Perspective
Economics of Preventing Hospital Infection
Nicholas Graves*
*Centre for Health Research and Public Health, Queensland University of Technology, Kelvin
Grove, Brisbane, Australia

Online Appendices

Appendix 1. Calculating the gross costs of hospital-acquired infection

Assumptions

Available bed-days $=$ 525,000
Length of stay for patients without hospital-acquired infection (HAI) $=10$ days
Length of stay for patients with HAI = 15 days
Revenue earned per patient treated $=\$ 1,250$
Calculations

(1) Incidence of wound infection	10%	5%	0%
(2) Total admissions			
(3) Number of patients that acquire $\mathrm{HAI}^{\mathrm{b}}$	50,000	51,220	52,500
(4) Number of patients that do not acquire $\mathrm{HAI}^{\mathrm{C}}$	5,000	2,561	0
(5) Bed-days used by those that do not acquire $\mathrm{HAI}^{\mathrm{d}}$	45,000	48,659	52,500
(6) Bed-days used by those that acquire $\mathrm{HAI}^{\mathrm{e}}$	450,000	486,590	525,000
(7) Revenue earned from all admissions			
(8) Gross cost (loss of revenue due to the incidence of HAI)			

${ }^{a}$ The number of admissions that can be treated with the 525,000 bed-days available at that incidence rate. We calculate this figure by dividing 525,000 (available bed-days) by the rate of infection times 15 days plus the rate of noninfection times 10 days. For example, at 10% incidence, $525,000 /([10 \% \times 15]+[90 \% \times 10])=525,000 /(1.5+9)=50,000$.
${ }^{\mathrm{b}}$ Calculated by (1) x (2).
${ }^{\text {c Calculated by (2) }}$ - (3).
${ }^{\text {d }}$ Calculated by (4) x 10 days.
${ }^{\mathrm{e}}$ Calculated by (3) x 15 days.
${ }^{\mathrm{f}}$ Calculated by (2) x $\$ 1,250$.
${ }^{8}$ Calculated by ([7] at 0\%) - ([7] at 10\%) and ([7] at 0\%) - ([7] at 5\%); these data are used to plot Line B1 in Figure 1.

Appendix 2. Calculating the net costs of hospital-acquired infection

Assumptions

The change in the variable costs attributable to a case of hospital-acquired infection (HAI) is $\$ 100$. The change in variable costs attributable to a new admission is $\$ 750$.

Calculations

Incidence of wound infection	10\%	5\%	0\%
(1) Total admissions achieved ${ }^{\text {a }}$	50,000	51,220	52,500
(2) Extra cases that could be treated if incidence was $0 \%{ }^{\text {b }}$	2,500	1,280	0
(3) Number that acquire $\mathrm{HAI}^{\text {a }}$	5,000	2,561	0
(4) Lost revenue (gross cost of HAI) ${ }^{\text {a }}$	\$3,125,000	\$1,600,000	\$0
(5) Additional variable costs if extra cases were treated ${ }^{\text {c }}$	\$1,875,000	\$960,000	\$0
(6) Incremental variable costs for each case of infection ${ }^{\text {d }}$	\$500,000	\$256,100	\$0
(7) Net cost of $\mathrm{HAI}^{\mathrm{e}}$	\$1,750,000	\$896,100	\$0

${ }^{\text {a }}$ See Appendix 1 for details of how this figure is derived.
${ }^{\mathrm{b}}$ Calculated by ([1] at 0\%) - ([1] at 10%) and ([1] at 0\%) - ([1] at 5\%).
${ }^{\text {c }}$ Calculated by (2) x $\$ 750$.
${ }^{\mathrm{d}}$ Calculated by (3) x $\$ 100$.
${ }^{\mathrm{e}}$ Calculated by $(4)+(6)-(5)$; these data are used to plot Line B2 in Figure 1.

Appendix 3. The values for lines A, B2, and C between incidence rates of 2.9\% and 3.4\%

Notes

1. Reducing incidence from 3.3% to 3.2% causes the net cost of hospital infection (line B2 on Figure 1) to fall from $\$ 596,532$ to $\$ 578,740$, an incremental savings of $\$ 17,792$.
2. The cause of this reduction in incidence from 3.3% to 3.2% is an incremental investment in prevention (line A on Figure 1). The costs of prevention rise from $\$ 626,157$ to $\$ 643,487$, an incremental cost of $\$ 17,330$.
3. Costs have increased by $\$ 17,330$ but have been offset by a saving of $\$ 17,792$. Total costs (line C on Figure 1) have fallen from $\$ 1,222,689$ to $\$ 1,222,227$, a net saving of $\$ 462$.
4. Economists would support the practices that lead to the reduction in rates from 3.3% to 3.2% as savings exceed costs by $\$ 462$.

Notes

1. Reducing incidence beyond the optimum, from 3.1% to 3.0%, also reduces the net costs of hospital infection (line B2 on Figure 1) from $\$ 560,931$ to $\$ 543,103$, an incremental saving of \$17,827.
2. The cost of achieving this reduction is the change in costs of prevention (line A on Figure 1) from $\$ 661,297$ to $\$ 679,599$, an incremental cost of $\$ 18,302$.
3. In this case, in which rates of hospital infection are lower than the optimum, as defined by point X , the costs of the reduction are not completely offset by the benefits. Total cost (line C on Figure 1) rises from $\$ 1,222,227$ to $\$ 1,222,703$, an increase of $\$ 476$.
4. Although infection rates are further reduced, economists would not support the practices that lead to this reduction in incidence from 3.1% to 3.0%. More has been lost than has been gained with costs exceeding savings by $\$ 476$.

Incidence	Net cost of infection and potential cost saving (line B1)	Cost of prevention (line A)	Total cost (line C)	Incremental cost saving	Incremental cost	Change in total cost
2.90\%	\$525,259	\$698,408	\$1,223,667			
				\$17,845	\$18,809	\$964
3.00\%	\$543,103	\$679,599	\$1,222,703			
				\$17,827	\$18,302	\$476
3.10\%	\$560,931	\$661,297	\$1,222,227			
Point X				\$17,810	\$17,810	\$0
3.20\%	\$578,740	\$643,487	\$1,222,227			
				\$17,792	\$17,330	-\$462
3.30\%	\$596,532	\$626,157	\$1,222,689			
				\$17,775	\$16,863	-\$912
3.40\%	\$614,307	\$609,294	\$1,223,601			

Appendix 4. Calculating Incremental Cost-Effectiveness Ratios (ICERs)

Compared to Status Quo

ICER for option 6 as compared to status quo $=\$ 154^{\text {a }}$
ICER for option 3 as compared to status quo = \$434
ICER for option 2 as compared to status quo $=\$ 192$
ICER for option 5 as compared to status quo $=\$ 236$
ICER for option 1 as compared to status quo $=\$ 826$
ICER for option 4 as compared to status quo $=\$ 225$

Compared to Option 6

ICER for option 3 as compared to option $6^{\mathrm{C}}=-\$ 304$
ICER for option 2 as compared to option $6^{d}=\$ 245$
ICER for option 5 as compared to option $6=\$ 340$
ICER for option 1 as compared to option $6^{\mathrm{C}}=-\$ 651$
ICER for option 4 as compared to option $6=\$ 294$

Compared to Option 2

ICER for option 5 as compared to option $2=\$ 1,664$
ICER for option 4 as compared to option $6^{e}=\$ 406$
${ }^{\text {a }}$ The most cost-effective as compared to status quo.
${ }^{\text {b }}$ IC, incremental cost; IB, incremental benefit.
'More costly and less effective than another available option.
${ }^{\mathrm{d}}$ The most cost-effective as compared to option 6 .
${ }^{\text {e }}$ The most cost-effective as compared to option 2.
$\mathrm{IC}^{\underline{\mathrm{b}}}$ of option $6(\$ 299,611)$ - IC of the status quo (\$0)
IB $^{\mathrm{b}}$ of option 6 (1,942 patients) - IB of the status quo (0 patients)
IC of option $3(\$ 523,487)$ - IC of the status quo (\$0)
IB of option 3 (1,205 patients) - IB of the status quo (0 patients)
IC of option $2(\$ 643,487)$ - IC of the status quo (\$0)
IB of option 2 (3,346 patients) - IB of the status quo (0 patients)
IC of option $5(\$ 812,457)$ - IC of the status quo (\$0)
IB of option 5 (3,348 patients) - IB of the status quo (0 patients)
IC of option $1(\$ 874,512)$ - IC of the status quo (\$0)
IB of option 1 (1,059 patients) - IB of the status quo (0 patients)
IC of option $6(\$ 892,931)$ - IC of the status quo (\$0)
IB of option 6 (3,960 patients) - IB of the status quo (0 patients)

IC of option $3(\$ 523,487)$ - IC of option $6(\$ 299,611)$
IB of option 3 (1,205 patients) - IB of option 6 (1,942 patients)
IC of option $2(\$ 643,487)$ - IC of option $6(\$ 299,611)$
IB of option 2 (3,346 patients) - IB of option 6 (1,942 patients)
IC of option $5(\$ 812,457)$ - IC of option $6(\$ 299,611)$
IB of option 5 (3,348 patients) - IB of option 6 (1,942 patients)
IC of option $1(\$ 874,512)$ - IC of option $6(\$ 299,611)$
IB of option 1 (1,059 patients) - IB of option 6 (1,942 patients)
IC of option $6(\$ 892,931)$ - IC of option $6(\$ 299,611)$
IB of option 6 (3,960 patients) - IB of option 6 (1,942 patients)

IC of option $5(\$ 812,457)$ - IC of option $2(\$ 643,487)$
IB of option 5 (3,448 patients) - IB of option 2 (3,346 patients)
IC of option $4(\$ 892,931)$ - IC of option $2(\$ 643,487)$
IB of option 4 (3,960 patients) - IB of option 2 (3,346 patients)

