.

Code Description

0 Nonstocked: Meeting the definition of accessible land and one of the following applies: 1) less than 10 percent stocked by trees of any size, and not classified as chaparral, or 2) for forest types where stocking standards are not available, less than 5 percent crown cover of trees of any size
$1>0.0-4.9$ inches. At least 10 percent stocking (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least one-third of the crown cover is in trees less than 5.0 inches DBH/DRC
$25.0-8.9$ inches (softwoods)/ $5.0-10.9$ inches (hardwoods). At least 10 percent stocking (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least one-third of the crown cover is in trees greater than 5.0 inches DBH/DRC and the plurality of the crown cover is in softwoods $5.0-8.9$ inches in diameter and/or hardwoods $5.0-10.9$ in DBH , and for western woodland trees $5.0-8.9$ inches in DRC
$39.0-19.9$ inches (softwoods)/ 11.0 - 19.9 inches (hardwoods). At least 10 percent stocking (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least one-third of the crown cover is in trees greater than 5.0 inches DBH/DRC and the plurality of the crown cover is in softwoods $9.0-19.9$ inches in diameter and/or hardwoods $11.0-19.9$ in DBH, and for western woodland trees $9.0-19.9$ inches in DRC
420.0 - 39.9 inches. At least 10 percent stocking (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least one-third of the crown cover is in trees greater than 5.0 inches DBH/DRC and the plurality of the crown cover is in trees 20.0 - 39.9 inches DBH

5 40.0+ inches. At least 10 percent stocking (or 5 percent crown cover if stocking tables are not available) in trees of any size; and at least one-third of the crown cover is in trees greater than 5.0 inches DBH/DRC and the plurality of the crown cover is in trees over $40.0+$ inches DBH
6 Cover trees (non-talled): Less than 10 percent stocking by trees of any size, and greater than 5 percent crown cover of species that comprise cover trees.
22. SITECLCD Site productivity class code. A classification of forest land in terms of inherent capacity to grow crops of industrial wood. Identifies the potential growth in cubic feet/acre/year and is based on the culmination of mean annual increment of fully stocked natural stands. For data stored in the database that were processed outside of NIMS, this variable may be assigned based on the site productivity determined with the site trees, or
from some other source, but the actual source of the site productivity class code is not known. For data processed with NIMS, this variable may either be assigned based on the site trees available for the plot, or, if no valid site trees are available, this variable is set equal to SITECLCDEST, a default value that is either an estimated or predicted site productivity class. If SITECLCDEST is used to populate SITECLCD, the variable SITECL_METHOD is set to 6 .

Code Description
1 225+ cubic feet/acre/year
2 165-224 cubic feet/acre/year
3 120-164 cubic feet/acre/year
4 85-119 cubic feet/acre/year
5 50-84 cubic feet/acre/year
6 20-49 cubic feet/acre/year
7 0-19 cubic feet/acre/year
23. SICOND The site index (in feet) within the condition. This represents the average total length that dominant and co-dominant trees in fully-stocked, evenaged stands will obtain at key ages.
24. SIBASE Site index base age. The base age (in years) of the site index curves used to derive site index.
25. SISP Site index species code. The species upon which the site index is based.
26. STDORGCD Regeneration status (stand origin) code. Method of stand regeneration for the trees in the condition. An artificially regenerated stand is established by planting or artificial seeding.

Code Description
0 Natural stands
1 Clear evidence of artificial regeneration
27. STDORGSP Artificial regeneration (stand origin) species code. The species code for the predominant artificially regenerated species (only when STDORGCD $=1$).
28. SLOPE

Slope. The angle of slope, in percent, of the condition. Valid values are 000 through 155 for data collected in 1999 and after, and 000 through 200 on data collected before 1999. Before 1999, the field crew measured condition slope by sighting along the average incline or decline of the condition. Beginning in 1999, slope is collected on subplots but no longer collected for conditions. For plots taken in 1999 and after, the slope from the subplot representing the greatest percentage of the condition will be assigned as a surrogate. In the event that two or more subplots represent the same amount of area in the condition, the slope from the lower numbered subplot is used.
29. ASPECT Aspect. The direction of slope, to the nearest degree, for most of the condition. North is recorded as 360 . When slope is less than 5 percent, there is no aspect and this item is set to zero. Before 1999, the field crew measured condition aspect. Beginning in 1999, aspect is collected on subplots but no longer collected for conditions. For plots taken in 1999 and after, the aspect from the subplot representing the greatest percentage of the condition will be assigned as a surrogate. In the event that two or more subplots represent the same percentage of area in the condition, the slope from the lower numbered subplot is used.
30. PHYSCLCD Physiographic class code. The general effect of land form, topographical position, and soil on moisture available to trees. These codes are new in 1999; older inventories have been updated to these codes when possible.

Code Description

Xeric sites (normally low or deficient in available moisture)
11 Dry Tops - Ridge tops with thin rock outcrops and considerable exposure to sun and wind.
12 Dry Slopes - Slopes with thin rock outcrops and considerable exposure to sun and wind. Includes most mountain/steep slopes with a southern or western exposure.
13 Deep Sands - Sites with a deep, sandy surface subject to rapid loss of moisture following precipitation. Typical examples include sand hills, ridges, and flats in the South, sites along the beach and shores of lakes and streams.
19 Other Xeric - All dry physiographic sites not described above.
Mesic sites (normally moderate but adequate available moisture)
21 Flatwoods - Flat or fairly level sites outside of flood plains. Excludes deep sands and wet, swampy sites.
22 Rolling Uplands - Hills and gently rolling, undulating terrain and associated small streams. Excludes deep sands, all hydric sites, and streams with associated flood plains.
23 Moist Slopes and Coves - Moist slopes and coves with relatively deep, fertile soils. Often these sites have a northern or eastern exposure and are partially shielded from wind and sun. Includes moist mountain tops and saddles.
24 Narrow Flood plains/Bottomlands - Flood plains and bottomlands less than $1 / 4$-mile in width along rivers and streams. These sites are normally well drained but are subjected to occasional flooding during periods of heavy or extended precipitation. Includes associated levees, benches, and terraces within a 1 mile limit. Excludes swamps, sloughs, and bogs.
25 Broad Floodplains/Bottomlands - Floodplains and bottomlands less than $1 / 4$ mile or wider along rivers and streams. These sites are normally well drained but are subjected to occasional flooding during periods of heavy or extended precipitation. Includes associated levees, benches, and terraces within a $1 / 4$ mile limit.

Excludes swamps, sloughs, and bogs with year-round water problems within the $1 / 4$ mile limit.
29 Other Mesic - All moderately moist physiographic sites not described above.

Hydric sites (normally abundant or overabundant moisture all year)
31 Swamps/Bogs - Low, wet, flat, forested areas usually quite extensive that are flooded for long periods except during periods of extreme drought. Excludes cypress ponds and small drains.
32 Small Drains - Narrow, stream-like, wet strands of forest land often without a well-defined stream channel. These areas are poorly drained or flooded throughout most of the year and drain the adjacent higher ground.
33 Bays and wet pocosins - Low, wet, boggy sites characterized by peaty or organic soils. May be somewhat dry during periods of extended drought. Examples include sites in the Lake States with lowland swamp conifers.
34 Beaver ponds.
35 Cypress ponds.
39 Other hydric - All other hydric physiographic sites.
31. GSSTKCD Growing-stock stocking code. Indicates the stocking of the condition by growing-stock trees, including seedlings. Growing-stock trees are those where tree class (TREE.TREECLCD) equals 2 and species group (TREE.SPGRPCD) is equal to other than 23 (western woodland softwoods), 43 (eastern noncommercial hardwoods), and 48 (western woodland hardwoods).

Code	Description	
1	Overstocked	$(100+\%)$
2	Fully stocked	$(60-99 \%)$
3	Medium stocked	$(35-59 \%)$
4	Poorly stocked	$(10-34 \%)$
5	Nonstocked	$(0-9 \%)$

32. ALSTKCD All live stocking code. Indicates the stocking of the condition by live trees, including seedlings. Data are in classes as listed for GSSTKCD above. This variable may not be present for some older inventories.
33. TRTOPCD Treatment opportunity class code. Identifies the physical opportunity to improve stand conditions by applying management practices. Determined only for timberland (LANDCLCD=1, SITECLCD 1-6, and RESERVCD=0). This variable is mandatory for nonindustrial private lands AND optional for other ownerships.

Code Description

1 Regeneration without site preparation: The area is characterized by the absence of a manageable stand because of inadequate stocking of growing stock. Growth will be much below the potential for the site if the area is left alone. Prospects are not good for natural regeneration. Artificial regeneration will require little or no site preparation.
2 Regeneration with site preparation: The area is characterized by the absence of a manageable stand because of inadequate stocking of growing stock. Growth will be much below the potential for the site if the area is left alone. Either natural or artificial regeneration will require site preparation.
3 Stand conversion: The area is characterized by stands of undesirable, chronically diseased, or off-site (found where not normally expected) species. Growth and quality will be much below the potential for the site if the area is left alone. The best prospect is for conversion to a different forest type or species.
4 Thinning seedlings and saplings: The stand is characterized by a dense stocking of growing stock. Stagnation appears likely if left alone. Stocking must be reduced to help crop trees attain dominance.
5 Thinning poletimber: The stand is characterized by a dense stocking of growing stock. Stocking must be reduced to prevent stagnation or to confine growth to selected, high-quality crop trees.
6 Other stocking control: The stand is characterized by an adequate stocking of seedlings, saplings, and poletimber growing stock, mixed with competing vegetation either overtopping or otherwise inhibiting the development of crop trees. The undesirable material must be removed to release overtopped trees, to prevent stagnation, or to improve composition, form, or growth of the residual stand.
7 Other intermediate treatments: The stand would benefit from other special treatments, such as fertilization to improve the growth potential of the site, and pruning to improve the quality of individual crop trees.
8 Clearcut harvest: The area is characterized by a mature or overmature sawtimber stand of sufficient volume to justify a commercial harvest. The best prospect is to harvest the stand and regenerate.
9 Partial cut harvest: The stand is characterized by poletimber- or sawtimber-size trees with sufficient merchantable volume for a commercial harvest, which will meet intermediate stand treatment needs or prepare the stand for natural regeneration. The stand is of a favored species composition and may be even or uneven aged. Included are such treatments as commercial thinning, seed tree, or shelterwood regeneration, and use of the selection system to maintain an uneven-age stand.
10 Salvage harvest: The stand is characterized by excessive damage to merchantable timber because of fire, insects, disease, wind, ice, or other destructive agents. The best prospect is to remove damaged or threatened material.

11 No treatment: No silvicultural treatment is needed.
34. DSTRBCD1 Disturbance 1 code. Indicates the kind of disturbance occurring since the last measurement or within the last 5 years for new plots. The area affected by the disturbance must be at least 1 acre in size. A significant level of disturbance (mortality or damage to 25 percent of the trees in the condition) is required. This new code set was introduced in version 1.5 of the Field Guide and continued through the current version. Data collected prior to V1.5 have been converted to the new codes. New in 1999.

Code Description

00 No visible disturbance
10 Insect damage
20 Disease damage
30 Fire damage (from crown and ground fire, either prescribed or natural)

Ground fire damage
Crown fire damage
Animal damage
Beaver (includes flooding caused by beaver)
Porcupine
Deer/ungulate
Bear (CORE OPTIONAL)
Rabbit (CORE OPTIONAL)
Domestic animal/livestock (includes grazing)
Weather damage
Ice
52 Wind (includes hurricane, tornado)
53 Flooding (weather induced)
54 Drought
60 Vegetation (suppression, competition,vines)
70 Unknown / not sure / other (include in NOTES)
80 Human-caused damage - any significant threshold of humancaused damage not described in the DISTURBANCE codes or in the TREATMENT codes.
35. DSTRBYR1 Year in which Disturbance 1 is estimated to have occurred. New in 1999. If the disturbance occurs continuously over a period of time, the value 9999 is used.
36. DSTRBCD2 Disturbance 2 code. The second disturbance code, if the stand has experienced more than one disturbance. See DSTRBCD1 for more information.
37. DSTRBYR2 The year in which Disturbance 2 occurred. See DSTRBYR1 for more information.
38. DSTRBCD3 Disturbance 3 code. The third disturbance code, if the stand has experienced more than two disturbances. See DSTRBCD1 for more information.
39. DSTRBYR3 The year in which Disturbance 3 occurred. See DSTRBYR1 for more information.
40. TRTCD1 Stand Treatment 1 code. Indicates the type of stand treatment that has occurred since the last measurement or within the last 5 years for new plots. The area affected by the treatment must be at least 1 acre in size. Inventories conducted before 1999 may record treatments occurring within the last 20 years for new plots. New in 1999.

Code Description

00 No observable treatment.
10 Cutting - The removal of one or more trees from a stand.
20 Site preparation - Clearing, slash burning, chopping, disking, bedding, or other practices clearly intended to prepare a site for either natural or artificial regeneration.
30 Artificial regeneration - Planting or direct seeding has resulted in a stand at least 50 percent stocked with live trees of any size.
40 Natural regeneration - Growth of existing trees and/or natural seeding has resulted in a stand at least 50 percent stocked with live trees of any size.
50 Other silvicultural treatment - The use of fertilizers, herbicides, girdling, pruning, or other activities (not already listed above) designed to improve the commercial value of the residual stand.
41. TRTYR1 Treatment year 1. Year in which Stand Treatment 1 is estimated to have occurred. New in 1999.
42. TRTCD2 Stand treatment 2. Indicates the type of stand treatment that has occurred since the last measurement or within the last 5 years for new plots. Inventories conducted before 1999 may record treatments occurring within the last 20 years for new plots. Use same codes as TRTCD1. New in 1999.
43. TRTYR2 Treatment year 2. Year in which Stand Treatment 2 is estimated to have occurred. New in 1999.
44. TRTCD3 Stand Treatment 3 code. Indicates the type of stand treatment that has occurred since the last measurement or within the last 5 years for new plots. Inventories conducted before 1999 may record treatments occurring within the last 20 years for new plots. Use same codes as TRTCD1. New in 1999.
45. TRTYR3 Treatment year 3. Year in which Stand Treatment 3 is estimated to have occurred. New in 1999.
46. PASTNFCD Past nonforest/inaccessible land use code. Used when conditions were classified as nonforest or inaccessible during the previous inventory but are classified as accessible forest land during current inventory. Indicates the kind of land use occurring at the previous inventory. New in 1999.

Code	Description
10	Agricultural land
11	Cropland
12	Pasture (improved through cultural practices)
13	Idle farmland
14	Orchard
15	Christmas tree plantation
20	Rangeland
30	Developed
31	Cultural (business, residential, other intense human activity)
32	Rights-of-way (improved road, railway, power line)
33	Recreation (park, golf course, ski run)
40	Other (undeveloped beach, marsh, bog, non-census water)
90	Not sampled
91	Census water
92	Denied access
93	Hazardous
94	Not in the sample

47. PRESNFCD Present nonforest land use code. Indicates the kind of land use occurring now for conditions that were previously classified as forest but are now classified as nonforest. Uses the same codes as PASTNFCD. New in 1999.
48. NFYEAR Nonforest year. An estimate of the year that a previously accessible forest land condition was converted to a nonforest condition. New in 1999.
49. BALIVE Basal area of all live trees, summed for the condition. Basal area in square-feet of all live trees over 1 inch DBH/DRC.
50. MICRPROP Microplot condition proportion, based on the sampling design. Unadjusted proportion of the microplots that are in the condition. The sum of all microplot condition proportions for a plot equals 1.0000 .
51. DAMINDEX Damage index. A number from 0 to 100 indicating the relative tree damage for the condition.
52. CN Sequence number. A unique sequence number used to identify a condition record.
53. PLT_CN Plot sequence number. Foreign key linking the condition record to the plot record.
54. FLDAGE Stand age. The stand age as assigned by the field crew. Based on the age of two or three dominant or codominant trees from the overstory. Each tree is weighted to give trees that best represent the stand more weight in the calculation of stand age. Stand age for nonstocked stands is recorded as 000. Refer to "Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.7", which is cited in the Literature Cited Section.
55. ALSTK All-live-tree stocking percent. The all-live-tree stocking percent on the condition, which is assigned a class code, found in ALSTKCD.
56. GSSTK Growing-stock stocking percent. The growing-stock stocking percent on the condition, which is assigned a class code, found in GSSTKCD.
57. PREVCOND Previous condition. Identifies the condition within the plot on which this condition occurred at the previous inventory. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
58. CONDPROPUN

Unadjusted subplot condition proportion. Specific to Southern Research
Station. All other Stations record null for this variable. Contact Southern Research Station for more information.
59. FORTYPCDCALC

Forest type code (derived by algorithm). This variable is similar to FORTYPCD except that it always retains the calculated variable. Refer to Appendix D for a detailed list of forest type codes.
60. HABTYPCD1 Primary condition habitat type. Specific to Rocky Mountain Research

Station. All other Stations record null for this variable. Contact Rocky Mountain Research Station for codes and more information. A 6 digit code that describes the predominant plant association of the site. The first 2 digits describe the climax overstory species, the species that is generally found in the reproduction, the third and fourth digits are the series, and the last two digits describe the understory vegetation.
61. HABTYPCD2 Secondary condition habitat type. See HABTYPCD1.
62. MIXEDCONFCD

Mixed conifer code. Specific to Pacific Northwest Research Station. All other Stations record null for this variable. Contact Pacific Northwest Research Station for more information. An indicator to show if there is a calculated forest type for mixed conifer site. Yes/No field (Y/N).

To classify as a mixed conifer site the condition class must be capable of being stocked with greater than 70% conifers and one of the following must be true:
1.) Douglas-fir predominates and the county is not Del Norte, Humbolt, Marin, Mendocino, Napa, San Mateo, Santa Clara, Santa Cruz, or Sonoma
2.) Sugar pine or incense-cedar predominate
3.) Ponderosa pine and/or Jeffrey pine, either singly or in combination, predominate, but make up less than 80% of the conifer stocking
4.) White fir and/or red fir and/or Shasta red fir, either singly or in combination, predominate, but make up less than 80% of the conifer stocking

On a mixed conifer site, a complex association of ponderosa pine, sugar pine, Douglas-fir, white fir, and red fir may exist. Incense-cedar may also be a component. Generally these five or six conifer species are intermixed, either as single trees or in small groups. Vertical mixing is also common with one to three species in the overstory and one or two species in the understory. Mixed conifer sites are often on east facing slopes of the coast range, and on the west-facing and higher elevation east-facing slopes of the Cascades and Sierra Nevadas.
63. MACRPROP Macroplot condition proportion, based on the sampling design.

Unadjusted proportion of the macroplots that are in the condition. The sum of all macroplot condition proportions for a plot equals 1.0000. If PROP_BASIS equals "MACR", this will equal CONDPROP.
64. CREATED_BY The user who created the record.

65. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
66. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
67. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.

68. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
69. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
70. VOL_LOC_GRP

Volume location group. A regional identifier to indicate what equations are used for volume, biomass, site index, etc. For the specific codes used in a particular Region or State, contact the FIA program responsible for that Region or State.
71. SUBPPROP Subplot condition proportion, based on the sampling design. Unadjusted proportion of the subplots that are in the condition. The sum of all subplot condition proportions for a plot equals 1.0000. If PROP_BASIS equals "SUBP", this will equal CONDPROP.
72. PROP_BASIS Proportion basis. Valid values are either "SUBP" or "MACR". This indicates whether the proportions stored in CONDPROP, CONDPROP_ALL, CONDPROP_CHNG, CONDPROP_CURR, and CONDPROP_SAMP are based on the subplot (SUBP) or on the macroplot (MACR).
73. CONDPROP_ALL

Condition proportion for total area estimation. The proportion, based on the plot design (either the subplot or the macroplot), is calculated by excluding any outside-of-the-population conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-the-population condition. The value in column PROP_BASIS determines if CONDPROP_ALL is based on the subplot or the macroplot. Used along with EXPALL in the total area estimate, which will include denied-access and hazardous area.

74. CONDPROP_CHNG

Condition proportion for change estimation. Only plots measured at two points in time will have a value in this variable; new plots will contain a null. The value in column PROP_BASIS determines if CONDPROP_CHNG is based on the subplot or the macroplot. THIS VARIABLE IS NOT CORRECTLY POPULATED AT THIS TIME.

75. CONDPROP_CURR

Condition proportion for current estimation. The proportion, based on the plot design (either the subplot or the macroplot), is calculated by excluding any outside-of-the-population, denied-access, or hazardous conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-the-population, deniedaccess, or hazardous condition. The value in column PROP_BASIS determines if CONDPROP_CURR is based on the subplot or the macroplot. Used along with EXPCURR in current forest/timberland estimates.

76. MACRPROP_ALL

Macroplot condition proportion (total area basis). The proportion, based on the macroplot design, is calculated by excluding any outside-of-thepopulation conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-thepopulation condition. If PROP_BASIS equals "MACR", this will equal CONDPROP_ALL.
77. MACRPROP_CHNG

Macroplot condition proportion (change estimation basis). Only plots measured at two points in time will have a value in this variable; new plots will contain a null. If PROP_BASIS equals "MACR", this will equal CONDPROP_CHNG. THIS VARIABLE IS NOT CORRECTLY POPULATED AT THIS TIME.
78. MACRPROP_CURR

Macroplot condition proportion (current estimation basis). The proportion, based on the macroplot design, is calculated by excluding any outside-of-the-population, denied-access, or hazardous conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-the-population, denied-access, or hazardous condition. If PROP_BASIS equals "MACR", this will equal CONDPROP_CURR.
79. MICRPROP_ALL

Microplot condition proportion (total area basis). The proportion, based on the microplot design, is calculated by excluding any outside-of-thepopulation conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-thepopulation condition.
80. MICRPROP_CHNG

Microplot condition proportion (change estimation basis). Only plots measured at two points in time will have a value in this variable; new plots will contain a null. THIS VARIABLE IS NOT CORRECTLY POPULATED AT THIS TIME.

81. MICRPROP_CURR

Microplot condition proportion (current estimation basis). The proportion, based on the microplot design, is calculated by excluding any outside-of-the-population, denied-access, or hazardous conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-the-population, denied-access, or hazardous condition.

82. SITECLCDEST

Estimated site productivity class code. In NIMS processing, this default code is an estimated or predicted indicator of site productivity and is used as the variable SITECLCD if no valid site tree is available. When SITECLCDEST is used as SITECLCD, SITECL_METHOD is set to 6. For data stored in the database that were processed prior to the use of NIMS, this variable is null.

Code Description
1 225+ cubic feet/acre/year
2 165-224 cubic feet/acre/year
3 120-164 cubic feet/acre/year
4 85-119 cubic feet/acre/year
$5 \quad$ 50-84 cubic feet/acre/year
$6 \quad$ 20-49 cubic feet/acre/year
$7 \quad 0-19$ cubic feet/acre/year

83. SITETREE_TREE

Site tree tree number. Selected SITETREE tree number.

84. SITECL_METHOD

Site class method code. A code identifying the method for determining the site class code.

Code Description
1 Tree measurement (length, age, etc.) collected during this inventory.
2 Tree measurement (length, age, etc.) collected during a previous inventory.
3 Site index estimated either in the field or office.

Site index estimated by the height intercept method during this inventory.
5 Site index estimated using multiple site trees.
Site index estimated using default values.
85. COND_STATUS_CD

Condition status code. Indicates the basic land cover. Synonymous with LANDCLCD. See LANDCLCD for codes and descriptions.

86. CONDPROP_SAMP

Condition proportion for the measured portion of the plot. The proportion is calculated at the plot level by excluding any outside-of-the-population, denied-access, or hazardous conditions from the plot and adjusting the proportions to sum to 1.0 over all measured conditions on the plot. This variable accommodates customers who want to use the plot as a stand-alone entity, independent of the stratum in which the plot falls. A null indicates an outside-of-the-population, denied-access, or hazardous condition. The value in column PROP_BASIS determines if CONDPROP_SAMP is based on the subplot or the macroplot. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
87. MICRPROP_SAMP

Condition proportion for the measured portion of the microplots. The proportion is calculated at the plot level by excluding any outside-of-thepopulation, denied-access, or hazardous conditions from the plot and adjusting the proportions to sum to 1.0 over all measured conditions on the microplots. This variable accommodates customers who want to use the plot as a stand-alone entity, independent of the stratum in which the plot falls. A null indicates an outside-of-the-population, denied-access, or hazardous condition. THIS VARIABLE IS NOT CORRECTLY POPULATED AT THIS TIME.
88. MACRPROP_SAMP

Condition proportion for the measured portion of the macroplots. The proportion is calculated at the plot level by excluding any outside-of-thepopulation, denied-access, or hazardous conditions from the plot and adjusting the proportions to sum to 1.0 over all measured conditions on the macroplots. This variable accommodates customers who want to use the plot as a stand-alone entity, independent of the stratum in which the plot falls. A null indicates an outside-of-the-population, denied-access, or hazardous condition. If PROP_BASIS equals "MACR", this will equal CONDPROP_SAMP. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
89. SUBPPROP_SAMP

Condition proportion for the measured portion of the subplots. The proportion is calculated at the plot level by excluding any outside-of-thepopulation, denied-access, or hazardous conditions from the plot and adjusting the proportions to sum to 1.0 over all measured conditions on the subplots. This variable accommodates customers who want to use the plot as a stand-alone entity, independent of the stratum in which the plot falls. A null indicates a denied-access, hazardous, or outside-of-the-population condition. If PROP_BASIS equals "SUBP", this will equal CONDPROP_SAMP. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
90. SUBPPROP_ALL

Subplot condition proportion (total area basis). The proportion, based on the subplot design, is calculated by excluding any outside-of-the-population conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null value indicates an outside-of-the-population condition. If PROP_BASIS equals "SUBP", this will equal CONDPROP_ALL. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
91. SUBPPROP_CHNG

Subplot condition proportion (change estimation basis). Only plots measured at two points in time will have a value in this variable; new plots will contain a null. If PROP_BASIS equals "SUBP", this will equal CONDPROP_CHNG. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
92. SUBPPROP_CURR

Subplot condition proportion (current estimation basis). The proportion, based on the subplot design, is calculated by excluding any outside-of-thepopulation, denied-access, or hazardous conditions from the sample and adjusting over all plots in the stratum in which the plot is classified. Strata are described in the Estimation Unit Stratum table. A null indicates an outside-of-the-population, denied-access, or hazardous condition. If PROP_BASIS equals "SUBP", this will equal CONDPROP_CURR. THIS VARIABLE IS NOT POPULATED AT THIS TIME.

Tree Table (Oracle table name is TREE)

	Column name	Oracle data type	Value or unit of measure	Key data item	Field Guide Item\#
1	TABLENM	VARCHAR2 (8)	TREE		
2	STATECD	NUMBER (4)	Coded	X	
3	CYCLE	NUMBER (2)	Number	X	
4	SUBCYCLE	NUMBER (2)	Number	X	
5	UNITCD	NUMBER (2)	Coded	X	
6	COUNTYCD	NUMBER (3)	Coded	X	
7	PLOT	NUMBER (5)	Number	X	
8	SUBP	NUMBER (3)	Number	X	5.1
9	TREE	NUMBER (9)	Number	X	5.2
10	CONDID	NUMBER (1)	Number		5.3
11	AZIMUTH	NUMBER (3)	Degrees		5.4
12	DIST	NUMBER (3,1)	Feet		5.5
13	PREVCOND	NUMBER (1)	Number		
14	PREVSUBC	NUMBER (2)	Number		
15	STATUSCD	NUMBER (1)	Coded		5.6
16	LEANCD	NUMBER (2)	Coded		5.7
17	UTILCD	NUMBER (1)	Coded		5.22
18	SPCD	NUMBER (3)	Coded		5.8
19	SPGRPCD	NUMBER (2)	Coded		
20	DIA	NUMBER $(5,2)$	Inches		5.9.2, 5.9.4
21	DIAHTCD	NUMBER (1)	Coded		
22	HT	NUMBER (3)	Feet		5.12
23	HTCD	NUMBER (2)	Coded		5.14
24	ACTUALHT	NUMBER (3)	Feet		5.13
25	TREECLCD	NUMBER (2)	Coded		
26	CR	NUMBER (3)	Percent		5.17
27	CCLCD	NUMBER (2)	Coded		5.15
28	TREEGRCD (NCRS,NERS,SRS)	NUMBER (2)	Coded		
29	AGENTCD	NUMBER (2)	Coded		5.19
30	CULL	NUMBER (3)	Percent		5.11
31	DAMLOC1	NUMBER (2)	Coded		5.18.1
32	DAMTYP1	NUMBER (2)	Coded		5.18 .2
33	DAMSEV1	NUMBER (2)	Coded		5.18 .3
34	DAMLOC2	NUMBER (2)	Coded		5.18 .4
35	DAMTYP2	NUMBER (2)	Coded		5.18 .5

36	DAMSEV2	NUMBER (2)	Coded	5.18.6
37	DECAYCD	NUMBER (2)	Coded	5.21
38	STOCKING	NUMBER $(7,4)$	Percent	
39	WDLDSTEM	NUMBER (3)	Number	
40	TPACURR	NUMBER (11,6)	Trees/acre	
41	TPAMORT	NUMBER $(11,6)$	Trees/acre/yr.	
42	TPAREMV	NUMBER (11,6)	Trees/acre/yr.	
43	TPAGROW	NUMBER $(11,6)$	Trees/acre	
44	VOLCFNET	NUMBER (11,6)	$\mathrm{Cu} . \mathrm{ft}$./tree	
45	VOLCFGRS	NUMBER (11,6)	$\mathrm{Cu} . \mathrm{ft}$./tree	
46	VOLCSNET	NUMBER $(11,6)$	$\mathrm{Cu} . \mathrm{ft}$./tree	
47	VOLCSGRS	NUMBER (11,6)	$\mathrm{Cu} . \mathrm{ft}$./tree	
48	VOLBFNET	NUMBER $(11,6)$	Bd. ft./tree	
49	VOLBFGRS	NUMBER $(11,6)$	Bd. ft./tree	
50	VOLCFSND	NUMBER $(11,6)$	$\mathrm{Cu} . \mathrm{ft}$./tree	
51	GROWCFGS	NUMBER (11,6)	Cu. ft./year/tree	
52	GROWBFSL	NUMBER $(11,6)$	Bd. ft./year/tree	
53	GROWCFAL	NUMBER (11,6)	Cu. ft./year/tree	
54	MORTCFGS	NUMBER $(11,6)$	$\mathrm{Cu} . \mathrm{ft}$./tree	
55	MORTBFSL	NUMBER (11,6)	Bd. ft./tree	
56	MORTCFAL	NUMBER $(11,6)$	$\mathrm{Cu} . \mathrm{ft}$./tree	
57	REMVCFGS	NUMBER (11,6)	Cu. ft./tree	
58	REMVBFSL	NUMBER $(11,6)$	Bd. ft./tree	
59	REMVCFAL	NUMBER (11,6)	Cu. ft./tree	
60	DRYBIOT	NUMBER $(13,6)$	Ovendry lbs./tree	
61	DRYBIOM	NUMBER $(13,6)$	Ovendry lbs./tree	
62	DIACHECK	NUMBER (2)	Coded	5.10
63	MORTYR	NUMBER (4)	Year	5.20
64	SALVCD	NUMBER (2)	Coded	
65	UNCRCD	NUMBER (3)	Percent	5.16
66	CPOSCD	NUMBER (2)	Coded	
67	CLIGHTCD	NUMBER (2)	Coded	
68	CVIGORCD	NUMBER (2)	Coded	
69	CDENCD	NUMBER (3)	Coded	
70	CDIEBKCD	NUMBER (3)	Coded	
71	TRANSCD	NUMBER (3)	Coded	
72	CN	VARCHAR2 (34)	Character	
73	PLT_CN	VARCHAR2 (34)	Character	
74	TREEHISTCD (NCRS,NERS,SRS)	NUMBER (2)	Coded	

75	DIACALC (NCRS,SRS)	NUMBER $(5,2)$	Inches	
76	BHAGE (PNWRS,RMRS)	NUMBER (4)	Years	
77	TOTAGE (PNWRS,RMRS)	NUMBER (4)	Years	
78	CULLDEAD (RMRS)	NUMBER (3)	Percent	
79	CULLFORM (RMRS)	NUMBER (3)	Percent	
80	CULLMSTOP(RMRS)	NUMBER (3)	Percent	
81	CULLBF (NERS)	NUMBER (3)	Percent	
82	CULLCF (NERS)	NUMBER (3)	Percent	
83	BFSND (NERS)	NUMBER (3)	Percent	
84	CFSND (NERS)	NUMBER (3)	Percent	
85	SAWHT (NERS)	NUMBER (2)	Feet	
86	BOLEHT (NERS)	NUMBER (2)	Feet	
87	FORMCL (PNWRS)	NUMBER (1)	Coded	
88	HTCALC (SRS)	NUMBER (3)	Feet	
89	HRDWD_CLUMP_CD (PNWRS)	NUMBER (1)	Coded	
90	SITREE (NCRS)	NUMBER (3)	Feet	
91	CREATED_BY	VARCHAR2 (30)	Character	
92	CREATED_DATE	DATE	DD-MON-YYYY	
93	CREATED_IN_INSTANCE	NUMBER (6)	Number	
94	MODIFIED_BY	VARCHAR2 (30)	Character	
95	MODIFIED_DATE	DATE	DD-MON-YYYY	
96	MODIFIED_IN_INSTANCE	NUMBER (6)	Number	
97	NOTES	VARCHAR2 (2000)	Text	5.26
98	MORTCD	NUMBER (1)	Coded	5.6 .2
99	HTDMP	NUMBER $(3,1)$	Feet	5.23
100	ROUGHCULL	NUMBER (2)	Percent	5.24
101	MIST_CL_CD	NUMBER (1)	Coded	5.25
102	TPA	NUMBER (11,6)	Trees/acre	
103	CULL_FLD	NUMBER (2)	Percent	5.11
104	RECONCILECD	NUMBER (1)	Coded	5.6.1
105	PREVDIA	NUMBER $(5,2)$	Inches	5.9.1, 5.9.3
106	FGROWCFGS	NUMBER (11,6)	$\mathrm{Cu} . \mathrm{ft}$ //year/tree	
107	FGROWBFSL	NUMBER $(11,6)$	Bd. ft./year/tree	
108	FGROWCFAL	NUMBER (11,6)	Cu. ft./year/tree	
109	FMORTCFGS	NUMBER $(11,6)$	$\mathrm{Cu} . \mathrm{ft}$./tree	
110	FMORTBFSL	NUMBER (11,6)	Bd. ft./tree	
111	FMORTCFAL	NUMBER $(11,6)$	$\mathrm{Cu} . \mathrm{ft}$./tree	
112	FREMVCFGS	NUMBER (11,6)	$\mathrm{Cu} . \mathrm{ft}$./tree	
113	FREMVBFSL	NUMBER $(11,6)$	Bd. ft./tree	

114	FREMVCFAL	NUMBER $(11,6)$	Cu. ft./tree
115	TPACURR_SAMP	NUMBER $(11,6)$	Trees/acre
116	TPAGROW_SAMP	NUMBER $(11,6)$	Trees/acre
117	TPAMORT_SAMP	NUMBER $(11,6)$	Trees/acre
118	TPAREMV_SAMP	NUMBER $(11,6)$	Trees/acre

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'TREE.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each state. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. SUBP Subplot number. Number of the subplot on which the tree was measured. Annual inventories have subplot number values of 1 through 4. Periodic inventories subplot numbers will vary. For more information, contact the appropriate FIA unit.
9. TREE Tree record number. A number used to uniquely identify a tree on a subplot.
10. CONDID Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class
status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1 . Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
11. AZIMUTH Azimuth. The direction, to the nearest degree, from subplot center (microplot center for saplings) to the center of the base of the tree (geographic center for multi-stemmed woodland species). Due north is represented by 360 degrees.
12. DIST Horizontal distance. The horizontal distance in feet from subplot center (microplot center for saplings) to the pith at the base of the tree (geographic center for multi-stemmed woodland species).
13. PREVCOND Previous condition number. Identifies the condition within the plot on which the tree occurred at the previous inventory.
14. PREVSUBC Previous subcycle number. Identifies the subcycle in which the tree was recorded at the previous inventory. (In some instances a plot may have been measured more than once during an inventory cycle. Subcycle is then needed to uniquely identify the previous condition.).
15. STATUSCD Tree status code. Identifies whether the sample tree is live, cut, or dead. Includes dead and cut trees, which are required to estimate aboveground biomass and net annual volume for growth, mortality, and removals. Note: New and replacement plots use only codes 1 and 2. This code is not used when querying data for change estimates.

Code Description
0 No status
1 Live tree
2 Dead tree
3 Removal - Cut or killed as a result of harvesting or land clearing
4 Missing - Tallied in previous inventory but now is missing due to natural causes
16. LEANCD Lean code. Describes whether a tree is standing or down. New in 1999.

Code Description
0 Standing (<45 degrees of lean)
1 Down (at least 45 degrees of lean)
17. UTILCD Utilization class code. Identifies trees that have been cut and removed from the site.

Code Description

0 Not utilized
1 Utilized
18. SPCD Species code. An FIA tree species code. Refer to Appendix F for codes.
19. SPGRPCD Species group code. An FIA species group number, which is used to produce many of the standard presentation tables. The assignment of individual species (SPCD) to these groups is shown in Appendix F. Individual FIA programs may further break these species groups down for published tables, but this is a common list that all published standard presentation tables must match.
20. DIA Current diameter. The current diameter (in inches) of the sample tree at the point of diameter measurement. Check the DIAHTCD variable to determine the measurement point. DIA for live trees contains the measured value. DIA for cut and dead trees presents problems associated with uncertainty of when the tree was cut or died as well as structural deterioration of dead trees. Consult individual units for explanations of how DIA is collected for dead and cut trees.
21. DIAHTCD Height of diameter measurement code. The height above ground at which the diameter was obtained on the sample tree.

Code Description

1 Breast height (DBH)
2 Root collar (DRC)
3 Stump
22. HT

Total length. The total length of a sample tree (in feet) from the ground to the tip of the apical meristem. The total length of a tree is not always its actual length. If the main stem is broken, the actual length is measured or estimated and the missing piece is added to the actual length to estimate total length. The amount added is determined by measuring the broken piece if it can be located on the ground; otherwise it is estimated
23. HTCD Length method code. Indicates how length was determined.

Code Description
1 Field measured (total and actual length)
2 Total length visually estimated in the field, actual length measured.
3 Total and actual lengths are visually estimated
24. ACTUALHT Actual length of tree. The length of the tree to the nearest foot from ground level to the highest remaining portion of the tree still present and attached to the bole. Recorded on trees with broken or missing tops.
25. TREECLCD Tree class code. The general quality of the tree. For cut, dead, and sound dead trees measured in a periodic inventory, tree class of the tree at the time it died or was cut is estimated. For dead and sound dead trees measured in an annual inventory, tree class is that of the tree at the time of current measurement and is used where current estimates are calculated.

Code Description

2 Growing stock: All trees of commercial species that meet certain merchantability standards. Excludes rough or rotten cull trees.
3 Rough cull: Trees that do not now, or prospectively, have at least one solid 8 -foot section, reasonably free of form defect, on the merchantable bole or have 67 percent or more of the merchantable volume cull; and more than half of this cull is due to sound dead wood cubic-foot loss or severe form defect volume loss. In California, Oregon, and Washington inventories 75 percent or more cull, rather than 67 percent or more cull, applies. This class also contains all trees of noncommercial species, or those species where SPGRPCD equals 23 (western woodland softwoods), 43 (eastern noncommercial hardwoods), or 48 (western woodland hardwoods). Refer to Appendix F for species that have these SPGRPCD codes.
4 Rotten cull: Trees with 67 percent or more of the merchantable volume cull, and more than half of this cull is due to rotten or missing cubic-foot volume loss. PNW uses a 75-percent cutoff.
26. CR Compacted crown ratio. The percent of the tree bole supporting live, healthy foliage (the crown is ocularly compacted to fill in gaps) when compared to total length. Expressed as a percent of total tree length.
27. CCLCD Crown class code. Primarily indicates the amount of sunlight received as opposed to the conventional "crown position" found in forestry textbooks.

Code Description

1 Open grown: Trees with crowns that have received full light from above and from all sides throughout all or most of their life, particularly during early development.
2 Dominant: Trees with crowns extending above the general level of the canopy and receiving full light from above and partly from the sides; larger than the average trees in the stand, and with crowns well developed, but possibly somewhat crowded on the sides.
3 Codominant: Trees with crowns forming part of the general level of the crown cover and receiving full light from above, but
comparatively little from the side. Usually with medium crowns more or less crowded on the sides.
4 Intermediate: Trees shorter than those in the preceding two classes, with crowns either below or extending into the canopy formed by the dominant and codominant trees, receiving little direct light from above, and none from the sides; usually with small crowns very crowded on the sides.
5 Overtopped: Trees with crowns entirely below the general canopy level and receiving no direct light either from above or the sides.
28. TREEGRCD Tree grade code. Specific to North Central, Northeastern, and Southern Research Stations. All other Stations record null for this variable. Contact North Central, Northeastern, or Southern Research Station for more information, as procedures to grade trees are different for each program. This item is nonzero for all sawtimber-size trees regardless of status; however, it is not measured on all sawtimber-size trees on every plot. Sawtimber-size trees that are graded but do not contain a gradeable log are given a tree grade 5. Sawtimber-size trees that are not graded because of sampling design have no grade. Trees smaller than sawtimber receive a tree grade of zero.

Code Description
0 Tree too small to grade
1 Tree grade 1
2 Tree grade 2
3 Tree grade 3
4 Graded and contains a gradeable log but does not meet grade 3 standards
5 Graded but does not contain a gradeable log (local use trees).
29. AGENTCD Cause of death (agent) code. Beginning in the year 1999 this variable will be collected on only dead and cut trees. Before 1999, this variable was collected on all trees (live, dead, and cut). Cause of damage was recorded for live trees if the presence of damage or pathogen activity was serious enough to reduce the quality or vigor of the tree. When a tree was damaged by more than one agent, the most severe damage was coded. When no damage was observed on a live tree, 00 was recorded. Damage recorded for dead trees was the cause of death. When the cause of death could not be determined for a tree, 99 was recorded. Each FIA program records specific codes that may differ from one State to the next. These codes fall within the ranges listed below. For the specific codes used in a particular State, contact the FIA program responsible for that State.

Code Description

00 No agent recorded (only allowed on live trees in data prior to 1999)

10 Insect
20 Disease

30 Fire
40 Animal
50 Weather
60 Vegetation (e.g., competition or vines)
70 Unknown, not sure, other
80 Human-caused (cultural, logging, accidental, etc.)
90 Physical (e.g., hit by falling tree)
30. CULL Rotten and missing cull. The percent of the cubic-foot volume in a live or dead tally tree that is rotten or missing.
31. DAMLOC1 Damage location 1 code. Indicates where on the tree damage (meeting or exceeding a severity threshold, as defined in the field guide) is present. New in 1999. (CORE prior to V1.7, CORE OPTIONAL in V1.7)

Code Description

0 No damage
1 Roots (exposed) and stump (up to 12 inches from ground level)
2 Roots, stump, and lower bole
3 Lower bole (lower half of bole between stump and base of live crown)
4 Lower and upper bole
5 Upper bole (upper half of bole between stump and base of live crown)
6 Crownstem (main stem within the live crown)
7 Branches (> 1 inch diameter at junction with main stem and within the live crown)
8 Buds and shoots of current year
9 Foliage
32. DAMTYP1 Damage type 1 code. Indicates the kind of damage (meeting or exceeding a severity threshold, as defined in the field guide) present. New in 1999.

Code Description

01 Canker, gall
02 Conk, fruiting body, or sign of advanced decay
03 Open wound
04 Resinosis or gumosis
05 Crack or seam
11 Broken bole or broken root within 3 feet of bole
12 Broom on root or bole
13 Broken or dead root further than 3 feet from bole
20 Vines in the crown
21 Loss of apical dominance, dead terminal
22 Broken or dead branches
23 Excessive branching or brooms within the live crown
24 Damaged shoots, buds, or foliage

25 Discoloration of foliage
31 Other
33. DAMSEV1 Damage severity 1 code. Indicates how much of the tree is affected. Legal severity codes vary by damage type and damage location and must exceed a threshold value, as defined in the field guide. New in 1999.

Code Description
001 to 09 \% of location affected
110 to 19% of location affected
220 to 29% of location affected
330 to 39% of location affected
440 to 49% of location affected
550 to 59% of location affected
660 to 69 \% of location affected
770 to 79% of location affected
880 to 89 \% of location affected
990 to 99% of location affected
34. DAMLOC2 Damage location 2 code. Indicates where on the tree secondary damage (meeting or exceeding a severity threshold, as defined in the field guide) is present. Use same codes as DAMLOC1. New in 1999.
35. DAMTYP2 Damage type 2 code. Indicates the kind of secondary damage (meeting or exceeding a severity threshold, as defined in the field guide) present. Use same codes as DAMTYP1. New in 1999.
36. DAMSEV2 Damage severity 2 code. Indicates how much of the tree is affected by the secondary damage. Legal severity codes vary by damage type and damage location and must exceed a threshold value, as defined in the field guide. Use same codes as DAMSEV1. New in 1999.
37. DECAYCD Decay class code. Indicates the stage of decay in a standing dead tree. New in 1999.

Code Description

1 All limbs and branches are present; the top of the crown is still present; all bark remains; sapwood is intact, with minimal decay; heartwood is sound and hard.
2 There are few limbs and no fine branches; the top may be broken; a variable amount of bark remains; sapwood is sloughing with advanced decay; heartwood is sound at base but beginning to decay in the outer part of the upper bole.
3 Only limb stubs exist; the top is broken; a variable amount of bark remains; sapwood is sloughing; heartwood has advanced decay in upper bole and is beginning at the base.

4 Few or no limb stubs remain; the top is broken; a variable amount of bark remains; sapwood is sloughing; heartwood has advanced decay at the base and is sloughing in the upper bole.
5 No evidence of branches remains; the top is broken; less than 20\% of the bark remains; sapwood is gone; heartwood is sloughing throughout.
38. STOCKING Tree stocking. The stocking value assigned to each live tree. Stocking is a relative term used to describe (in percent) the adequacy of a given stand density in meeting a specific management objective. Species or forest type stocking functions were used to assess the stocking contribution of individual trees. These functions, which were developed using stocking guides, relate the area occupied by an individual tree to the area occupied by a tree of the same size growing in a fully stocked stand of like trees. The stocking of individual trees is used in the calculation of GSSTKCD and ALSTKCD on the COND table.
39. WDLDSTEM Woodland tree species stem count. Used for tree species where diameter is measured at the root collar. For a stem to be counted, it must have a minimum stem size of 1 inch in diameter and 1 foot in length. Null if not a woodland species.
40. TPACURR Current trees per acre. Number of trees per acre that the tree represents for calculating current estimates of numbers of trees, volume, and biomass on forest land. For data processed using NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from all plots in the stratum in which the plot is classified. For data processed using systems other than NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from the plot itself. Population estimates of total volume or biomass are calculated by summing the product of TPACURR, per tree values (i.e., VOLCFNET, VOLCFGRS, VOLCSNET, VOLCSGRS, VOLBFNET, VOLBFGRS, VOLCFSND, DRYBIOT, or DRYBIOM), and the appropriate area expander from the PLOT table.
41. TPAMORT Mortality trees per acre per year. Number of trees per acre per year that the tree represents for calculating mortality on forest land. For data processed using NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from all plots in the stratum in which the plot is classified. For data processed using systems other than NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from the plot itself. Mortality volume on timberland per acre per year is calculated by multiplying TPAMORT by MORTCFGS, MORTBFSL, or MORTCFAL for each tree. Mortality volume on forest land per acre per year is calculated by multiplying TPAMORT by FMORTCFGS, FMORTBFSL, or FMORTCFAL for each tree. Population estimates of total annual mortality volume are calculated by summing the product of mortality
volume per acre per year and the appropriate area expander from the PLOT table.
42. TPAREMV Removals trees per acre per year. Number of trees per acre per year that the tree represents for calculating removals from forest land. For data processed using NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from all plots in the stratum in which the plot is classified. For data processed using systems other than NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from the plot itself. Removals volume on timberland per acre per year is calculated by multiplying TPAREMV by REMVCFGS, REMVBFSL, or REMVCFAL for each tree. Removals volume on forest land per acre per year is calculated by multiplying TPAREMV by FREMVCFGS, FREMVBFSL, or FREMVCFAL for each tree. Population estimates of total annual removals volume are calculated by summing the product of the removals volume per acre per year and the appropriate area expander from the PLOT table.
43. TPAGROW Growth trees per acre. Number of trees per acre that the tree represents for calculating growth on forest land. For data processed using NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from all plots in the stratum in which the plot is classified. For data processed using systems other than NIMS, this variable is adjusted by excluding outside-of-the-population, denied-access, and hazardous conditions from the plot itself. Growth volume on timberland per acre per year is calculated by multiplying TPAGROW by GROWCFGS, GROWBFSL, or GROWCFAL for each tree. Growth volume on forest land per acre per year is calculated by multiplying TPAGROW by FGROWCFGS, FGROWBFSL, or FGROWCFAL for each tree. Population estimates of total annual growth volume are calculated by summing the product of the growth volume per acre per year and the appropriate area expander from the PLOT table.
44. VOLCFNET

Net cubic-foot volume. The net volume of wood in the central stem of a sample tree 5.0 inches diameter or larger, from a 1 -foot stump to a minimum 4-inch top DOB, or to where the central stem breaks into limbs all of which are less than 4.0 inches DOB. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 5.0 inches have null in this field. All trees measured after 1998 with DIA 5.0 inches or larger (including standing dead trees) will have entries in this field. Does not include rotten, missing, and form cull (volume loss due to rotten, missing, and form cull defect has been deducted).
45. VOLCFGRS Gross cubic-foot volume. The total volume of wood in the central stem of sample tree 5.0 inches diameter or larger, from a 1 -foot stump to a minimum 4-inch top DOB, or to where the central stem breaks into limbs
all of which are less than 4.0 inches DOB. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 5.0 inches have null in this field. All trees measured after 1998 with DIA 5.0 inches or larger (including standing dead trees) have entries in this field. Includes rotten, missing and form cull (volume loss due to rotten, missing, and form cull defect has not been deducted).

46. VOLCSNET

Net cubic-foot volume in the saw-log portion. The net volume of wood in the central stem of a sample commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods), from a 1-foot stump to a minimum top DOB, (7.0 inches for softwoods, 9.0 inches for hardwoods) or to where the central stem breaks into limbs, all of which are less than the minimum top DOB. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 9.0 inches (11.0 inches for hardwoods) have null in this field. All larger trees have entries in this field if they are growing-stock trees (TREECLCD $=2$ and STATUSCD $=1$). All rough and rotten trees (TREECLCD $=3$ or 4$)$ and dead and cut trees (STATUSCD $=2$ or 3) have null in this field.
47. VOLCSGRS Gross cubic-foot volume in the saw-log portion. This is the total volume of wood in the central stem of a sample commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods), from a 1 -foot stump to a minimum top DOB (7.0 inches for softwoods, 9.0 inches for hardwoods), or to where the central stem breaks into limbs, all of which are less than the minimum top DOB. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 9.0 inches (11.0 inches for hardwoods), have null in this field. All larger trees have entries in this field if they are growing-stock trees (TREECLCD $=2$ and STATUSCD = 1). All rough and rotten trees $($ TREECLCD $=3$ or 4$)$ and dead and cut trees (STATUSCD $=2$ or 3) have null in this field.
48. VOLBFNET

Net board-foot volume in the saw-log portion. This is the net volume of wood in the central stem of a sample commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods), from a 1 -foot stump to a minimum top DOB (7.0 inches for softwoods, 9.0 inches for hardwoods), or to where the central stem breaks into limbs all of which are less than the minimum top DOB. Volume is based on International 1/4-inch rule. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 9.0 inches (11.0 inches for hardwoods) have zero in this field. All larger trees should have entries in this field if they are growing-stock trees (TREECLCD $=2$ and STATUSCD $=1$). All rough and rotten trees $($ TREECLCD $=3$ or 4$)$ and dead and cut trees (STATUSCD $=2$ or 3) have null in this field.
49. VOLBFGRS Gross board-foot volume in the saw-log portion. This is the total volume of wood in the central stem of a sample commercial species tree of sawtimber size (9.0 inches DBH minimum for softwoods, 11.0 inches DBH minimum for hardwoods), from a 1 -foot stump to a minimum top DOB (7.0 inches for softwoods, 9.0 inches for hardwoods), or to where the central stem breaks into limbs all of which are less than the minimum top DOB. Volume is based on International $1 / 4$-inch rule. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 9.0 inches (11.0 inches for hardwoods) have zero in this field. All larger trees should have entries in this field if they are growing-stock trees (TREECLCD $=2$ and STATUSCD $=1$). All rough and rotten trees $($ TREECLCD $=3$ or 4$)$ and dead and cut trees (STATUSCD $=2$ or 3) have null in this field.
50. VOLCFSND Sound cubic-foot volume. The volume of sound wood in the central stem of a sample tree 5.0 inches diameter or larger from a 1-foot stump to a minimum 4-inch top DOB or to where the central stem breaks into limbs all of which are less than 4.0 inches DOB. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Trees with DIA less than 5.0 inches have null in this field. All trees with DIA 5.0 inches or larger (including standing dead trees) have entries in this field. Does not include rotten and missing cull (volume loss due to rotten and missing cull defect has been deducted).
51. GROWCFGS Net annual merchantable cubic-foot growth of a growing-stock tree on timberland. This is the net change in cubic-foot volume per year of this tree (for remeasured plots, $\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$; where 1_{1} and 2 denote the past and current measurement, respectively, V is volume, and t indicates year of measurement). Because this value is net growth, it may be a negative number. Negative growth values are usually due to mortality $\left(\mathrm{V}_{2}=0\right)$ but can also occur on live trees that have a net loss in volume because of damage, rot, or other causes. To expand to a per acre value, multiply by TPAGROW.
52. GROWBFSL Net annual merchantable board-foot growth of a sawtimber size tree on timberland. This is the net change in board-foot volume per year of this tree (for remeasured plots $\left.\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\right)$. Because this value is net growth, it may be a negative number. Negative growth values are usually due to mortality $\left(\mathrm{V}_{2}=0\right)$ but can also occur on live trees that have a net loss in volume because of damage, rot, or other causes. To expand to a per acre value, multiply by TPAGROW.
53. GROWCFAL Net annual sound cubic-foot growth of a live tree on timberland. The net change in cubic-foot volume per year of this tree (for remeasured plots $\left.\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\right)$. Because this value is net growth, it may be a negative number. Negative growth values are usually due to mortality $\left(\mathrm{V}_{2}=0\right)$ but can also occur on live trees that have a net loss in volume because of
damage, rot, or other causes. To expand to a per acre value, multiply by TPAGROW. GROWCFAL differs from GROWCFGS by including tree volume free of rotten and missing cull, regardless of tree class.
54. MORTCFGS Cubic-foot volume of a growing-stock tree on timberland for mortality purposes. Represents the cubic-foot volume of a growing-stock tree at time of mortality. To obtain estimates of annual per acre mortality, multiply by TPAMORT.
55. MORTBFSL Board-foot volume of a sawtimber size tree on timberland for mortality purposes. Represents the board-foot (International $1 / 4$-rule) volume of a sawtimber tree at time of mortality. To obtain estimates of annual per acre mortality, multiply by TPAMORT.
56. MORTCFAL Sound cubic-foot volume of a tree on timberland for mortality purposes. Represents the cubic-foot volume of the tree at time of mortality. To obtain estimates of annual per acre mortality, multiply by TPAMORT. MORTCFAL differs from MORTCFGS by including tree volume free of rotten and missing cull, regardless of tree class.
57. REMVCFGS Cubic-foot volume of a growing-stock tree on timberland for removal purposes. Represents the cubic-foot volume of the tree at time of removal. To obtain estimates of annual per acre removals, multiply by TPAREMV.
58. REMVBFSL Board-foot volume of a sawtimber size tree on timberland for removal purposes. Represents the board-foot (International $1 / 4$-rule) volume of the tree at time of removal. To obtain estimates of annual per acre removals, multiply by TPAREMV.
59. REMVCFAL Sound cubic-foot volume of a tree on timberland for removal purposes. Represents the cubic-foot volume of the tree at time of removal. To obtain estimates of annual per acre removals, multiply by TPAREMV. REMVCFAL differs from REMVCFGS by including tree volume free of rotten and missing cull, regardless of tree class.
60. DRYBIOT Total gross biomass ovendry weight. The total aboveground biomass of a sample tree 1.0 inch diameter or larger, including all tops and limbs (but excluding foliage). This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Calculated in ovendry pounds per tree. This field should have an entry for live trees if DIA is 1.0 inch or larger and for standing dead trees if DIA is 5.0 inches or larger, regardless of TREECLCD; zero otherwise.
61. DRYBIOM Merchantable stem biomass ovendry weight. The total gross biomass (including bark) of a tree 5.0 inches DBH or larger from a 1-foot stump to a minimum 4-inch top DOB of the central stem. This is a per tree value and must be multiplied by TPACURR to obtain per acre estimates for the current inventory. Calculated in ovendry pounds per tree. This field should
have an entry for live and standing dead trees if DIA is 5.0 inches or larger, regardless of TREECLCD; zero otherwise.
62. DIACHECK Diameter check code. Indicates the reliability of the diameter measurement. New in 1999.

Code Description

0 Diameter accurately measured .
1 Diameter estimated.
2 Diameter measured at different location than previous measurement (remeasurement trees only).
5 Diameter modeled in the office (used with periodic inventories)
Note: If both codes 1 and 2 apply, code 2 is used.
63. MORTYR Mortality year. The estimated year in which a remeasured tree died or was cut. New in 1999.
64. SALVCD Salvable dead code. A standing or down dead tree considered merchantable by regional standards. Contact the appropriate FIA program for information on how this code is assigned for a particular State.

Code Description
0 Dead not salvable
1 Dead salvable
65. UNCRCD Uncompacted live crown ratio. Percentage determined by dividing the live crown length by the total live tree length. Expressed as a percentage of the total tree length. (CORE OPTIONAL on phase 2 plots)
66. CPOSCD Crown position code. The relative position of each tree in relation to the overstory canopy. (CORE on phase 3 plots only)

Code Description
1 Superstory
2 Overstory
3 Understory
4 Open canopy
67. CLIGHTCD Crown light exposure code. The field crew visually divides the crown vertically into four equal sides. In order for a side to qualify for tally, at least $1 / 3$ of the tree length to the live crown top on that side must have live foliage exposed to direct sunlight. The field crew tries to divide the crown in such a way that as many sides as possible receive fulllight. The field crew counts the number of sides receiving direct light if the sun were directly above the tree. The field crew adds one if the tree receives any direct light from the top. (CORE on phase 3 plots only)

Code Description
0 The tree receives no full light because it is shaded by vegetation
1 Receives full light from the top or 1 side
2 Receives full light from the top and 1 side (or 2 sides without the top)
3 Receives full light from the top and 2 sides (or 3 sides without the top)
4 Receives full light from the top and 3 sides
5 Receives full light from the top and 4 sides
68. CVIGORCD Sapling vigor class code. Collected for trees between 1 and 4.9 inches DBH/DRC (CORE on phase 3 plots only)

Code Description

1 Saplings must have an uncompacted live crown ratio of 35 or higher, have less than 5 percent diesback (deer/rabbit browse is not considered as dieback but is considered missing foliage) and 80 percent or more of the foliage present is normal or at least 50 percent of each leaf is not damaged or missing. Twigs and branches that are dead because of normal shading are not included.
2 Saplings do not meet class 1 or 3 criteria. They may have any uncompacted live crown ratio, may or may not have dieback and may have between 21 and 100 percent of the foliage classified as normal.
3 Saplings may have any uncompacted live crown ratio and have 1 to 20 percent normal foliage or the percen of foliage missing combined with the percent of leaves that are over 50 percent damaged or missing should equal 80 percent or more of the live crown. Twigs and branches that are dead because of normal shading are not included.
69. CDENCD Crown density code. Estimates crown condition in relation to a typical tree for the site where it is found. Density also serves as an indiacator of expected growth in the near future. Crown density is the amount of crown branches, foliage and reproductive structures that blocks light visibility through the crown. Each tree species has a normal crown that varies with the site, genetics, tree damage, etc. Class code is the percentage of the upper limits of the class. Collected for all live trees over 5 inches dbh. (CORE on phase 3 plots only)

Code Description

00 0\%
05 1-5\%
10 6-10\%
15 11-15\%

95 91-95\%
70. CDIEBKCD Crown dieback code. Crown dieback estimates reflect the severity of recent stresses on a tree. Crown dieback is recent mortality of branches with fine twigs, which begins at the terminal portion of a branch and proceeds toward the trunk. Dieback should occur from the top of the crown down and from the outside in toward the main stem. Dieback is only considered when it occurs in the upper and outer portions of the tree. When whole branches are dead in the upper crown, without obvious signs of damage such as breaks or animal injury, assume that the branches died from the terminal portion of the branch. Dead branches in the lower portion of the live crown are assumed to have died from competition and shading. Dead branches in the lower live crown are not considered as part of crown dieback, unless there is continuous dieback from the upper and outer crown down to those branches. Class code is the percentage of the upper limits of the class. Collected for all live trees over 5 inches dbh. (CORE on phase 3 plots only)

Code	Description
00	0%
05	$1-5 \%$
10	$6-10 \%$
15	$11-15 \%$
.	.
.	.
95	$91-95 \%$
99	$96-99 \%$

71. TRANSCD Foliage transparency code. Foliage transparency is the amount of skylight visible through the live, normally foliated portion (where you would expect to see foliage if the tree was not or had not been impacted by a stressing agent during the current evaluation year) of the crown. Different tree species have a normal range of foliage transparency, which may be more or less than that of other species. Class code is the percentage of the upper limits of the class. Collected for all live trees over 5 inches dbh. (CORE on phase 3 plots only)
```
Code Description
    00 0%
    05 1-5%
    10 6-10%
    15 11-15%
    95 91-95%
    99 96-99%
```

72. CN Sequence number. A unique sequence number used to identify a tree record.
73. PLT_CN Plot sequence number. Foreign key linking the tree record to the plot record.
74. TREEHISTCD Tree history code. Specific to North Central, Northeastern, and Southern Research Stations. All other Stations record null for this variable. Contact North Central, Northeastern, or Southern Research Station for more information. Identifies the tree with detailed information as to whether the tree is live, dead, cut, removed due to land use change, etc.
75. DIACALC Current diameter (calculated), in inches. Specific to North Central and Southern Research Stations. All other Stations record null for this variable. Contact North Central or Southern Research Station for more information. If the diameter is unmeasurable (i.e. the tree is cut or dead), the diameter is calculated and stored in this variable.
76. BHAGE Breast height age. Specific to Pacific Northwest Research and Rocky Mountain Stations. All other Stations record null for this variable. Contact Pacific Northwest or Rocky Mountain Research Station for more information. The tree's age at breast height.
77. TOTAGE Total age. Specific to Pacific Northwest and Rocky Mountain

Research Stations. All other Stations record null for this variable. Contact Pacific Northwest or Rocky Mountain Research Station for more information. The tree's total age.
78. CULLDEAD Dead cull. Specific to Rocky Mountain Research Station. All other Stations record null for this variable. Contact Rocky Mountain Research Station for more information. The percent of the gross cubic-foot volume that is in dead cull.
79. CULLFORM Form cull. Specific to Rocky Mountain Research Station. All other Stations record null for this variable. Contact Rocky Mountain Research Station for more information. The percent of the gross cubic-foot volume that is in form defect cull.
80. CULLMSTOP Missing top cull. Specific to Rocky Mountain Research Station. All other Stations record null for this variable. Contact Rocky Mountain Research Station for more information. The percent of the gross cubic-foot volume that is in cull due to a missing top.
81. CULLBF Board-foot cull. Specific to Northeastern Research Station. All other Stations record null for this variable. Contact Northeastern Research Station for more information. The percent of the gross board-foot volume that is in cull due to rot or form.
82. CULLCF Cubic-foot cull. Specific to Northeastern Research Station. All other Stations record null for this variable. Contact Northeastern Research Station for more information. The percent of the gross cubic-foot volume that is in cull due to rot or form.
83. BFSND Board-foot-cull soundness. Specific to Northeastern Research Station. All other Stations record null for this variable. Contact Northeastern Research Station for more information. The percent of the board-foot cull that is sound (due to form).
84. CFSND Cubic-foot-cull soundness. Specific to Northeastern Research Station. All other Stations record null for this variable. Contact Northeastern Research Station for more information. The percent of the cubic-foot cull that is sound (due to form).
85. SAWHT Sawlog length. Specific to Northeastern Research Station. All other Stations record null for this variable. Contact Northeastern Research Station for more information. The length of a tree, recorded to a 7" top (9" for hardwoods), where at least one 8 foot log, merchantable or not, is present. On broken-off trees, sawlog length is recorded to the point of the break.
86. BOLEHT Bole length. Specific to Northeastern Research Station. All other Stations record null for this variable. Contact Northeastern Research Station for more information. The length of a tree, recorded to a 4" top, where at least one 4 foot section is present. On broken-off trees, bole length is recorded to the point of the break.
87. FORMCL Hardwood form class code. Specific to Pacific Northwest Research Station. All other Stations record null for this variable. Contact Pacific Northwest Research Station for more information. Recorded for all live hardwood trees tallied that are > 5.0 in d.b.h/d.r.c. This field is used in calculating tree volume.

Code Description
1 First 8 feet above stump is straight. (A log is considered straight if a line drawn through the centers of both ends of the log does not pass outside the curve of the log.)
2 First 8 feet above stump is not straight but at least one straight log elsewhere in the tree exists.
3 No logs anywhere in the tree due to form. Includes various free form trees.
88. HTCALC Calculated total length. Specific to Southern Research Station. All other Stations record null for this variable. Contact Southern Research Station for more information.
89. HRDWD_CLUMP_CD

Hardwood clump. Specific to Pacific Northwest Research Station. All other Stations record null for this variable. Contact Pacific Northwest Research Station for more information. A discount factor on hardwoods when determining stocking. A 1-digit code indicating if a hardwood is part of a clump. The clump is assigned a clump number, and the number is recorded for each hardwood tallied that is part of the clump. If a hardwood is not part of a clump, 0 is recorded for the tree. Clumps with tallied trees are numbered in consecutive order on a subplot starting with 1. Clump data are used in adjusting stocking estimates; trees growing in clumps contribute less stocking than those growing as individuals. Collected for all live hardwood trees $>=1.0$ inches D.B.H./D.R.C., and for live hardwood seedlings. Values are 0 to 9 .
90. SITREE Calculated site index (in feet). Specific to North Central Research Station. All other Stations record null for this variable. Contact North Central Research Station for more information. Computed for every tree. The site index represents the average total length that dominant and codominant trees in fully-stocked, even-aged stands (of the same species as this tree) will obtain at key ages (usually 25 or 50 years).
91. CREATED_BY The user who created the record.
92. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.

93. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
94. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
95. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
96. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
97. NOTES An optional item where notes about the tree may be stored.
98. MORTCD Mortality code. Used for a tree that was alive within past five years, but has died. (CORE OPTIONAL)

Code Description
0 Tree does not qualify as mortality
1 Tree does qualify as mortality
99. HTDMP Height to diameter measurement point. For trees measured directly at 4.5 ft above ground, this item is blank. If the diameter is not measured at 4.5 ft , the actual length from the ground, to the nearest 0.1 foot, at which the diameter was measured for each tally tree, 1.0 in DBH/DRC and larger. (CORE OPTIONAL)
100. ROUGHCULL Rough cull. Percentage of sound dead cull, as a percent of the merchantable bole/portion of the tree. (CORE OPTIONAL)
101. MIST_CL_CD Mistletoe class code. A rating of dwarf mistletoe infection. Recorded on all live conifer species except juniper. Using the Hawksworth six-class rating system, the live crown is divided into thirds, and each third is rated using the following scale. (CORE OPTIONAL)

Code Description

0 No visible infection
1 Light infection - < 50 percent of the total branches infected.
2 Heavy infection - > 50 percent of the total branches infected.
The three individual ratings are summed to obtain and record a total mistletoe class of 0-6 for the tree. Those classes are:

Code Description
0 Sum =0
1 Sum =1
2 Sum = 2
3 Sum = 3
4 Sum = 4
5 Sum $=5$
6 Sum $=6$
102. TPA

Trees per acre (computed from plot size). Trees per acre set to a constant derived from the plot radius and the theoretical number of subplots. No adjustment is made for outside-of-the-population, denied-access, and hazardous conditions (these conditions are not excluded). If PLOT.DESIGNCD equals 1, the number of subplots equals 4; trees on the subplot have TPA equal to 6.018046 ; trees on the microplot have TPA equal to 74.965282; and trees on the macroplot have TPA equal to 0.999188 . For other sample designs, TPA will vary. This attribute is used to compute classification variables such as forest type and stand-size class.
103. CULL_FLD Rotten/missing cull. The percent rotten or missing cubic-foot cull for all live tally trees > 5.0 in DBH/DRC (CORE) and all standing dead tally trees > 5.0 in DBH/DRC (CORE OPTIONAL). The percentage of rotten and missing cubic-foot volume, to the nearest 1 percent. When estimating volume loss (tree cull), only consider the cull on the merchantable bole/portion of the tree, from a 1 -ft stump to a 4 -inch top. Do not include any cull estimate above actual length. For western woodland species, the merchantable portion is between the point of DRC measurement to a $1.5-$ inch DOB top.
104. RECONCILECD

New tree reconciliation code. Recorded for remeasurement locations only. A code to indicate the reason a new tree appeared in the inventory.

Code Description
1 Ingrowth - new tree not qualifying as through growth (includes reversions
2 Through growth - new tally tree 5 inches DBH/DRC and larger, within the microplot
3 Missed live - a live tree missed at previous inventory and that is live, dead, or removed now
4 Missed dead - a dead tree missed at previous inventory and that is dead or removed now
105. PREVDIA Previous diameter. The previous diameter (in inches) of the sample tree at the point of diameter measurement where TREE.CYCLE=PLOT.LASTCYCLEMEAS and TREE.SUBCYCLE=PLOT.LASTSUBCYCLEMEAS.
106. FGROWCFGS Net annual merchantable cubic-foot growth of a growing-stock tree on forest land. This is the net change in cubic-foot volume per year of this tree (for remeasured plots, $\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$; where 1_{1} and 2 denote the past and current measurement, respectively, V is volume, and t indicates year of measurement). Because this value is net growth, it may be a negative number. Negative growth values are usually due to mortality $\left(\mathrm{V}_{2}=0\right)$ but can also occur on live trees that have a net loss in volume because of damage, rot, or other causes. To expand to a per acre value, multiply by TPAGROW.
107. FGROWBFSL Net annual merchantable board-foot growth of a sawtimber tree on forest land. This is the net change in board-foot volume per year of this tree (for remeasured plots $\left.\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\right)$. Because this value is net growth, it may be a negative number. Negative growth values are usually due to mortality $\left(\mathrm{V}_{2}=0\right)$ but can also occur on live trees that have a net loss in volume because of damage, rot, or other causes. To expand to a per acre value, multiply by TPAGROW.
108. FGROWCFAL Net annual sound cubic-foot growth of a live tree on forest land. The net change in cubic-foot volume per year of this tree (for remeasured plots $\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$). Because this value is net growth, it may be a negative number. Negative growth values are usually due to mortality $\left(\mathrm{V}_{2}=0\right)$ but can also occur on live trees that have a net loss in volume because of damage, rot, or other causes. To expand to a per acre value, multiply by TPAGROW. FGROWCFAL differs from FGROWCFGS by including tree volume free of rotten and missing cull, regardless of tree class.
109. FMORTCFGS Cubic-foot volume of a growing-stock tree for mortality purposes on forest land. Represents the cubic-foot volume of a growing-stock tree at time of mortality. To obtain estimates of annual per acre mortality, multiply by TPAMORT.
110. FMORTBFSL Board-foot volume of a sawtimber tree for mortality purposes on forest land. Represents the board-foot (International $1 / 4$-rule) volume of a sawtimber tree at time of mortality. To obtain estimates of annual per acre mortality, multiply by TPAMORT.
111. FMORTCFAL Sound cubic-foot volume of a tree for mortality purposes on forest land. Represents the cubic-foot volume of the tree at time of mortality. To obtain estimates of annual per acre mortality, multiply by TPAMORT. FMORTCFAL differs from FMORTCFGS by including tree volume free of rotten and missing cull, regardless of tree class.
112. FREMVCFGS Cubic-foot volume of a growing-stock tree for removal purposes on forest land. Represents the cubic-foot volume of the tree at time of removal. To obtain estimates of annual per acre removals, multiply by TPAREMV.
113. FREMVBFSL Board-foot volume of a sawtimber size tree for removal purposes on forest land. Represents the board-foot (International $1 / 4$-rule) volume of the tree at time of removal. To obtain estimates of annual per acre removals, multiply by TPAREMV.
114. FREMVCFAL Sound cubic-foot volume of the tree for removal purposes on forest land. Represents the cubic-foot volume of the tree at time of removal. To obtain estimates of annual per acre removals, multiply by TPAREMV.
FREMVCFAL differs from FREMVCFGS by including tree volume free of rotten and missing cull, regardless of tree class.
115. TPACURR_SAMP

Trees per acre (for the measured portion of the plot). Current number of trees per acre that the tree represents on a per plot basis. This variable is adjusted by excluding outside-of-the-population, denied access, and hazardous conditions from the plot, but is not adjusted over the stratum. This variable can be used for applications such as creating a spatial display (map) of plot-level per acre information. For example, to produce
a map displaying oven-dry biomass per plot, plot-level biomass is calculated by summing the product of TPACURR_SAMP and DRYBIOT for all trees on the plot and/or condition. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
116. TPAGROW_SAMP

Growth trees per acre (for the measured portion of the plot). Number of growth trees per acre that the tree represents on a per plot basis. This attribute is adjusted by excluding outside-of-the-population, denied access, and hazardous conditions from the plot, but is not adjusted over the stratum. This variable can be used for applications such as creating a spatial display (map) of plot-level per acre growth information. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
117. TPAMORT_SAMP

Mortality trees per acre (for the measured portion of the plot). Number of mortality trees per acre that the tree represents on a per plot basis. This attribute is adjusted by excluding outside-of-the-population, denied access, and hazardous conditions from the plot, but is not adjusted over the stratum. This variable can be used for applications such as creating a spatial display (map) of plot-level per acre mortality information. THIS VARIABLE IS NOT POPULATED AT THIS TIME.
118. TPAREMV_SAMP

Removal trees per acre (for the measured portion of the plot). Number of removal trees per acre that the tree represents on a per plot basis. This attribute is adjusted by excluding outside-of-the-population, denied access, and hazardous conditions from the plot, but is not adjusted over the stratum. This variable can be used for applications such as creating a spatial display (map) of plot-level per acre removal information. THIS
VARIABLE IS NOT POPULATED AT THIS TIME.

Seedling Table (Oracle table name is SEEDLING)

			Value or	Key	Field
	Column	Oracle	unit of	data	Guide
	Name	data type	measure	item	Item\#
1	TABLENM	VARCHAR2 (8)	SEEDLING		
2	STATECD	NUMBER (4)	Coded	X	
3	CYCLE	NUMBER (2)	Number	X	
4	SUBCYCLE	NUMBER (2)	Number	X	
5	UNITCD	NUMBER (2)	Coded	X	
6	COUNTYCD	NUMBER (3)	Coded	X	
7	PLOT	NUMBER (5)	Number	X	
8	SUBP	NUMBER (3)	Number	X	6.1
9	CONDID	NUMBER (1)	Number	X	6.3
10	SPCD	NUMBER (3)	Coded	X	6.2
11	SPGRPCD	NUMBER (2)	Coded		
12	COUNTCD	VARCHAR2 (2)	Coded		6.4
13	STOCKING	NUMBER (7,4)	Percent		
14	CN	VARCHAR2 (34)	Character	PK	
15	PLT_CN	VARCHAR2 (34) Character	FK		
16	TREECOUNT (NCRS,PNWRS,RMRS)	NUMBER (3)	Number		
17	TOTAGE (RMRS)	NUMBER (3)	Years		
18	TPACURR	NUMBER (12,6)	Trees/acre		
19	CREATED_BY	NARCHAR2 (30) Character			
20	CREATED_DATE		NREATED_IN_INSTANCE	NUMBER (6)	Number
21	MODIFIED_BY	VARCHAR2 (30)	Character		
23	MODIFIED_DATE	DATE	DD-MON-YYYY		
24	MODIFIED_IN_INSTANCE	NUMBER (6)	Number		

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'SEEDLING.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of
that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit number. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. SUBP Subplot number. Number of the subplot on which the seedling count was measured. Annual inventories have subplot number values of 1 through 4. Periodic inventories subplot numbers will vary. For more information, contact the appropriate FIA unit.
9. CONDID Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1 . Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
10. SPCD Species code. A standard tree species code. Refer to Appendix F for codes.
11. SPGRPCD Species group code. An FIA species group number. This number is used to produce many of the standard presentation tables. Individual species and corresponding tree species group codes are shown in Appendix F. Individual FIA programs may further break these species groups down for published tables, but this is a common list that all published standard presentation tables must match.
12. COUNTCD Seedling count code. Indicates the number of seedlings (DIA <1.0 inches) present on the microplot. Conifer seedlings are at least 6 inches tall and hardwood seedlings are at least 12 inches tall. New in 1999.
```
Code Description
    1 1 ~ s e e d l i n g ~
    2 2 seedlings
    3 seedlings
    4 4 \text { seedlings}
    5 seedlings
    6+ 6 or more seedlings
```

13. STOCKING Tree stocking. The stocking value assigned to each count of seedlings, by species. Stocking is a relative term used to describe (in percent) the adequacy of a given stand density in meeting a specific management objective. Species or forest type stocking functions were used to assess the stocking contribution of individual trees. These functions, which were developed using stocking guides, relate the area occupied by an individual tree to the area occupied by a tree of the same size growing in a fully stocked stand of like trees. The stocking of individual trees is used in the calculation of GSSTKCD and ALSTKCD on the condition record.
14. CN Sequence number. A unique index used to easily identify a seedling
15. PLT_CN Plot sequence number. Foreign key linking the seedling record to the plot record.
16. TREECOUNT Tree count. Specific to North Central, Pacific Northwest, and Rocky Mountain Research Stations. All other Stations record null for this variable. Contact North Central, Pacific Northwest, or Rocky Mountain Research Station for more information. Actual count of seedlings of a species.
17. TOTAGE Total age. Specific to Rocky Mountain Research Station. All other Stations record null for this variable. Contact Rocky Mountain Research Station for more information. Total age for a representative seedling, within each count, by species.
18. TPACURR Current trees per acre (adjusted at the stratum level). Number of trees per acre that the tree represents for calculating current estimates of numbers of trees on forest land. This variable is adjusted by excluding outside-of-thepopulation, denied-access, and hazardous conditions from all plots in the stratum in which the plot is classified. Populated when TREECOUNT is not null.
19. CREATED_BY The user who created the record.
20. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
21. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
22. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
23. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.

24. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
25. TPA Trees per acre (computed from plot size). Trees per acre set to a constant derived from the plot radius and the theoretical number of microplots. No adjustment is made for outside-of-the-population, denied-access, and hazardous conditions (these conditions are not excluded). Seedlings on the microplot have TPA equal to 74.965282 times COUNTCD (converted to a number).

Site Tree Table (Oracle table name is SITETREE)

	Column Name	Oracle data type	Value or unit of measure	Key data item	Field Guide Item\#
1	TABLENM	VARCHAR2 (8)	SITETREE		
2	STATECD	NUMBER (4)	Coded	X	
3	CYCLE	NUMBER (2)	Number	X	
4	SUBCYCLE	NUMBER (2)	Number	X	
5	UNITCD	NUMBER (2)	Coded	X	
6	COUNTYCD	NUMBER (3)	Coded	X	
7	PLOT	NUMBER (5)	Number	X	
8	CONDID	NUMBER (1)	Number	X	
9	TREE	NUMBER (4)	Number	X	
10	SPCD	NUMBER (3)	Coded		7.2.2
11	DIA	NUMBER (5,2)	Inches		7.2 .3
12	HT	NUMBER (3)	Feet		7.2 .4
13	AGEDIA	NUMBER (3)	Years		7.2 .5
14	SPGRPCD	NUMBER (2)	Coded		
15	SITREE	NUMBER (3)	Feet		
16	SIBASE	NUMBER (3)	Years		
17	CN	VARCHAR2 (34)	Character	PK	
18	PLT_CN	VARCHAR2 (34)	Character	FK	
19	CREATED_BY	VARCHAR2 (30)	Character		
20	CREATED_DATE	DATE	DD-MON-YYYY		
21	CREATED_IN_INSTANCE	NUMBER (6)	Number		
22	MODIFIED_BY	VARCHAR2 (30)	Character		
23	MODIFIED_DATE	DATE	DD-MON-YYYY		
24	MODIFIED_IN_INSTANCE	NUMBER (6)	Number		
25	SUBP	NUMBER (3)	Number		7.2 .7
26	AZIMUTH	NUMBER (3)	Degrees		7.2.8
27	DIST	NUMBER (4,1)	Feet		7.2 .9
28	METHOD	NUMBER (2)	Number		
29	SITREE_EST	NUMBER (3)	Feet		
30	NOTES	VARCHAR2 (2000)	Character		7.2 .6
31	VALIDCD	NUMBER (1)	Number		

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'SITETREE.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. CONDID Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1 . Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
9. TREE Tree number. A number used to uniquely identify a site tree on a condition.
10. SPCD Species code. A standard tree species code. Refer to Appendix F for codes.
11. DIA Diameter. The current diameter (in inches) of the tree at the point of diameter measurement (DBH/DRC).
12. HT Sitetree length. The total length of a sample tree (in feet) from the ground to the top of the main stem.
13. AGEDIA Tree age at diameter. Age (in years) of tree at the point of diameter measurement (DBH/DRC). Age is determined by an increment sample.
14. SPGRPCD Species group code. An FIA species group number, which is used to produce many of the standard presentation tables. The assignment of individual species (SPCD) to these groups is shown in Appendix F. Individual FIA programs may further break these species groups down for published tables, but this is a common list that all published standard presentation tables must match.
15. SITREE Site index. Site index (in feet) of the tree.
16. SIBASE Site index base age. The base age (in years) of the site index curves used to derive site index.
17. CN Sequence number. A unique sequence number used to identify a site tree record.
18. PLT_CN Plot sequence number. Foreign key linking the site tree record to the plot record.
19. CREATED_BY The user who created the record.
20. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
21. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
22. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
23. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
24. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
25. SUBP Subplot number. Number of the subplot on which the site tree was measured. Annual inventories have subplot number values of 1 through 4. Periodic inventories subplot numbers will vary. For more information, contact the appropriate FIA unit. (CORE OPTIONAL)
26. AZIMUTH Azimuth. The direction, to the nearest degree, from subplot center to the center of the base of the tree (geographic center for multi-stemmed woodland species). Due north is represented by 360 degrees. (CORE OPTIONAL)
27. DIST Horizontal distance. The horizontal distance in feet from subplot center (microplot center for saplings) to the pith at the base of the tree (geographic center for multi-stemmed woodland species). (CORE OPTIONAL)
28. METHOD Site tree method code. The method for determining the site index.

Code Description
1 Tree measurements (length, age, etc.) collected during this inventory.
2 Tree measurements (length, age, etc.) collected during a previous inventory.
3 Site index estimated either in the field or office.
4 Site index determined by the height intercept method during this inventory.
29. SITREE_EST The estimated site index or the site index determined by the height intercept method.
30. NOTES Notes pertaining to an individual site tree.
31. VALIDCD Validity code. Indicator of validity of site index calculation for this tree. If the site calculation for this tree was successful, this variable is set to 1 .

Code Description
0 Tree failed in site index calculations
1 Tree was successful in site index calculations

Boundary Table (Oracle table name is BOUNDARY)

		Value or	Key	Field	
	Column	Oracle	unit of	data	Guide
	Name	mata type	measure	item	Item\#
1	TABLENM	NUMBEHAR2 (8)	BOUNDARY		
2	STATECD	Coded	X		
3	CYCLE	NUMBER (2)	Number	X	
4	SUBCYCLE	NUMBER (2)	Number	X	
5	UNITCD	NUMBER (3)	Coded	X	
6	COUNTYCD	NUMBER (5)	Number	X	
7	PLOT	NUMBER (3)	Number	X	3.2 .1
8	SUBP	NUMBER (1)	Coded	X	3.2 .2
9	SUBPTYP	NUMBER (1)	Coded		3.2 .3
10	BNDCHG	NUMBER (1)	Number		3.2 .4
11	CONTRAST	NUMBER (3)	Degrees	X	3.2 .5
12	AZMLEFT	NUMBER (3)	Degrees		3.2 .6
13	AZMCORN	NUMBER (2)	Feet		3.2 .7
14	DISTCORN	NUMBER (3)	Degrees	X	3.2 .8
15	AZMRIGHT	VARCHAR2 (34)	Character	PK	
16	CN	NUMBER (6)	Number		
17	PLT_CN	VARCHAR2 (34)	Character	FK	
18	CREATED_BY	VARCHAR2 (30)	Character		
19	CREATED_DATE	DATE	DD-MON-YYYY		
20	CREATED_IN_INSTANCE	NUMBER (6)	Number		
21	MODIFIED_BY	VARCHAR2 (30)	Character		
22	MODIFIED_DATE	DATE	DD-MON-YYYY		
23	MODIFIED_IN_INSTANC				

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals ‘BOUNDARY.’
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. SUBP Subplot number. Number of the subplot on which the boundary was measured. Annual inventories have subplot number values of 1 through 4. Periodic inventories subplot numbers will vary. For more information, contact the appropriate FIA unit.
9. SUBPTYP Plot type code. Specifies whether the boundary data are for a subplot, microplot, or macroplot.

Code Description
1 Subplot boundary
2 Microplot boundary
3 Macroplot boundary
10. BNDCHG Boundary change code. Indicates the relationship between previously recorded and current boundary information.

Code Description
0 No change - boundary is the same as indicated on plot map by previous crew.
1 New boundary, or boundary data have been changed to reflect an actual on-the-ground physical change resulting in a difference from the boundaries recorded.
2 Boundary has been changed to correct an error from a previous crew.
3 Boundary has been changed to reflect a change in variable definition.
11. CONTRAST Contrasting condition. The condition class number of the condition class that contrasts with the condition class located at the subplot center (for
boundaries on the subplot or macroplot) or at the microplot center (for boundaries on the microplot), e.g., the condition class present on the other side of the boundary.
12. AZMLEFT Left azimuth. The azimuth, to the nearest degree, from the subplot, microplot, or macroplot plot center to the farthest left point (facing the contrasting condition class) where the boundary intersects the subplot, microplot, or macroplot plot circumference.
13. AZMCORN Corner azimuth. The azimuth, to the nearest degree, from the subplot, microplot, or macroplot plot center to a corner or curve in a boundary. If a boundary is best described by a straight line between the two circumference points, then 000 is recorded for AZMCORN.
14. DISTCORN Corner distance. The horizontal distance, to the nearest 1 foot, from the subplot, microplot, or macroplot plot center to the boundary corner point. Null when AZMCORN equals 000; populated when AZMCORN is greater than 000.
15. AZMRIGHT Right azimuth. The azimuth, to the nearest degree, from subplot, microplot, or macroplot plot center to the farthest right point (facing the contrasting condition) where the boundary intersects the subplot, microplot, or macroplot plot circumference.
16. CN Sequence number. A unique sequence number used to identify a boundary record.
17. PLT_CN Plot sequence number. Foreign key linking the boundary record to the plot record.
18. CREATED_BY The user who created the record.
19. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.

20. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
21. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.

22. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.

23. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.

Estimation Unit Stratum Table (Oracle table name is					
ESTN_UNIT_STRATUM)					
		Value or	Key		
	Column	dacle	unit of		data
:---					
Name					

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'EUS.'
2. RSCD Region or Station Code. Identification number of the Forest Service Region or Station that provided the inventory data (see SURVEY table for codes). Combined with EVALID (below), this provides a link to the

PLOT table via the RSCD_EVAL_EXPxxxx variables to identify which stratification method was used to populate the multiple expansion factors on the PLOT table.
3. EVALID Evaluation identifier. Distinctly identifies (within a Station) the evaluation for a set of expansion factors. Note that an evaluation may be for more than one type of expansion factor (e.g. applicable to both EXPCURR and EXPVOL).
4. ESTUNIT Estimation unit. The particular geographic area for which this computation applies. Estimation units are determined by a combination of sampling intensity and geographical boundaries.
5. STRATUMCD Stratum code. The code used for a particular stratum. See STRATUMDESCR below for the meaning of the code. Stratum codes vary widely from region to region, so they are not listed here. For more information, contact the appropriate FIA unit.
6. CN Sequence number. A unique sequence number used to identify an estimation unit stratum record.
7. EVALDESCR Evaluation description. A description of the area being evaluated (often a state), the time period of the evaluation, the type of expansion factors computed (e.g. EXPMORT), the extent of the estimation units (e.g. county), and the kind of stratification.
8. EFFDATE_EVAL

Effective date for the evaluation.
9. ENDDATE_EVAL

End date for the evaluation. The last date for which the evaluation is valid.
10. ESTUNITDESCR

Estimation unit description. A description of the estimation unit (e.g. name of the county).
11. EFFDATE_EU Effective date for the estimation unit.
12. ENDDATE_EU End date for the estimation unit.
13. EFFDATE_STRATUM

Effective date for the stratum.

14. ENDDATE_STRATUM

End date for the stratum.

15. STRATUMMETHOD

Stratum method. The basis of the stratification, including such things as the source, type, and age of the imagery used.

16. AREALAND_EU

Land area within the estimation unit. The area of land in acres enclosed by the estimation unit. Census water is excluded.
17. AREATOT_EU

Total area within the estimation unit. This includes land and census water enclosed by the estimation unit.
18. P1POINTCNT Count of P1 points in stratum STRATUMCD within estimation unit ESTUNIT. The P1 (phase 1) points may be photo points or pixels. This is the number of pixels or photo points (phase 1) assigned to stratum STRATUMCD and located within the estimation unit ESTUNIT.
19. P2POINTCNT Count of phase 2 points in stratum STRATUMCD within estimation unit ESTUNIT. This is the number phase 2 plots assigned to stratum STRATUMCD and located within the estimation unit ESTUNIT.
20. P1POINTCNT_EU

Count of P1 points in all strata of the estimation unit. Can be derived by summing P1POINTCNT for all strata in estimation unit EST_UNIT.
21. CREATED_BY The user who created the record.
22. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
23. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
24. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
25. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
26. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.

27. STRATUMDESCR

Stratum description. A description of the stratum (e.g. Forest).
28. AREA_USED Area used to calculate all expansion factors. Is equivalent to AREATOT_EU if a station estimates all area, including census water; and to AREALAND_EU if a station estimates land area only.

	Column name	Oracle data type	Value or unit of measure	Key data item
1	TABLENM	VARCHAR2 (8)	PPSA	
2	STATECD	NUMBER (4)	Coded	X
3	CYCLE	NUMBER (2)	Number	X
4	SUBCYCLE	NUMBER (2)	Number	X
5	UNITCD	NUMBER (2)	Coded	X
6	COUNTYCD	NUMBER (3)	Coded	X
7	PLOT	NUMBER (5)	Number	X
8	CN	VARCHAR2 (34)	Character	PK
9	EUS_CN	VARCHAR2 (34)	Character	FK
10	PLT_CN	VARCHAR2 (34)	Character	FK
11	EXPNS	NUMBER $(13,4)$	Acres	
12	RSCD	NUMBER (2)	Coded	X
13	EVALID	NUMBER (6)	Number	X
14	ESTUNIT	NUMBER (3)	Number	X
15	STRATUMCD	NUMBER	Coded	X
16	CREATED_BY	VARCHAR2 (30)	Character	
17	CREATED_DATE	DATE	DD-MON-YYYY	
18	CREATED_IN_INSTANCE	NUMBER (6)	Number	
19	MODIFIED_BY	VARCHAR2 (30)	Character	
20	MODIFIED_DATE	DATE	DD-MON-YYYY	
21	MODIFIED_IN_INSTANCE	NUMBER (6)	Number	

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'PPSA.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each state. For periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. CN Sequence number. A unique sequence number used to identify a plot population stratum assignment record.
9. EUS_CN Estimation unit sequence number. Foreign key linking the plot population stratum assignment record to the estimation unit stratum record.
10. PLT_CN Plot sequence number. Foreign key linking the plot population stratum assignment record to the plot record.
11. EXPNS Expansion factor computed for stratum STRATUMCD within estimation unit ESTUNIT. The number of acres each sample plot in stratum STRATUMCD within estimation unit ESTUNIT represents.

12 RSCD Region or Station Code. Identification number of the Forest Service Region or Station that provided the inventory data (see SURVEY table for codes).
13. EVALID Evaluation identifier. Distinctly identifies (within a Station) the evaluation for a set of expansion factors. Note that an evaluation may be for more than one type of expansion factor (e.g. applicable to both EXPCURR and EXPVOL).
14. ESTUNIT Estimation unit. The particular geographic area for which a particular computation applies. Estimation units are determined by a combination of sampling intensity and geographical boundaries.
15. STRATUMCD Stratum code. The code used for a particular stratum. See STRATUMDESCR in the ESTN_UNIT_STRATUM table for the meaning of the code. Stratum codes vary widely from region to region, so they are not listed here. For more information, contact the appropriate FIA unit.
16. CREATED_BY The user who created the record.
17. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.
18. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
19. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.

20. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.

21. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.

Subplot Condition Table (Oracle table name is SUBP_COND)				
			Value or	Key
	Column	Oracle	unit of	data
	name	data type	measure	item
1	TABLENM	VARCHAR2 (8)	SUBP_COND	
2	STATECD	NUMBER (4)	Coded	X
3	CYCLE	NUMBER (2)	Number	X
4	SUBCYCLE	NUMBER (2)	Number	X
5	UNITCD	NUMBER (2)	Coded	X
6	COUNTYCD	NUMBER (3)	Coded	X
7	PLOT	NUMBER (5)	Number	X
8	SUBP	NUMBER (3)	Number	X
9	CONDID	NUMBER (1)	Number	
10	CN	VARCHAR2 (34)	Character	PK
11	PLT_CN	VARCHAR2 (34)	Character	FK
12	CREATED_BY	VARCHAR2 (30)	Character	
13	CREATED_DATE	DATE	DD-MON-YYYY	
14	CREATED_IN_INSTANCE	NUMBER (6)	Number	
15	MODIFIED_BY	VARCHAR2 (30)	Character	
16	MODIFIED_DATE	DATE	DD-MON-YYYY	
17	MODIFIED_IN_INSTANCE	NUMBER (6)	Number	
18	SUBPCOND_PROP	NUMBER (5,4)	Proportion	
19	MICRCOND_PROP	NUMBER (5,4)	Proportion	
20	MACRCOND_PROP	NUMBER (5,4)	Proportion	

1. TABLENM Table name. Identifies the table to which the record belongs. Always equals 'SUBP_COND.'
2. STATECD State code. Bureau of the Census Federal Information Processing Standards (FIPS) two-digit code for each State. Refer to table 1 at the end of the description of the SURVEY table.
3. CYCLE Inventory cycle number. Identifies the cycle number for the inventory data. For example, a 4 shows the data came from the fourth inventory of that State. A cycle number greater than 1 does not necessarily mean that information for previous cycles resides in the database.
4. SUBCYCLE Inventory subcycle number. For an annual inventory that takes n years to measure all plots, subcycle shows in which of the n years of the cycle the data were measured. Subcycle is 0 for a periodic inventory.
5. UNITCD Survey unit code. Forest Inventory and Analysis survey unit identification number. Survey units are usually groups of counties within each State. For
periodic inventories, Survey units may be made up of lands of particular owners. Refer to Appendix C for codes.
6. COUNTYCD County code. The identification number for a county, parish, watershed, borough, or similar governmental unit in a State. FIPS codes from the Bureau of the Census, 1990, are used. Refer to Appendix C for codes.
7. PLOT Phase 2 plot number. An identifier for a plot location. Along with STATECD, CYCLE, SUBCYCLE, COUNTYCD and/or some other combinations of variables, PLOT may be used to uniquely identify a plot. On the base grid of plots, a single phase 2 plot is associated with a phase 2 hex.
8. SUBP Subplot number. Number of the subplot. Annual inventories have subplot number values of 1 through 4. Periodic inventories subplot numbers will vary. For more information, contact the appropriate FIA unit.
9. CONDID Condition class number. Unique identifying number assigned to each condition on a plot. A condition is initially defined by condition class status. Differences in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density further define condition for forest land. Mapped nonforest conditions are also assigned numbers. At the time of the plot establishment, the condition class at plot center (the center of subplot 1) is usually designated as condition class 1 . Other condition classes are assigned numbers sequentially at the time each condition class is delineated. On a plot, each sampled condition class must have a unique number that can change at remeasurement to reflect new conditions on the plot.
10. CN Sequence number. A unique sequence number used to identify a subplot condition record.
11. PLT_CN Plot sequence number. Foreign key linking the subplot condition record to the plot record.
12. CREATED_BY The user who created the record.
13. CREATED_DATE

The date the record was created. Date will be in the form DD-MONYYYY.

14. CREATED_IN_INSTANCE

The database instance in which the record was created. This uniquely identifies which computer system was used to create the record.
15. MODIFIED_BY

The user who modified the record. This field will be null if the data have not been modified since initial creation.
16. MODIFIED_DATE

The date the record was last modified. This field will be null if the data have not been modified since initial creation. Date will be in the form DD-MON-YYYY.
17. MODIFIED_IN_INSTANCE

The database instance in which the record was modified. This field will be null if the data have not been modified since initial creation.
18. SUBPCOND_PROP Subplot-condition proportion. Proportion of this subplot in this condition.
19. MICRCOND_PROP Microplot-condition proportion. Proportion of this microplot in this condition.
20. MACRCOND_PROP Macroplot-condition proportion. Proportion of this macroplot in this condition.

Chapter 4 -- Algorithms for Summarizing Data

Data in the FIA Database were designed for easy use with most database management systems, statistical packages, and other data summary software. Data are typically provided as commadelimited ASCII files. Database management systems that support hierarchical data structures, as well as those based on the relational model, can easily process FIADB files. Chapter 3 should give the user of almost any software package the information needed to input an FIADB file into a processing system. Those familiar with the relational data model and the standard Structured Query Language (SQL) database language available in many database management systems will find it easy to load FIADB files into one of these systems and to retrieve information from a loaded database.

To assist users of FIADB files and to provide them with a benchmark or checkpoint for comparison to their own data processing systems, the FIA units provide a set of tables with each FIADB State file. The tables are a set of the standard presentation tables produced directly from the FIADB file. These standard presentation tables may not match published core tables exactly. Differences will vary by FIA unit and relate to rounding error and the allocation of State-level estimates down to the county level. Users concerned about differences can request an explanation from the FIA unit. Appendix B contains the format of the standard presentation tables produced from an FIADB file.

Users may wish to duplicate the standard presentation tables on their hardware. In doing so, they may find minor differences due to rounding and word length differences between their machines and the machine used to produce the original tables. Users may also want to screen the input data file so that it includes plot and tree records for only a limited geographic area, such as a group of counties. Then they can produce standard presentation tables for only that area.

The procedures or algorithms used to compute various tree-level data and expand them to population-level estimates are provided in tables 2 through 10. Inventories completed before the introduction of the Forest Health Monitoring (FHM) plot design in 1997 were designed to provide estimates of timberland area and growing-stock volume. As a result, a number of forest land statistics will be unavailable until the completion of a State's first inventory using the FHM plot design. In addition, prior to 1995, tree-level data were not collected on reserved and unproductive forest land. Estimates of growth, removals, and mortality from reserved and unproductive forest land may not be available until the completion of a State's second inventory using the FHM plot design.

Because of these limitations, the algorithms have been divided into four groups:

1) Algorithms that will work on all inventories (tables 2 through 6)
2) Algorithms that will work on inventories completed after 1999 (e.g., volume of all live trees on forest land) (tables 7 through 9)
3) Algorithms that can be applied to the second inventory cycle completed after 1999 (e.g., growth, removals, and mortality of all live trees on forest land) (table 10)
4) Algorithms that will work for annual inventories using phase 1 and phase 2 data to generate population estimates without the use of stored area expansion factors.

All of these algorithms require the user to specify the inventory of interest. Inventories are conducted at the state-level. Population estimates may be available for several different points in
time for a given State. The variable CYCLE is used to distinguish data collected during different inventories. In Michigan, for example, the value of CYCLE is 4 for data collected during the 1980 periodic inventory; the value of Cycle is 5 for data collected for the 1993 periodic inventory ; and the value for of CYCLE is 6 for the annual inventory to be completed in 2004. When deriving a population estimate for Michigan the user must use the variables STATECD and CYCLE to limit the retrieval to one set of inventory data. This is accomplished in SQL by using a where clause such as "where p.statecd=26 and p.cycle=xx". If the user wanted to obtain population estimates for the 1993 inventory of Michigan the "xx" should be replaced by the number 5 since the $5^{\text {th }}$ inventory of Michigan contains the 1993 inventory data. The FIPS state code for Michigan is 26 .

The where clause is also used to join plot records to condition and tree records. Example SQL scripts follow each of the tables.

Algorithms That Will Work On All Inventories

All the variables used in these algorithms are defined in Chapter 3. The variable prefixes "p.", "с.", "ос.", and "t." identify the database tables in which the variables reside. The variable prefix for the PLOT table is "p.". The variable prefix for the COND table is "c." for the current cycle and "oc." for the previous cycle. The variable prefix for the TREE table is " t .".

Table 2. Algorithms that expand condition-level items to population estimates. Each item is computed by summing the corresponding quantities over all conditions that meet the requirements.

Units	Type	Calculation	Requirements
Acres	Area of all land and noncensus water	p.expcurr * c.condprop_curr	c.landclcd in (1,2,3)
Acres	Area of forest land	p.expcurr * c.condprop_curr	c.landclcd=1
Acres	Area of timberland	p.expcurr * c.condprop_curr	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$

Table 3. Algorithms that expand tree-level items to population estimates of number of trees 1 inch in diameter or larger on timberland from FIADB tables. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Trees	Number of all live trees on timberland	p.expvol * t.tpacurr	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1 and t.dia>=1.0
Trees	Number of growing- stock trees on timberland	p.expvol * t.tpacurr	c.landclcd=1 and c.reservcd=0 and c.siteclcd in (1,2,3,4,5,6) and t.statuscd=1 and t.treeclcd=2 and t.dia>=1.0
Trees	Number of rough trees on timberland	p.expvol * t.tpacurr	c.landclcd=1 and c.reservcd=0 and c.siteclcd in (1,2,3,4,5,6) and t.statuscd=1 and t.treeclcd=3 and t.dia>=1.0
Trees	Number of rotten trees on timberland	p.expvol * t.tpacurr	c.landclcd=1 and c.reservcd=0 and c.siteclcd in (1,2,3,4,5,6) and t.statuscd=1 and t.treeclcd=4 and t.dia>=1.0

Table 4. Algorithms that expand tree-level items to population estimates of volume of trees on timberland. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements

Cuft	Merchantable volume of all live trees on timberland	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1
Cuft	Merchantable volume of growing-stock trees on timberland	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1 and t.treeclcd=2
Cuft	Merchantable volume of rough trees on timberland	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1 and t.treeclcd=3
Cuft	Merchantable volume of rotten trees on timberland	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1 and t.treeclcd=4
Cuft	Merchantable volume in the saw- log portion of growing-stock trees on timberland	p.expvol * t.tpacurr * t.volcsnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1
Bdft	Merchantable volume of sawtimber trees on timberland	p.expvol * t.tpacurr * t.volbfnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1
Cuft	Merchantable volume of salvable dead trees on timberland	p.expvol * t.tpacurr * t.volcsnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.salvcd=1
Bdft	Merchantable dead sawtimber trees on timberland	p.expvol * t.tpacurr * t.volbfnet	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.salvcd=1

Table 5. Algorithms that expand tree-level items to population estimates of net annual growth, mortality, or removals on timberland. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Cuft/year	Net annual merchantable growth of growing-stock trees on timberland	p.expgrow * t.tpagrow t.growcfgs	None

Cuft/year	Annual merchantable mortality of growing- stock trees on timberland	p.expmort * t.tpamort * t.mortcfgs	None
Cuft/year	Annual merchantable removals of growing- stock trees on timberland.	p.expremv * t.tparemv * t.remvcfgs	None
Bdft/year	Net annual merchantable growth of sawtimber trees on timberland	p.expgrow * t.tpagrow * t.growbfsl	None
Bdft/year	Annual merchantable mortality of sawtimber trees on timberland	p.expmort * t.tpamort $*$ t.mortbfsl	None
Bdft/year	Annual merchantable removals of sawtimber trees on timberland	p.expremv * t.tparemv t.remvbfsl	None

Table 6. Algorithms that expand tree-level items to population estimates of biomass of trees on timberland. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Ovendry lbs.	Gross biomass of all live trees on timberland	p.expvol * t.tpacurr * t.drybiot	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1
Ovendry lbs.	Merchantable biomass of all live trees on timberland	p.expvol * t.tpacurr * t.drybiom	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1

Examples of SQL Statements That Will Work On All Inventories

To calculate the area of all land and noncensus water for the State of Michigan for the fifth inventory cycle (completed in 1993):

SELECT SUM(p.expcurr*c.condprop_curr)
FROM plot p,
cond c
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
(c.landclcd=1 OR c.landclcd=2 OR c.landclcd=3);

To calculate the area of forest land for the State of Michigan for the fifth inventory cycle (1993):
SELECT SUM(p.expcurr * c.condprop_curr)
FROM plot p,
cond c
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
c.landclcd=1;

To calculate the area of timberland for the State of Michigan for the fifth inventory cycle (1993):
SELECT SUM(p.expcurr * c.condprop_curr)
FROM plot p,
cond c
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
c.landclcd=1 AND
c.reservcd=0 AND
c.siteclcd in (1,2,3,4,5,6);

To calculate the number of all live white pine trees on timberland in the State of Michigan for the fifth inventory cycle (1993):
SELECT SUM(p.expvol * t.tpacurr)
$\begin{array}{lll}\text { FROM } & \text { plot } & p, \\ & \text { cond } & c, \\ & & \text { tren }\end{array}$
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
t.condid=c.condid AND
c.landcled=1 AND
c.reservcd=0 AND
c.siteclcd in (1,2,3,4,5,6) AND
t.statuscd=1 AND
t.dia>=1.0 AND
t.spcd=129;

To calculate the merchantable volume of all live white pine trees on timberland in the State of Michigan for the fifth inventory cycle (1993):

SELECT SUM(p.expvol * t.tpacurr * t.volcfnet)
FROM plot p,
cond c,
tree t
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
t.condid=c.condid AND
c.landclcd=1 AND
c.reservcd=0 AND
c.siteclcd in (1,2,3,4,5,6) AND
t.statuscd=1 AND
t.spcd=129;

To calculate the net annual merchantable growth of white pine growing-stock trees on timberland in the State of Michigan for the fifth inventory cycle (1980-1992):

SELECT SUM(p.expgrow * t.tpagrow * t.growcfgs)
FROM plot p,
cond c,
tree t
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
t.spcd=129;

To calculate the annual merchantable mortality of white pine growing-stock trees on timberland in the State of Michigan for the fifth inventory cycle (1980-1992):

```
SELECT SUM(p.expmort * t.tpamort * t.mortcfgs)
FROM plot p,
    cond c,
    tree t
WHERE p.statecd=26 AND
    p.cycle=5 AND
    p.cn=c.plt_cn AND
    p.cn=t.plt_cn AND
    c.condid=t.condid AND
    t.spcd=129;
```

To calculate the annual merchantable removals of white pine growing-stock trees on timberland in the State of Michigan for the fifth inventory cycle (1980-1992):

```
SELECT SUM(p.expremv * t.tparemv * t.remvcfgs)
FROM plot p,
    cond c,
    tree t
WHERE p.statecd=26 AND
    p.cycle=5 AND
    p.cn=c.plt_cn AND
    p.cn=t.plt_cn AND
    c.condid=t.condid AND
    t.spcd=129;
```

To calculate the total all live biomass of white pine trees on timberland in the State of Michigan for the fifth inventory cycle (1993):

SELECT SUM(p.expvol * t.tpacurr * t.drybiot)
FROM plot p,
cond c,
tree $\quad \mathrm{t}$
WHERE p.statecd=26 AND
p.cycle=5 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
c.landclcd=1 AND
c.reservcd=0 AND
c.siteclcd in (1,2,3,4,5,6) AND
t.statuscd=1 AND
t.spcd=129;

Algorithms That Will Work On All Annual Inventories Begun After 1998

Table 7. Algorithms that expand tree level items to population estimates of number of trees 1 inch in diameter or larger on forest land. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Trees	Number of all live trees on forest land	p.expvol * t.tpacurr	c.landclcd=1 and t.statuscd=1 and t.dia>=1.0
Trees	Number of growing stock trees on forest land	p.expvol * t.tpacurr	c.landclcd=1 and t.statuscd=1 and t.treeclcd=2 and t.dia>=1.0
Trees	Number of rough trees on forest land	p.expvol * t.tpacurr	c.landclcd=1 and t.statuscd=1 and t.treeclcd=3 and t.dia>=1.0
Trees	Number of rotten trees on forest land	p.expvol * t.tpacurr	c.landclcd=1 and t.statuscd=1 and t.treeclcd=4 and t.dia>=1.0
Trees	Number of standing dead trees over 5 inches in diameter on forest land	p.expvol * t.tpacurr	c.landclcd=1 and t.statuscd=2 and t.leancd in $(0,1)$ and t.dia>=5.0

Table 8. Algorithms that expand tree-level items to population estimates of volume of trees on forest land. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Cuft	Merchantable volume of all live trees on forest land	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and t.statuscd=1
Cuft	Merchantable volume of growing-stock trees on forest land	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and t.statuscd=1 and t.treeclcd=2
Cuft	Merchantable volume of all live rough trees on forest land	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and t.statuscd=1 and t.treeclcd=3
Cuft	Merchantable volume of all live rotten trees on forest land	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and t.statuscd=1 and t.treeclcd=4
Cuft	Merchantable volume of salvable dead trees on forest land	p.expvol * t.tpacurr * t.volcfnet	c.landclcd=1 and t.salvcd=1
Cuft	Merchantable volume in the saw-log portion of sawtimber trees on forest land	p.expvol * t.tpacurr * t.volcsnet	c.landclcd=1 and t.statuscd=1 and t.treeclcd=2
Bdft	Merchantable volume of sawtimber trees on forest land	p.expvol * t.tpacurr * t.volbfnet	c.landclcd=1 and t.statuscd=1 and t.treeclcd=2

Cuft	Sound volume of all live trees on timberland	p.expvol * t.tpacurr * t.volcfsnd	c.landclcd=1 and c.reservcd=0 and c.siteclcd in $(1,2,3,4,5,6)$ and t.statuscd=1
Cuft	Sound volume of all live trees on forest land	p.expvol * t.tpacurr * t.volcfsnd	c.landclcd=1 and t.statuscd=1
Cuft	Sound volume of all live rough trees on forest land	p.expvol * t.tpacurr * t.volcfsnd	c.landclcd=1 and t.statuscd=1 and t.treeclcd=3
Cuft	Sound volume of all live rotten trees on forest land	p.expvol * t.tpacurr * t.volcfsnd	c.landclcd=1 and t.statuscd=1 and t.treeclcd=4
Cuft	Gross volume of all live trees on timberland	p.expvol * t.tpacurr * t.volcfgrs	c.landclcd=1 and c.reservcd=0 and c.siteclcd in (1,2,3,4,5,6) and t.statuscd=1
Cuft	Gross volume of all live trees on forest land	p.expvol * t.tpacurr * t.volcfgrs	c.landclcd=1 and t.statuscd=1
Cuft	Gross volume in the saw-log portion of sawtimber trees on forest land	p.expvol * t.tpacurr * t.volcsnet	c.landclcd=1 and t.statuscd=1 and t.treeclcd=2
Bdft	Gross volume of sawtimber trees on forest land	p.expvol * t.tpacurr * t.volbfgrs	c.landclcd=1 and t.statuscd=1

Table 9. Algorithms that expand tree level items to population estimates of biomass of trees on forest land. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Ovendry lbs.	Gross biomass of all live trees on forest land	p.expvol * t.tpacurr * t.drybiot	c.landclcd=1 and t.statuscd=1
Ovendry lbs.	Merchantable biomass of all live trees on forest land	p.expvol * t.tpacurr * t.drybiom	c.landclcd=1 and t.statuscd=1

Examples of SQL Statements That Will Work On All Annual Inventories Begun After 1998

To calculate the total number of all live white pine trees on forest land in the State of Michigan for the sixth inventory cycle (estimated year of completion 2004):

```
SELECT SUM(p.expvol * t.tpacurr)
FROM plot p,
cond c,
tree t
WHERE p.statecd=26 and
p.cycle=6 AND
p.cn=c.plt_cn AND
p.cn=t.cn AND
c.condid=t.condid AND
c.landclcd=1 AND
t.statuscd=1 AND
t.dia>=1.0 AND
t.spcd=129;
```

To calculate the merchantable volume of all live white pine trees on forest land in the State of Michigan for the sixth inventory cycle (estimated year of completion 2004):

SELECT SUM(p.expvol * t.tpacurr * t.volcfnet)

FROM	plot	p,
	cond	c,
tree	t	

WHERE p.statecd=26 AND
p.cycle=6 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
c.landclcd=1 AND
t.statuscd=1 AND
t. spcd=129;

To calculate the gross biomass of all live white pine trees on forest land in the State of Michigan for the sixth inventory cycle (estimated year of completion 2004):

```
SELECT SUM(p.expvol * t.tpacurr * t.drybiot)
FROM plot p,
cond c,
tree t
WHERE p.statecd=26 AND
p.cycle=6 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
c.landclcd=1 AND
t.statuscd=1 AND
t.spcd=129;
```


Algorithms That Can Be Applied To The Second Annual Inventory Cycle Begun After 1998

Table 10. Algorithms that expand tree-level items to population estimates of growth, mortality or removals of trees on forest land. Each item is computed by summing the corresponding quantities over all trees that meet the requirements.

Units	Type	Calculation	Requirements
Cuft/year	Net annual growth of all live trees on forest land	$\begin{aligned} & \text { p.expgrow * t.tpagrow } \\ & \text { * t.fgrowcfal } \\ & \hline \end{aligned}$	None
Cuft/year	Annual mortality of all live trees on forest land	$\begin{array}{\|l\|} \hline \text { p.expmort * t.tpamort } \\ * \text { t.fmortcfal } \end{array}$	None
Cuft/year	Annual removals of all live trees on forest land	$\begin{array}{\|l\|} \hline \text { p.expremv * t.tparemv } \\ \text { * t.fremvcfal } \\ \hline \end{array}$	None
Cuft/year	Net annual growth of growing-stock trees on forest land	p.expgrow * t.tpagrow * t.fgrowcfgs	None
Cuft/year	Annual mortality of growingstock trees on forest land	$\begin{array}{\|l\|l} \hline \text { p.expmort * t.tpamort } \\ \text { * t.fmortcfgs } \end{array}$	None
Cuft/year	Annual removals of growingstock trees on forest land	$\begin{array}{\|l\|} \hline \text { p.expremv * t.tparemv } \\ \text { * t.fremvcfgs } \\ \hline \end{array}$	None
Bdft/year	Net annual growth of sawtimber trees on forest land	$\begin{aligned} & \hline \text { p.expgrow * t.tpagrow } \\ & \text { * t.fgrowbfsl } \end{aligned}$	None
Bdft/year	Annual mortality of sawtimber trees on forest land	$\begin{aligned} & \hline \begin{array}{l} \text { p.expmort * t.tpamort } \\ * \text { t.fmortbfsl } \end{array} \end{aligned}$	None
Bdft/year	Annual removals of sawtimber trees on forest land	$\begin{array}{\|l} \hline \text { p.expremv * t.tparemv } \\ \text { * t.fremvbfsl } \end{array}$	None

Examples of SQL Statements That Can Be Applied To The Second Annual Inventory Cycle Begun After 1998

To calculate the net annual growth of all live white pine trees on forest land in the State of Michigan for the seventh inventory cycle (estimated year of completion 2009):

SELECT SUM(p.expgrow * t.tpagrow * t.fgrowcfal)

FROM	plot	p,
	cond	c,
tree	t	

WHERE p.statecd=26 AND
p.cycle=7 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
t.spcd=129;

To calculate the annual mortality of all live white pine trees on forest land in the State of Michigan for the seventh inventory cycle (estimated year of completion 2009):

SELECT SUM(p.expmort * t.tpamort * t.fmortcfal)

FROM	plot	p,
	cond	c,
tree	t	

WHERE p.statecd=26 AND
p.cycle=7 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
t. spcd=129;

To calculate the annual removals of all live white pine trees on forest land in the State of Michigan for the seventh inventory cycle (estimated year of completion 2009):

SELECT SUM(p.expremv * t.tparemv * t.fremvcfal)
FROM
plot p,
cond c,
tree t
WHERE p.statecd=26 AND
p.cycle=7 AND
p.cn=c.plt_cn AND
p.cn=t.plt_cn AND
c.condid=t.condid AND
t. spcd=129;

Calculating Population Estimates Using Phase 1 and Phase 2 Data

Methods for calculating population estimates and their associated sampling errors from twophase sampling is described in detail in "The Enhanced Forest Inventory and Analysis ProgramNational Sampling Design and Estimation Procedures" (Bechtold and Patterson, in press). SQL example scripts for calculating area and volume estimates using phase 1 and phase 2 data are provided below.

The following SQL script calculates the area of timberland for Indiana by stand-size class, using summarized phase 1 data contained in the ESTN_UNIT_STRATUM table and phase 2
information contained in the PLOT_POP_STRATUM_ASSGN, PLOT, and COND tables.
SELECT stand_size, ROUND(SUM(acres_long_calc)) acres
FROM
(
SELECT
eus.rscd,
eus.evalid,
eus.estunit,
eus.stratumcd,
DECODE(stdszcd,1,'Saw',2,'Pole',3,'SeedSap','Nonstocked') stand_size,
SUM(condprop*(eus.areatot_eu*eus.p1pointcnt/eus.p1pointcnt_eu)/eus.p2pointent) acres_long_calc
FROM plot_pop_stratum_assgn ppsa, estn_unit_stratum eus,
plot p,
cond c
WHERE eus.rscd=23 AND
eus.evalid=34 AND
ppsa.eus_cn=eus.cn AND
ppsa.plt_cn=p.cn AND
c.plt_cn=p.cn AND
landclcd=1 AND
siteclcd in $(1,2,3,4,5,6)$ AND
reservcd=0
GROUP BY eus.rscd,
eus.evalid,
eus.estunit,
eus.stratumcd,
DECODE(stdszcd,1,'Saw',2,'Pole',3,'SeedSap','Nonstocked')
)
GROUP BY stand_size

The following SQL script calculates the growing-stock volume on timberland for Indiana by stand-size class, using summarized phase 1 data contained in the ESTN_UNIT_STRATUM table and phase 2 information contained in the PLOT_POP_STRATUM_ASSGN, PLOT, COND, and TREE tables.

SELECT stand_size,round(sum(volume)) Volume
FROM
(
SELECT
ppsa.rscd,
ppsa.evalid,
ppsa.estunit,
ppsa.stratumcd,
DECODE(stdszcd,1,'Saw',2,'Pole',3,'SeedSap','Nonstocked') stand_size, SUM(tpacurr*volcfnet*ppsa.expns) volume
FROM plot_pop_stratum_assgn ppsa,
plot p,
cond c,
tree t
WHERE ppsa.rscd=23 AND
ppsa.evalid=35 AND
ppsa.plt_cn=p.cn AND
c.plt_cn=p.cn AND
t.plt_cn=p.cn AND
t.condid=c.condid AND
landclcd=1 AND
siteclcd in (1,2,3,4,5,6) AND
reservcd=0 AND
t.statuscd=1 AND
t.treeclcd=2

GROUP BY ppsa.rscd, ppsa.evalid, ppsa.estunit, ppsa.stratumcd, DECODE(stdszcd,1,'Saw',2,'Pole',3,'SeedSap','Nonstocked')
)
GROUP BY stand_size

Literature Cited

Hansen, Mark H.; Frieswyk, Thomas; Glover, Joseph F.; Kelly, John F. 1992. The Eastwide forest inventory data base: users manual. Gen. Tech. Rep. NC-151. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. 48 p.
Miles, Patrick D.; Brand, Gary J.; Alerich, Carol L.; Bednar, Larry F.; Woudenberg, Sharon W.; Glover, Joseph F.; Ezzell, Edward N. 2001. The forest inventory and analysis database: database description and users manual version 1.0. Gen. Tech. Rep. NC-218. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station. 130 p.
Woudenberg, Sharon W.; Farrenkopf, Thomas O. 1995. The Westwide forest inventory data base: user's manual. Gen. Tech. Rep. INT-GTR-317. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 67 p.
U.S. Department of Agriculture, Forest Service. 2003. Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.7. U.S. Department of Agriculture, Forest Service, Washington Office. Internal report. On file with: U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, 201 14 ${ }^{\text {th }}$ St., Washington, D.C., 20250.

Appendix A -- Index of Column Names

The following table lists column names used in the database tables, their location within the table, and a short description of the variable.

Column name	Table name	Location in table	Description
ACTUALHT	TREE	24	Actual length of tree
ADFORCD	COND	15	Administered forest
AGEDIA	SITETREE	13	Tree age at diameter (DBH/DRC)
AGENTCD	TREE	29	Cause of death
ALSTK	COND	55	All live stocking
ALSTKCD	COND	32	All live stocking code
AREA_USED	EUS	28	Area used to calculate all expansion factors
AREALAND_EU	EUS	16	Land area within the estimation unit
AREATOT_EU	EUS	17	Total area within the estimation unit
ASPECT	SUBPLOT	12	Subplot aspect
ASPECT	COND	29	Aspect
AZIMUTH	TREE	11	Azimuth
AZIMUTH	SITETREE	26	Azimuth
AZMCORN	BOUNDARY	13	Corner azimuth
AZMLEFT	BOUNDARY	12	Left azimuth
AZMRIGHT	BOUNDARY	15	Right azimuth
BALIVE	COND	49	Basal area of all live trees, summed for the condition
BFSND (NERS)	TREE	83	Board-foot-cull soundness
BHAGE (PNWRS,RMRS)	TREE	76	Age of tree at breast height
BNDCHG	BOUNDARY	10	Boundary change
BOLEHT (NERS)	TREE	86	Bole length
CCLCD	TREE	27	Crown class
CDENCD	TREE	69	Crown density
CDIEBKCD	TREE	70	Crown dieback
CENSUSYR	SURVEY	9	Census year
CFSND (NERS)	TREE	84	Cubic-foot-cull soundness
CLIGHTCD	TREE	67	Crown light exposure
CN	SURVEY	14	Sequence number
CN	COUNTY	6	Sequence number
CN	PLOT	38	Sequence number
CN	SUBPLOT	14	Sequence number
CN	COND	52	Sequence number
CN	TREE	72	Sequence number
CN	SEEDLING	14	Sequence number
CN	SITETREE	17	Sequence number
CN	BOUNDARY	16	Sequence number
CN	EUS	6	Sequence number
CN	PPSA	8	Sequence number
CN	SUBP_COND	10	Sequence number
COND_STATUS_CD	COND	85	Condition status code
CONDID	COND	8	Condition number
CONDID	TREE	10	Condition number
CONDID	SEEDLING	9	Condition number
CONDID	SITETREE	8	Condition number
CONDID	SUBP_COND	9	Condition number
CONDLIST	SUBPLOT	24	Subplot/macroplot condition list

Column name	Table name	Location in table	Description
CONDPROP	COND	9	Condition proportion, unadjusted
CONDPROP_ALL	COND	73	Condition proportion for total area estimation
CONDPROP_CHNG	COND	74	Condition proportion for change estimation
CONDPROP_CURR	COND	75	Condition proportion for forest land and timberland estimation
CONDPROP_SAMP	COND	86	Condition proportion for measured portion of the plot
CONDPROPUN (SRS)	COND	58	Unadjusted subplot condition proportion
CONGCD	PLOT	36	Congressional district
CONTRAST	BOUNDARY	11	Contrasting condition
COUNTCD	SEEDLING	12	Seedling count code
COUNTYCD	COUNTY	4	County code
COUNTYCD	PLOT	6	County code
COUNTYCD	SUBPLOT	6	County code
COUNTYCD	COND	6	County code
COUNTYCD	TREE	6	County code
COUNTYCD	SEEDLING	6	County code
COUNTYCD	SITETREE	6	County code
COUNTYCD	BOUNDARY	6	County code
COUNTYCD	PPSA	6	County code
COUNTYCD	SUBP_COND	6	County code
COUNTYNM	COUNTY	5	County name
CPOSCD	TREE	66	Crown position
CR	TREE	26	Compacted crown ratio
CREATED_BY	SURVEY	18	User who created the record
CREATED_BY	COUNTY	7	User who created the record
CREATED_BY	PLOT	56	User who created the record
CREATED_BY	SUBPLOT	17	User who created the record
CREATED_BY	COND	64	User who created the record
CREATED_BY	TREE	91	User who created the record
CREATED_BY	SEEDLING	19	User who created the record
CREATED_BY	SITETREE	19	User who created the record
CREATED_BY	BOUNDARY	18	User who created the record
CREATED_BY	EUS	21	User who created the record
CREATED_BY	PPSA	16	User who created the record
CREATED_BY	SUBP_COND	12	User who created the record
CREATED_DATE	SURVEY	19	Date record created
CREATED_DATE	COUNTY	8	Date record created
CREATED_DATE	PLOT	57	Date record created
CREATED_DATE	SUBPLOT	18	Date record created
CREATED_DATE	COND	65	Date record created
CREATED_DATE	TREE	92	Date record created
CREATED_DATE	SEEDLING	20	Date record created
CREATED_DATE	SITETREE	20	Date record created
CREATED_DATE	BOUNDARY	19	Date record created
CREATED_DATE	EUS	22	Date record created
CREATED_DATE	PPSA	17	Date record created
CREATED_DATE	SUBP_COND	13	Date record created
CREATED_IN_INSTANCE	SURVEY	20	Instance record created in
CREATED_IN_INSTANCE	COUNTY	9	Instance record created in
CREATED_IN_INSTANCE	PLOT	58	Instance record created in
CREATED_IN_INSTANCE	SUBPLOT	19	Instance record created in
CREATED_IN_INSTANCE	COND	66	Instance record created in

Column name	Table name	Location in table	Description
CREATED_IN_INSTANCE	SEEDLING	21	Instance record created in
CREATED_IN_INSTANCE	TREE	93	Instance record created in
CREATED_IN_INSTANCE	SITETREE	21	Instance record created in
CREATED_IN_INSTANCE	BOUNDARY	20	Instance record created in
CREATED_IN_INSTANCE	EUS	23	Instance record created in
CREATED_IN_INSTANCE	PPSA	18	Instance record created in
CREATED_IN_INSTANCE	SUBP_COND	14	Instance record created in
CREW_TYPE	PLOT	54	Type of crew measuring plot
CTY_CN	PLOT	40	Foreign key to the COUNTY record
CULL	TREE	30	Rotten and missing cull
CULL_FLD	TREE	103	Rotten and missing cull (as recorded by field)
CULLBF (NERS)	TREE	81	Board-foot cull
CULLCF (NERS)	TREE	82	Cubic-foot cull
CULLDEAD (RMRS)	TREE	78	Dead cull
CULLFORM (RMRS)	TREE	79	Form cull
CULLMSTOP(RMRS)	TREE	80	Missing top cull
CVIGORCD	TREE	68	Sapling vigor class
CYCLE	SURVEY	3	Inventory cycle number
CYCLE	PLOT	3	Inventory cycle number
CYCLE	SUBPLOT	3	Inventory cycle number
CYCLE	COND	3	Inventory cycle number
CYCLE	TREE	3	Inventory cycle number
CYCLE	SEEDLING	3	Inventory cycle number
CYCLE	SITETREE	3	Inventory cycle number
CYCLE	BOUNDARY	3	Inventory cycle number
CYCLE	PPSA	3	Inventory cycle number
CYCLE	SUBP_COND	3	Inventory cycle number
CYCLELEN	SURVEY	16	Length of the cycle
DAMINDEX	COND	51	Damage index
DAMLOC1	TREE	31	Damage location 1
DAMLOC2	TREE	34	Damage location 2
DAMSEV1	TREE	33	Damage severity 1
DAMSEV2	TREE	36	Damage severity 2
DAMTYP1	TREE	32	Damage type 1
DAMTYP2	TREE	35	Damage type 2
DECAYCD	TREE	37	Decay class
DESIGNCD	PLOT	13	Plot design
DIA	TREE	20	Current diameter
DIA	SITETREE	11	Current diameter
DIACALC (NCRS,SRS)	TREE	75	Currenct diameter, calculated
DIACHECK	TREE	62	Diameter check
DIAHTCD	TREE	21	Height of diameter measurement
DIST	TREE	12	Horizontal distance
DIST	SITETREE	27	Horizontal distance
DISTCORN	BOUNDARY	14	Corner distance
DRYBIOM	TREE	61	Merchantable stem biomass ovendry weight for live trees
DRYBIOT	TREE	60	Total gross biomass ovendry weight for live trees
DSTRBCD1	COND	34	Disturbance 1
DSTRBCD2	COND	36	Disturbance 2
DSTRBCD3	COND	38	Disturbance 3
DSTRBYR1	COND	35	Year of disturbance 1
DSTRBYR2	COND	37	Year of disturbance 2

Column name	Table name	Location in table	Description
DSTRBYR3	COND	39	Year of disturbance 3
ECOSUBCD	PLOT	35	Ecological subsection
EFFDATE_EU	EUS	11	Effective date for the estimation unit
EFFDATE_EVAL	EUS	8	Effective date for the evaluation
EFFDATE_STRATUM	EUS	13	Effective date for the stratum
ELEV	PLOT	24	Elevation
ENDDATE_EU	EUS	12	End date for the estimation unit
ENDDATE_EVAL	EUS	9	End date for the evaluation
ENDDATE_STRATUM	EUS	14	End date for the stratum
ESTUNIT	EUS	4	Estimation unit
ESTUNIT	PPSA	14	Estimation unit
ESTUNITDESCR	EUS	10	Estimation unit description
EUS_CN	PPSA	9	Foreign key to the EUS record
EVALDESCR	EUS	7	Evaluation description
EVALID	EUS	3	Evaluation identifier
EVALID	PPSA	13	Evaluation identifier
EXPALL	PLOT	49	Current area expansion factor (for all land estimates)
EXPCHNG	PLOT	32	Periodic change expansion factor
EXPCURR	PLOT	25	Current area expansion factor (for forest land and timberland estimates)
EXPGROW	PLOT	27	Growth expansion factor
EXPMORT	PLOT	29	Mortality expansion factor
EXPNS	PPSA	11	Expansion factor computed for the stratum/estimation unit
EXPREMV	PLOT	31	Removals expansion factor
EXPVOL	PLOT	26	Current volume expansion factor
FGROWBFSL	TREE	107	Net annual merchantable board-foot growth of sawtimber tree on forest land
FGROWCFAL	TREE	108	Net annual sound cubic-foot growth of live tree on forest land
FGROWCFGS	TREE	106	Net annual merchantable cubic-foot growth of growing-stock tree on forest land
FLDAGE	COND	54	Stand age, as assigned by field crew
FLDSZCD	COND	21	Stand-size class assigned by the field crew
FLDTYPCD	COND	17	Forest type of the condition assigned by the field crew
FMORTBFSL	TREE	110	Board-foot volume of a sawtimber tree for mortality purposes on forest land
FMORTCFAL	TREE	111	Sound cubic-foot volume of a tree for mortality purposes on forest land
FMORTCFGS	TREE	109	Cubic-foot volume of a growing-stock tree for mortality purposes on forest land
FORINDCD	COND	14	Private owner industrial status
FORMCL (PNWRS)	TREE	87	Hardwood form class
FORTYPCD	COND	16	Forest type of the condition derived by algorithm
FORTYPCDCALC	COND	59	Forest type derived by algorithm, no adjustment for field call
FREMVBFSL	TREE	113	Board-foot volume of a sawtimber tree for removal purposes on forest land
FREMVCFAL	TREE	114	Sound cubic-foot volume of the tree for removal purposes on forest land

Column name	Table name	Location in table	Description
FREMVCFGS	TREE	112	Cubic-foot volume of a growing-stock tree for removal purposes on forest land
GROWBFSL	TREE	52	Net annual merchantable board-foot growth of sawtimber tree
GROWCD	PLOT	28	Type of annual volume growth
GROWCFAL	TREE	53	Net annual sound cubic-foot growth of live tree
GROWCFGS	TREE	51	Net annual merchantable cubic-foot growth of growing-stock tree
GSSTK	COND	56	Growing-stock stocking
GSSTKCD	COND	31	Growing-stock stocking code
HABTYPCD1 (RMRS)	COND	60	Primary condition habitat type 1
HABTYPCD2 (RMRS)	COND	61	Primary condition habitat type 2
(PNDWRS)	TREE	89	Hardwood clump
HT	TREE	22	Total length
HT	SITETREE	12	Sitetree length
HTCALC (SRS)	TREE	88	Calculated total length
HTCD	TREE	23	Length method
HTDMP	TREE	99	Height to diameter measurement point
INVYR	SURVEY	7	Inventory year
KINDCD	PLOT	12	Sample kind
KINDCD_NC (NCRS)	PLOT	52	Sample kind (NCRS)
LANDCLCD	COND	10	Condition class status code (formerly land class code)
LASTCYCLEMEAS	PLOT	50	Previous inventory cycle number
LASTSUBCYCLEMEAS	PLOT	51	Previous inventory subcycle number
LAT	PLOT	22	Latitude NAD 83 datum
LEANCD	TREE	16	Lean code
LON	PLOT	23	Longitude NAD 83 datum
MACRCOND	SUBPLOT	16	Macroplot center condition
MACRCOND_PROP	SUBP_COND	20	Macroplot condition proportion
MACRPROP	COND	63	Macroplot condition proportion, unadjusted
MACRPROP_ALL	COND	76	Macroplot condition proportion (total area basis)
MACRPROP_CHNG	COND	77	Macroplot condition proportion (change estimation basis)
MACRPROP_CURR	COND	78	Macroplot condition proportion (current estimation basis)
MACRPROP_SAMP	COND	88	Condition proportion for measured portion of the macroplots
MANUAL	PLOT	37	Field guide version number
MANUAL_DB	PLOT	55	Version of field guide to which database is updated
MAPDEN	COND	18	Tree density class
MEASDAY	PLOT	10	Measurement day
MEASMON	PLOT	9	Measurement month
MEASYEAR	PLOT	8	Measurement year
METHOD	SITETREE	28	Site tree method
MICRCOND	SUBPLOT	10	Microplot center condition
MICRCOND_PROP	SUBP_COND	19	Microplot condition proportion
MICROPLOT_LOC	PLOT	65	Microplot location
MICRPROP	COND	50	Microplot condition proportion, unadjusted
MICRPROP_ALL	COND	79	Microplot condition proportion (total area basis)

Column name	Table name	Location in table	Description
MICRPROP_CHNG	COND	80	Microplot condition proportion (change estimation basis)
MICRPROP_CURR	COND	81	Microplot condition proportion (current estimation basis)
MICRPROP_SAMP	COND	87	Condition proportion for measured portion of the microplots
MIST_CL_CD	TREE	101	Mistletoe class
MIXEDCONFCD (PNWRS)	COND	62	Mixed conifer code
MODDATE	SURVEY	8	Date the data were last modified for this State, cycle, and subcycle
MODIFIED_BY	SURVEY	21	User who last modified record
MODIFIED_BY	COUNTY	10	User who last modified record
MODIFIED_BY	PLOT	59	User who last modified record
MODIFIED_BY	SUBPLOT	20	User who last modified record
MODIFIED_BY	COND	67	User who last modified record
MODIFIED_BY	TREE	94	User who last modified record
MODIFIED_BY	SEEDLING	22	User who last modified record
MODIFIED_BY	SITETREE	22	User who last modified record
MODIFIED_BY	BOUNDARY	21	User who last modified record
MODIFIED_BY	EUS	24	User who last modified record
MODIFIED_BY	PPSA	19	User who last modified record
MODIFIED_BY	SUBP_COND	15	User who last modified record
MODIFIED_DATE	SURVEY	22	Date record was last modified
MODIFIED_DATE	COUNTY	11	Date record was last modified
MODIFIED_DATE	PLOT	60	Date record was last modified
MODIFIED_DATE	SUBPLOT	21	Date record was last modified
MODIFIED_DATE	COND	68	Date record was last modified
MODIFIED_DATE	TREE	95	Date record was last modified
MODIFIED_DATE	SEEDLING	23	Date record was last modified
MODIFIED_DATE	SITETREE	23	Date record was last modified
MODIFIED_DATE	BOUNDARY	22	Date record was last modified
MODIFIED_DATE	EUS	25	Date record was last modified
MODIFIED_DATE	PPSA	20	Date record was last modified
MODIFIED_DATE	SUBP_COND	16	Date record was last modified
MODIFIED_IN_INSTANCE	SURVEY	23	Instance record was modified in
MODIFIED_IN_INSTANCE	COUNTY	12	Instance record was modified in
MODIFIED_IN_INSTANCE	PLOT	61	Instance record was modified in
MODIFIED_IN_INSTANCE	SUBPLOT	22	Instance record was modified in
MODIFIED_IN_INSTANCE	COND	69	Instance record was modified in
MODIFIED_IN_INSTANCE	TREE	96	Instance record was modified in
MODIFIED_IN_INSTANCE	SEEDLING	24	Instance record was modified in
MODIFIED_IN_INSTANCE	SITETREE	24	Instance record was modified in
MODIFIED_IN_INSTANCE	BOUNDARY	23	Instance record was modified in
MODIFIED_IN_INSTANCE	EUS	26	Instance record was modified in
MODIFIED_IN_INSTANCE	PPSA	21	Instance record was modified in
MODIFIED_IN_INSTANCE	SUBP_COND	17	Instance record was modified in
MORTBFSL	TREE	55	Board-foot volume of a sawtimber tree for mortality purposes
MORTCD	PLOT	30	Type of annual mortality volume
MORTCD	TREE	98	Mortality code
MORTCFAL	TREE	56	Sound cubic-foot volume of a tree for mortality purposes

Column name	Table name	Location in table	Description
MORTCFGS	TREE	54	Cubic-foot volume of a growing-stock tree for mortality purposes
MORTYR	TREE	63	Mortality year
NFSYR	SURVEY	10	National Forest System Area Control Year
NFYEAR	COND	48	Nonforest year
NOTES	SURVEY	13	An optional item where notes about the inventory may be stored
NOTES	PLOT	62	An optional item where notes about the plot may be stored
NOTES	TREE	97	An optional item where notes about the tree may be stored
NOTES	SITETREE	30	An optional item where notes about the sitetree may be stored
NUMPANEL	SURVEY	12	Number of panels
NUMSUBPANEL	SURVEY	17	Number of subpanels
OWNCD	COND	12	Owner class
OWNGRPCD	COND	13	Owner group
P1POINTCNT	EUS	18	Count of Phase 1 points in the stratum/estimation unit
P1POINTCNT_EU	EUS	20	Count of Phase 1 points in the estimation unit
P2HEX	PLOT	66	Phase 2 hex number
P2PANEL	PLOT	33	Phase 2 panel number
P2POINTCNT	EUS	19	Count of Phase 2 points in the stratum/estimation unit
P3HEX	PLOT	63	Phase 3 hex number
P3PANEL	PLOT	34	Phase 3 panel number
P3PLOT	PLOT	64	Phase 3 plot number
PASTNFCD	COND	46	Past nonforest/inaccessible land use
PHYSCLCD	COND	30	Physiographic class
PLOT	PLOT	7	Plot number
PLOT	SUBPLOT	7	Plot number
PLOT	COND	7	Plot number
PLOT	TREE	7	Plot number
PLOT	SEEDLING	7	Plot number
PLOT	SITETREE	7	Plot number
PLOT	BOUNDARY	7	Plot number
PLOT	PPSA	7	Plot number
PLOT	SUBP_COND	7	Plot number
PLT_CN	SUBPLOT	15	Foreign key to the PLOT record
PLT_CN	COND	53	Foreign key to the PLOT record
PLT_CN	TREE	73	Foreign key to the PLOT record
PLT_CN	SEEDLING	15	Foreign key to the PLOT record
PLT_CN	SITETREE	18	Foreign key to the PLOT record
PLT_CN	BOUNDARY	17	Foreign key to the PLOT record
PLT_CN	PPSA	10	Foreign key to the PLOT record
PLT_CN	SUBP_COND	11	Foreign key to the PLOT record
PRESNFCD	COND	47	Present nonforest land use
PREVCOND	COND	57	Previous condition number
PREVCOND	TREE	13	Previous condition number
PREVDIA	TREE	105	Previous diameter
PREVSUBC	TREE	14	Previous subcycle number
PROP_BASIS	COND	72	Proportion basis.
PUBUSECD	PLOT	17	Public use restrictions

Column name	Table name	Location in table	Description
QA_STATUS	PLOT	53	Indicator of plot type
RDCD	PLOT	14	Trails or roads
RDDISTCD	PLOT	15	Horizontal distance to improved road
RDUSECD	PLOT	16	Road access
RECONCILECD	TREE	104	New tree reconciliation
REMPER	PLOT	11	Remeasurement period
REMVBFSL	TREE	58	Board-foot volume of a sawtimber tree for removal purposes
REMVCFAL	TREE	59	Sound cubic-foot volume of the tree for removal purposes
REMVCFGS	TREE	57	Cubic-foot volume of a growing-stock tree for removal purposes
RESERVCD	COND	11	Reserved status
REUSECD1	PLOT	18	Recreation use code 1
REUSECD2	PLOT	19	Recreation use code 2
REUSECD3	PLOT	20	Recreation use code 3
ROUGHCULL	TREE	100	Rough cull
RSCD	SURVEY	11	Region or Station ID
RSCD	EUS	2	Region or Station ID
RSCD	PPSA	12	Region or Station ID
RSCD_EVALID_EXPALL	PLOT	48	Link to the evaluation method in EUS to calculate EXPALL
RSCD_EVALID_EXPCHNG	PLOT	47	Link to the evaluation method in EUS to calculate EXPCHNG
RSCD_EVALID_EXPCURR	PLOT	42	Link to the evaluation method in EUS to calculate EXPCURR
$\begin{aligned} & \text { RSCD_EVALID_EXPGRO } \\ & \text { W } \end{aligned}$	PLOT	44	Link to the evaluation method in EUS to calculate EXPGROW
RSCD_EVALID_EXPMORT	PLOT	45	Link to the evaluation method in EUS to calculate EXPMORT
RSCD_EVALID_EXPREMV	PLOT	46	Link to the evaluation method in EUS to calculate EXPREMV
RSCD_EVALID_EXPVOL	PLOT	43	Link to the evaluation method in EUS to calculate EXPVOL
SALVCD	TREE	64	Salvable dead code
SAWHT (NERS)	TREE	85	Sawlog length
SIBASE	COND	24	Site index base age
SIBASE	SITETREE	16	Site index base age
SICOND	COND	23	Site index
SISP	COND	25	Site index species
SITECL_METHOD	COND	84	Site class method
SITECLCD	COND	22	Site productivity class
SITECLCDEST	COND	82	Estimated site productivity code
SITETREE_TREE	COND	83	Site tree tree number
SITREE	SITETREE	15	Site index
SITREE (NCRS)	TREE	90	Calculate site index
SITREE_EST	SITETREE	29	Estimated site index
SLOPE	SUBPLOT	11	Subplot slope
SLOPE	COND	28	Slope
SPCD	TREE	18	Species code
SPCD	SEEDLING	10	Species code
SPCD	SITETREE	10	Species code
SPGRPCD	TREE	19	Species group

Column name	Table name	Location in table	Description
SPGRPCD	SEEDLING	11	Species group
SPGRPCD	SITETREE	14	Species group
SRV_CN	PLOT	39	Foreign key to SURVEY record
STATEAB	SURVEY	5	State abbreviation
STATECD	SURVEY	2	State code
STATECD	COUNTY	2	State code
STATECD	PLOT	2	State code
STATECD	SUBPLOT	2	State code
STATECD	COND	2	State code
STATECD	TREE	2	State code
STATECD	SEEDLING	2	State code
STATECD	SITETREE	2	State code
STATECD	BOUNDARY	2	State code
STATECD	PPSA	2	State code
STATECD	SUBP_COND	2	State code
STATENM	SURVEY	6	State name
STATUSCD	SUBPLOT	23	Subplot/macroplot status
STATUSCD	TREE	15	Tree status
STDAGE	COND	19	Stand age
STDORGCD	COND	26	Regeneration status
STDORGSP	COND	27	Artificial regeneration status species
STDSZCD	COND	20	Stand-size class derived by algorithm
STOCKING	TREE	38	Tree stocking
STOCKING	SEEDLING	13	Tree stocking
STRATUMCD	EUS	5	Stratum
STRATUMCD	PPSA	15	Stratum
STRATUMDESCR	EUS	27	Stratum description
STRATUMMETHOD	EUS	15	Stratum method
SUBCYCLE	SURVEY	4	Inventory subcycle number
SUBCYCLE	PLOT	4	Inventory subcycle number
SUBCYCLE	SUBPLOT	4	Inventory subcycle number
SUBCYCLE	COND	4	Inventory subcycle number
SUBCYCLE	TREE	4	Inventory subcycle number
SUBCYCLE	SEEDLING	4	Inventory subcycle number
SUBCYCLE	SITETREE	4	Inventory subcycle number
SUBCYCLE	BOUNDARY	4	Inventory subcycle number
SUBCYCLE	PPSA	4	Inventory subcycle number
SUBCYCLE	SUBP_COND	4	Inventory subcycle number
SUBDIVCD	SURVEY	15	Subdivision
SUBP	SUBPLOT	8	Subplot number
SUBP	TREE	8	Subplot number
SUBP	SEEDLING	8	Subplot number
SUBP	SITETREE	25	Subplot number
SUBP	BOUNDARY	8	Subplot number
SUBP	SUBP_COND	8	Subplot number
SUBPANEL	PLOT	41	Subpanel assignment
SUBPCOND	SUBPLOT	9	Subplot center condition
SUBPCOND_PROP	SUBP_COND	18	Subplot condition proportion
SUBPPROP	COND	71	Subplot condition proportion, unadjusted
SUBPPROP_ALL	COND	90	Subplot condition proportion (total area basis)
SUBPPROP_CHNG	COND	91	Subplot condition proportion (change estimation basis)

Column name	Table name	Location in table	Description
SUBPPROP_CURR	COND	92	Subplot condition proportion (current estimation basis)
SUBPPROP_SAMP	COND	89	Condition proportion for measured portion of the subplots
SUBPTYP	BOUNDARY	9	Plot type
TABLENM	SURVEY	1	Table name
TABLENM	COUNTY	1	Table name
TABLENM	PLOT	1	Table name
TABLENM	SUBPLOT	1	Table name
TABLENM	COND	1	Table name
TABLENM	TREE	1	Table name
TABLENM	SEEDLING	1	Table name
TABLENM	SITETREE	1	Table name
TABLENM	BOUNDARY	1	Table name
TABLENM	EUS	1	Table name
TABLENM	PPSA	1	Table name
TABLENM	SUBP_COND	1	Table name
TOTAGE (PNWRS,RMRS)	TREE	77	Total age of tree
TOTAGE (RMRS)	SEEDLING	17	Total age of seedling
TPA	TREE	102	Trees per acre, unadjusted
TPA	SEEDLING	25	Trees per acre, unadjusted
TPACURR	TREE	40	Current trees per acre, adjusted at the stratum level
TPACURR	SEEDLING	18	Current trees per acre, adjusted at the stratum level
TPACURR_SAMP	TREE	115	Current trees per acre, adjusted at the plot level
TPAGROW	TREE	43	Growth trees per acre, adjusted at the stratum level
TPAGROW_SAMP	TREE	116	Mortality trees per acre per year, adjusted at the plot level
TPAMORT	TREE	41	Mortality trees per acre per year, adjusted at the stratum level
TPAMORT_SAMP	TREE	117	Removals trees per acre per year, adjusted at the plot level
TPAREMV	TREE	42	Removals trees per acre per year, adjusted at the stratum level
TPAREMV_SAMP	TREE	118	Growth trees per acre, adjusted at the plot level
TRANSCD	TREE	71	Foliage transparency
TREE	TREE	9	Tree number
TREE	SITETREE	9	Tree number
TREECLCD	TREE	25	Tree class
TREECOUNT (NCRS,PNWRS,RMRS)	SEEDLING	16	Tree count (actual)
TREEGRCD (NCRS,NERS,SRS)	TREE	28	Tree grade
TREEHISTCD (NCRS,NERS,SRS)	TREE	74	Tree history
TRTCD1	COND	40	Stand treatment 1
TRTCD2	COND	42	Stand treatment 2
TRTCD3	COND	44	Stand treatment 3
TRTOPCD	COND	33	Treatment opportunity class
TRTYR1	COND	41	Treatment year 1
TRTYR2	COND	43	Treatment year 2

Column name	Table name	Location in table	Description
TRTYR3	COND	45	Treatment year 3
UNCRCD	TREE	65	Uncompacted live crown ratio
UNITCD	COUNTY	3	Survey unit number
UNITCD	PLOT	5	Survey unit number
UNITCD	SUBPLOT	5	Survey unit number
UNITCD	COND	5	Survey unit number
UNITCD	TREE	5	Survey unit number
UNITCD	SEEDLING	5	Survey unit number
UNITCD	SITETREE	5	Survey unit number
UNITCD	BOUNDARY	5	Survey unit number
UNITCD	5	Survey unit number	
UNITCD	PPSA	5	Survey unit number
UTILCD	SUBP_COND	37	Utilization class
VALIDCD	TREE	70	Validity code for site index calculation
VOL_LOC_GRP	SITETREE	49	Gross board-foot volume in the saw-log portion
VOLBFGRS	COND	48	Net board-foot volume in the saw-log portion
VOLBFNET	TREE	45	Gross cubic-foot volume
VOLCFGRS	TREE	44	Net cubic-foot volume
VOLCFNET	TREE	50	Sound cubic-foot volume
VOLCFSND	TREE	47	Gross cubic-foot volume in the saw-log portion
VOLCSGRS	TREE	26	Net cubic-foot volume in the saw-log portion
VOLCSNET	TREE	21	Water on plot
WATERCD	TREE	13	Snow/water depth
WATERDEP	PLOT	39	Woodland tree species stem count
WDLDSTEM	SUBPLOT		

Appendix B - FIADB Standard Presentation Tables

This appendix contains examples of the standard presentation tables that are included in all FIA inventory reports. Tables in reports may sometimes differ slightly from the basic format because of regional differences and local needs and problems. Classes that do not contain any data may not be reported. For example, in Iowa, there is no National Forest land, so a column headed "National Forest" will not appear in any table by ownership class. In some regions, more detailed data may be important, so a heading may be broken down into subheadings. For example, in the South, it is important to distinguish between natural and planted pines. The pine species and forest type headings for standard presentation tables in many Southern States will be broken down further to meet the need for more specific data. In some instances, data may not always be available at the county level, and county data may need to be combined under broader headings. Variations should not be drastic enough to compromise the standardization of the tables.

Table 1. -- Area of land by county and major land-use class, (reporting area), (date)
(In thousand acres)

County	Total	Forest land				Other land
	land area	Total forest	Timberland	Reserved forest land	Other forest land	
County 1	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
County 2	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
County 3	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x, xxx.x
.	
.	
Total	x,xxx.x	x,xxx.x	X,xxx.x	X,XXX.X	x,xxx.x	x,xxX.x

Table 2. -- Area of timberland by county and ownership class, (reporting area), (date)
(In thousand acres)

County	All ownerships	National forest	Other federal	State	County and municipal	Indian	Forest industry	Individual	Corporate
County 1	X,XxX.X	x, Xxx.x	x, XxX. ${ }^{\text {d }}$	x,xxx.x	X, XxX. ${ }^{\text {d }}$	X,XXX.X	x, Xxx.x	x,xxx.x	x,xxx.x
County 2	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxX. ${ }^{\text {x }}$	x,xxx.x	x,xxx. ${ }^{\text {x }}$	x,xxx.x
County 3	x, XxX.x	x,XxX.x	x,XXX. x	x,XXX. ${ }^{\text {x }}$	x,XXX. ${ }^{\text {x }}$	x,XXX. ${ }^{\text {x }}$	x,xxx.x	X,XXX. ${ }^{\text {x }}$	x,XXX. ${ }^{\text {x }}$
.	.	-	
.	
.	
Total	x, Xxx.x	x, Xxx.x	x,xxx.x	x,xxx.x	x, XXX. X	x, XXX. X	x, XXX. X	x, Xxx.x	x,xxx.x

Table 3. -- Area of timberland by county and forest type group, (reporting area), (date) (In thousand acres)
Forest type group

County	Forest type group							
	Total	White-redjack pine	Spruce-fir	Oakhickory	Elm-ashcottonwood	Maple-beechbirch	Aspenbirch	Nonstocked
County 1	X,XXX.X	x, XXX. x	X,XXX. X	X,XXX. X	X,XXX.X	X,XXX.X	X,XXX. X	X,XXX. ${ }^{\text {d }}$
County 2	x,XXX.X	x, Xxx.x	x, Xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,XXX. ${ }^{\text {x }}$	x,xxx.x
County 3	X,XxX.X	X,XXX. ${ }^{\text {x }}$	X,XXX. X	X,XXX. X	X,XXX.X	x,XXX.X	X,XXX.X	X,XXX. ${ }^{\text {x }}$
.		
.			
.	.	.	.					
Total	X,XXX.X	X,XXX. X	X,XXX.X	X,XXX.X	X,XXX.X	x,xxx.x	X,XXX.X	x,xxx.x

Table 4. -- Area of timberland by county and stand-size class, (reporting area), (date) (In thousand acres)

County	Stand-size class				
	stands	Sawtimber	Poletimber	Saplingseedling	Nonstocked
County 1	x,xxx.x	x, XXX. X	X,XXX. X	X,XXX. X	x,xxx.x
County 2	x,xxx.x	x,XXX. X	X,XXX. X	X,XXX. X	x, xxx.x
County 3	X,XXX.X	X,XXX.X	X,XXX. X	X,XXX.X	X,XXX.X
.
.
.
Total	X,XXX.X	X,XXX. ${ }^{\text {x }}$	X,XXX.X	X,XXX.X	x,xxx.x

Table 5. -- Area of timberland by county and potential productivity class, (reporting area), (date)
(In thousand acres)

County	Potential productivity class (cubic feet of growth per acre per year)					
	All classes	165+	120-164	85-119	50-84	20-49
County 1	x,xxx.x	x,Xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
County 2	x,xxx.x	X,Xxx.x	X,XXX. X	X,XXX. X	x,xxx.x	x, $\mathrm{xxx} . \mathrm{x}$
County 3	X,XXX. X	X,XXX.X	X,XXX.X	X,XXX. X	X,XXX.X	x,XXX.X
.	-	.
.
.
Total	X,XXX. X	X,XXX.X	X, XXX.X	X,XXX.X	X,XXX.X	x, XxX.x

Table 6. -- Area of timberland by county and stocking class of growing-stock trees, (reporting area), (date)
(In thousand acres)

County	Stocking class of growing-stock trees					
	$\begin{array}{r} \text { All } \\ \text { classes } \end{array}$	Nonstocked	Poorly stocked	Moderately stocked	Fully stocked	Overstocked
County 1	x, XXX. x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
County 2	x, XxX. ${ }^{\text {x }}$	x,xxx.x	x,xxx.x	x,xxx.x	x,XXX. X	x,xxx.x
County 3	X,XXX.X	X,XXX. X	X,XXX.X	X,XXX.X	X,XXX.X	X,XXX.X
.
.
.
Total	x,XXX. X	x, XXX. X	X,XXX. X	x, XXX. ${ }^{\text {x }}$	X,XXX.X	x, Xxx.x

Table 7. -- Area of timberland by forest type group and ownership class, (reporting area), (date)
(In thousand acres)

Forest type group	Ownership class								
	All ownerships	National forest	Other federal	State	County and municipal	Indian	Forest industry	dividual	Corporate
White-red-jack pine	x,xxx.x								
Spruce-fir	x,xxx.x	x,xxx.x	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Oak-hickory	x,xxx.x	x,xxx.x	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Elm-ash-cottonwood	x,xxx.x	x,xxx.x	$x, x x x . x$	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Maple-beech-birch	x,xxx.x	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	$x, x x x . x$	x,xxx.x	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Aspen-birch	x,xxx.x	x,xxx.x	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Nonstocked	x,xxx.x	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	$x, x x x . x$	$x, x x x . x$	$\mathrm{x}, \mathrm{xxx} . \mathrm{x}$	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Total	x,xxx	x,xxx	x,xxx.x	X,xXX. ${ }^{\text {x }}$	x,xxx	x,xxx.x	$x, x x$	xx	X,xx

Table 8. -- Area of timberland by ownership class and stocking class of growing-stock trees, (reporting area), (date)
(In thousand acres)

Ownership class	$\begin{gathered} \text { All } \\ \text { classes } \\ \hline \end{gathered}$	Stocking class of growing-stock trees				
		Nonstocked	Poorly stocked	Moderately stocked	Fully stocked	Overstocked
National forest	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Other federal	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
State	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
County and municipal	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Indian	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Forest industry	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Corporate	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Individual	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Total	x,xxx.x	X,XXX.X	x,XXX.X	X,xXX.X	x,xxX. x	x,xxx.x
All ownerships	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x

Table 9. -- Area of timberland by forest type group and stand-size class, (reporting area), (date)
(In thousand acres)

Forest type group	All stands	Stand-size class			
		Sawtimber	Poletimber	Seedlingsapling	Nonstocked
White-red-jack pine	x,xxx.x	x,xxx.x	x,xxx.x	X,XXX.X	x,xXX. ${ }^{\text {d }}$
Spruce-fir	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Oak-hickory	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Elm-ash-cottonwood	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Maple-beech-birch	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Aspen-birch	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Nonstocked	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x
Total	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x	x,xxx.x

Table 10. -- Number of all live trees on timberland by species group and diameter class, (reporting area), (date)
(In thousand trees)
Dimaeter class (inches)

Dimaeter class (inches)													
Species group	All classes	$\begin{gathered} 1.0- \\ 2.9 \end{gathered}$	$\begin{gathered} 3.0- \\ 4.9 \end{gathered}$	$\begin{gathered} 5.0- \\ 6.9 \end{gathered}$	$\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$	$\begin{aligned} & 9.0- \\ & 10.9 \end{aligned}$	$\begin{gathered} 11.0- \\ 12.9 \end{gathered}$	$\begin{gathered} 13.0- \\ 14.9 \end{gathered}$	$\begin{gathered} 15.0- \\ 16.9 \end{gathered}$	$\begin{gathered} 17.0- \\ 18.9 \end{gathered}$	$\begin{gathered} 19.0- \\ 20.9 \end{gathered}$	$\begin{gathered} 21.0- \\ 28.9 \end{gathered}$	29.0+
Longleaf and slash pine	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx								
Loblolly and shortleaf pine	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$
Other yellow pines	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx, x xx	xxx, xxx	xxx, x xx	xxx, xxx	xxx, xxx	xxx, x xx	xxx, xxx	xxx,xxx
	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx, x xx	xxx,xxx	xxx,xxx
	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, x xx	xxx, xxx	xxx, xxx	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$	xxx, x xx	xxx,xxx	xxx, xxx
	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	$x x x, x x x$
Total	xxx, xxx	xxx, xxx	XXX,	XXX	xxx,xxx	Xxx,xXX	X,XXX	xxx,xxx	xxx,xxx	xXx,XXX			

Table 11. -- Number of growing-stock trees on timberland by species group and diameter class, (reporting area), (date)
(In thousand trees)
Diameter class (inches)

Diameter class (inches)													
Species group	All classes	$\begin{gathered} 1.0- \\ 2.9 \end{gathered}$	$\begin{gathered} 3.0- \\ 4.9 \end{gathered}$	$\begin{gathered} 5.0- \\ 6.9 \end{gathered}$	$\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$	$\begin{aligned} & 9.0- \\ & 10.9 \end{aligned}$	$\begin{aligned} & 11.0- \\ & 12.9 \end{aligned}$	$\begin{gathered} 13.0- \\ 14.9 \end{gathered}$	$\begin{gathered} 15.0- \\ 16.9 \end{gathered}$	$\begin{gathered} 17.0- \\ 18.9 \end{gathered}$	$\begin{gathered} 19.0- \\ 20.9 \end{gathered}$	$\begin{gathered} 21.0- \\ 28.9 \end{gathered}$	$29.0+$
Longleaf and slash pine	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx
Loblolly and shortleaf pine	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx
Other yellow pines	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, x xx	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	xxx, x xx	xxx, xxx
	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, x xx	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx, x xx	$x \mathrm{xx}, \mathrm{xxx}$
	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, x xx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx
	xxx, xxx	xxx, x xx	xxx, xxx	xxx, xxx	xxx, x xx	xxx, xxx	xxx, x xx	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx	$\mathrm{xxx}, \mathrm{xxx}$	xxx, x xx	$x \mathrm{xx}, \mathrm{xxx}$
Total	xxx, xxx	xx,xxx	xx,xxx	x,xx	,xx	xx,XXX	x,xxx	x, X	x,x	x,x	xxx,xxx	xx,xxx	,x,x

Table 12. -- Merchantable volume of growing-stock trees on timberland by species group and diameter class, (reporting area), (date)
(In thousand cubic feet)
Diameter class (inches)

Diameter class (inches)											
Species group	All classes	$\begin{gathered} 5.0- \\ 6.9 \end{gathered}$	$\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$	$\begin{aligned} & 9.0- \\ & 10.9 \end{aligned}$	$\begin{gathered} 11.0- \\ 12.9 \end{gathered}$	$\begin{gathered} 13.0- \\ 14.9 \end{gathered}$	$\begin{gathered} 15.0- \\ 16.9 \end{gathered}$	$\begin{gathered} 17.0- \\ 18.9 \end{gathered}$	$\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$	$\begin{gathered} 21.0 \\ 28.9 \\ \hline \end{gathered}$	29.0+
Longleaf and slash pine	XXX, XXX										
Loblolly and shortleaf pine	xxx,xxx	xxx,xxx	xxx, x xx	xxx,xxx	xxx, x xx	xxx, x xx	$x x x, x x x$	$x x x, x x x$	xxx,xxx	$x x x, x x x$	$x x x, x x x$
Other yellow pines	x x x, xxx	xxx, xxx									
	x xx , Xxx	xxx, x xx	$x x x, x x x$	xxx, xxx	$x x x, x x x$	xxx, xxx	$x x x, x x x$	$x x x, x x x$	xxx, xxx	xxx,xxx	$x x x, x x x$
.	XXX, XXX	xxx,xxx	XXX, XXX	XXX, XXX	$x x x, x x x$	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x x x, x x x$	xxx, xxx	xxx, x xx	xxx, xxx
.	xxx,xxx	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x x x, x x x$	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x x x, x x x$
Total	XXX,XXX	XXX, XXX	XXX, XXX	XXX,XXX	XXX,XXX						

Table 13. -- Merchantable volume in the saw-log portion of growing-stock trees on timberland by species group and diameter class, (reporting area), (date)
(In thousand cubic feet)
Diameter class (inches)

Species group	All classes	$\begin{aligned} & 9.0- \\ & 10.9 \end{aligned}$	$\begin{gathered} 11.0- \\ 12.9 \end{gathered}$	$\begin{gathered} 13.0- \\ 14.9 \end{gathered}$	$\begin{gathered} 15.0- \\ 16.9 \end{gathered}$	$\begin{gathered} 17.0- \\ 18.9 \end{gathered}$	$\begin{gathered} 19.0- \\ 20.9 \end{gathered}$	$\begin{gathered} 21.0- \\ 28.9 \end{gathered}$	29.0+
Longleaf and slash pine	Xxx, xxx	xxX,xxx	xxx,xxx	XXX,XXX					
Loblolly and shortleaf pine	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xxx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x x x, x x x$	$x x x, x x x$
Other yellow pines	Xxx, XXX	xxx,xxx	XXX, XXX	XXX, XXX					
.	XXX, XXX	xxx,xxx	XXX, XXX						
-	XXX, XXX	XXX, xxx	xxx,xxx	xxx, XXX	xxx, xXx	xxx,xxx	xXX,XXX	XXX, xxx	XXX,XXX
.	Xxx, xxx	xxx, xxx	xxx,xxx	x $\mathrm{xx}, \mathrm{Xxx}$	x $\mathrm{xx}, \mathrm{xxx}$	xxx, xxx	xxx,xxx	xxx, xxx	XXX,XXX
Total	xxx, xxx								

Table 14. -- Merchantable volume of sawtimber trees on timberland by species group and diameter class, (reporting area), (date)
(In thousand board feet)

Diameter class (inches)									
Species group	$\begin{gathered} \text { All } \\ \text { classes } \\ \hline \end{gathered}$	$\begin{aligned} & 9.0- \\ & 10.9 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0- \\ 12.9 \\ \hline \end{gathered}$	$\begin{gathered} 13.0- \\ 14.9 \\ \hline \end{gathered}$	$\begin{gathered} 15.0- \\ 16.9 \\ \hline \end{gathered}$	$\begin{gathered} 17.0- \\ 18.9 \\ \hline \end{gathered}$	$\begin{gathered} 19.0- \\ 20.9 \\ \hline \end{gathered}$	$\begin{aligned} & 21.0- \\ & 28.9 \\ & \hline \end{aligned}$	29.0+
Longleaf and slash pine	XXX, XXX	XXX, XXX	XxX, XXX	xxx, xxx	xxx,xxx	XxX, XXX	xXX, XXX	XXX, XXX	xxx,xxx
Loblolly and shortleaf pine	XXX, XXX	xxx, xxx	xxx, xxx	xxx, x xx	xxx,xxx	xxx, xxx	XXX, XXX	xxx, xxx	xxx, xxx
Other yellow pines	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	$x x x, x x x$	xxx,xxx	$x x x, x x x$
.	XXX, XXX	$x \mathrm{xx}, \mathrm{xxx}$	xxx, XXX	$x \mathrm{xx}, \mathrm{xxx}$	xxx, x x	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	$x x x, x x x$
.	XXX, XxX	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	XXX, xxx	xxx, x xx	$x x x, x x x$
.	x $\mathrm{xx}, \mathrm{XXX}$	xxx,xxx	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx
Total	xxx, xxx	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	XXX, XXX	XXX, XXX	XXX,XXX

Table 15. -- Merchantable volume of growing-stock trees and sawtimber trees on timberland by county and major species group, (reporting area), (date)

County	Growing stock (thousand cubic feet)					Sawtimber (thousand board feet)				
	Major species group					Major species group				
	$\begin{array}{r} \text { All } \\ \text { species } \end{array}$	Pine	Other softwoods	Soft hardwoods	Hard hardwoods	All species	Pine	Other softwoods	Soft hardwoods	Hard hardwoods
County 1	xxx, xxx	$x x x, x x x$	$x \mathrm{xx}, \mathrm{XxX}$	$x \mathrm{xx}, \mathrm{XxX}$	x $x \times, \mathrm{xxx}$	xxx, xxx	$x x x, x x x$	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$
County 2	xxx, xxx	$x x x, x x x$	x x x, xxx	x x x, XxX	xxx, xxx	xxx, xxx	$x x x, x x x$	xxx, xxx	xxx,xxx	xxx, xxx
County 3	xxx,xxx	xxx,xxx	XXX, XXX	XXX, Xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx
.	-	-	-	-	.	.	-	.	.	.
-	.	-	.	.	-	.	-	.	.	.
.
Total	xXx, xxx	XXX,XXX	XXX, XXX	XXX, XXX	XXX, XXX	xXx, Xxx	XXX,XXX	XXX, XXX	xXx, xxx	XXX, XXX

Table 16. -- Merchantable volume of all live and dead trees on timberland by class of timber and major species group, (reporting area), (date)
(In thousand cubic feet)

Class of timber	All species	Major species group			
		Pine	Other softwoods	Soft hardwoods	Hard hardwoods
Live trees					
Growing-stock trees					
Sawtimber					
Saw-log portion	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Upper stem portion	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Total	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Poletimber	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
All growing-stock trees	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Cull trees					
Rough trees					
Sawtimber size	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Poletimber size	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Total	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Rotten trees					
Sawtimber size	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Poletimber size	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Total	xxx, xxx	xxx,xxx	$x \mathrm{xx}, \mathrm{xxx}$	xxx,xxx	xxx,xxx
All cull trees	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Salvable dead trees					
Sawtimber size	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Poletimber size	xxx, xxx	xxx,xxx	$x x x, x x x$	xxx,xxx	xxx,xxx
All salvable dead trees	xxx, xxx	xxx,xxx	$x x x, x x x$	xxx,xxx	xxx,xxx
All classes	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx

Table 17. - Merchantable volume of all live trees and growing-stock trees on timberland by ownership class and major species group, (reporting area), (date)
(In thousand cubic feet)

Ownership class	All live trees					Growing-stock trees				
			Major species group			All species	Major species group			
	All species	Pine	Other softwoods	Soft hardwoods	Hard hardwoods		Pine	Other softwoods	Soft hardwoods	Hard hardwoods
National forest	xxx,xxx	$x x x, x x x$	$x x x, x x x$	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	XXX, XXX	XXX, XXX	xxx,xxx
Other federal	xxx,xxx	XXX, XXX	XXX, XXX	x x x, xxx	xxx,xxx	XXX, XXX				
State	x $x \times, x \times x$	x $x \times, x \times x$	x $x \times$, xxx	x $x \times$, $\mathrm{xx} \times$	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxX, XXX	XXX, xxx
County and municipal	xxx, xxx	XXX,XXX	x x x, xxx	XXX, XXX						
Indian	XXX, XXX	XXX, XXX	x xx , xxx	x x x, xxx	xxx, xxx	xxx, xxx	$x x x, x x x$	x $x x, x \times x$	xxx, xxx	Xxx, Xxx
Forest industry	x $x \times, x \times x$	xxx, xxx	x $x \times, \mathrm{xxx}$	x $x \times, \mathrm{xxx}$	xxx, xxx	xxx,xxx	x $x \times, \mathrm{xxx}$	x $x \times, \mathrm{xxx}$	xxx, xxx	XXX, xxx
Corporate	XXX, XXX									
Individual	XXX, XXX	xxx,xxx	XXX, XXX							
Total	XXX,XXX	XXX, XXX	XXX, XXX	XXX, XXX	XXX,XXX	XXX,XXX	XXX, XXX	XXX, XXX	XXX,XXX	XXX,XXX

Table 18. -- Merchantable volume of growing-stock trees on timberland by forest type group and major species group, (reporting area), (date)
(In thousand cubic feet)

Forest type group	All species	Major species group			
		Pine	Other softwoods	Soft hardwoods	Hard hardwoods
White-red-jack pine	xxx, xxx	xxx, x xx	xxx, xxx	xxx,xxx	xxx, xxx
Spruce-fir	x xx , $\mathrm{x} \times \mathrm{x}$	xxx, xxx	x x x, xxx	xxx, xxx	x x x, xxx
Oak-hickory	xxx, xxx				
Elm-ash-cottonwood	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx	xxx,xxx	xxx, xxx
Maple-beech-birch	Xxx, xxx	$x x x, x x x$	x $x \times$, xxx	Xxx, xxx	XXX, XxX
Aspen-birch	x $x \times$, xxx	xxx, x xx	x $x \times$, xxx	xxx, xxx	xxx,xxx
Nonstocked	$x \mathrm{xx}, \mathrm{xxx}$	$x x x, x x x$	x $x \times, x \times x$	Xxx, Xxx	XXX, XXX
Total	XXX, XXX	xxx,xxx	XXX, XXX	XXX, XXX	XXX, XXX

> Table 19. - Net annual merchantable growth of growing-stock trees and sawtimber trees on timberland by county and major species group, (reporting area), (date)

County	Growing stock (in thousand cubic feet)					Sawtimber (in thousand board feet)				
	All species	Species group				All species	Species group			
		Pine	Other softwoods	Soft hardwoods	Hard hardwoods		Pine	Other softwoods	Soft hardwoods	Hard hardwoods
County 1	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx
County 2	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
County 3	xxx, xxx	$x x x, x x x$	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx
	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
.	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	$x \mathrm{x} \times$,xxx	xxx,xxx	xxx, xxx	xxx,xxx
Total	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx

Table 20. - Annual merchantable removals of growing-stock trees and sawtimber trees on timberland by county and major species group, (reporting area), (date)

County	Growing stock (thousand cubic feet)					Sawtimber (thousand board feet)				
	Major species group					Major species group				
	All species	Pine	Other softwoods	Soft hardwoods	Hard hardwoods	All species	Pine	Other softwoods	Soft hardwoods	Hard hardwoods
County 1	xxx, xxx	xxx,xxx	xxx, xxx	$x x x, x x x$	xxx, xxx	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	$x x x, x x x$
County 2	xxx, xxx	$x x x, x x x$	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	$x x x, x x x$	xxx, xxx	xxx,xxx	xxx,xxx
County 3	xxx,xxx	$x x x, x x x$	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	$x x x, x x x$	xxx, xxx	xxx,xxx	xxx,xxx
	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx	$x x x, x x x$	xxx,xxx	xxx,xxx	xxx,xxx
.	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	$x x x, x x x$	xxx,xxx	xxx,xxx	xxx,xxx
	xxx, xxx	$\underline{x x}, \mathrm{xxx}$	xxx, xxx	xxx, xxx	xxx, xxx	xxx, xxx	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx
Total	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$	xxx,xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx

Table 21. - Net annual merchantable growth and annual merchantable removals of growing-stock trees and sawtimber trees on timberland by species group, (reporting area), (date)

Species group	Growing stock (thousand cubic feet)		Sawtimber (thousand board feet)	
	Average net annual growth	Average annual removals	Average net annual growth	Average annual removals
Longleaf and slash pine	xxx, xxx	xxx,xxx	XXX, XXX	xxx,xxx
Loblolly and shortleaf pine	xxx,xxx	$x x x, x x x$	$x x x, x x x$	xxx,xxx
Other yellow pines	xxx, xxx	xxx, xxx	$x x x, x x x$	xxx, xxx
.	Xxx, XXx	XXX, XXX	x $x \times$, x xx	Xxx, ${ }^{\text {xxx }}$
.	xxx, xxx	xxx, xxx	xxx, xxx	xxx, ${ }^{\text {xxx }}$
.	xxx,xxx	xxx,xxx	xxx,xxx	Xxx,xxx
Total	XXX, XXX	XXX, XXX	xxx, xxx	XXX, XXX

Table 22. -- Annual merchantable mortality of growing-stock trees and sawtimber trees on timberland by species group, (reporting area), (date)

	Growing stock (Thousand cubic feet)	Sawtimber Species group	Shousand board feet)
Longleaf and slash pine	$x x, x x x$		

Table 23. -- Net annual merchantable growth and annual merchantable removals of growing-stock trees on timberland
by ownership class and major species group,
(reporting area), (date)

Ownership class	Growth				
	Major species group				
	$\begin{array}{r} \text { All } \\ \text { species } \\ \hline \end{array}$	Pine	Other softwoods	Soft hardwoods	Hard hardwoods
National forest	XXX,XXX	xXX, xxx	XXX, XXX	XXX, XXX	XXX, XXX
Other federal	Xxx, XXX	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx
State	XXX, XXX				
County and municipal	XXX, XXX				
Indian	XXX,XXX	XXX, XXX	xxx, xxx	Xxx, xxx	Xxx, XxX
Forest industry	XXX,XXX	XXX, XXX	XXX, XXX	XXX, XXX	XXX, XXX
Individual	XXX, XXX				
Corporate	xxx, xxx	xxx, x xx	Xxx, Xxx	xxx,xxx	xxx, xxx
All ownerships	XXX,XXX	XXX, XXX	XXX, XXX	XXX, XXX	XXX, XXX

Table 24. -- Net annual merchantable growth and annual merchantable removals of sawtimber trees on timberland
by ownership class and major species group,
(reporting area), (date)

Ownership class	Growth				
	$\begin{array}{r} \text { All } \\ \text { species } \end{array}$	Major species group			
		Pine	Other softwoods	Soft hardwoods	Hard hardwoods
National forest	x $\mathrm{xx} \times \mathrm{xxx}$	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx
Other federal	xxx, xxx	$x x x, x x x$	$x x x, x x x$	xxx, xxx	xxx,xxx
State	Xxx, XXx	$x x x, x x x$	xxx, xxx	x $x \times$, xxx	Xxx, xxx
County and municipal	Xxx, xxx	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx
Indian	XxX, XXx	$x x x, x x x$	xxx, xxx	x $x \times$, xxx	Xxx, xxx
Forest industry	Xxx, XXx	$x x x, x x x$	xxx, xxx	x $x \times$, xxx	xxx, xxx
Individual	XXX, XXX	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx
Corporate	Xxx, XXx	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx
All ownerships	xxx, xxx	xxx, xxx	xxx, xxx	xxx,xxx	XXX, XXX

Removals				
Major species group				
species	Pine	Other softwoods	Soft hardwoods	Hard hardwoods
xxx, Xxx	xxx, XXX	x xx , XXX	Xxx, XXX	XXX, XXX
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	x x x, xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	x x x, xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	x x x, xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	x x x, xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	x x x, xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	x x x, xxx
xxx, xxx	xxx, xxx	x $\mathrm{xx}, \mathrm{xxx}$	x $\mathrm{xx}, \mathrm{xxx}$	x $\mathrm{xx}, \mathrm{xxx}$
XXX,XXX	XXX, XXX	XXX, XXX	XXX, XXX	XXX, XXX

Removals				
	Major species group			
All		Other	Soft	Hard
species	Pine	softwoods	hardwoods	hardwoods
XXX,XXX	XXX, XXX	xxx, Xxx	x XX , XXX	XXX, XXX
xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx
XXX, XXX	xxx, xxx	xxx, xxx	x $x \times$, XXX	xxx, Xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	xxx, xxx
xxx,xxx	xxx, xxx	xxx, xxx	xxx, xxx	xxx, xxx
xxx,xxx	xxx, xxx	xxx, x xx	xxx, xxx	xxx, xxx
xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx, xxx
xxx,xxx	xxx, xxx	xxx, xxx	Xxx, xxx	x $\mathrm{xx} \times \mathrm{xxx}$
xxx,xxx	xxx, xxx	xxx, xxx	xxx,xxx	xxx,xxx

Table 25. -- Total gross biomass ovendry weight for live trees on timberland by species group and diameter class, (reporting area), (date) (In thousand pounds)

Species group	All classes	$\begin{gathered} 1.0- \\ 2.9 \\ \hline \end{gathered}$	$\begin{gathered} 3.0- \\ 4.9 \\ \hline \end{gathered}$	$\begin{gathered} 5.0- \\ 6.9 \\ \hline \end{gathered}$	$\begin{aligned} & 7.0- \\ & 8.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0- \\ & 10.9 \end{aligned}$	$\begin{gathered} 11.0- \\ 12.9 \end{gathered}$	13.0 - 14.9	$\begin{gathered} 15.0- \\ 16.9 \end{gathered}$	$\begin{gathered} 17.0- \\ 18.9 \end{gathered}$	$\begin{gathered} 19.0- \\ 20.9 \end{gathered}$	$\begin{gathered} 21.0 \\ 28.9 \\ \hline \end{gathered}$	29.0+
Longleaf and slash pine	xxx,xxx	xxx, xxx	xxx, xxx	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx	xxx,xxx	xxx,xxx	$x \mathrm{xx}, \mathrm{xxx}$	$x \mathrm{xx}, \mathrm{xxx}$	xxx, xxx	xxx,xxx	xxx,xxx	xxx,xxx
Loblolly and shortleaf pine	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxX, XXX	xxx,xxx	xxx,xxx	xxx, xxx	xxx,xxx	xxx,xxx	$x \mathrm{xx}, \mathrm{xxx}$
Other yellow pines	XXX, xxx	xxx, xxx	xxx, xxx	XXX,XXX	XXX, XXX	XXX,XXX	XXX,XXX						
.	x $x \times, \mathrm{xxx}$	$x \times x, x x x$	xxx, xxx	$x \times x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx	xxx, x xx	$x x x, x x x$	Xxx, xxx	xxx, x xx	xxx, xxx	$x x x, x \times x$
.	xxx, xxx	xxx, xxx	xxx, xxx	$x x x, x x x$	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx	$x x x, x x x$	xxx, xxx	xxx, xxx	xxx, xxx	xxx, xxx
	xxx, xxx	xxx, xxx	xxx,xxx	xxx, x xx	xxx,xxx	Xxx,xxx	xxx,xxx	xxx, xxx	xxx, x xx	xxx,xxx	xxx,xxx	xxx,xxx	xxx,xxx
Total	xxx, xxx	xxx,xxx	xxx,xxx	xxx, Xxx	xxx,xxx	xxx,xxx	xxx, xxx						

Appendix C - State, Survey Unit, and County Codes

01	Alabama	009	Blount
01	Southwest-South	015	Calhoun
003	Baldwin	019	Cherokee
039	Covington	027	Clay
053	Escambia	029	Cleburne
097	Mobile	037	Coosa
129	Washington	043	Cullman
		055	Etowah
02	Southwest-North	073	Jefferson
023	Choctaw	111	Randolph
025	Clarke	115	St. Clair
035	Conecuh	117	Shelby
091	Marengo	121	Talladega
099	Monroe	127	Walker
119	Sumter	133	Winston
131	Wilcox		
		06	North
03	Southeast	033	Colbert
001	Autauga	049	DeKalb
005	Barbour	059	Franklin
011	Bullock	071	Jackson
013	Butler	077	Lauderdale
017	Chambers	079	Lawrence
021	Chilton	083	Limestone
031	Coffee	089	Madison
041	Crenshaw	095	Marshall
045	Dale	103	Morgan
047	Dallas		
051	Elmore	02	Alaska
061	Geneva	01	Alaska
067	Henry	013	Aleutians East Borough
069	Houston	016	Aleutians West Census Area
081	Lee	020	Anchorage Borough
085	Lowndes	050	Bethel Census Area
087	Macon	060	Bristol Bay Borough
101	Montgomery	070	Dillingham Census Area
109	Pike	090	Fairbanks North Star Borough
113	Russell	100	Haines Borough
123	Tallapoosa	110	Juneau Borough
		122	Kenai Peninsula Borough
04	West Central	130	Ketchikan Gateway Borough
007	Bibb	150	Kodiak Island Borough
057	Fayette	164	Lake and Peninsula Borough
063	Greene	170	Matanuska-Susitna Borough
065	Hale	180	Nome Census Area
075	Lamar	185	North Slope Borough
093	Marion	188	Northwest Arctic Borough
105	Perry	201	Prince of Wales-Outer
107	Pickens		Ketchikan Census Area
125	Tuscaloosa	220	Sitka Borough
		231	Skagway-Yakutat-Angoon
05	North Central		Census Area

240	Southeast Fairbanks Census	013	Calhoun
	Area	019	Clark
261	Valdez-Cordova Census Area	025	Cleveland
270	Wade Hampton Census Area	027	Columbia
280	Wrangell-Petersburg Census	039	Dallas
	Area	043	Drew
290	Yukon-Koyukuk Census Area	053	Grant
		057	Hempstead
04	Arizona	059	Hot Spring
01	Southern	061	Howard
003	Cochise	073	Lafayette
009	Graham	081	Little River
011	Greenlee	091	Miller
012	La Paz	099	Nevada
013	Maricopa	103	Ouachita
019	Pima	109	Pike
021	Pinal	133	Sevier
023	Santa Cruz	139	Union
027	Yuma		
		04	Ouachita
02	Northern	051	Garland
001	Apache	083	Logan
005	Coconino	097	Montgomery
007	Gila	105	Perry
015	Mohave	113	Polk
017	Navajo	119	Pulaski
025	Yavapai	125	Saline
		127	Scott
05	Arkansas	131	Sebastian
01	South Delta	149	Yell
001	Arkansas		
017	Chicot	05	Ozark
041	Desha	005	Baxter
069	Jefferson	007	Benton
077	Lee	009	Boone
079	Lincoln	015	Carroll
085	Lonoke	023	Cleburne
095	Monroe	029	Conway
107	Phillips	033	Crawford
117	Prairie	045	Faulkner
		047	Franklin
02	North Delta	049	Fulton
021	Clay	063	Independence
031	Craighead	065	Izard
035	Crittenden	071	Johnson
037	Cross	087	Madison
055	Greene	089	Marion
067	Jackson	101	Newton
075	Lawrence	115	Pope
093	Mississippi	121	Randolph
111	Poinsett	129	Searcy
123	St. Francis	135	Sharp
147	Woodruff	137	Stone
		141	Van Buren
03	Southwest	143	Washington
003	Ashley	145	White
011	Bradley		

06	California	077	San Joaquin
01	North Coast	099	Stanislaus
015	Del Norte	107	Tulare
023	Humboldt	109	Tuolumne
045	Mendocino		
097	Sonoma	06	Southern
		025	Imperial
02	North Interior	027	Inyo
035	Lassen	037	Los Angeles
049	Modoc	059	Orange
089	Shasta	065	Riverside
093	Siskiyou	071	San Bernardino
105	Trinity	073	San Diego
03	Sacramento	08	Colorado
007	Butte	01	Northern Front Range
011	Colusa	013	Boulder
017	El Dorado	019	Clear Creek
021	Glenn	035	Douglas
033	Lake	039	Elbert
055	Napa	041	El Paso
057	Nevada	047	Gilpin
061	Placer	059	Jefferson
063	Plumas	065	Lake
067	Sacramento	069	Larimer
091	Sierra	093	Park
101	Sutter	119	Teller
103	Tehama		
113	Yolo	02	Southern Front Range
115	Yuba	015	Chaffee
		023	Costilla
04	Central Coast	027	Custer
001	Alameda	043	Fremont
013	Contra Costa	055	Huerfano
041	Marin	071	Las Animas
053	Monterey	101	Pueblo
069	San Benito		
075	San Francisco	03	West Central
079	San Luis Obispo	003	Alamosa
081	San Mateo	021	Conejos
083	Santa Barbara	037	Eagle
085	Santa Clara	049	Grand
087	Santa Cruz	051	Gunnison
095	Solano	053	Hinsdale
111	Ventura	057	Jackson
		079	Mineral
05	San Joaquin	097	Pitkin
003	Alpine	105	Rio Grande
005	Amador	107	Routt
009	Calaveras	109	Saguache
019	Fresno	111	San Juan
029	Kern	117	Summit
031	Kings		
039	Madera	04	Western
043	Mariposa	007	Archuleta
047	Merced	029	Delta
051	Mono	033	Dolores

045	Garfield	029	Dixie
067	La Plata	031	Duval
077	Mesa	035	Flagler
081	Moffat	041	Gilchrist
083	Montezuma	047	Hamilton
085	Montrose	067	Lafayette
091	Ouray	075	Levy
103	Rio Blanco	079	Madison
113	San Miguel	083	Marion
		089	Nassau
05	Eastern	107	Putnam
001	Adams	109	St. Johns
005	Arapahoe	121	Suwannee
009	Baca	123	Taylor
011	Bent	125	Union
017	Cheyenne	127	Volusia
025	Crowley		
031	Denver	02	Northwestern
061	Kiowa	005	Bay
063	Kit Carson	013	Calhoun
073	Lincoln	033	Escambia
075	Logan	037	Franklin
087	Morgan	039	Gadsden
089	Otero	045	Gulf
095	Phillips	059	Holmes
099	Prowers	063	Jackson
115	Sedgwick	065	Jefferson
121	Washington	073	Leon
123	Weld	077	Liberty
125	Yuma	091	Okaloosa
		113	Santa Rosa
09	Connecticut	129	Wakulla
01	State	131	Walton
001	Fairfield	133	Washington
003	Hartford		
005	Litchfield	03	Central
007	Middlesex	009	Brevard
009	New Haven	017	Citrus
011	New London	027	DeSoto
013	Tolland	049	Hardee
015	Windham	053	Hernando
		055	Highlands
10	Delaware	057	Hillsborough
01	State	061	Indian River
001	Kent	069	Lake
003	New Castle	081	Manatee
005	Sussex	093	Okeechobee
		095	Orange
11	District of Columbia	097	Osceola
		101	Pasco
12	Florida	103	Pinellas
01	Northeastern	105	Polk
001	Alachua	111	St. Lucie
003	Baker	115	Sarasota
007	Bradford	117	Seminole
019	Clay	119	Sumter
023	Columbia		

04	Southern
011	Broward
015	Charlotte
021	Collier
025	Dade
043	Glades
051	Hendry
071	Lee
085	Martin
087	Monroe
099	Palm Beach
13	Georgia
01	Southeastern
001	Appling
003	Atkinson
005	Bacon
025	Brantley
029	Bryan
031	Bulloch
039	Camden
043	Candler
049	Charlton
051	Chatham
065	Clinch
069	Coffee
091	Dodge
101	Echols
103	Effingham
107	Emanuel
109	Evans
127	Glynn
161	Jeff Davis
165	Jenkins
167	Johnson
175	Laurens
179	Liberty
183	Long
191	McIntosh
209	Montgomery
229	Pierce
251	Screven
267	Tattnall
271	Telfair
279	Toombs
283	Treutlen
299	Ware
305	Wayne
309	Wheeler
02	Southwestern
007	Baker
017	Ben Hill
019	Berrien
027	Brooks
071	Colquitt
075	Cook

081	Crisp
087	Decatur
093	Dooly
099	Early
131	Grady
155	Irwin
173	Lanier
185	Lowndes
201	Miller
205	Mitchell
253	Seminole
275	Thomas
277	Tift
287	Turner
315	Wilcox
321	Worth
03	Central
009	Baldwin
021	Bibb
023	Bleckley
033	Burke
035	Butts
037	Calhoun
053	Chattahoochee
061	Clay
073	Columbia
079	Crawford
095	Dougherty
125	Glascock
133	Greene
141	Hancock
145	Harris
153	Houston
159	Jasper
163	Jefferson
169	Jones
171	Lamar
177	Lee
181	Lincoln
189	McDuffie
193	Macon
197	Marion
207	Monroe
211	Morgan
215	Muscogee
225	Peach
231	Pike
235	Pulaski
237	Putnam
239	Quitman
243	Randolph
261	Richmond
263	Schley
	Sumarter
239	
2	

265	Taliaferro	187	Lumpkin
269	Taylor	213	Murray
273	Terrell	227	Pickens
289	Twiggs	241	Rabun
293	Upson	257	Stephens
301	Warren	281	Towns
303	Washington	291	Union
307	Webster	295	Walker
317	Wilkes	311	White
319	Wilkinson	313	Whitfield
04	North Central	15	Hawaii
011	Banks	001	Hawaii
013	Barrow	003	Honolulu
045	Carroll	005	Kalawao
059	Clarke	007	Kauai
063	Clayton	009	Maui
067	Cobb		
077	Coweta	16	Idaho
089	DeKalb	01	Northern
097	Douglas	009	Benewah
105	Elbert	017	Bonner
113	Fayette	021	Boundary
117	Forsyth	035	Clearwater
119	Franklin	049	Idaho
121	Fulton	055	Kootenai
135	Gwinnett	057	Latah
139	Hall	061	Lewis
143	Haralson	069	Nez Perce
147	Hart	079	Shoshone
149	Heard		
151	Henry	02	Southeastern
157	Jackson	001	Ada
195	Madison	003	Adams
199	Meriwether	015	Boise
217	Newton	027	Canyon
219	Oconee	039	Elmore
221	Oglethorpe	045	Gem
223	Paulding	073	Owyhee
233	Polk	075	Payette
247	Rockdale	085	Valley
255	Spalding	087	Washington
285	Troup		
297	Walton	03	Southwestern
		005	Bannock
05	Northern	007	Bear Lake
015	Bartow	011	Bingham
047	Catoosa	013	Blaine
055	Chattooga	019	Bonneville
057	Cherokee	023	Butte
083	Dade	025	Camas
085	Dawson	029	Caribou
111	Fannin	031	Cassia
115	Floyd	033	Clark
123	Gilmer	037	Custer
129	Gordon	041	Franklin
137	Habersham	043	Fremont

047	Gooding	189	Washington
051	Jefferson	191	Wayne
053	Jerome		
059	Lemhi	03	Prairie
063	Lincoln	001	Adams
065	Madison	007	Boone
067	Minidoka	009	Brown
071	Oneida	011	Bureau
077	Power	015	Carroll
081	Teton	017	Cass
083	Twin Falls	019	Champaign
089	Yellowstone National Park	021	Christian
		029	Coles
17	Ilinois	031	Cook
01	Southern	037	DeKalb
003	Alexander	039	De Witt
055	Franklin	041	Douglas
059	Gallatin	043	DuPage
065	Hamilton	045	Edgar
069	Hardin	053	Ford
077	Jackson	057	Fulton
087	Johnson	063	Grundy
127	Massac	067	Hancock
145	Perry	071	Henderson
151	Pope	073	Henry
153	Pulaski	075	Iroquois
157	Randolph	085	Jo Daviess
165	Saline	089	Kane
181	Union	091	Kankakee
193	White	093	Kendall
199	Williamson	095	Knox
		097	Lake
02	Claypan	099	La Salle
005	Bond	103	Lee
013	Calhoun	105	Livingston
023	Clark	107	Logan
025	Clay	109	McDonough
027	Clinton	111	McHenry
033	Crawford	113	McLean
035	Cumberland	115	Macon
047	Edwards	123	Marshall
049	Effingham	125	Mason
051	Fayette	129	Menard
061	Greene	131	Mercer
079	Jasper	137	Morgan
081	Jefferson	139	Moultrie
083	Jersey	141	Ogle
101	Lawrence	143	Peoria
117	Macoupin	147	Piatt
119	Madison	149	Pike
121	Marion	155	Putnam
133	Monroe	161	Rock Island
135	Montgomery	167	Sangamon
159	Richland	169	Schuyler
163	St. Clair	171	Scott
173	Shelby	175	Stark
185	Wabash	177	Stephenson

179	Tazewell	003	Allen
183	Vermilion	005	Bartholomew
187	Warren	007	Benton
195	Whiteside	009	Blackford
197	Will	011	Boone
201	Winnebago	015	Carroll
203	Woodford	017	Cass
		023	Clinton
18	Indiana	031	Decatur
01	Lower Wabash	033	De Kalb
021	Clay	035	Delaware
027	Daviess	039	Elkhart
051	Gibson	045	Fountain
055	Greene	049	Fulton
083	Knox	053	Grant
101	Martin	057	Hamilton
121	Parke	059	Hancock
125	Pike	063	Hendricks
129	Posey	065	Henry
133	Putnam	067	Howard
153	Sullivan	069	Huntington
163	Vanderburgh	073	Jasper
165	Vermillion	075	Jay
167	Vigo	081	Johnson
		085	Kosciusko
02	Knobs	087	Lagrange
013	Brown	089	Lake
019	Clark	091	La Porte
025	Crawford	095	Madison
037	Dubois	097	Marion
043	Floyd	099	Marshall
061	Harrison	103	Miami
071	Jackson	107	Montgomery
093	Lawrence	111	Newton
105	Monroe	113	Noble
109	Morgan	127	Porter
117	Orange	131	Pulaski
119	Owen	135	Randolph
123	Perry	139	Rush
143	Scott	141	St. Joseph
147	Spencer	145	Shelby
173	Warrick	149	Starke
175	Washington	151	Steuben
		157	Tippecanoe
03	Upland Flats	159	Tipton
029	Dearborn	169	Wabash
041	Fayette	171	Warren
047	Franklin	177	Wayne
077	Jefferson	179	Wells
079	Jennings	181	White
115	Ohio	183	Whitley
137	Ripley		
155	Switzerland	19	Iowa
161	Union	01	Northeastern
		005	Allamakee
04	Northern	011	Benton
001	Adams	013	Black Hawk

017	Bremer	03	Southwestern
019	Buchanan	001	Adair
023	Butler	003	Adams
031	Cedar	009	Audubon
037	Chickasaw	027	Carroll
043	Clayton	029	Cass
045	Clinton	047	Crawford
055	Delaware	071	Fremont
061	Dubuque	073	Greene
065	Fayette	085	Harrison
067	Floyd	129	Mills
075	Grundy	133	Monona
089	Howard	137	Montgomery
097	Jackson	145	Page
103	Johnson	155	Pottawattamie
105	Jones	159	Ringgold
113	Linn	165	Shelby
131	Mitchell	173	Taylor
163	Scott	175	Union
171	Tama	193	Woodbury
191	Winneshiek		
		04	Northwestern
02	Southeastern	021	Buena Vista
007	Appanoose	025	Calhoun
015	Boone	033	Cerro Gordo
039	Clarke	035	Cherokee
049	Dallas	041	Clay
051	Davis	059	Dickinson
053	Decatur	063	Emmet
057	Des Moines	069	Franklin
077	Guthrie	081	Hancock
079	Hamilton	091	Humboldt
083	Hardin	093	Ida
087	Henry	109	Kossuth
095	Iowa	119	Lyon
099	Jasper	141	O'Brien
101	Jefferson	143	Osceola
107	Keokuk	147	Palo Alto
111	Lee	149	Plymouth
115	Louisa	151	Pocahontas
117	Lucas	161	Sac
121	Madison	167	Sioux
123	Mahaska	189	Winnebago
125	Marion	195	Worth
127	Marshall	197	Wright
135	Monroe		
139	Muscatine	20	Kansas
153	Polk	01	Northeastern
157	Poweshiek	005	Atchison
169	Story	013	Brown
177	Van Buren	027	Clay
179	Wapello	041	Dickinson
181	Warren	043	Doniphan
183	Washington	045	Douglas
185	Wayne	059	Franklin
187	Webster	061	Geary
		085	Jackson

087	Jefferson	079	Harvey
091	Johnson	081	Haskell
103	Leavenworth	083	Hodgeman
117	Marshall	089	Jewell
121	Miami	093	Kearny
131	Nemaha	095	Kingman
139	Osage	097	Kiowa
149	Pottawatomie	101	Lane
161	Riley	105	Lincoln
177	Shawnee	109	Logan
197	Wabaunsee	113	McPherson
201	Washington	119	Meade
209	Wyandotte	123	Mitchell
		129	Morton
02	Southeastern	135	Ness
001	Allen	137	Norton
003	Anderson	141	Osborne
011	Bourbon	143	Ottawa
015	Butler	145	Pawnee
017	Chase	147	Phillips
019	Chautauqua	151	Pratt
021	Cherokee	153	Rawlins
031	Coffey	155	Reno
035	Cowley	157	Republic
037	Crawford	159	Rice
049	Elk	163	Rooks
073	Greenwood	165	Rush
099	Labette	167	Russell
107	Linn	169	Saline
111	Lyon	171	Scott
115	Marion	173	Sedgwick
125	Montgomery	175	Seward
127	Morris	179	Sheridan
133	Neosho	181	Sherman
205	Wilson	183	Smith
207	Woodson	185	Stafford
		187	Stanton
03	Western	189	Stevens
007	Barber	191	Sumner
009	Barton	193	Thomas
023	Cheyenne	195	Trego
025	Clark	199	Wallace
029	Cloud	203	Wichita
033	Comanche		
039	Decatur	21	Kentucky
047	Edwards	01	Eastern
051	Ellis	071	Floyd
053	Ellsworth	095	Harlan
055	Finney	119	Knott
057	Ford	131	Leslie
063	Gove	133	Letcher
065	Graham	159	Martin
067	Grant	193	Perry
069	Gray	195	Pike
071	Greeley		
075	Hamilton	02	Northern Cumberland
077	Harper	019	Boyd

043	Carter	201	Robertson
063	Elliott	209	Scott
089	Greenup	211	Shelby
115	Johnson	215	Spencer
127	Lawrence	223	Trimble
135	Lewis	229	Washington
153	Magoffin	239	Woodford
165	Menifee		
175	Morgan	05	Pennyroyal
197	Powell	001	Adair
205	Rowan	027	Breckinridge
237	Wolfe	029	Bullitt
		045	Casey
03	Southern Cumberland	053	Clinton
013	Bell	057	Cumberland
025	Breathitt	085	Grayson
051	Clay	087	Green
065	Estill	091	Hancock
109	Jackson	093	Hardin
121	Knox	099	Hart
125	Laurel	123	Larue
129	Lee	155	Marion
147	McCreary	163	Meade
189	Owsley	169	Metcalfe
203	Rockcastle	179	Nelson
235	Whitley	199	Pulaski
		207	Russell
04	Bluegrass	217	Taylor
005	Anderson	231	Wayne
011	Bath		
015	Boone	06	Western Coalfield
017	Bourbon	003	Allen
021	Boyle	009	Barren
023	Bracken	031	Butler
037	Campbell	033	Caldwell
041	Carroll	047	Christian
049	Clark	055	Crittenden
067	Fayette	059	Daviess
069	Fleming	061	Edmonson
073	Franklin	101	Henderson
077	Gallatin	107	Hopkins
079	Garrard	141	Logan
081	Grant	149	McLean
097	Harrison	171	Monroe
103	Henry	177	Muhlenberg
111	Jefferson	183	Ohio
113	Jessamine	213	Simpson
117	Kenton	219	Todd
137	Lincoln	225	Union
151	Madison	227	Warren
161	Mason	233	Webster
167	Mercer		
173	Montgomery	07	Western
181	Nicholas	007	Ballard
185	Oldham	035	Calloway
187	Owen	039	Carlisle
191	Pendleton	075	Fulton

083	Graves	115	Vernon
105	Hickman		
139	Livingston	04	Southeast
143	Lyon	033	East Baton Rouge
145	McCracken	037	East Feliciana
157	Marshall	063	Livingston
221	Trigg	091	St. Helena
		103	St. Tammany
22	Louisiana	105	Tangipahoa
01	North Delta	117	Washington
025	Catahoula		
029	Concordia	05	Northwest
035	East Carroll	013	Bienville
041	Franklin	015	Bossier
065	Madison	017	Caddo
067	Morehouse	021	Caldwell
083	Richland	027	Claiborne
107	Tensas	031	De Soto
123	West Carroll	049	Jackson
		061	Lincoln
02	South Delta	073	Ouachita
001	Acadia	081	Red River
005	Ascension	111	Union
007	Assumption	119	Webster
009	Avoyelles	127	Winn
023	Cameron		
045	Iberia	23	Maine
047	Iberville	01	Washington
051	Jefferson	029	Washington
055	Lafayette		
057	Lafourche	02	Aroostook
071	Orleans	003	Aroostook
075	Plaquemines		
077	Pointe Coupee	03	Penobscot
087	St. Bernard	019	Penobscot
089	St. Charles		
093	St. James	04	Hancock
095	St. John the Baptist	009	Hancock
097	St. Landry		
099	St. Martin	05	Piscataquis
101	St. Mary	021	Piscataquis
109	Terrebonne		
113	Vermilion	06	Capitol Region
121	West Baton Rouge	011	Kennebec
125	West Feliciana	013	Knox
		015	Lincoln
03	Southwest	027	Waldo
003	Allen		
011	Beauregard	07	Somerset
019	Calcasieu	025	Somerset
039	Evangeline		
043	Grant	08	Casco Bay
053	Jefferson Davis	001	Androscoggin
059	La Salle	005	Cumberland
069	Natchitoches	023	Sagadahoc
079	Rapides	031	York
085	Sabine		

09	Western Maine
007	Franklin
017	Oxford
24	Maryland
02	Central
003	Anne Arundel
005	Baltimore
011	Caroline
013	Carroll
015	Cecil
021	Frederick
025	Harford
027	Howard
029	Kent
031	Montgomery
033	Prince George's
035	Queen Anne's
041	Talbot
043	Washington
510	Baltimore city
03	Southern
009	Calvert
017	Charles
037	St. Mary's
04	Lower Eastern Shore
019	Dorchester
039	Somerset
045	Wicomico
047	Worcester
05	Western
001	Allegany
023	Garrett
25	Massachusetts
01	State
001	Barnstable
003	Berkshire
005	Bristol
007	Dukes
009	Essex
011	Franklin
013	Hampden
015	Hampshire
017	Middlesex
019	Nantucket
021	Norfolk
023	Plymouth
025	Suffolk
027	Worcester
26	Michigan
01	Eastern Upper Peninsula
003	Alger

033	Chippewa
041	Delta
095	Luce
097	Mackinac
109	Menominee
153	Schoolcraft
02	Western Upper Peninsula
013	Baraga
043	Dickinson
053	Gogebic
061	Houghton
071	Iron
083	Keweenaw
103	Marquette
131	Ontonagon
03	Northern Lower Peninsula
001	Alcona
007	Alpena
009	Antrim
011	Arenac
017	Bay
019	Benzie
029	Charlevoix
031	Cheboygan
035	Clare
039	Crawford
047	Emmet
051	Gladwin
055	Grand Traverse
069	Iosco
073	Isabella
079	Kalkaska
085	Lake
089	Leelanau
101	Manistee
105	Mason
107	Mecosta
111	Midland
113	Missaukee
119	Montmorency
123	Newaygo
127	Oceana
129	Ogemaw
133	Osceola
135	Oscoda
137	Otsego
141	Presque Isle
143	Roscommon
165	Wexford
04	Southern Lower Peninsula
005	Allegan
015	Barry
021	Berrien
023	Branch

025	Calhoun	019	Carver
027	Cass	025	Chisago
037	Clinton	037	Dakota
045	Eaton	041	Douglas
049	Genesee	045	Fillmore
057	Gratiot	049	Goodhue
059	Hillsdale	053	Hennepin
063	Huron	055	Houston
065	Ingham	059	Isanti
067	Ionia	065	Kanabec
075	Jackson	079	Le Sueur
077	Kalamazoo	095	Mille Lacs
081	Kent	097	Morrison
087	Lapeer	109	Olmsted
091	Lenawee	111	Otter Tail
093	Livingston	115	Pine
099	Macomb	123	Ramsey
115	Monroe	131	Rice
117	Montcalm	139	Scott
121	Muskegon	141	Sherburne
125	Oakland	145	Stearns
139	Ottawa	153	Todd
145	Saginaw	157	Wabasha
147	St. Clair	163	Washington
149	St. Joseph	169	Winona
151	Sanilac	171	Wright
155	Shiawassee		
157	Tuscola	04	Prairie
159	Van Buren	011	Big Stone
161	Washtenaw	013	Blue Earth
163	Wayne	015	Brown
		023	Chippewa
27	Minnesota	027	Clay
01	Aspen-Birch	033	Cottonwood
017	Carlton	039	Dodge
031	Cook	043	Faribault
071	Koochiching	047	Freeborn
075	Lake	051	Grant
137	St. Louis	063	Jackson
		067	Kandiyohi
02	Northern Pine	069	Kittson
001	Aitkin	073	Lac qui Parle
005	Becker	081	Lincoln
007	Beltrami	083	Lyon
021	Cass	085	McLeod
029	Clearwater	089	Marshall
035	Crow Wing	091	Martin
057	Hubbard	093	Meeker
061	Itasca	099	Mower
077	Lake of the Woods	101	Murray
087	Mahnomen	103	Nicollet
135	Roseau	105	Nobles
159	Wadena	107	Norman
		113	Pennington
03	Central Hardwood	117	Pipestone
003	Anoka	119	Polk
009	Benton	121	Pope

125	Red Lake	161	Yalobusha
127	Redwood		
129	Renville	03	Central
133	Rock	007	Attala
143	Sibley	023	Clarke
147	Steele	061	Jasper
149	Stevens	069	Kemper
151	Swift	075	Lauderdale
155	Traverse	079	Leake
161	Waseca	099	Neshoba
165	Watonwan	101	Newton
167	Wilkin	103	Noxubee
173	Yellow Medicine	121	Rankin
		123	Scott
28	Mississippi	127	Simpson
01	Delta	129	Smith
011	Bolivar	159	Winston
027	Coahoma		
051	Holmes	04	South
053	Humphreys	031	Covington
055	Issaquena	035	Forrest
083	Leflore	039	George
119	Quitman	041	Greene
125	Sharkey	045	Hancock
133	Sunflower	047	Harrison
135	Tallahatchie	059	Jackson
143	Tunica	065	Jefferson Davis
149	Warren	067	Jones
151	Washington	073	Lamar
163	Yazoo	077	Lawrence
		091	Marion
02	North	109	Pearl River
003	Alcorn	111	Perry
009	Benton	131	Stone
013	Calhoun	147	Walthall
015	Carroll	153	Wayne
017	Chickasaw		
019	Choctaw	05	Southwest
025	Clay	001	Adams
033	DeSoto	005	Amite
043	Grenada	021	Claiborne
057	Itawamba	029	Copiah
071	Lafayette	037	Franklin
081	Lee	049	Hinds
087	Lowndes	063	Jefferson
093	Marshall	085	Lincoln
095	Monroe	089	Madison
097	Montgomery	113	Pike
105	Oktibbeha	157	Wilkinson
107	Panola		
115	Pontotoc	29	Missouri
117	Prentiss	01	Eastern Ozarks
137	Tate	017	Bollinger
139	Tippah	023	Butler
141	Tishomingo	035	Carter
145	Union	055	Crawford
155	Webster	065	Dent

093	Iron	063
123	Madison	075
149	Oregon	077
179	Reynolds	079
181	Ripley	081
187	St. Francois	083
203	Shannon	087
221	Washington	095
223	Wayne	097
		101
02	Southwestern Ozarks	103
009	Barry	107
043	Christian	109
067	Douglas	111
091	Howell	113
119	McDonald	115
145	Newton	117
153	Ozark	121
209	Stone	127
213	Taney	129
215	Texas	137
225	Webster	147
229	Wright	159
		163
03	Northwestern Ozarks	165
015	Benton	171
029	Camden	173
039	Cedar	175
059	Dallas	177
085	Hickory	195
105	Laclede	197
125	Maries	199
131	Miller	205
141	Morgan	211
161	Phelps	217
167	Polk	227
169	Pulaski	
185	St. Clair	05
		019
04	Prairie	027
001	Adair	031
003	Andrew	051
005	Atchison	069
007	Audrain	071
011	Barton	073
013	Bates	089
021	Buchanan	099
025	Caldwell	133
033	Carroll	135
037	Cass	139
041	Chariton	143
045	Clark	151
047	Clay	155
049	Clinton	157
053	Cooper	183
057	Dade	186
061	Daviess	189

DeKalb
Gentry
Greene
Grundy
Harrison
Henry
Holt
Jackson
Jasper
Johnson
Knox
Lafayette
Lawrence
Lewis
Lincoln
Linn
Livingston
Macon
Marion
Mercer
Monroe
Nodaway
Pettis
Pike
Platte
Putnam
Ralls
Randolph
Ray
Saline
Schuyler
Scotland
Shelby
Sullivan
Vernon
Worth

Riverborder

Boone
Callaway
Cape Girardeau
Cole
Dunklin
Franklin
Gasconade
Howard
Jefferson
Mississippi
Moniteau
Montgomery
New Madrid
Osage
Pemiscot
Perry
St. Charles
Ste. Genevieve
St. Louis

201	Scott	013	Cascade
207	Stoddard	043	Jefferson
219	Warren	045	Judith Basin
510	St. Louis city	049	Lewis and Clark
		059	Meagher
30	Montana	077	Powell
01	Northwestern	107	Wheatland
029	Flathead		
047	Lake	05	Southwestern
053	Lincoln	001	Beaverhead
089	Sanders	023	Deer Lodge
		031	Gallatin
02	Eastern	057	Madison
003	Big Horn	067	Park
005	Blaine	093	Silver Bow
009	Carbon		
011	Carter	31	Nebraska
015	Chouteau	01	Eastern
017	Custer	001	Adams
019	Daniels	011	Boone
021	Dawson	019	Buffalo
025	Fallon	021	Burt
027	Fergus	023	Butler
033	Garfield	025	Cass
035	Glacier	027	Cedar
037	Golden Valley	035	Clay
041	Hill	037	Colfax
051	Liberty	039	Cuming
055	McCone	041	Custer
065	Musselshell	043	Dakota
069	Petroleum	047	Dawson
071	Phillips	051	Dixon
073	Pondera	053	Dodge
075	Powder River	055	Douglas
079	Prairie	059	Fillmore
083	Richland	061	Franklin
085	Roosevelt	063	Frontier
087	Rosebud	065	Furnas
091	Sheridan	067	Gage
095	Stillwater	073	Gosper
097	Sweet Grass	077	Greeley
099	Teton	079	Hall
101	Toole	081	Hamilton
103	Treasure	083	Harlan
105	Valley	087	Hitchcock
109	Wibaux	093	Howard
111	Yellowstone	095	Jefferson
113	Yellowstone National Park	097	Johnson
		099	Kearney
03	Western	109	Lancaster
039	Granite	119	Madison
061	Mineral	121	Merrick
063	Missoula	125	Nance
081	Ravalli	127	Nemaha
		129	Nuckolls
04	West Central	131	Otoe
007	Broadwater	133	Pawnee

137	Phelps	32	Nevada
139	Pierce	01	Nevada
141	Platte	001	Churchill
143	Polk	003	Clark
145	Red Willow	005	Douglas
147	Richardson	007	Elko
151	Saline	009	Esmeralda
153	Sarpy	011	Eureka
155	Saunders	013	Humboldt
159	Seward	015	Lander
163	Sherman	017	Lincoln
167	Stanton	019	Lyon
169	Thayer	021	Mineral
173	Thurston	023	Nye
175	Valley	027	Pershing
177	Washington	029	Storey
179	Wayne	031	Washoe
181	Webster	033	White Pine
185	York	510	Carson City
02	Western	33	New Hampshire
003	Antelope	02	Northern
005	Arthur	003	Carroll
007	Banner	007	Coos
009	Blaine	009	Grafton
013	Box Butte		
015	Boyd	03	Southern
017	Brown	001	Belknap
029	Chase	005	Cheshire
031	Cherry	011	Hillsborough
033	Cheyenne	013	Merrimack
045	Dawes	015	Rockingham
049	Deuel	017	Strafford
057	Dundy	019	Sullivan
069	Garden		
071	Garfield	34	New Jersey
075	Grant	01	State
085	Hayes	001	Atlantic
089	Holt	003	Bergen
091	Hooker	005	Burlington
101	Keith	007	Camden
103	Keya Paha	009	Cape May
105	Kimball	011	Cumberland
107	Knox	013	Essex
111	Lincoln	015	Gloucester
113	Logan	017	Hudson
115	Loup	019	Hunterdon
117	McPherson	021	Mercer
123	Morrill	023	Middlesex
135	Perkins	025	Monmouth
149	Rock	027	Morris
157	Scotts Bluff	029	Ocean
161	Sheridan	031	Passaic
165	Sioux	033	Salem
171	Thomas	035	Somerset
-		037	Sussex
		039	Union

041	Warren	055	Monroe
		063	Niagara
35	New Mexico	067	Onondaga
01	Northwestern	069	Ontario
001	Bernalillo	073	Orleans
006	Cibola	075	Oswego
028	Los Alamos	099	Seneca
031	McKinley	117	Wayne
039	Rio Arriba	121	Wyoming
043	Sandoval	123	Yates
045	San Juan		
049	Santa Fe	03	Western Adirondack
055	Taos	035	Fulton
061	Valencia	043	Herkimer
		049	Lewis
02	Northeastern	065	Oneida
007	Colfax		
019	Guadalupe	04	Eastern Adirondack
021	Harding	031	Essex
033	Mora	041	Hamilton
037	Quay	113	Warren
047	San Miguel		
057	Torrance	05	Southwest Highlands
059	Union	003	Allegany
		009	Cattaraugus
03	Southwestern	013	Chautauqua
003	Catron	101	Steuben
013	Dona Ana		
017	Grant	06	South-Central Highlands
023	Hidalgo	007	Broome
029	Luna	015	Chemung
051	Sierra	017	Chenango
053	Socorro	023	Cortland
		025	Delaware
04	Southeastern	077	Otsego
005	Chaves	097	Schuyler
009	Curry	107	Tioga
011	De Baca	109	Tompkins
015	Eddy		
025	Lea	07	Capitol District
027	Lincoln	001	Albany
035	Otero	021	Columbia
041	Roosevelt	057	Montgomery
		083	Rensselaer
36	New York	091	Saratoga
01	Adirondack	093	Schenectady
019	Clinton	115	Washington
033	Franklin		
045	Jefferson	08	Catskill-Lower Hudson
089	St. Lawrence	005	Bronx
		027	Dutchess
02	Lake Plain	039	Greene
011	Cayuga	047	Kings
029	Erie	059	Nassau
037	Genesee	061	New York
051	Livingston	071	Orange
053	Madison	079	Putnam

081	Queens		
085	Richmond	03	Piedmont
087	Rockland	001	Alamance
095	Schoharie	003	Alexander
103	Suffolk	007	Anson
105	Sullivan	025	Cabarrus
111	Ulster	033	Caswell
119	Westchester	035	Catawba
		037	Chatham
37	North Carolina	045	Cleveland
01	Southern Coastal Plain	057	Davidson
017	Bladen	059	Davie
019	Brunswick	063	Durham
047	Columbus	067	Forsyth
051	Cumberland	069	Franklin
061	Duplin	071	Gaston
079	Greene	077	Granville
085	Harnett	081	Guilford
093	Hoke	097	Iredell
101	Johnston	109	Lincoln
103	Jones	119	Mecklenburg
105	Lee	123	Montgomery
107	Lenoir	135	Orange
125	Moore	145	Person
129	New Hanover	149	Polk
133	Onslow	151	Randolph
141	Pender	157	Rockingham
153	Richmond	159	Rowan
155	Robeson	161	Rutherford
163	Sampson	167	Stanly
165	Scotland	169	Stokes
191	Wayne	171	Surry
		179	Union
02	Northern Coastal Plain	181	Vance
013	Beaufort	183	Wake
015	Bertie	185	Warren
029	Camden	197	Yadkin
031	Carteret		
041	Chowan	04	Mountains
049	Craven	005	Alleghany
053	Currituck	009	Ashe
055	Dare	011	Avery
065	Edgecombe	021	Buncombe
073	Gates	023	Burke
083	Halifax	027	Caldwell
091	Hertford	039	Cherokee
095	Hyde	043	Clay
117	Martin	075	Graham
127	Nash	087	Haywood
131	Northampton	089	Henderson
137	Pamlico	099	Jackson
139	Pasquotank	111	McDowell
143	Perquimans	113	Macon
147	Pitt	115	Madison
177	Tyrrell	121	Mitchell
187	Washington	173	Swain
195	Wilson	175	Transylvania

189	Watauga	103	Wells
193	Wilkes	105	Williams
199	Yancey		
		39	Ohio
38	North Dakota	01	South-Central
01	Eastern	001	Adams
001	Adams	015	Brown
003	Barnes	025	Clermont
005	Benson	053	Gallia
007	Billings	071	Highland
009	Bottineau	079	Jackson
011	Bowman	087	Lawrence
013	Burke	131	Pike
015	Burleigh	141	Ross
017	Cass	145	Scioto
019	Cavalier		
021	Dickey	02	Southeastern
023	Divide	009	Athens
025	Dunn	073	Hocking
027	Eddy	105	Meigs
029	Emmons	115	Morgan
031	Foster	127	Perry
033	Golden Valley	163	Vinton
035	Grand Forks	167	Washington
037	Grant		
039	Griggs	03	East-Central
041	Hettinger	013	Belmont
043	Kidder	019	Carroll
045	LaMoure	031	Coshocton
047	Logan	059	Guernsey
049	McHenry	067	Harrison
051	McIntosh	075	Holmes
053	McKenzie	081	Jefferson
055	McLean	111	Monroe
057	Mercer	119	Muskingum
059	Morton	121	Noble
061	Mountrail	157	Tuscarawas
063	Nelson		
065	Oliver	04	Northeastern
067	Pembina	005	Ashland
069	Pierce	007	Ashtabula
071	Ramsey	029	Columbiana
073	Ransom	035	Cuyahoga
075	Renville	043	Erie
077	Richland	055	Geauga
079	Rolette	077	Huron
081	Sargent	085	Lake
083	Sheridan	093	Lorain
085	Sioux	099	Mahoning
087	Slope	103	Medina
089	Stark	133	Portage
091	Steele	139	Richland
093	Stutsman	151	Stark
095	Towner	153	Summit
097	Traill	155	Trumbull
099	Walsh	169	Wayne
101	Ward		

05	Southwestern	121	Pittsburg
017	Butler	127	Pushmataha
023	Clark		
027	Clinton	02	Northeast
037	Darke	001	Adair
045	Fairfield	021	Cherokee
047	Fayette	041	Delaware
049	Franklin	091	McIntosh
057	Greene	097	Mayes
061	Hamilton	101	Muskogee
089	Licking	115	Ottawa
097	Madison	135	Sequoyah
109	Miami		
113	Montgomery	03	Other counties
129	Pickaway	003	Alfalfa
135	Preble	007	Beaver
165	Warren	009	Beckham
		011	Blaine
06	Northwestern	015	Caddo
003	Allen	017	Canadian
011	Auglaize	019	Carter
021	Champaign	025	Cimarron
033	Crawford	027	Cleveland
039	Defiance	031	Comanche
041	Delaware	033	Cotton
051	Fulton	035	Craig
063	Hancock	037	Creek
065	Hardin	039	Custer
069	Henry	043	Dewey
083	Knox	045	Ellis
091	Logan	047	Garfield
095	Lucas	049	Garvin
101	Marion	051	Grady
107	Mercer	053	Grant
117	Morrow	055	Greer
123	Ottawa	057	Harmon
125	Paulding	059	Harper
137	Putnam	063	Hughes
143	Sandusky	065	Jackson
147	Seneca	067	Jefferson
149	Shelby	069	Johnston
159	Union	071	Kay
161	Van Wert	073	Kingfisher
171	Williams	075	Kiowa
173	Wood	081	Lincoln
175	Wyandot	083	Logan
		085	Love
40	Oklahoma	087	McClain
01	Southeast	093	Major
005	Atoka	095	Marshall
013	Bryan	099	Murray
023	Choctaw	103	Noble
029	Coal	105	Nowata
061	Haskell	107	Okfuskee
077	Latimer	109	Oklahoma
079	Le Flore	111	Okmulgee
089	McCurtain	113	Osage

117	Pawnee	025	Harney
119	Payne	045	Malheur
123	Pontotoc	049	Morrow
125	Pottawatomie	059	Umatilla
129	Roger Mills	061	Union
131	Rogers	063	Wallowa
133	Seminole		
137	Stephens	42	Pennsylvania
139	Texas	00	South Central
141	Tillman	043	Dauphin
143	Tulsa	055	Franklin
145	Wagoner	057	Fulton
147	Washington	061	Huntingdon
149	Washita	067	Juniata
151	Woods	087	Mifflin
153	Woodward	099	Perry
		109	Snyder
41	Oregon	119	Union
00	Northwest		
005	Clackamas	05	Western
007	Clatsop	003	Allegheny
009	Columbia	005	Armstrong
027	Hood River	007	Beaver
047	Marion	019	Butler
051	Multnomah	039	Crawford
053	Polk	049	Erie
057	Tillamook	059	Greene
067	Washington	063	Indiana
071	Yamhill	073	Lawrence
		085	Mercer
01	West Central	125	Washington
003	Benton	129	Westmoreland
039	Lane		
041	Lincoln	06	North Central/Allegheny
043	Linn	023	Cameron
		027	Centre
02	Southwest	031	Clarion
011	Coos	033	Clearfield
015	Curry	035	Clinton
019	Douglas	047	Elk
029	Jackson	053	Forest
033	Josephine	065	Jefferson
		081	Lycoming
03	Central	083	McKean
013	Crook	105	Potter
017	Deschutes	113	Sullivan
021	Gilliam	117	Tioga
031	Jefferson	121	Venango
035	Klamath	123	Warren
037	Lake		
055	Sherman	07	Southwestern
065	Wasco	009	Bedford
069	Wheeler	013	Blair
		021	Cambria
04	Blue Mountains	051	Fayette
001	Baker	111	Somerset
023	Grant		

08	Northeastern/Pocono	027	Clarendon
015	Bradford	031	Darlington
025	Carbon	033	Dillon
037	Columbia	041	Florence
069	Lackawanna	043	Georgetown
079	Luzerne	051	Horry
089	Monroe	055	Kershaw
093	Montour	061	Lee
097	Northumberland	067	Marion
103	Pike	069	Marlboro
107	Schuylkill	079	Richland
115	Susquehanna	085	Sumter
127	Wayne	089	Williamsburg
131	Wyoming		
		03	Piedmont
09	Southeastern	001	Abbeville
001	Adams	007	Anderson
011	Berks	021	Cherokee
017	Bucks	023	Chester
029	Chester	037	Edgefield
041	Cumberland	039	Fairfield
045	Delaware	045	Greenville
071	Lancaster	047	Greenwood
075	Lebanon	057	Lancaster
077	Lehigh	059	Laurens
091	Montgomery	065	McCormick
095	Northampton	071	Newberry
101	Philadelphia	073	Oconee
133	York	077	Pickens
		081	Saluda
44	Rhode Island	083	Spartanburg
01	State	087	Union
001	Bristol	091	York
003	Kent		
005	Newport	46	South Dakota
007	Providence	01	Eastern
009	Washington	003	Aurora
		005	Beadle
45	South Carolina	007	Bennett
01	Southern Coastal Plain	009	Bon Homme
003	Aiken	011	Brookings
005	Allendale	013	Brown
009	Bamberg	015	Brule
011	Barnwell	017	Buffalo
013	Beaufort	021	Campbell
017	Calhoun	023	Charles Mix
029	Colleton	025	Clark
035	Dorchester	027	Clay
049	Hampton	029	Codington
053	Jasper	031	Corson
063	Lexington	035	Davison
075	Orangeburg	037	Day
		039	Deuel
02	Northern Coastal Plain	041	Dewey
015	Berkeley	043	Douglas
019	Charleston	045	Edmunds
025	Chesterfield	049	Faulk

051	Grant	075	Haywood
053	Gregory	077	Henderson
055	Haakon	079	Henry
057	Hamlin	095	Lake
059	Hand	097	Lauderdale
061	Hanson	109	McNairy
065	Hughes	113	Madison
067	Hutchinson	131	Obion
069	Hyde	157	Shelby
071	Jackson	167	Tipton
073	Jerauld	183	Weakley
075	Jones		
077	Kingsbury	02	West Central
079	Lake	005	Benton
083	Lincoln	039	Decatur
085	Lyman	071	Hardin
087	McCook	081	Hickman
089	McPherson	083	Houston
091	Marshall	085	Humphreys
095	Mellette	099	Lawrence
097	Miner	101	Lewis
099	Minnehaha	135	Perry
101	Moody	161	Stewart
105	Perkins	181	Wayne
107	Potter		
109	Roberts	03	Central
111	Sanborn	003	Bedford
115	Spink	015	Cannon
117	Stanley	021	Cheatham
119	Sully	027	Clay
121	Todd	031	Coffee
123	Tripp	037	Davidson
125	Turner	041	DeKalb
127	Union	043	Dickson
129	Walworth	055	Giles
135	Yankton	087	Jackson
137	Ziebach	103	Lincoln
		111	Macon
02	Western	117	Marshall
019	Butte	119	Maury
033	Custer	125	Montgomery
047	Fall River	127	Moore
063	Harding	147	Robertson
081	Lawrence	149	Rutherford
093	Meade	159	Smith
103	Pennington	165	Sumner
113	Shannon	169	Trousdale
		187	Williamson
47	Tennessee	189	Wilson
01	West		
017	Carroll	04	Plateau
023	Chester	007	Bledsoe
033	Crockett	013	Campbell
045	Dyer	035	Cumberland
047	Fayette	049	Fentress
053	Gibson	051	Franklin
069	Hardeman	061	Grundy

115	Marion	403	Sabine
129	Morgan	405	San Augustine
133	Overton	407	San Jacinto
137	Pickett	455	Trinity
141	Putnam	457	Tyler
151	Scott	471	Walker
153	Sequatchie	473	Waller
175	Van Buren		
177	Warren	02	Northeast
185	White	001	Anderson
		037	Bowie
05	East	063	Camp
001	Anderson	067	Cass
009	Blount	073	Cherokee
011	Bradley	159	Franklin
019	Carter	183	Gregg
025	Claiborne	203	Harrison
029	Cocke	213	Henderson
057	Grainger	315	Marion
059	Greene	343	Morris
063	Hamblen	347	Nacogdoches
065	Hamilton	365	Panola
067	Hancock	387	Red River
073	Hawkins	401	Rusk
089	Jefferson	419	Shelby
091	Johnson	423	Smith
093	Knox	449	Titus
105	Loudon	459	Upshur
107	McMinn	467	Van Zandt
121	Meigs	499	Wood
123	Monroe		
139	Polk		Unsampled counties
143	Rhea	003	Andrews
145	Roane	007	Aransas
155	Sevier	009	Archer
163	Sullivan	011	Armstrong
171	Unicoi	013	Atascosa
173	Union	015	Austin
179	Washington	017	Bailey
		019	Bandera
48	Texas	021	Bastrop
01	Southeast	023	Baylor
005	Angelina	025	Bee
071	Chambers	027	Bell
185	Grimes	029	Bexar
199	Hardin	031	Blanco
201	Harris	033	Borden
225	Houston	035	Bosque
241	Jasper	039	Brazoria
245	Jefferson	041	Brazos
289	Leon	043	Brewster
291	Liberty	045	Briscoe
313	Madison	047	Brooks
339	Montgomery	049	Brown
351	Newton	051	Burleson
361	Orange	053	Burnet
373	Polk	055	Caldwell

057	Calhoun	181	Grayson
059	Callahan	187	Guadalupe
061	Cameron	189	Hale
065	Carson	191	Hall
069	Castro	193	Hamilton
075	Childress	195	Hansford
077	Clay	197	Hardeman
079	Cochran	205	Hartley
081	Coke	207	Haskell
083	Coleman	209	Hays
085	Collin	211	Hemphill
087	Collingsworth	215	Hidalgo
089	Colorado	217	Hill
091	Comal	219	Hockley
093	Comanche	221	Hood
095	Concho	223	Hopkins
097	Cooke	227	Howard
099	Coryell	229	Hudspeth
101	Cottle	231	Hunt
103	Crane	233	Hutchinson
105	Crockett	235	Irion
107	Crosby	237	Jack
109	Culberson	239	Jackson
111	Dallam	243	Jeff Davis
113	Dallas	247	Jim Hogg
115	Dawson	249	Jim Wells
117	Deaf Smith	251	Johnson
119	Delta	253	Jones
121	Denton	255	Karnes
123	DeWitt	257	Kaufman
125	Dickens	259	Kendall
127	Dimmit	261	Kenedy
129	Donley	263	Kent
131	Duval	265	Kerr
133	Eastland	267	Kimble
135	Ector	269	King
137	Edwards	271	Kinney
139	Ellis	273	Kleberg
141	El Paso	275	Knox
143	Erath	277	Lamar
145	Falls	279	Lamb
147	Fannin	281	Lampasas
149	Fayette	283	La Salle
151	Fisher	285	Lavaca
153	Floyd	287	Lee
155	Foard	293	Limestone
157	Fort Bend	295	Lipscomb
161	Freestone	297	Live Oak
163	Frio	299	Llano
165	Gaines	301	Loving
167	Galveston	303	Lubbock
169	Garza	305	Lynn
171	Gillespie	307	McCulloch
173	Glasscock	309	McLennan
175	Goliad	311	McMullen
177	Gonzales	317	Martin
179	Gray	319	Mason

321	Matagorda	477	Washington
323	Maverick	479	Webb
325	Medina	481	Wharton
327	Menard	483	Wheeler
329	Midland	485	Wichita
331	Milam	487	Wilbarger
333	Mills	489	Willacy
335	Mitchell	491	Williamson
337	Montague	493	Wilson
341	Moore	495	Winkler
345	Motley	497	Wise
349	Navarro	501	Yoakum
353	Nolan	503	Young
355	Nueces	505	Zapata
357	Ochiltree	507	Zavala
359	Oldham		
363	Palo Pinto	49	Utah
367	Parker	01	Northern
369	Parmer	003	Box Elder
371	Pecos	005	Cache
375	Potter	011	Davis
377	Presidio	029	Morgan
379	Rains	033	Rich
381	Randall	035	Salt Lake
383	Reagan	043	Summit
385	Real	045	Tooele
389	Reeves	049	Utah
391	Refugio	051	Wasatch
393	Roberts	057	Weber
395	Robertson		
397	Rockwall	02	Uinta
399	Runnels	009	Daggett
409	San Patricio	013	Duchesne
411	San Saba	047	Uintah
413	Schleicher		
415	Scurry	03	Central
417	Shackelford	023	Juab
421	Sherman	027	Millard
425	Somervell	031	Piute
427	Starr	039	Sanpete
429	Stephens	041	Sevier
431	Sterling	055	Wayne
433	Stonewall		
435	Sutton	04	Eastern
437	Swisher	007	Carbon
439	Tarrant	015	Emery
441	Taylor	019	Grand
443	Terrell	037	San Juan
445	Terry		
447	Throckmorton	05	Southwestern
451	Tom Green	001	Beaver
453	Travis	017	Garfield
461	Upton	021	Iron
463	Uvalde	025	Kane
465	Val Verde	053	Washington
469	Victoria		
475	Ward	50	Vermont

02	Northern
005	Caledonia
009	Essex
011	Franklin
013	Grand Isle
015	Lamoille
017	Orange
019	Orleans
023	Washington
03	Southern
001	Addison
003	Bennington
007	Chittenden
021	Rutland
025	Windham
027	Windsor
51	Virginia
01	Coastal Plain
001	Accomack
025	Brunswick
033	Caroline
036	Charles City
041	Chesterfield
053	Dinwiddie
057	Essex
073	Gloucester
081	Greensville
085	Hanover
087	Henrico
093	Isle Of Wight
095	James City
097	King And Queen
099	King George
101	King William
103	Lancaster
115	Mathews
119	Middlesex
127	New Kent
131	Northampton
133	Northumberland
149	Prince George
159	Richmond
175	Southampton
181	Surry
183	Sussex
193	Westmoreland
199	York
550	Chesapeake city
650	Hampton city
700	Newport News city
800	Suffolk city
810	Virginia Beach city
02	Southern Piedmont
007	Amelia

011	Appomattox
019	Bedford
029	Buckingham
031	Campbell
037	Charlotte
049	Cumberland
067	Franklin
083	Halifax
089	Henry
111	Lunenburg
117	Mecklenburg
135	Nottoway
141	Patrick
143	Pittsylvania
145	Powhatan
147	Prince Edward
03	Northern Piedmont
003	Albemarle
009	Amherst
013	Arlington
047	Culpeper
059	Fairfax
061	Fauquier
065	Fluvanna
075	Goochland
079	Greene
107	Loudoun
109	Louisa
113	Madison
125	Nelson
137	Orange
153	Prince William
157	Rappahannock
177	Spotsylvania
179	Stafford
04	Northern Mountains
005	Alleghany
015	Augusta
017	Bath
023	Botetourt
043	Clarke
045	Craig
069	Frederick
091	Highland
139	Page
161	Roanoke
163	Rockbridge
165	Rockingham
171	Shenandoah
187	Warren
05	Southern Mountains
021	Bland
027	Buchanan
035	Carroll

051	Dickenson	035	Kitsap
063	Floyd	053	Pierce
071	Giles	055	San Juan
077	Grayson	057	Skagit
105	Lee	061	Snohomish
121	Montgomery	073	Whatcom
155	Pulaski		
167	Russell	06	Olympic Peninsula
169	Scott	009	Clallam
173	Smyth	027	Grays Harbor
185	Tazewell	031	Jefferson
191	Washington	045	Mason
195	Wise	067	Thurston
197	Wythe		
		07	Southwest
	Unsampled cities	011	Clark
510	Alexandria city	015	Cowlitz
515	Bedford city	041	Lewis
520	Bristol city	049	Pacific
530	Buena Vista city	059	Skamania
540	Charlottesville city	069	Wahkiakum
560	Clifton Forge city		
570	Colonial Heights city	08	Central
580	Covington city	007	Chelan
590	Danville city	017	Douglas
595	Emporia city	037	Kittitas
600	Fairfax city	039	Klickitat
610	Falls Church city	047	Okanogan
620	Franklin city	077	Yakima
630	Fredericksburg city		
640	Galax city	09	Inland Empire
660	Harrisonburg city	001	Adams
670	Hopewell city	003	Asotin
678	Lexington city	005	Benton
680	Lynchburg city	013	Columbia
683	Manassas city	019	Ferry
685	Manassas Park city	021	Franklin
690	Martinsville city	023	Garfield
710	Norfolk city	025	Grant
720	Norton city	043	Lincoln
730	Petersburg city	051	Pend Oreille
735	Poquoson city	063	Spokane
740	Portsmouth city	065	Stevens
750	Radford city	071	Walla Walla
760	Richmond city	075	Whitman
770	Roanoke city		
775	Salem city	54	West Virginia
780	South Boston city	02	Northeastern
790	Staunton city	001	Barbour
820	Waynesboro city	003	Berkeley
830	Williamsburg city	007	Braxton
840	Winchester city	023	Grant
		027	Hampshire
53	Washington	031	Hardy
05	Puget Sound	033	Harrison
029	Island	037	Jefferson
033	King	041	Lewis

057	Mineral	075	Marinette
065	Morgan	078	Menominee
071	Pendleton	083	Oconto
075	Pocahontas	085	Oneida
077	Preston	115	Shawano
083	Randolph	125	Vilas
091	Taylor		
093	Tucker	02	Northwestern
097	Upshur	003	Ashland
101	Webster	005	Barron
		007	Bayfield
03	Southern	013	Burnett
005	Boone	031	Douglas
015	Clay	051	Iron
019	Fayette	095	Polk
025	Greenbrier	099	Price
039	Kanawha	107	Rusk
045	Logan	113	Sawyer
047	McDowell	119	Taylor
055	Mercer	129	Washburn
059	Mingo		
063	Monroe	03	Central
067	Nicholas	001	Adams
081	Raleigh	017	Chippewa
089	Summers	019	Clark
109	Wyoming	035	Eau Claire
		053	Jackson
04	Northwestern	057	Juneau
009	Brooke	073	Marathon
011	Cabell	077	Marquette
013	Calhoun	081	Monroe
017	Doddridge	097	Portage
021	Gilmer	135	Waupaca
029	Hancock	137	Waushara
035	Jackson	141	Wood
043	Lincoln		
049	Marion	04	Southwestern
051	Marshall	011	Buffalo
053	Mason	023	Crawford
061	Monongalia	033	Dunn
069	Ohio	043	Grant
073	Pleasant	049	Iowa
079	Putnam	063	La Crosse
085	Ritchie	065	Lafayette
087	Roane	091	Pepin
095	Tyler	093	Pierce
099	Wayne	103	Richland
103	Wetzel	109	St. Croix
105	Wirt	111	Sauk
107	Wood	121	Trempealeau
		123	Vernon
55	Wisconsin		
01	Northeastern	05	Southeastern
037	Florence	009	Brown
041	Forest	015	Calumet
067	Langlade	021	Columbia
069	Lincoln	025	Dane

027	Dodge	005	Campbell
029	Door	011	Crook
039	Fond du Lac	045	Weston
045	Green		
047	Green Lake	72	Puerto Rico
055	Jefferson	083	Las Marias
059	Kenosha	085	Las Piedras
061	Kewaunee	087	Loiza
071	Manitowoc	089	Luquillo
079	Milwaukee	091	Manati
087	Outagamie	093	Maricao
089	Ozaukee	095	Maunabo
101	Racine	097	Mayaguez
105	Rock	099	Моса
117	Sheboygan	101	Morovis
127	Walworth	103	Naguabo
131	Washington	105	Naranjito
133	Waukesha	107	Orocovis
139	Winnebago	109	Patillas
		111	Penuelas
56	Wyoming	113	Ponce
01	Western	115	Quebradillas
013	Fremont	117	Rincon
017	Hot Springs	119	Rio Grande
023	Lincoln	121	Sabana Grande
029	Park	123	Salinas
035	Sublette	125	San German
037	Sweetwater	127	San Juan
039	Teton	129	San Lorenzo
041	Uinta	131	San Sebastian
		133	Santa Isabel
02	Central and Southeastern	135	Toa Alta
001	Albany	137	Toa Baja
003	Big Horn	139	Trujillo Alto
007	Carbon	141	Utuado
009	Converse	143	Vega Alta
015	Goshen	145	Vega Baja
019	Johnson	147	Vieques
021	Laramie	149	Villalba
025	Natrona	151	Yabucoa
027	Niobrara	153	Yauco
031	Platte		
033	Sheridan	78	U.S. Virgin Islands
043	Washakie	010	St. Croix Island
		020	St. John Island
03	Northeastern	030	St. Thomas Island

Appendix D - Forest Type Codes And Names

Code	Forest type / type group	
	White / red / jack pine group	261
101	Jack pine	262
102	Red pine	263
103	Eastern white pine	264
104	Eastern white pine / eastern hemlock	265
105	Eastern hemlock	266
		267
	Spruce / fir group	268
121	Balsam fir	269
122	White spruce	270
123	Red spruce	271
124	Red spruce / balsam fir	
125	Black spruce	
126	Tamarack	281
127	Northern white-cedar	
	Longleaf / slash pine group	301
141	Longleaf pine	304
142	Slash pine	305
	Loblolly / shortleaf pine group	
161	Loblolly pine	321
162	Shortleaf pine	
163	Virginia pine	
164	Sand pine	341
165	Table Mountain pine	342
166	Pond pine	
167	Pitch pine	
168	Spruce pine	361
		362
	Pinyon / juniper group	363
181	Eastern redcedar	364
182	Rocky Mountain juniper	365
183	Western juniper	366
184	Juniper woodland	367
185	Pinyon / juniper woodland	368
	Douglas-fir group	
201	Douglas-fir	371
202	Port-Orford-cedar	
	Ponderosa pine group	381
221	Ponderosa pine	382
222	Incense-cedar	383
223	Jeffrey pine / Coulter pine / bigcone Douglas-fir	384
224	Sugar pine	385
	Western white pine group	
241	Western white pine	401
		402

Fir / spruce / mountain hemlock group

White fir
Red fir
Noble fir
Pacific silver fir
Engelmann spruce
Engelman spruce / subalpine fir
Grand fir
Subalpine fir
Blue spruce
Mountain hemlock
Alaska yellow-cedar
Lodgepole pine group
281 Lodgepole pine

Hemlock / Sitka spruce group

Western hemlock
Western redcedar
Sitka spruce

Western larch group

Western larch
Redwood group
Redwood
Giant sequoia
Other western softwoods group
Knobcone pine
Southwest white pine
Bishop pine
Monterey pine
Foxtail pine / bristlecone pine
Limber pine
Whitebark pine
Misc. western softwoods
California mixed conifer group
California mixed conifer

Exotic softwoods group

Scotch pine
Australian pine
Other exotic softwoods
Norway spruce
Introduced larch

Oak / pine group
Eastern white pine / northern red oak / white ash
Eastern redcedar / hardwood

403	Longleaf pine / oak
404	Shortleaf pine / oak
405	Virginia pine / southern red oak
406	Loblolly pine / hardwood
407	Slash pine / hardwood
409	Other pine / hardwood
	Oak / hickory group
501	Post oak / blackjack oak
502	Chestnut oak
503	White oak / red oak / hickory
504	White oak
505	Northern red oak
506	Yellow-poplar / white oak / northern red oak
507	Sassafras / persimmon
508	Sweetgum / yellow-poplar
509	Bur oak
510	Scarlet oak
511	Yellow-poplar
512	Black walnut
513	Black locust
514	Southern scrub oak
515	Chestnut oak / black oak / scarlet oak
519	Red maple / oak
520	Mixed upland hardwoods
	Oak / gum / cypress group
601	Swamp chestnut oak / cherrybark oak
602	Sweetgum / Nuttall oak / willow oak
605	Overcup oak / water hickory
606	Atlantic white-cedar
607	Baldcypress / water tupelo
608	Sweetbay / swamp tupelo / red maple
	Elm / ash / cottonwood group
701	Black ash / American elm / red maple
702	River birch / sycamore
703	Cottonwood
704	Willow
705	Sycamore / pecan / American elm
706	Sugarberry / hackberry / elm / green ash
707	Silver maple / American elm
708	Red maple / lowland
709	Cottonwood / willow
722	Oregon ash
	Maple / beech / birch group
801	Sugar maple / beech / yellow birch
802	Black cherry

Cherry / ash / yellow-poplar
Hard maple / basswood
Elm / ash / locust
Red maple / upland

Aspen / birch group

Aspen
Paper birch
Balsam poplar

Alder / maple group

Red alder
Bigleaf maple

Western oak group

Gray pine
California black oak
Oregon white oak
Blue oak
Deciduous oak woodland
Coast live oak
Canyon live oak / interior live oak

Tanoak / laurel group

Tanoak
California laurel
Giant chinkapin

Other western hardwoods group

Pacific madrone
Mesquite woodland
Cercocarpus woodland
Intermountain maple woodland
Misc. western hardwoods woodland

Tropical hardwoods group
Sable palm
Mangrove
Other tropical

Exotic hardwoods group

Paulownia
Melaluca
Eucalyptus
Other exotic hardwoods

Nonstocked

Appendix E—National Forest Codes And Names

Region	Code	National Forest/Grassland/Area
Region 1	102	Beaverhead
	103	Bitterroot
	104	Idaho Panhandle
	105	Clearwater
	108	Custer
	109	Deerlodge
	110	Flathead
	111	Gallatin
	112	Helena
	114	Kootenai
	115	Lewis and Clark
	116	Lolo
	117	Nez Perce
	120	Cedar River NGL (National
		Grassland)
	121	Little Missouri NGL
	122	Sheyenne NGL
	124	Grand River NGL
	199	Other NFS Areas
Region 2	202	Bighorn
	203	Black Hills
	204	Grand Mesa-UncompahgreGunnison
	206	Medicine Bow
	207	Nebraska
	209	Rio Grande
	210	Arapaho-Roosevelt
	211	Routt
	212	Pike and San Isabel
	213	San Juan
	214	Shoshone
	215	White River
	217	Cimarron NGL
	218	Commanche NGL
	219	Pawnee NGL
	220	Oglala NGL
	221	Buffalo Gap NGL
	222	Fort Pierre NGL
	223	Thunder Basin NGL
	299	Other NFS Areas
Region 3	301	Apache-Sitgreaves
	302	Carson
	303	Cibola
	304	Coconino
	305	Coronado
	306	Gila
	307	Kaibab
	308	Lincoln
	309	Prescott
	310	Santa Fe
	312	Tonto
	399	Other NFS Areas

Region	Code	National Forest/Grassland/Area
Region 4	401	Ashley
	402	Boise
	403	Bridger-Teton
	405	Caribou
	406	Challis
	407	Dixie
	408	Fishlake
	409	Humboldt
	410	Manti-La Sal
	412	Payette
	413	Salmon
	414	Sawtooth
	415	Targhee
	417	Toiyabe
	418	Uinta
	419	Wasatch-Cache
	420	Desert Range Experiment Station
	499	Other NFS Areas
Region 5	501	Angeles
	502	Cleveland
	503	Eldorado
	504	Inyo
	505	Klamath
	506	Lassen
	507	Los Padres
	508	Mendocino
	509	Modoc
	510	Six Rivers
	511	Plumas
	512	San Bernadino
	513	Sequoia
	514	Shasta-Trinity
	515	Sierra
	516	Stanislaus
	517	Tahoe
	519	Lake Tahoe Basin
	599	Other NFS Areas
Region 6	601	Deschutes
	602	Fremont
	603	Gifford Pinchot
	604	Malheur
	605	Mt. Baker-Snoqualmie
	606	Mt. Hood
	607	Ochoco
	608	Okanogan
	609	Olympic
	610	Rogue River
	611	Siskiyou
	612	Siuslaw
	614	Umatilla
	615	Umpqua
	616	Wallowa-Whitman
	617	Wenatchee
	618	Willamette
	620	Winema
	621	Colville
	699	Other NFS Areas

Region	Code	National Forest/Grassland/Area
Region 8	801	NFS in Alabama
	802	Daniel Boone
	803	Cattahoochee-Oconee
	804	Cherokee
	805	NFS in Florida
	806	Kisatchie
	807	NFS in Mississippi
	808	George Washington
	809	Ouachita
	810	Ozark and St. Francis
	811	NFS in North Carolina
	812	Francis Marion-Sumter
	813	NFS in Texas
	814	Jefferson
	816	Caribbean
	899	Other NFS areas
Region 9	902	Chequamagon
	903	Chippewa
	904	Huron-Manistee
	905	Mark Twain
	906	Nicolet
	907	Ottawa
	908	Shawnee
	909	Superior
	910	Hiawatha
	911	Hoosier
	918	Wayne
	919	Allegheny
	920	Green Mountain
	921	Monongahela
	922	White Mountain
	999	Other NFS areas
Region 10	1004	Chugach
	1005	Tongass
	1099	Other NFS Areas

Appendix F - Tree Species Codes, Names, And Occurrences

Major groups (MAJGRP) are 1) pines, 2) other softwoods, 3) soft hardwoods, and 4) hard hardwoods. The 48 species groups (SPGRPCD) may be found in Appendix G.

SPCD	COMMON_NAME	SCIENTIFIC NAME	SPGRPCD	MAJGRP	Occurrence by Research Station				
					NCRS	NERS	PNWRS	RMRS	SRS
010	fir spp.	Abies	6	2	X	X			X
011	Pacific silver fir	Abies amabilis	12	2			X		
012	balsam fir	Abies balsamea	6	2	X	X			X
014	Santa Lucia fir	Abies bracteata	12	2			X		
015	white fir	Abies concolor	12	2	X		X	X	
016	Fraser fir	Abies fraseri	9	2	X	X			X
017	grand fir	Abies grandis	12	2			X	X	
018	corkbark fir	Abies lasiocarpa var. arizonica	12	2				X	
019	subalpine fir	Abies lasiocarpa	12	2			X	X	
020	California red fir	Abies magnifica	12	2			X	X	
021	Shasta red fir	Abies shastensis	12	2			X	X	
022	noble fir	Abies procera	12	2			X	X	
041	Port-Orford-cedar	Chamaecyparis lawsoniana	24	2			X		
042	Alaska yellow-cedar	Chamaecyparis nootkatensis	24	2			X		
043	Atlantic white-cedar	Chamaecyparis thyoides	9	2		X			X
050	cypress	Cupressus	24	2			X		
051	Arizona cypress	Cupressus arizonica	23	2			X	X	X
052	Baker cypress	Cupressus bakeri	24	2					
053	Tecate cypress	Cupressus forbesii	24	2					
054	Monterey cypress	Cupressus macrocarpa	24	2					
055	Sargent cypress	Cupressus sargentii	24	2					
057	redcedar / juniper	Juniperus	$9 \mathrm{E}, 23 \mathrm{~W}$	2	X	X			X
058	Pinchot juniper	Juniperus pinchotii	23	2				X	
059	redberry juniper	Juniperus coahuilensis	23	2				X	X
061	Ashe juniper	Juniperus ashei	9	2					X
062	California juniper	Juniperus californica	23	2			X	X	
063	alligator juniper	Juniperus deppeana	23	2				X	X
064	western juniper	Juniperus occidentalis	23	2			X	X	
065	Utah juniper	Juniperus osteosperma	23	2			X	X	
066	Rocky Mountain juniper	Juniperus scopulorum	$9 \mathrm{E}, 23 \mathrm{~W}$	2	X		X	X	X
067	southern redcedar	Juniperus virginiana var. silicicola	9	2					X
068	eastern redcedar	Juniperus virginiana	9	2	X	X		X	X
069	oneseed juniper	Juniperus monosperma	23	2				X	X
070	larch (introduced)	Larix	9	2	X	X			
071	tamarack (native)	Larix laricina	$9 \mathrm{E}, 24 \mathrm{~W}$	2	X	X			
072	subalpine larch	Larix lyallii	24	2			X	X	
073	western larch	Larix occidentalis	19	2			X	X	
081	incense-cedar	Calocedrus decurrens	20	2			X	X	
090	spruce spp.	Picea	6	2	X	X			X
091	Norway spruce	Picea abies	9	2	X	X			X
092	Brewer spruce	Picea breweriana	18	2			X		
093	Engelmann spruce	Picea engelmannii	$9 \mathrm{E}, 18 \mathrm{~W}$	2	X		X	X	
094	white spruce	Picea glauca	$6 \mathrm{E}, 18 \mathrm{~W}$	2	X	X	X	X	X
095	black spruce	Picea mariana	$6 \mathrm{E}, 23 \mathrm{~W}$	2	X	X	X		X
096	blue spruce	Picea pungens	$9 \mathrm{E}, 18 \mathrm{~W}$	2	X	X		X	X
097	red spruce	Picea rubens	6	2		X			X
098	Sitka spruce	Picea sitchensis	17	2			X		
101	whitebark pine	Pinus albicaulis	24	1			X	X	
102	bristlecone pine	Pinus aristata	24	1			X	X	
103	knobcone pine	Pinus attenuata	24	1			X		
104	foxtail pine	Pinus balfouriana	24	1			X	X	
105	jack pine	Pinus banksiana	5	1	X	X			

SPCD	COMMON_NAME	SCIENTIFIC NAME	SPGRPCD	MAJGRP	Occurrence by Research Station				
					NCRS	NERS	PNWRS	RMRS	SRS
106	common pinyon	Pinus edulis	23	1			X	X	X
107	sand pine	Pinus clausa	3	1					X
108	lodgepole pine	Pinus contorta	21	1			X	X	
109	Coulter pine	Pinus coulteri	24	1			X		
110	shortleaf pine	Pinus echinata	2	1	X	X			X
111	slash pine	Pinus elliottii	1	1					X
112	Apache pine	Pinus engelmannii	24	1				X	
113	limber pine	Pinus flexilis	24	1	X		X	X	X
114	southwestern white pine	Pinus strobiformis	24	1				X	
115	spruce pine	Pinus glabra	3	1					X
116	Jeffrey pine	Pinus jeffreyi	11	1			X	X	
117	sugar pine	Pinus lambertiana	14	1			X	X	
118	Chihuahua pine	Pinus leiophylla var. chihuahuana	24	1				X	
119	western white pine	Pinus monticola	15	1			X	X	
120	bishop pine	Pinus muricata	24	1			X		
121	longleaf pine	Pinus palustris	1	1					X
122	ponderosa pine	Pinus ponderosa	$9 \mathrm{E}, 11 \mathrm{~W}$	1	X		X	X	X
123	Table Mountain pine	Pinus pungens	3	1		X			X
124	Monterey pine	Pinus radiata	24	1			X		
125	red pine	Pinus resinosa	4	1	X	X			X
126	pitch pine	Pinus rigida	3	1		X			X
127	gray pine	Pinus sabiniana	24	1			X		
128	pond pine	Pinus serotina	3	1		X			X
129	eastern white pine	Pinus strobus	4	1	X	X			X
130	Scotch pine	Pinus sylvestris	$3 \mathrm{E}, 13 \mathrm{~W}$	1	X	X	X	X	X
131	loblolly pine	Pinus taeda	2	1	X	X			X
132	Virginia pine	Pinus virginiana	3	1	X	X			X
133	singleleaf pinyon	Pinus monophylla	23	1			X	X	
134	border pinyon	Pinus discolor	23	1				X	
135	Arizona pine	Pinus arizonica	11	1				X	
136	Austrian pine	Pinus nigra	9	1	X	X		X	X
137	Washoe pine	Pinus washoensis	24	1				X	
138	four-leaf pine	Pinus quadrifolia	24	1					
139	Torreya pine	Pinus torreyana	24	1					
140	Mexican pinyon pine	Pinus cembroides	24	1				X	X
142	Great Basin bristlecone pine	Pinus longaeva	24	1				X	
143	Arizone pinyon pine	Pinus monophylla var. fallax	24	1				X	
201	bigcone Douglas-fir	Pseudotsuga macrocarpa	24	2			X		
202	Douglas-fir	Pseudotsuga menziesii	$9 \mathrm{E}, 10 \mathrm{~W}$	2	X	X	X	X	
211	redwood	Sequoia sempervirens	16	2			X		
212	giant sequoia	Sequoiadendron giganteum	24	2			X		
221	baldcypress	Taxodium distichum	8	2	X	X			X
222	pondcypress	Taxodium ascendens	8	2					X
231	Pacific yew	Taxus brevifolia	23	2			X	X	
241	northern white-cedar	Thuja occidentalis	9	2	X	X			X
242	western redcedar	Thuja plicata	22	2			X	X	
251	California torrey (nutmeg)	Torreya californica	24	2			X		
252	Florida torreya	Torreya taxifolia	9	2					X
260	hemlock spp.	Tsuga	7	2	X				X
261	eastern hemlock	Tsuga canadensis	7	2	X	X			X
262	Carolina hemlock	Tsuga caroliniana	7	2					X
263	western hemlock	Tsuga heterophylla	13	2			X	X	
264	mountain hemlock	Tsuga mertensiana	24	2			X	X	
270	Australian pine	Casuarina	$9 \mathrm{E}, 24 \mathrm{~W}$	2					X
299	Unknown dead conifer	Unknown	$9 \mathrm{E}, 24 \mathrm{~W}$	2	X	X	X	X	X

SPCD	COMMON_NAME	SCIENTIFIC NAME	SPGRPCD	MAJGRP	Occurrence by Research Station				
					NCRS	NERS	PNWRS	RMRS	SRS
300	acacia	Acacia	$41 \mathrm{E}, 48 \mathrm{~W}$	3			X		
310	maple	Acer	31	4	X	X			X
311	Florida maple	Acer barbatum	31	4					X
312	bigleaf maple	Acer macrophyllum	47	3			X		X
313	boxelder	Acer negundo	41	3	X	X	X	X	X
314	black maple	Acer nigrum	31	4	X	X			X
315	striped maple	Acer pensylvanicum	43	3	X	X			X
316	red maple	Acer rubrum	32	3	X	X			X
317	silver maple	Acer saccharinum	32	3	X	X			X
318	sugar maple	Acer saccharum	31	4	X	X			X
319	mountain maple	Acer spicatum	43	4	X	X			X
320	Norway maple	Acer platanoides	31	4	X	X			X
321	Rocky Mountain maple	Acer glabrum	$43 \mathrm{E}, 48 \mathrm{~W}$	4	X		X		
322	bigtooth maple	Acer grandidentatum	48	4			X	X	
323	chalk maple	Acer leucoderme	31	4					X
330	buckeye, horsechestnut	Aesculus	$41 \mathrm{E}, 47 \mathrm{~W}$	3	X	X	X		X
331	Ohio buckeye	Aesculus glabra	$41 \mathrm{E}, 48 \mathrm{~W}$	3	X	X			X
332	yellow buckeye	Aesculus flava	41	3		X			X
333	California buckeye	Aesculus californica	48	3			X		
334	Texas buckeye	Aesculus glabra var. arguta	41	3	X				X
341	ailanthus	Ailanthus altissima	$43 \mathrm{E}, 47 \mathrm{~W}$	4	X	X			X
345	mimosa, silktree	Albizia julibrissin	43	3	X				X
351	red alder	Alnus rubra	45	3			X	X	X
352	white alder	Alnus rhombifolia	47	3			X	X	
355	European alder	Alnus glutinosa	$41 \mathrm{E}, 47 \mathrm{~W}$	3	X				X
356	serviceberry	Amelanchier	43	4	X	X			X
361	Pacific madrone	Arbutus menziesii	47	4			X	X	
367	pawpaw	Asimina triloba	43	3	X	X			X
370	birch spp.	Betula	41	4	X	X			X
371	yellow birch	Betula alleghaniensis	30	4	X	X			X
372	sweet birch	Betula lenta	42	4	X	X			X
373	river birch	Betula nigra	41	3	X	X			X
374	water birch	Betula occidentalis	$41 \mathrm{E}, 47 \mathrm{~W}$	3	X		X		X
375	paper birch	Betula papyrifera	$41 \mathrm{E}, 47 \mathrm{~W}$	3	X	X		X	
378	northwestern paper birch	Betula utahensis	47	3			X		
379	gray birch	Betula populifolia	41	3	X	X			X
381	chittamwood,gum bumelia	Sideroxylon lanuginosum sub. lanuginosum	43	4	X				X
391	American hornbeam,musclewood	Carpinus caroliniana	43	4	X	X			X
400	hickory spp.	Carya	29	4	X	X			X
401	water hickory	Carya aquatica	29	4	X				X
402	bitternut hickory	Carya cordiformis	29	4	X	X			X
403	pignut hickory	Carya glabra	29	4	X	X			X
404	pecan	Carya illinoinensis	29	4	X	X		X	X
405	shellbark hickory	Carya laciniosa	29	4	X	X			X
406	nutmeg hickory	Carya myristiciformis	29	4					X
407	shagbark hickory	Carya ovata	29	4	X	X			X
408	black hickory	Carya texana	29	4	X				X
409	mockernut hickory	Carya alba	29	4	X	X			X
410	sand hickory	Carya pallida	29	4					X
421	American chestnut	Castanea dentata	43	3	X	X			X
422	Allegheny chinkapin	Castanea pumila	41	3					X
423	Ozark chinkapin	Castanea pumila var. ozarkensis	43	3	X				X
431	giant chinkapin,golden chinkapin	Chrysolepis chrysophylla var. chrysophylla	47	3			X		
450	catalpa spp.	Catalpa	42	4	X	X			X
451	southern catalpa	Catalpa bignonioides	43	4					X

SPCD	COMMON_NAME	SCIENTIFIC NAME	SPGRPCD	MAJGRP	Occurrence by Research Station				
					NCRS	NERS	PNWRS	RMRS	SRS
452	northern catalpa	Catalpa speciosa	41	3	X	X			X
460	hackberry spp.	Celtis	41	3	X	X			X
461	sugarberry	Celtis laevigata	41	3	X	X			X
462	hackberry	Celtis occidentalis	41	3	X	X			X
463	netleaf hackberry	Celtis laevigata var. reticulata	41	3	X				X
471	eastern redbud	Cercis canadensis	43	3	X	X			X
475	curlleaf mountain-mahogany	Cercocarpus ledifolius	48	4			X	X	
481	yellowwood	Cladrastis kentukea	43	4		X			X
491	flowering dogwood	Cornus florida	42	4	X	X			X
492	Pacific dogwood	Cornus nuttallii	47	4			X	X	
500	hawthorn	Crataegus	43	4	X	X			X
501	cockspur hawthorn	Crataegus crus-galli	43	4	X				X
502	downy hawthorn	Crataegus mollis	43	4	X				X
510	eucalyptus	Eucalyptus	47	4			X	X	X
521	common persimmon	Diospyros virginiana	42	4	X	X			X
531	American beech	Fagus grandifolia	33	4	X	X			X
540	ash spp.	Fraxinus	36	3	X	X			X
541	white ash	Fraxinus americana	36	4	X	X			X
542	Oregon ash	Fraxinus latifolia	47	4			X		
543	black ash	Fraxinus nigra	36	3	X	X			X
544	green ash	Fraxinus pennsylvanica	36	4	X	X		X	X
545	pumpkin ash	Fraxinus profunda	36	3	X	X			X
546	blue ash	Fraxinus quadrangulata	36	4	X	X			X
547	velvet ash	Fraxinus velutina	47	4				X	X
548	Carolina ash	Fraxinus caroliniana	36	4					X
551	waterlocust	Gleditsia aquatica	42	4	X				X
552	honeylocust	Gleditsia triacanthos	42	4	X	X		X	X
555	loblolly-bay	Gordonia lasianthus	41	3					X
571	Kentucky coffeetree	Gymnocladus dioicus	42	4	X	X			X
580	silverbell	Halesia	41	3					X
591	American holly	Ilex opaca	42	4	X	X			X
600	walnut	Juglans	$41 \mathrm{E}, 47 \mathrm{~W}$	4	X	X	X	X	X
601	butternut	Juglans cinerea	41	3	X	X			X
602	black walnut	Juglans nigra	40	4	X	X		X	X
603	California black walnut	Juglans hindsii	47	4					
604	southern California black walnut	Juglans californica	47	4					
605	Texas walnut	Juglans microcarpa	$41 \mathrm{E}, 47 \mathrm{~W}$	4					X
611	sweetgum	Liquidambar styraciflua	34	3	X	X			X
621	yellow-poplar	Liriodendron tulipifera	39	3	X	X			X
631	tanoak	Lithocarpus densiflorus	47	4			X		
641	Osage-orange	Maclura pomifera	43	4	X	X			X
650	magnolia spp.	Magnolia	41	3		X			X
651	cucumbertree	Magnolia acuminata	41	3	X	X			X
652	southern magnolia	Magnolia grandiflora	41	3					X
653	sweetbay	Magnolia virginiana	41	3		X			X
654	bigleaf magnolia	Magnolia macrophylla	43	4					X
655	mountain magnolia	Magnolia fraseri	41	3		X			X
660	apple spp.	Malus	$43 \mathrm{E}, 47 \mathrm{~W}$	4	X	X	X	X	X
661	Oregon crab apple	Malus fusca	47	4					
680	mulberry spp.	Morus	42	4	X	X		X	X
681	white mulberry	Morus alba	42	4	X	X			X
682	red mulberry	Morus rubra	42	4	X	X			X
691	water tupelo	Nyssa aquatica	35	3	X				X
692	Ogechee tupelo	Nyssa ogeche	43	4					X
693	blackgum	Nyssa sylvatica	35	3	X	X			X
694	swamp tupelo	Nyssa biflora	35	3	X	X			X

$\left.\begin{array}{lllllllll}\hline & & & & & & \\ \hline & & & & \\ \text { Occurrence by } \\ \text { Research Station }\end{array}\right]$

SPCD	COMMON_NAME	SCIENTIFIC NAME	SPGRPCD	MAJGRP	Occurrence by Research Station				
					NCRS	NERS	PNWRS	RMRS	SRS
825	swamp chestnut oak	Quercus michauxii	25	4	X	X			X
826	chinkapin oak	Quercus muehlenbergii	25 E, 48 W	4	X	X		X	X
827	water oak	Quercus nigra	28	4		X			X
828	Nuttall oak	Quercus buckleyi	28	4					X
829	Mexican blue oak	Quercus oblongifolia	48	4				X	
830	pin oak	Quercus palustris	28	4	X	X			X
831	willow oak	Quercus phellos	28	4	X	X			X
832	chestnut oak	Quercus prinus	27	4	X	X			X
833	northern red oak	Quercus rubra	26	4	X	X			X
834	Shumard oak	Quercus shumardii	26	4	X	X			X
835	post oak	Quercus stellata	27	4	X	X			X
836	Delta post oak	Quercus similis	27	4					X
837	black oak	Quercus velutina	28	4	X	X			X
838	live oak	Quercus virginiana	27	4					X
839	interior live oak	Quercus wislizeni	48	4			X		
840	dwarf post oak	Quercus margarettiae	27	4	X				X
841	dwarf live oak	Quercus minima	22	4					X
842	bluejack oak	Quercus incana	43	4					X
843	silverleaf oak	Quercus hypoleucoides	48	4				X	X
844	Oglethorpe oak	Quercus oglethorpensis	27	4					X
845	Dwarf chinakapin oak	Quercus prinoides	43	4	X				X
846	gray oak	Quercus grisea	48	4				X	X
850	oak -- evergreen	Quercus	48	4				X	X
901	black locust	Robinia pseudoacacia	$42 \mathrm{E}, 47 \mathrm{~W}$	4	X	X	X		X
902	New Mexico locust	Robinia neomexicana	$48 \mathrm{E}, 49 \mathrm{~W}$	4			X	X	X
911	Palmetto spp.	Sabal	$41 \mathrm{E}, 47 \mathrm{~W}$	3					X
919	western soapberry	Sapindus saponaria var. drummondii	43	4	X				X
920	willow	Salix	$43 \mathrm{E}, 48 \mathrm{~W}$	3	X	X	X		X
921	peachleaf willow	Salix amygdaloides	43	3	X				X
922	black willow	Salix nigra	41	3	X	X			X
927	white willow	Salix alba	41	3	X				X
931	sassafras	Sassafras albidum	41	3	X	X			X
935	American mountain-ash	Sorbus americana	43	4	X	X			X
936	European mountain-ash	Sorbus aucuparia	43	4		X			X
950	basswood spp.	Tilia	38	3	X	X			X
951	American basswood	Tilia americana	38	3	X	X			X
952	white basswood	Tilia americana var. heterophylla	38	3	X	X			X
953	Carolina basswood	Tilia americana var. caroliniana	38	3					X
970	elm spp.	Ulmus	41	3	X	X			X
971	winged elm	Ulmus alata	41	4	X	X			X
972	American elm	Ulmus americana	41	3	X	X		X	X
973	cedar elm	Ulmus crassifolia	41	3					X
974	Siberian elm	Ulmus pumila	41	3	X			X	X
975	slippery elm	Ulmus rubra	41	3	X	X			X
976	September elm	Ulmus serotina	41	3					X
977	rock elm	Ulmus thomasii	42	4	X	X			X
981	California-laurel	Umbellularia californica	42	4			X		
989	mangrove	Rhizophora mangle	43	4					X
990	tesota, Arizona-ironwood	Olneya tesota	$43 \mathrm{E}, 48 \mathrm{~W}$	4			X		
991	saltcedar	Tamarix	$41 \mathrm{E}, 47 \mathrm{~W}$	3					
992	melaleuca	Melaleuca quinquenervia	$41 \mathrm{E}, 47 \mathrm{~W}$	3					X
993	chinaberry	Melia azedarach	43	4					X
994	Chinese tallowtree	Triadica sebifera	43	4					X
995	tung-oil-tree	Vernicia fordii	43	4					X
996	smoketree	Cotinus obovatus	43	4	X				X
997	Russian-olive	Elaeagnus angustifolia	43	3	X				X
999	Unknown dead hardwood	Unknown	$43 \mathrm{E}, 47 \mathrm{~W}$	3	X	X	X		X

Appendix G-Tree Species Group Codes

Species group name Code
Softwood species groups
Eastern softwood species groups
Longleaf and slash pines 1
Loblolly and shortleaf pines 2
Other yellow pines 3
Eastern white and red pines 4
Jack pine 5
Spruce and balsam fir 6
Eastern hemlock 7
Cypress 8
Other eastern softwoods 9
Western softwood species groups
Douglas-fir 10
Ponderosa and Jeffrey pines 11
True fir 12
Western hemlock 13
Sugar pine 14
Western white pine 15
Redwood 16
Sitka spruce 17
Engelmann and other spruces 18
Western larch 19
Incense-cedar 20
Lodgepole pine 21
Western redcedar 22
Western woodland softwoods 23
Other western softwoods 24
Hardwood species groups
Eastern hardwood species groups
Select white oaks 25
Select red oaks 26
Other white oaks 27
Other red oaks 28
Hickory 29
Yellow birch 30
Hard maple 31
Soft maple 32
Beech 33
Sweetgum 34
Tupelo and blackgum 35
Ash 36
Cottonwood and aspen 37
Basswood 38
Yellow-poplar 39
Black walnut 40
Other eastern soft hardwoods 41
Other eastern hard hardwoods 42
Eastern noncommercial hardwoods 43
Western hardwood species groups
Cottonwood and aspen 44
Red alder 45
Oak 46
Other western hardwoods 47
Western woodland hardwoods 48

[^0]: ${ }^{1}$ The plot size of a 14.0 inch tree on a single 37.5 BAF (English) prism plot would be: ((14.0 inches) $\left.{ }^{2} \mathrm{x} \pi\right) /\left(37.5 \mathrm{ft}^{2} /\right.$ acre $\left.\times 2^{2} \mathrm{x}\left((12 \text { inches })^{2}\right) / 1 \mathrm{ft}^{2}\right)=.0285$ acres.

