Distribution and Abundance of Juvenile Salmonids off Oregon and Washington, 1981-1985

Wiliam G. Pearcy
Joseph P. Fisher

NOAA Technical Report NMFS

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statisties on various phases of the industry.

The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS; intensive scientific reports on studies of restricted scope; papers an applied fishery problems; technical reports of general interest intended to aid conservation and management; reports that review in considerabie detail and at a high technical level certain broad areas of research; and technical papers originating in economics studies and from management investigations. Since this is a formal series, all submitted papers receive peer review and those accepted receive professional editing before publication.

Copies of NOAA Technical Reports NMFS are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Although the contents have not been copyrighted and may be reprinted entirely, reference to source is appreciated.
69. Environmental quality and aquaculture systems: Proceedings of the thirteenth U.S.-Japan meeting on aquaculture, Mie, Japan, October 24-25, 1984, edited by Carl J. Sindermann. October 1988, 50 p.
70. New and innovative advances in biology/engineering with potential for use in aquaculture: Proceedings of the fourteenth U.S-Japan meeting on aquaculture, Woods Hole, Massachusetts, October 16-17, 1985, edited by Albert K. Sparks. November 1988, 69 p.
71. Greenland turbot Reinhardtius hippoglosoides of the eastem Bering Sea and Aleutian Islands region, by Miles S. Alton, Richard G. Bakkala, Gary E. Walters, and Peter T. Munro. December 1988, 31 p.
72. Age determination methods for northwest Atlantic species, edited by Judy Penttila and Louise M. Dery. December 1988, 135 p.
73. Marine flora and fauna of the Eastern United States. Mollusca: Cephalopoda, by Michael Vecchione, Clyde E. E. Roper, and Michael J Sweeney. February 1989, 23 p.
74. Proximate composition and fatty acid and cholesterol content of 22 species of northwest Adiantic finfish, by Judith Krzynowek, Jenny Murphy, Richard S. Maney, and Lauric J. Panunzio. May 1989, 35 p.
75. Codend selection of winter flounder Pseubopleuronectes amarianus, by David G. Simpson. March 1989, 10 p.
76. Analysis of fish diversion efficiency and survivorship in the fish return system at San Onofre Nuclear Generating Station, by Milton S. Love, Meenu Sandhu, Jeffrey Stein, Kevin T. Herbinson, Robert H. Moore, Michael Mullin, and John S. Stephens In April 1989, 16 p.
77. Illustrated key to the genera of free-living marine nematodes of the order Enoplida, by Edwin J. Keppner and Armen C. Tarjan. July 1989, 26 p.
78. Survey of fishes and water properties of south San Francisco Bay, California, 1973-82, by Donald E. Fearson. August 1989, 21 p.
79. Species composition, distribution, and relative abundance of fishes in the coastal habitat off the southeastern United States, by Charles A. Wenner and George R. Sedberry. July 1989, 49 p.
80. Laboratory guide to early life history stages of northeast Pacific fishes, by Ann C. Matarese, Arthur W. Kendall Jr, Deborah M. Blood, and

Beverly M. Vinter October 1989, 651 p.
81. Catch-per-unit-effort and biological parameters from the Massachusetts coastal lobster (Homarus americamus) resource: Description and Trends, by Bruce T. Estrella and Daniel J. McKiernan. September 1989, 21 p.
82. Synopsis of biological data on the cobia Ractoventron canadiom (Pisces: Rachycentridae), by Rosalie Vaught Shaffer and Eugene L. Nakamura. December 1989, 21 p.
83. Celaphopods from the stomachis of sperm whales taken off Califoriiia, by Clifford H. Fiscus, Dale W. Rice, and Allen A. Wolman. December 1989, 12 p.
84. Results of abundance surveys of juvenile Adantic and Gulf meahaden, Breveortia tyrannus and B. patroness, by Dean W. Ahrenholz, James F. Guthrie, and Charles W. Krouse. December 1989, 14 p.
85. Marine farming and enhancement: Proceedings of the Fifteenth U.S--Japan Meeting on Aquaculture, Kyoto, Japan, October 22-23, 1986, edited by Albert K. Sparks: March 1990, 127 p.
86. Benthic macrofauna and habitat monitoring on the continental shelf of the northeastern United Seates. I. Biomass, by Frank Steimle. February 1990,28 p.
87. Life history aspects of 19 reckfish species (Scorpaenidae: Sobastrs) from the Southern California Bight, by Milton S. Love, Parnela. Morris, Merritt McGrae, and Robson Collins. February 1990, 38 p.
88. Early-life-history profiles, seasonal abundance, and distribution of four species of clupeid larvac from the northern Gulf of Mexico, 1982 and 1983, by Richarci F. Shaw and David L. Drulinger April 1990, 60 p.
89. Early-life-history profiles, seasonal abundance, and distribution of four species of carangid larvae off Louisiana, 1982 and 1983, by Richard F. Shaw and David. L. Drullinger. April 1990, 37 p.
90. Elasmobranchs as living resources: Advances in the biology, ecology; systematics, and the status of the fisheries, edited by Harold L. Pratt Jr, Samuel H. Gruber, and Toru Taniuchi. July 1990, 518 p.
91. Marine flora and fauna of the northeastern United States, Echinodermata: Crinoidea, by Charles G. Messing and John H. Dearborn. August 1990, 30 p .

Distribution and Abundance of Juvenile Salmonids off Oregon and Washington, 1981-1985

William G. Pearcy
Joseph P. Fisher

November 1990

[^0]The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprictary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

Text printed on recycled paper

Distribution and Abundance of Juvenile Salmonids off Oregon and Washington, 1981-1985

W.G. PEARCY and J.P. FISHER
College of Oceanography
Oregon State University
Corvallis, OR 97331-5503

Abstract

This report is a summary of the results of 883 purse seine sets made for juvenile salmonids during 15 cruises off the coasts of Oregon and Washington during the springs and summers of 1981-1985. Juvenile coho salmon (Oncorhynchus kisutch) occurred most frequently, followed by chinook salmon (O. tshawytscha). The juveniles of these two species co-occurred more frequently than expected. Juvenile chum, pink and sockeye salmon (O. keta, O. gorbuscha, and O. nerka), steelhead (O. mykiss) and cutthroat trout (O. clarki clarki) were caught much less frequently and in lower numbers than coho or chinook salmon. We found no evidence of large schools of juvenile salmonids. A northerly movement of juvenile coho salmon wâs suggested by decreased catches off Oregon and increased catches off Washington between early and late summer. Highest catch per set of juvenile coho salmon was usually found inshore of 37.2 km . Juvenile chinook salmon were usually found within 27.9 km of the coast. Juvenile salmonids were found over a broad range of surface salinities and temperatures. High catches of juvenile coho salmon occurred in both the low salinity waters of the Columbia River plume and in adjacent higher salinity waters. Preferences for specific salinities or temperatures were not obvious for any species, although catch rates of juvenile coho salmon were highest in years when chlorophyll content was also high. Based on expansions of fish with coded wire tags, we estimated that hatchery coho salmon smolts comprised 74%, on average, of the juvenile coho salmon catches. The remaining 26% were presumably wild fish or hatchery fish released as fingerlings. Hatchery coho salmon were caught roughly in proportion to the numbers released. However, hatchery fish from the Columbia River and private coastal facilities were caught at slightly higher rates while those from coastal Washington and public coastal Oregon hatcheries were caught at slightly lower rates than expected from the numbers released. No juvenile coho salmon with coded wire tags were caught that had originated from either California or Puget Sound hatcheries.

Introduction

Our purse seining cruises in the ocean off Oregon and Washington from 1981 to 1985 represent the most extensive and intensive sampling with fine-mesh purse seines in this region. This research has provided information on the distribution, abundance, migration, and growth of juvenile salmonids (Pearcy 1984, 1988; Chung 1985; Fisher and Pearcy 1988; Pearcy and Fisher 1988), on the distribution of nonsalmonid pelagic nekton (Brodeur and Pearcy 1986), on food habits and feeding rates of juvenile salmonids (Peterson et al. 1982; Brodeur et al. 1987a; Brodeur and Pearcy 1987 and unpubl. manuscr.; Brodeur 1989, 1990; Pearcy et al., in press), on the scyphozoans caught in the purse seines (Shenker 1984), on neustonic
fauna collected during these cruises (Brodeur et al. 1987b), and on the effects of the 1982-83 El Niño on the pelagic fauna (Pearcy et al. 1985; Pearcy and Schoener 1987).

In this report we summarize, for the first time, data on the distribution, abundance, and lengths of all seven species of juvenile salmonids (genus Oncorhynchus) - coho salmon (O. kisutch), chinook salmon (O. tshawytscha), chum salmon (O. keta), pink salmon (O. gorbuscha), sockeye salmon (O. nerka), steelhead (O. mykiss), and cutthroat trout (O. clarki clarki) -caught by purse seines in the ocean off Oregon and Washington 1981-1985. This report on juvenile salmonids complements the report by Brodeur and Pearcy (1986) on the nonsalmonid nekton caught in purse seines off Oregon and Washington during the same years.

Table 1
Total number (NO) and percent frequency of occurrence (FO) of juvenile salmonids in purse-seine sets in different months and years. Numbers of quantitative sets are given at the bottom for each cruise.

${ }^{a}$ This cruise extended from 29 May to 5 June and was restric:ed to a small area beyond the mouth of the Columbia River.

Methods

Salmonids were collected using 457- to $495-\mathrm{m}$ herring purse seines with $32-\mathrm{mm}$ mesh that fished to depths of 20 to 60 m . Although the depth that the seine fished varied among years, we have little evidence that this had a large influence on catches. Most salmon swim within the upper 20 m of the ocean, and catches of juvenile coho salmon in gill nets off Oregon were usually larger in the upper waters ($0-6 \mathrm{~m}$)
than in deeper waters (5-12 m) (Pearcy and Fisher 1988). Chinook salmon are probably the most likely to be undersampled by surface nets because maturing fish are often caught in deep water. However the first and third highest monthly catches of juvenile chinook salmon were during 1985 when a shallow net was used which fished to a depth of 25 m . Sets were usually made along east-west transects at stations about 9.3 km apart from about the 37 m contour out to 37 or 46 km off the coasts of Oregon and

Washington (Fig. 1). Actual locations of purse seine sets are shown in Figures 4-10. Sampling methods are described in more detail in Pearcy (1984) and Pearcy and Fisher (1988).

Juvenile salmonids in their first summer in the ocean were distinguished from older immature ocean age groups or from adult salmonids on the basis of length. For all species, except chinook salmon, there was usually a large gap between the length ranges of juvenile and adult fish which facilitated separation. Pink, sockeye, and chum salmon $\leqslant 300 \mathrm{~mm}$ fork length (FL) and steelhead $\leqslant 400$ mm FL were considered juveniles. Because cutthroat trout usually spend only one summer in the ocean before returning to fresh water (Giger 1972; Pearcy et al. in press) and scale data indicated that most were young fish in their initial ocean migration, they were not segregated into juvenile and adult fish. Owing to growth of juvenile coho salmon during the summer, the division between juveniles and adults for this species progressed from $300-320 \mathrm{~mm}$ FL in May to 420 mm FL in September. The varied life histories of different stocks of chinook salmon and yeararound releases from hatcheries resulted in a broad lengthrange for this species caught in the ocean. For purposes of this report all chinook salmon $\leqslant 400 \mathrm{~mm}$ FL were considered juveniles. This length range probably included most or all chinook salmon in their first summer in the ocean as well as many fish that entered the ocean the previous fall and winter. Generally the greatest numbers of chinook salmon were well below 400 mm FL.

Results and Discussion

Catch and Frequency of Occurrence by Species

The total numbers and frequencies of occurrence (F.O.) of all species of salmonids caught during each cruise, 1981-1985, are shown in Table 1. Coho salmon were by far the most numerous and most frequently occurring juvenile salmonid in the catches. A total of 6517 juvenile coho salmon were caught from 1981 through 1985. Juvenile coho salmon were the most numerous salmonid in 13 of 15 cruises. Chinook salmon were most abundant during September 1983 and pink salmon were most numerous in July 1984. Juvenile coho salmon were caught in over half the purse seine sets. The F.O. of coho salmon for all years and cruises averaged 58% and ranged from 35% in September 1983 to 96% in late May and early June 1985 off the Columbia River.

Numbers and F.O. of juvenile chinook salmon were usually second highest after coho salmon (Table 1). A total of 2085 juvenile chinook salmon were caught from 1981 through 1985. The F.O. of chinook salmon averaged 38% and ranged from 16% in September 1982 to 86% in May and early June 1985 off the mouth of the Columbia River. The F.O. of chinook salmon in August and September
were usually less than half the F.O. in May. This was a greater decrease in F.O. than that which occurred for coho salmon.

Generally chum salmon, steelhead, and cutthroat trout were much less numerous and frequent in catches than either coho or chinook salmon. Both steelhead and cutthroat trout were absent in catches during September; the former probably because they had already migrated out of coastal waters and the latter because they had re-entered fresh water (Pearcy et al., in press). Sockeye salmon were rare, except in June 1982, when they occurred in 20% of sets and in May 1983, when a large number occurred in a single set. Pink salmon also occurred infrequently, except in September 1982 and July and September 1984, when fairly large numbers were caught. However, even when large numbers of pink salmon were caught (July 1984), F.O. were much lower than those for coho salmon (21 vs. 52%).

Juvenile salmonids occurred frequently and comprised a large proportion of the total numbers of epipelagic nekton caught in purse seines off Oregon and Washington during the summer. Juvenile coho salmon was the first to fourth most abundant species of nekton in purse seine catches in June 1979-1985 (Pearcy and Schoener 1987). Chinook salmon ranked third to eighth in abundance in June. Combined F.O. of all salmonid species in purse seine sets were high, averaging 71% and ranging from 47% in September 1983 to 100% in May and carly June 1985 off the Columbia River mouth.

The relatively high average frequencies of occurrence of juvenile coho (58%) and chinook salmon (38%) and the relatively low numbers caught in individual purse seine sets (rarely more than 50 fish, and usually less than 6 fish per set [Fig. 2]) indicate that these species are fairly evenly dispersed in the shelf waters out to 37 km off Oregon and Washington and do not form large schools (see also Paszkowski and Olla 1985). The fairly even dispersal of coho and chinook salmon contrasts sharply with the very patchy distributions of schooling species such as Pacific herring (Clupea harengus pallasi), northern anchovy (Engraulis mordax), juvenile sablefish (Anoplopoma fimbria), jack mackerel (Trachurus symmetricus), Pacific mackerel (Scomber japonicus) and market squid (Loligo opalescens), which were all caught infrequently (average frequencies of occurrence 1979-1984 ranged from 6.9% for jack mackerel to 25.2% for market squid), but sometimes with thousands of individuals in a single set (see Brodeur and Pearcy 1986).

Catch per Set by Area

Average catches per set (CPUE) of each species of salmonid in three latitudinal regions (Washington, southern Washington and northern Oregon, and Oregon, [see Fig. 1]) for each cruise are presented in Table 2. The area off southern Washington and northern Oregon (lat. $46^{\circ} 45^{\prime}$ to $45^{\circ} 36^{\prime}$)

Table 2
Monthly mean catch/set (CPUE), numbers of juvenile salmonids and number of sets in three regions: off Washington, off southern Washington and northern Oregon, and off Oregon, 1981-1985. Blanks indicate no sampling.

Table 2 (continued)																	
	Lat		1981				1982			1983			1984			1985	
Area ${ }^{\text {a }}$			May	Jun	Jul	Aug	May	Jun	Sep	May	Jun	Sep	Jun	Jul	Sep	May-Jun	Jun
Cutthroat Trout																	
Off Washington	$48^{\circ} 23^{\prime}-$	CPUE					0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0		0.0
	$46^{\circ} 46^{\prime}$	n					0	1	0	1	1	0	0	0	0		0
		Sets					19	7	8	20	17	14	20	13	23		20
Off S. Wash. and N . Oregon	$46^{\circ} 45^{\prime}-$	cPue	0.4	0.4	0.9	0.5	0.0	0.3	0.0	0.0	0.4	0.0	0.4	0.1	0.0	0.5	0.5
	$45^{\circ} 36^{\prime}$	n	16	11	37	13	0	7	0	0	7	0	7	1	0	13	14
		Sets	38	30	43	27	21	24	18	17	16	14	17	8	17	28	26
Off Oregon	$45^{\circ} 35^{\prime}-$	CPUE	0.1	0.1	0.2	0.03	0.4	0	0	0.3	0.0	0.0	0.0	0.1	0.0		0.2
	$42^{\circ} 59^{\prime}$	n	2	2	4	1	8	1	0	6	0	0	0	1	0		8
		Sets	25	37	24	39	22	25	12	18	25	23	29	19	23		34
Sockeye Salmon																	
Off Washington	$48^{\circ} 23^{\prime}-$	CPUE					0.0	1.1	0.1	0.0	0.06	0.0	0.1	0.4	0.0		0.5
	$46^{\circ} 46^{\prime}$	n					0	8	1	0	1	0	2	5	0		9
		Sets					19	7	8	20	17	14	20	13	23		20
Off S. Wash. and N . Oregon	$46^{\circ} 45^{\prime}-$	CPUE	0.03	0.1	0.02	0.0	0	0.5	0	3.2	0.0	0.0	0.0	0.0	0.0	0.3	0.1
	$45^{\circ} 36^{\prime}$	n	1	4	1	0	0	11	0	54	0	0	0	0	0	8	2
		Sets	38	30	43	27	21	24	18	17	16	14	17	8	17	28	26
Off Oregon	$45^{\circ} 35^{\prime}-$	CPUE	0.0	0.0	0.0	0.0	0.0	0.04	0.0	0.0	0.0	0.0	0.03	0.0	0.0		0.0
	$42^{\circ} 59^{\prime}$		0	0	0	0	0	1	0	0	0	0	1	0	0		0
		Sets	25	37	24	39	22	25	12	18	25	23	29	19	23		34

${ }^{\text {a }}$ See Figure 1 for delineation of the three regions.
brackets the mouth of the Columbia River ($46^{\circ} 15^{\prime}$), a major source of coho and chinook salmon and steelhead. Much smaller numbers of sockeye and chum salmon and cutthroat trout also originate in the Columbia River.

The CPUE of juvenile coho salmon between early and late summer (May-June and August-September) generally increased off Washington and decreased off Oregon, suggesting a northerly movement of fish during the summer (Table 2; Pearcy and Fisher 1988). The CPUE of chinook salmon was generally higher in May and June off the Columbia River and Washington than it was off Oregon, but in late summer 1982, 1983, and 1984, CPUE was higher off Oregon than in areas to the north (Table 2). These trends are probably the result of the migration of Columbia River stocks of chinook salmon out of the sampling area by late summer and the influx of coastal Oregon stocks, many of which may enter the ocean in late summer (Nicholas and Hankin 1988; Fisher and Pearcy, unpubl. manuscr.). The CPUE of chum and the CPUE of pink salmon were generally highest off Washington and lowest off Oregon. Highest CPUE of sockeye salmon and steelhead and cutthroat trout occurred off the Columbia River although catches were generally low.

Inshore-Offshore Distributions

Average CPUE in 9.3 km (5 nautical miles [n mi]) wide
intervals for all transects combined is presented in Tables 3-9 for each species. In most months peak CPUE of juvenile coho salmon occurred within 37.2 km of the coast. Exceptions occurred in September 1983, June 1984, and June 1985, when highest CPUE occurred beyond 37.1 km of the coast (Table 3). In May and June 1985, CPUE of juvenile coho salmon was exceptionally high compared with other years, especially offshore of 46.3 km of the coast in June 1985.

Highest CPUE of juvenile chinook salmon was always within 27.9 km of the coast (Table 4). However, in June 1984 the CPUE was as high offshore of 37.1 km as inshore of 27.9 km . The CPUE of juvenile chinook salmon was not exceptionally high 37.1 km offshore in June 1985 (as it was for juvenile coho salmon), but it was very high (36.6 fish/set) inshore of 9.4 km in late May and early June 1985, higher than any CPUE for coho salmon during the same period.

Highest CPUE of steelhead usually occurred offstiore of 27.8 or 37.1 km of the coast (Table 5). Exceptions were June 1982, June 1983, July 1984, and June 1985, when peak CPUE was inshore of 27.9 km . Highest CPUE of cutthroat trout was offshore of 37.1 km in May 1981, May 1983, and May and June 1985. However, in other months peak CPUE was usually inshore of 27.9 km (Table 6). With few exceptions highest CPUE of juvenile sockeye, chum and pink salmon was inshore of 37.2 km (Tables 7, 8, 9).

Table 3
CPUE of coho salmon followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

	Offshore Distance-Coho Salmon													
	$\leqslant 9.3$		9.4-18	5 km	18.6-27	8 km	27.9-37	1 km	37.2-46	3 km	46.4-55	6 km	55.7	
1981														
May	6.2	10	13.0	21	14.9	16	1.5	6	8.5	4	1.3	6	-	-
June	5.6	21	9.9	20	2.9	9	13.2	8	2.2	8	-	-	0.0	1
July	1.0	7	5.9	31	5.9	14	14.7	7	1.2	6	0.0	2	-	-
Aug	3.2	16	4.0	20	14.8	13	3.5	13	0.3	3	1.0	1	-	-
1982														
May	16.0	5	17.7	22	2.9	16	1.2	10	0.1	8	0.0	1	-	-
June	5.6	8	25.1	15	17.9	14	11.1	13	2.0	4	0.5	2	-	-
Sept	20.6	8	17.3	11	3.8	10	4.0	5	0.2	4	-	-	-	-
1983														
May	5.3	12	6.7	11	1.2	17	2.2	13	4.5	2	-	-	-	-
June	1.5	17	5.4	17	3.1	14	7.4	7	0.3	3	-	-	-	-
Sept	3.9	20	4.3	17	4.2	6	1.5	6	9.0	1	0.0	1	-	-
1984														
June	0.3	9	3.1	21	3.1	15	3.4	14	10.2	5	4.5	2	-	-
July	2.4	10	4.3	18	2.6	14	1.9	11	0.6	10	-	-	-	-
Sept	0.5	13	6.4	19	6.1	16	1.7	13	0.0	1	0.0	1	-	-
1985														
May-June	23.1	12	33.0	7	6.5	2	33.5	4	11.7	3	-	-	-	-
June	4.0	19	7.5	11	9.4	18	20.7	20	28.0	4	27.0	3	12.4	5

Table 4
CPUE of juvenile chinook salmon followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

	Offshore Distance-Chinook Salmon													
	$\leqslant 9.3 \mathrm{~km}$		$9.4-18.5 \mathrm{~km}$		$18.6-27.8 \mathrm{~km}$		$27.9-37.1 \mathrm{~km}$		$37.2-4.6 .3 \mathrm{~km}$		$46.4-55.6 \mathrm{~km}$		55.7 km +	
1981														
May	0.8	10	2.1	21	0.8	16	0.3	6	0.3	4	0.0	6	-	-
June	1.0	21	0.7	20	0.0	9	0.2	8	0.0	8	-	-	0.0	1
July	0.3	7	2.1	31	0.2	14	0.4	7	0.0	6	0.0	2	-	-
Aug	0.1	16	1.7	20	1.0	13	0.2	13	0.0	3	0.0	1	-	-
1982														
May	5.2	5	3.3	22	5.1	16	1.6	10	2.6	8	0.0	1	-	-
June	0.6	8	4.8	15	8.4	14	2.4	13	0.5	4	0.0	2	-	-
Sept	1.4	8	0.2	11	0.2	10	0.0	5	0.0	4	-	-	-	-
1983														
May	0.8	12	4.9	11	1.8	17	2.6	13	0.0	2	-	-	-	-
June	1.8	17	0.8	17	0.3	14	0.6	7	0.0	3	-	-	-	-
Sept	10.7	20	0.0	17	0.0	6	0.0	6	0.0	1	0.0	1	-	-
1984														
June	1.4	9	2.1	21	2.0	15	0.3	14	2.0	5	2.0	2	-	-
July	3.2	10	1.7	18	0.3	14	0.5	11	0.0	10	-	-	-	-
Sept	2.5	13	1.2	19	0.2	16	0.0	13	0.0	1	0.0	1	-	-
1985														
May-June	36.6	12	3.7	7	5.0	2	12.0	4	3.3	3	-	-	-	-
June	4.3	19	3.3	11	4.7	18	3.4	20	1.2	4	1.3	3	0.6	5

Table 5
CPUE of juvenile steelhead followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

Offshore Distance-Steelhead														
	$\leqslant 9.3 \mathrm{~km}$		$9.4-18.5 \mathrm{~km}$		$18.6-27.8 \mathrm{~km}$		$27.9-37.1 \mathrm{~km}$		$37.2-46.3 \mathrm{~km}$		$46.4-55.6 \mathrm{~km}$		$55.7 \mathrm{~km}+$	
1981														
May	0.1	10	0.2	21	0.4	16	1.0	6	2.8	4	0.7	6	-	-
June	0.0	21	0.1	20	0.4	9	0.9	8	1.4	8	-	-	0.0	1
July	0.0	7	0.1	31	0.1	14	0.0	7	0.2	6	0.0	2	-	-
Aug	0.0	16	0.0	20	0.0	13	0.1	13	0.0	3	0.0	1	-	-
1982														
May	0.0	5	0.2	22	0.8	16	0.7	10	1.0	8	1.0	1	-	-
June	0.0	8	0.1	15	0.1	14	0.0	13	0.0	4	0.0	2	-	-
Sept	0.0	8	0.0	11	0.0	10	0.0	5	0.0	4	-	-	-	-
1983														
May	0.0	12	0.1	11	0.1	17	0.0	13	0.5	2	-	-	-	-
June	0.1	17	0.0	17	0.1	14	0.0	7	0.0	3	-	-	-	-
Sept	0.0	20	0.0	17	0.0	6	0.0	6	0.0	1	0.0	1	-	-
1984														
June	0.0	9	0.1	21	0.1	15	0.0	14	0.6	5	0.0	2	-	-
July	0.2	10	0.1	18	0.0	14	0.1	11	0.0	10	-	-	-	-
Sept	0.0	13	0.0	19	0.0	16	0.0	13	0.0	1	0.0	1	-	-
1985														
May-June	0.1	12	0.1	7	0.0	2	0.5	4	1.3	3	-	-	-	-
June	0.0	19	0.3	11	0.3	18	0.1	20	0.0	4	0.0	3	0.0	5

Table 6
CPUE of cuthroat trout followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

	Offshore Distance-Cutthroat Trout													
	$\leqslant 9.3 \mathrm{~km}$		$9.4-18.5 \mathrm{~km}$		$18.6-27.8 \mathrm{~km}$		$27.9-37.1 \mathrm{~km}$		$37.2-46.3 \mathrm{~km}$		$46.4-55.6 \mathrm{~km}$		$55.7 \mathrm{~km}+$	
1981														
May	0.0	10	0.5	21	0.1	16	0.0	6	1.5	4	0.0	6	-	-
June	0.1	21	0.6	20	0.0	9	0.0	8	0.0	8	-	-	0.0	1
July	0.1	7	0.8	31	0.8	14	0.4	7	0.0	6	0.0	2	-	-
Aug	0.1	16	0.2	20	0.7	13	0.0	13	0.0	3	0.0	1	-	-
1982														
May	0.2	5	0.1	22	0.2	16	0.0	10	0.0	8	0.0	1	-	-
June	0.0	8	0.5	15	0.0	14	0.1	13	0.0	4	0.0	2	-	-
Sept	0.0	8	0.0	11	0.0	10	0.0	5	0.0	4	-	-	-	-
1983														
May	0.3	12	0.0	11	0.2	17	0.0	13	0.5	2	-	-	-	-
June	0.0	17	0.4	17	0.1	14	0.0	7	0.0	3	-	-	-	-
Sept	0.0	20	0.0	17	0.0	6	0.0	6	0.0	1	0.0	1	-	-
1984														
June	0.1	9	0.1	21	0.1	15	0.3	14	0.0	5	0.0	2	-	-
July	0.1	10	0.1	18	0.1	14	0.0	11	0.0	10	-	-	-	-
Sept	0.0	13	0.0	19	0.0	16	0.0	13	0.0	1	0.0	1	-	-
1985														
May-June	0.2	12	0.3	7	0.0	2	1.0	4	1.7	3	-	-	-	-
June	0.1	19	0.1	11		18	0.4	20	1.2	4	0.3	3	0.2	5

Table 7
CPUE of juvenile chum salmon followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

	Offshore Distance-Chum Salmon													
	$\leqslant 9.3 \mathrm{~km}$		$9.4-18.5 \mathrm{~km}$		$18.6-27.8$ km		$27.9-37.1 \mathrm{~km}$		$37.2-46.3 \mathrm{~km}$		$46.4-55.6 \mathrm{~km}$		$55.7 \mathrm{~km}+$	
1981														
May	2.4	10	0.7	21	0.0	16	0.0	6	0.0	4	0.0	6	-	-
June	0.4	21	0.5	20	0.3	9	0.6	8	0.5	8	-	-	0.0	1
July	0.0	7	0.1	31	2.1	14	0.1	7	0.0	6	0.0	2	-	-
Aug	0.1	16	0.1	20	0.5	13	1.9	13	1.0	3	0.0	1	-	-
1982														
May	0.0	5	0.0	22	0.0	16	0.1	10	0.0	8	0.0	1	-	-
June	0.0	8	0.1	15	1.6	14	2.2	13	0.0	4	0.0	2	-	-
Sept	0.0	8	10.8	11	1.3	10	1.2	5	3.2	4	-	-	-	-
1983														
May	0.0	12	0.0	11	3.1	17	0.0	13	0.0	2	-	-	-	-
June	0.0	17	0.0	17	0.2	14	0.0	7	0.0	3	-	-	-	-
Sept	0.0	20	0.0	17	0.0	6	0.0	6	0.0	1	0.0	1	-	-
1984														
June	0.0	9	0.0	21	0.0	15	0.1	14	0.0	5	0.0	2	-	-
July	0.0	10	0.4	18	2.2	14	7.0	11	1.6	10	-	-	-	-
Sept	0.2	13	0.3	19	0.6	16	0.5	13	0.0	1	2.0	1	-	-
1985														
May-June	0.3	12	1.0	7	0.0	2	0.3	4	0.0	3	-	-	-	-
June	2.1	19	2.8	11	1.5	18	1.5	20	1.5	4	0.0	3	0.8	5

Table 8
CPUE of juvenile pink salmon followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

	Offshore Distance-Pink Salmon													
	$\leqslant 9.3 \mathrm{~km}$		$9.4-18.5 \mathrm{~km}$		$18.6-27.8 \mathrm{k} \cdot \mathrm{n}$		$27.9-37.1 \mathrm{~km}$		$37.2-46.3 \mathrm{~km}$		$46.4-55.6 \mathrm{~km}$		$55.7 \mathrm{~km}+$	
1981														
May	0.0	10	0.1	21	0.0	16	0.0	6	0.0	4	0.0	6	-	-
June	0.0	21	0.1	20	0.0	9	0.0	8	0.0	8	-	-	0.0	1
July	0.0	7	0.0	31	0.1	14	0.0	7	0.0	6	0.0	2	-	-
Aug	0.0	16	0.0	20	0.0	13	0.0	13	0.0	3	0.0	1	-	-
1982														
May	0.0	5	0.0	22	0.0	16	0.0	10	0.0	8	0.0	1	-	-
June	0.0	8	0.0	15	0.0	14	11.0	13	0.0	4	0.0	2	-	-
Sept	0.0	8	4.0	11	0.1	10	0.4	5	0.0	4	-	-	-	-
1983														
May	0.0	12	0.0	11	0.0	17	0.0	13	0.0	2	-	-	-	-
June	0.0	17	0.0	17	0.0	14	0.0	7	0.0	3	-	-	-	-
Sept	0.0	20	0.0	17	0.0	6	0.0	6	0.0	1	0.0	1	-	-
1984														
June	0.0	9	0.0	21	0.0	15	0.0	14	0.0	5	0.0	2	-	-
July	0.0	10	0.5	18	6.8	14	13.5	11	0.5	10	-	-	-	-
Sept	0.2	13	1.2	19	0.6	16	0.2	13	0.0	1	0.0	1	-	-
1985														
May-June	0.0	12	0.0	7	0.0	2	0.0	4	0.0	3	-	-	-	-
June	0.0	19	0.0	11	0.0	18	0.0	20	0.0	4	0.0	3	0.0	5

Table 9
CPUE of juvenile sockeye salmon followed by number of purse seine sets in $9.3-\mathrm{km}$ wide intervals (5 nmi) for all transects combined by year and month.

	Offshore Distance-Sockeye Salmon													
	$\leqslant 9.3$ km		$9.4-18.5 \mathrm{~km}$		$18.6-27.8 \mathrm{~km}$		$27.9-37.1 \mathrm{~km}$		$37.2-46.3 \mathrm{~km}$		$46.4-55.6 \mathrm{~km}$		$55.7 \mathrm{~km}+$	
1981														
May	0.0	10	0.0	21	0.0	16	0.2	6	0.0	4	0.0	6	-	-
June	0.0	21	0.1	20	0.1	9	0.0	8	0.0	8	-	-	0.0	1
July	0.0	7	0.3	31	0.0	14	0.0	7	0.0	6	0.0	2	-	-
Aug	0.0	16	0.0	20	0.0	13	0.0	13	0.0	3	0.0	1	-	-
1982														
May	0.0	5	0.0	22	0.0	16	0.0	10	0.0	8	0.0	1	-	-
June	0.0	8	0.5	15	0.5	14	0.4	13	0.2	4	0.0	2	-	-
Sept	0.0	8	0.0	11	0.1	10	0.0	5	0.0	4	-	-	-	-
1983														
May	0.0	12	0.0	11	3.2	17	0.0	13	0.0	2	-	-	-	-
June	0.0	17	0.6	17	0.0	14	0.0	7	0.0	3	-	-	-	-
Sept	0.0	20	0.0	17	0.0	6	0.0	6	0.0	1	0.0	1	-	-
1984														
June	0.0	9	0.1	21	0.1	15	0.0	14	0.0	5	0.0	2	-	-
July	0.0	10	0.0	18	0.6	14	0.0	11	0.0	10	-	-	-	-
Sept	0.0	13	0.0	19	0.0	16	0.0	13	0.0	1	0.0	1	-	-
1985														
May-June	0.4	12	0.1	7	0.0	2	0.5	4	0.0	3	-	-	-	-
June	0.0		0.0		0.2	18	0.4	20	0.0	4	0.0	3	0.2	5

Catch Distributions and Oceanographic Conditions

Because of the unusually high catches of juvenile coho and chinook salmon during June 1985, we prepared maps showing contours of sea-surface temperature, salinity, and chlorophyll-a for this cruise (Fig. 3). These maps supplement those presented by Brodeur and Pearcy (1986) for each cruise, 1979-1984. The numbers and geographic locations of juvenile coho and chinook salmon caught in purse seines are presented by month in Figures 4 and 5, along with the 26% and 31% isohalines (when they are present). Salinity values less than 26% are generally indicative of low-salinity water in the plume of the Columbia River and values over 31% usually indicate oceanic or upwelled waters with little freshwater mixing. Cool waters during the summer $\left(<10^{\circ} \mathrm{C}\right)$ that denote strong coastal upwelling are shown by dark shading in the figures for coho and chinook salmon. Figures showing the catch distributions of juvenile chum, pink and sockeye salmon, steelhead and cutthroat trout do not include these salinity and temperature contours (Figs. 6-10).

Juvenile coho salmon were abundant off both Washington and Oregon (Fig. 4). In some months large catches were evident near the mouth of the Columbia River and Yaquina Bay, major points of ocean entry for hatchery coho salmon smolts. Highest catches were found at intermediate salinities of 23 to 32%, from May to June 1981 and 1985 when large numbers of smolts were migrating
from the Columbia River. Juvenile coho salmon also were caught in waters where the surface salinity varied from 12 to $34 \% 00$
Although juvenile coho salmon were often present in the Columbia River plume (indicated by surface salinity $<26 \%$ near latitude $46^{\circ} \mathrm{N}$) and in areas of fairly low surface salinity ($<31 \%$) adjacent to the core of the plume, they were also abundant in higher salinity ($>31 \%$) water outside of the plume. This was particularly evident in May and June 1982, September 1983, July and September 1984, and June 1985 (Fig. 4, C and F through I) when large catches occurred where salinities exceeded 31%. Many of the juvenile coho salmon caught in high salinity water south of the Columbia River in May 1982 (Fig. 4C) were released from Columbia River hatcheries about one month earlier. Therefore, at least some juvenile coho salmon move out of the plume within a short period after entering the ocean.

During the May-June 1985 cruise, which was confined to the region close to the mouth of the Columbia River, catches of coho salmon strongly peaked at intermediate temperatures of $13.5-14.5^{\circ} \mathrm{C}$ and salinities of $23-25 \%$, a pattern not obvious during other cruises. During the June 1985 cruise, high catch rates (>25 fish/set) were more widely distributed between $12^{\circ} \mathrm{C}$ and $17^{\circ} \mathrm{C}$ and between 25 and 33%. The highest catches of coho salmon in June 1985 occurred 46 km offshore in the fairly low salinity waters ($<31 \%$) of the Columbia River plume (Figs. 3

Table 10
Correlation coefficients (r) for linear correlations of temperature, salinity, and chlorophyll-a concentration with catch of juvenile coho salmon within cruises. Probabilities that population correlation $=0:{ }^{*}=<0.05,{ }^{* *}=<0.01$. (Data for 1982 and 1983 cruises from Chung 1985.)

	May	June	July	Aug	Sept
Temperature vs. catch:					
1981	-0.08	0.08	0.09	0.27*	
1982	-0.08	0.09			-0.13
1983	0.14	0.07			0.01
1984		0.30*	0.12		0.12
1985	0.17	0.18			
Salinity vs. catch:					
1981	-0.00	-0.68**	-0.01	-0.35**	
1982	0.06	-0.05			-0.27
1983	-0.10	-0.22			0.04
1984		-0.13	-0.14		-0.19
1985	0.16	-0.14			
Chlorophyll-a vs. catch:					
1981	0.16	0.20	-0.05	0.27*	
1982	0.26*	0.06			0.52**
1983	-0.16	0.12			-0.21
1984		0.12	0.08		0.13
1985	0.16	-0.00			

and 4I). Many coho salmon also were caught in June 1985 north of the Columbia River where salinity was 31 33%. These trends suggest that large numbers of coho salmon were associated with the Columbia River plume in May and early June and subsequently dispersed in mid or late June of this year.

Large catches (>20 fish per set) of juvenile coho salmon occurred over a wide range of temperatures from $10.7^{\circ} \mathrm{C}$ to $16.4^{\circ} \mathrm{C}$. Highest numbers (>100 fish per set) were caught at temperatures between 10.7 and $14.5^{\circ} \mathrm{C}$. Juvenile coho salmon sometimes were found in cold $\left(<10^{\circ} \mathrm{C}\right)$, newly upwelled water (e.g., in May and June 1982, July 1984, and June 1985, shaded areas in Fig. 4, C, H,I). Surface temperatures of $10^{\circ} \mathrm{C}$ or less were not recorded during the other cruises, or juvenile coho salmon were not taken in these cool areas (July 1981 and June 1984, Fig. 4, B and G).

Within cruises, linear correlations between temperature, salinity or chlorophyll- a concentration, and the catch of juvenile coho salmon per set were generally weak and statistically insignificant ($P>0.05$, Table 10). Quadratic equations fitted to the data to test whether catches of juvenile coho salmon peaked at intermediate temperatures were usually not significant. These data suggest that juvenile coho salmon are not concentrated in narrow ranges of salinity or temperature when they reside in coastal waters off Oregon and Washington during their first summer in the ocean. The few statistically significant linear correlations between temperature and catch and between chlorophyll a and catch, as well as most of the nonsignificant cor-
relations, were positive. Conversely, the linear correlations between salinity and catch were mainly negative (Table 10). The significant negative correlations between salinity and catch of juvenile coho salmon in June and August 1981 appeared to be the result of high catches in the low salinity waters of the Columbia River plume and of low catches in higher salinity water both inshore and offshore of the plume (See Fig. 4, A and B). The lack of significant negative correlations between catch and salinity during May and June in most years suggests that juvenile coho salmon usually do not reside in the plume for prolonged periods of time.

Chung (1985) found that temperature was negatively correlated with salinity for all cruises in 1982 and 1983 (r ranged from -0.31 to -0.74). In May and June, the low salinity Columbia River plume water, where juvenile coho salmon were sometimes abundant, was generally warmer than the surrounding more saline water (See also Fig. 3 and Brodeur and Pearcy 1986). Chung also noted that the position of maximum catches relative to temperature varied with month. Peak catches were found at increasingly warmer temperatures during May, June, and September 1982, for example, and suggest that distributions are influenced by changing ocean conditions and the sea temperatures that are available rather than by a narrow, preferred, fixed temperature optimum.

In contrast to the generally weak correlations within cruises between chlorophyll- a concentration and catch, the correlation among years between average catch per set of juvenile coho salmon during the early summer (May and

June) and average chlorophyll-a concentration in early summer was strong ($r=0.81$, Fig. 11). This strong correlation suggests that catch rates of coho salmon are higher in years when the average chlorophyll content is high. Unfortunately, only five years of data were available and the correlation was not statistically significant ($P>0.05$). Because survival of hatchery coho salmon in the Oregon area (as estimated by dividing the number of jacks returning to public hatcheries by the total number of smolts released) was positively correlated with catches of juvenile coho salmon in purse seines from June 1981 to 1985 (Fisher and Pearcy 1988), a positive relationship may exist between chlorophyll content and survival. All three of these factors (coho salmon abundance, survival, and chlorophyll content) are correlated with the intensity of coastal upwelling off Oregon (Nickelson 1986; Fisher and Pearcy 1988; Landry et al. 1989). Although these relationships suggest that high survival may be mediated through enhanced productivity of the salmon food chain, we found little evidence for increased growth or body condition of juvenile coho salmon during the relatively strong upwelling summers of 1982 and 1985, and we therefore postulated a link between upwelling and predation rates (Fisher and Pearcy 1988; Pearcy 1988).

Chinook salmon, although generally less abundant and frequently captured than coho salmon, were widely scattered in our catches off both Oregon and Washington (Fig. 5). They were also found over a broad range of salinities and temperatures. Like juvenile coho salmon, high catches were frequently made near the mouth of the Columbia River, a major source of these fish, but they were often as abundant in areas of high salinity water as they were in river plumes.
The co-occurrence of juvenile coho and chinook salmon in purse seine sets was more frequent than expected. Chisquare tests of the observed number of sets with both species were significantly greater than the expected number, if co-occurrence was random ($P<0.05$ [based on the product of frequency of occurrence of both species and the total number of sets]) for all years and for all years combined. This suggests that juvenile coho and chinook salmon are often found in or prefer similar water types.

Juvenile chum salmon (Fig. 6) were less abundant than either coho or chinook salmon off both Oregon and Washington. Most of the largest catches (July and August 1981, September 1982, May 1983, July 1984, and June 1985 [Fig. 6, B, D, E, G, and H) were north of the Columbia River where chum salmon runs are larger than in Oregon. Juvenile pink salmon were rare off Oregon. Few juvenile pink salmon were caught during the spring. Most were caught during July and September off Washington (Fig. 7, C and D), perhaps because they escaped through the mesh of the seine or were near the coast and inshore of our sampling in earlier months. The large catches of chum salmon in September 1982 and the catches
of pink salmon in September 1982 and 1984 are notable, since most juvenile chum and pink salmon depart estuaries in the spring, and catches usually decline to low numbers by late summer in Georgia Strait (Healey 1980). Juvenile chum and pink salmon are known to migrate far to the north during the late summer (Hartt and Dell 1986). Apparently some juvenile chum and pink salmon reside in coastal waters off Washington for several months following ocean entry in some years.
Juvenile sockeye salmon were also very rare and usually were caught only off the Columbia River or to the north (Fig. 8). Steelhead (Fig. 9) and cutthroat trout (Fig. 10) were most often caught off both Oregon and Washington, but never in large numbers. During some cruises cutthroat trout were caught most often in the vicinity of the Columbia River.

Distribution and ocean migrations of juvenile coho salmon are discussed in more detail by Pearcy and Fisher (1988), of cutthroat trout and steelhead by Pearcy et al. (in press) and of juvenile chinook salmon by Fisher and Pearcy, unpubl. manuscr.

Length-Frequency Distributions

Length-frequency distributions for juvenile coho and chinook salmon, juvenile steelhead and cutthroat trout are discussed in Pearcy and Fisher (1988), Pearcy et al. (in press) and Fisher and Pearcy, unpubl. manuscr., respectively.

Length-frequency distributions for juvenile chum, pink, and sockeye salmon are shown in Figures 12, 13, and 14, respectively. The smallest chum salmon were caught in May when individuals less than $100-120 \mathrm{~mm}$ FL were most common (Fig. 12). The shift in the modal length of chum salmon from about $110-120 \mathrm{~mm}$ FL in May to over 200 mm FL by August and September is probably indicative of growth in the ocean. Length-frequency distributions for pink salmon are given only for periods when large catches occurred (Fig. 13). Because the catches of sockeye salmon were low, data from all years were combined for each month (Fig. 14). Sockeye salmon were most common in May and June when most were $90-150 \mathrm{~mm}$ FL.

Recoveries of CWT Salmonids

Release and recovery information for salmonids with coded wire tags (CWT) collected in the ocean 1981-1985 are presented in the Appendix. Out of a total of 563 CWT salmonids recovered, 307 (54%) were juvenile coho salmon (278 age 1.0 and 29 age 0.0^{1}), $63(11 \%)$ were adult coho salmon, $185(33 \%)$ were juvenile chinook salmon (177 age

[^1]Table 11
Summary of recoveries of different ages of CWT juvenile salmonids by year.

	Coho			Chinook			Steelhead Juvenile
	Juvenile		Adult	Juvenile		Adult	
	0.0	1.0		0.- ${ }^{\text {a }}$	1.0		
1981	13	45	21	2	7	0	2
1982	8	79	8	0	34	1	1
1983	5	35	8	1	8	0	0
1984	2	22	8	5	16	2	1
1985	1	97	18	0	112	1	0
Total	29	278	63	8	177	4	4
Columbia River Origin:	0	160	22	5	167	3	2

${ }^{a}$ Includes both age 0.0 and 0.1 fish.

Table 12
CWT juvenile coho and chinook salmon caught in the ocean recorded by release area.

Release area	1981	1982	1983	1984	1985	Total
Coho						
California	0	0	0	0	0	0
Oregon Coast (Pub.)	5	13	8	2	16	44
Oregon Coast (Priv.)	22	9	22	3	7	63
Columbia River	30	49	10	13	63	165
Washington Coast	1	16	0	5	12	34
Puget Sound	0	0	0	0	0	0
British Columbia	0	0	0	1	0	1
Total	58	87	40	24	98	307
Chinook						
California	1	0	0	0	0	1
Oregon Coast (Pub.)	1	2	0	0	2	5
Oregon Coast (Priv.)	0	2	0	3	0	5
Columbia River	7	29	8	18	110	172
Washington Coast	0	1	1	0	0	2
Puget Sound	0	0	0	0	0	0
British Columbia	0	0	0	0	0	0
Total	9	34	9	21	112	185

1.0 and 8 age 0.0 and 0.1$), 4(1 \%)$ were adult chinook salmon, and 4 (1%) were juvenile steelhead (Table 11). Almost all (302 of 307) of the CWT juvenile coho salmon we caught in our purse seines were released from hatcheries as smolts (age 1. fish released from both public and private hatcheries and large, accelerated, age 0 . fish released from a private hatchery).

The majority (58%) of age 1.0 juvenile coho salmon and almost all (94%) of age 1.0 juvenile chinook salmon recovered in our purse seine sets originated in the Columbia River basin. Many of the ocean-caught CWT adult coho and chinook salmon, 35% and 75%, respectively, also
originated in the Columbia River basin. All but one age 0.0 juvenile coho salmon originated at the Oregon AquaFoods Inc. facility on the Oregon coast, while 63% of age 0 --juvenile chinook salmon originated in the Columbia River basin. The ratios of CWT to total juvenile coho and chinook salmon caught in purse seine sets 1981-1985 were $307 / 6517$ and 185/2085, respectively.

A summary of CWT recoveries of juvenile coho and chinook salmon by release area and year appears in Table 12. The CWT juvenile coho salmon from the Columbia River were most numerous in our catches followed by, in order, those from coastal Oregon private hatcheries, other

Table 13

Estimated numbers (and percentages) in our purse seine catches of juvenile coho salmon released from hatcheries as smolts in different regions and years. These estimates were calculated by multiplying the numbers of CWT fish we caught that originated in each region by the ratios of the total number of hatchery smolts released to the total number of CWT smolts released in the same regions. The total purse-seine catch of juvenile coho salmon in each year and the estimated percentage of this total, represented by fish released from hatcheries as smolts, are also indicated.

Release area	Estimated number of hatchery smolts (\% of total)				
	1981	1982	1983	1984	1985
California	0	0	0	0	0
Oregon Coast (Public)	32 (2.6)	87(6.4)	27 (5.2)	$10(2.8)$	81 (5.6)
Oregon Coast (Private)	389 (32.1)	$207(15.2)$	362 (69.6)	66 (18.4)	57 (3.9)
Columbia River	698 (57.7)	815 (59.8)	131 (25.2)	$215(60.2)$	$1198(82.4)$
Washington Coast	91 (7.5)	254(18.6)	$0(0.0)$	66 (18.5)	118 (8.1)
Expanded Total	1210	1363	520	357	1454
Total Catch	1844	1768	604	635	1686
\% of Total Catch	66%	77\%	86\%	56%	86%

coastal Oregon locations and coastal Washington locations. No CWT juvenile coho salmon released in California or Puget Sound and only one fish released in British Columbia were caught in our purse seines; perhaps few juveniles from these areas enter the coastal Oregon and Washington waters during their first summer in the ocean.

We estimated the contributions of hatchery coho salmon smolts originating from five sources (California, coastal Oregon public, coastal Oregon private, Columbia River, and coastal Washington hatcheries) to our ocean catch in each year by multiplying the numbers of CWT fish we caught from each source by an expansion factor. This expansion factor was used for each source in each year:

$$
\frac{\text { total no. hatchery.smolts released }{ }^{2}}{\text { total no. CWT smolts released }}
$$

Based on these expansions, hatchery coho salmon smolts accounted for between 56% and 86% (five year average $=74 \%$) of our total catch of juvenile coho salmon in the ocean (Table 13). The remaining $14-44 \%$ (average 26%) were presumably wild fish or hatchery-reared fish released as fingerlings. The high percentage of hatchery coho salmon in our catches is consistent with data presented by Bottom et al. (1986) showing that in recent years wild smolts have decreased to only 8% or less of total coho salmon smolt production from California through the southern Washington coast. Of the hatchery fish, those

[^2]from the Columbia River were most numerous, followed by, in order, fish from Oregon private hatcheries, coastal Washington hatcheries, and coastal Oregon public hatcheries $(5-y r$ means $=57 \%, 28 \%, 11 \%$, and 5% of hatchery fish, respectively).

In most years Columbia River fish were caught at a higher rate than that region's smolt contribution, probably because the mouth of the Columbia River was in the middle of the latitudinal range of our sampling, and fish migrating both to the north and south of the Columbia River were equally susceptible to capture (Table 14). Conversely, coastal Washington fish were always caught at a proportionally lower rate than that region's smolt contribution, perhaps because much of our sampling was to the south of where these fish were released and migration is known to be primarily to the north, out of our sampling area. Surprisingly, no CWT juvenile coho salmon released as smolts from California were captured. Likewise, no Puget Sound smolts were caught during our sampling off Oregon and Washington, although one juvenile coho salmon released as a fingerling from a British Columbia river was captured off northern Washington and 24 adult coho salmon originating in Puget Sound (38% of our total catch of CWT adult coho salmon) were also caught, mostly off Washington. These data suggest that few juvenile coho salmon from California, Puget Sound, or British Columbia migrate into the coastal waters off Oregon and Washington during their first summer in the ocean.

In early summer, many CWT juvenile coho salmon were caught to the south of where they entered the ocean. By late summer, however, most large CWT juvenile coho salmon ($>300 \mathrm{~mm}$ FL) that originated in Oregon or in the Columbia River and that grew in the ocean for a period of several months following release, were caught off northern Oregon and Washington. This suggests that although

Table 14
Estimated percentage contribution to our purse-seine catches of juvenile coho salmon that originated from hatcheries in each of five areas, and (in parentheses) the percentage contribution of each area to the total release of smolts from California through the Washington coast in different years.

	California	Coastal Oregon (Private)	Coastal Oregon (Public)	Columbia River	Coastal Washington
1981	$0(1.3)$	$32.1(31.8)$	$2.6(5.2)$	$57.7(43.8)$	$7.5(18.0)$
1982	$0(0.7)$	$15.2(33.1)$	$6.4(6.2)$	$59.8(39.7)$	$18.6(20.3)$
1983^{a}	$0(1.2)$	$69.6(28.3)^{a}$	$5.2(5.3)$	$25.2(47.9)$	$0(17.3)$
1984	$0(0.5)$	$18.4(18.4)$	$2.8(7.6)$	$60.4(51.4)$	$18.5(22.1)$
1985^{b}	$0(0.2)$	$0(16.2)$	$5.7(7.3)$	$92.9(53.6)$	$15.4(22.7)$
1985^{6}	$0(0.2)$	$7.9(16.2)$	$5.7(7.3)$	$71.3(53.6)$	$15.0(22.7)$
$1981-1984$ (mean)	$0(0.9)$	$33.8(27.9)$	$4.3(6.1)$	$50.8(45.7)$	$11.2(19.4)$

${ }^{a}$ We probably overestimated the proportion of coastal Oregon vrivate hatchery fish in our catches in 1983. In this year many of the CWT private hatchery fish were caught in three sets close to where the fish were released, and were from a single release group that included a very high percentage of tagged fish. Therefore the expansion factor we used to estimate total numbers of private hatchery fish in our sets, which was based on the average marked to unmarked ratio for all private hatchery groups released during the year, was probably too high
${ }^{6}$ Sampling near the mouth of the Columbia River from late May to early June 1985
${ }^{\text {c }}$ Coastwide sampling, but in June only.
there is slow movement to the north during the summer, many coho salmon do not rapidly migrate far away from where they entered the ocean but linger in the local area. (See Pearcy and Fisher 1988 for more details.) Most CWT chinook salmon were caught to the north of where they entered the ocean, especially during the warm water years of 1983 and 1984 (Fisher and Pearcy, unpubl. manuscr.). During other years some fish from the Columbia River were captured south of where they entered the ocean, and in May 1982 most Columbia River chinook salmon smolts were captured south of the Columbia River, similar to the pattern found for juvenile coho salmon.

Acknowledgments

We thank Alton Chung, Waldo Wakefield, Jon Shenker, Dean Gushee, and Craig Banner for their hard work at sea collecting samples, and Ric Brodeur, Allan Hartt, and an anonymous reviewer for comments on the manuscript. This research was made possible by the Northwest and Alaska Fisheries Center and the Northwest Fisheries Research Center (NA85-ABH-00025; NA85-ABH-00014; NA88-ABH-00043) and Oregon State University Sea Grant College Program (NA81-AA-D-00086, R/OPF-17).

Citations

[^3]Brodeur, R.D.
1989. Neustonic feeding by juvenile-salmonids in coastals waters of the Northeast Pacific. Can. J. Zool. 67:1995-2007.
1990. Ontogenetic variations in the type and size of prey consumed by juvenile coho, Oncorhynchus kisulch, and chinook, O. Ischwytscha salmon. Env. Biol. Fishes (in press).
Brodeur, R.D., and W.G. Pearcy.
1986. Distribution and relative abundance of pelagic nonsalmonid nekton off Oregon and Washington, 1979-84. NOAA Tech. Rep. NMFS 46, 85 p .
1987. Diel feeding chronology, gastric evacuation and estimated daily ration of juvenile coho salmon, Oncorhynchus kisutch (Walbaum), in the coastal marine environment. J. Fish. Biol. 31: 465-477.
Brodeur, R.D., W.G. Pearcy, and H.V. Lorz.
1987a. Food habits and dietary variabilities of pelagic nekton off Oregon and Washington, 1979-1984. NOAA Tech. Rep. NMFS 57, 32 p.
Brodeur, R.D., B.C. Mundy, W.G. Pearcy, and R.W. Wissmar. 1987b. The neustonic fauna in coastal waters of the Northeast Pacific: abundance, distribution, and utilization by juvenile salmonids. Oregon State Univ., Sea Grant Publ. ORESU-T-87001, 61 p .
Chung, A.W.
1985. Relationships between oceanographic factors and the distribution of juvenile coho salmon (Oncorhynchus kisulch) off Oregon and Washington. M.S. Thesis, Oregon State Univ., 116 p
Fisher, J.P., and W.G. Pearcy,
1988. Growth of juvenile coho salmon (Oncorhynchus kisulch) in the ocean off Oregon and Washington, USA, in years of differing coastal upwelling. Can. J. Fish. Aquat. Sci. 45:1036-1044.
Giger, R.D.
1972. Ecology and management of coastal cutthroat trout in Oregon. Oregon State Game Comm., Fish. Res. Rep. No. 6, 61 p.
Hart, A.C., and M.B. Dell.
1986. Early oceanic migrations and growth of juvenile Pacific salmon and steelhead trout. Int. Pac. Fish. Comm. Bull. 46, 105 p.

Healey, M.C.
1980. The ecology of juvenile salmon in Georgia Strait, British Columbia. In Salmonid ecosystems of the North Pacific (W.J McNeil and D.C. Himsworth, eds.), p. 203-229. Oregon State Univ. Press, Corvallis.
Koo, T.S.Y
1962. Age designation in salmon. In Studies of red salmon (T.S.Y. Koo, ed.), p. 41-48. Univ. Washington Press, Seattle.
Landry, M.R., J.R. Postel, W.K. Peterson, and J. Newman.
1989. Broad-scale distributional patterns of hydrographic variables on the Washington/Oregon shelf. In Coastal oceanography of Washington and Oregon (M.R. Landry and E.M. Hickey, eds.), p. 1-40. Elsevier Oceanography Series 47, Amsterdam.
Nicholas, J.W., and D.G. Hankin.
1988. Chinook salmon populations in Oregon coastal river basins: Description of life histories and assessment of recent trends in run strengths. Oregon Dep. Fish Wildl. Res. Develop. Sect., Info. Rep. 88-1, 359 p
Nickelson, T.
1986. The influence of ocean conditions on abundances of coho salmon (Oncorhynchus kisulch) in the Oregon Production Area. Oregon Dep. Fish Wildl. Info. Rep. 83-6, 23 p.
Paszkowski, C.A., and B.L. Olla.
1985. Social interactions of coho salmon (Oncorhynchus kisutch) smolts in seawater. Can. J. Zool. 63:2401-2407.
Pearcy, W.G.
1984. Where do all the coho go? The biology of juvenile coho salmon off the coasts of Oregon and Washington. In Influence of ocean
conditions on the production of salmonids in the North Pacific (W.G. Pearcy, ed.), p. 50-60. Oreg. State Univ. Sea Grant Coll. Prog. (ORESU-W-83-001), Corvallis.
1988. Factors affecting survival of coho salmon off Oregon and Washington. In Salmon production, management, and allocation (M.J. McNeil, ed.), p. 67-73. Oregon State Univ. Press, Corvallis.
Pearcy, W.G., and J.P. Fisher.
1988. Migrations of coho salmon, Oncorhynchus kisulch during their first summer in the ocean. Fish. Bull., U.S. 86:173-195.
Pearcy, W.G., and A. Schoener.
1987. Changes in the marine biota coincident with the 1982-1983 El Niño in the northeastern subarctic Pacific Ocean. J. Geophys. Res. 92, No. C13:14,417-14,428.
Pearcy, W., J. Fisher, R. Brodeur, and S. Johnson
1985. Effects of the 1983 El Niño on coastal nekton off Oregon and Washington. In El Niño North (W.S. Wooster and D.L. Fluharty, eds.), p. 188-204. Univ. Washington Sea Grant Prog., Seattle.
Pearcy, W.G., R.D. Brodeur, and J.P. Fisher
In press. Distribution and ecology of juvenile cutthroat trout (Oncorhynchus clarki clarki) and steelhead (O. mykiss) in the ocean off Oregon and Washington. Fish. Bull., U.S.
Peterson, W.T., R.D. Brodeur, and W.G. Pearcy.
1982. Food habits of juvenile salmon in the Oregon coastal zone, June 1979. Fish. Bull., U.S. 80:841-851.
Shenker, J.M.
1984. Scyphomedusae in surface waters near the Oregon coast, May-August, 1981. Est. Coast Shelf Sci. 19:619-632.

Figure 1
Transects frequently sampled during purse-seine cruises, 1981-1985, and the three regions used for grouping of data in Table 2.

Figure 2
Frequency distributions of the number of juvenile coho (A) and chinook salmon (B) caught in purseseine sets, 1981-1985

1985

SALINITY ($\% / 00$)

TEMP (${ }^{\circ} \mathrm{C}$)

CHL-A (ug/l)

Figure 3
Near-surface ($0-1 \mathrm{~m}$) salinity, temperature, and chlorophyll-a distributions off Oregon and Washington, 10-25 June 1985. Dots indicate locations of purse-seine sets.

Figure 4A
Catch distribution (number/set) of juvenile coho salmon off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984. The 26 and 32% murface isohaline lines are also indicated as well as areas where the surface temperature was $\leqslant 10.0^{\circ} \mathrm{C}$ (shaded).

Figure 4B

Figure 4C

Figure 4D

Figure 4E
\qquad

Figure 4F

Figure 4G
\qquad

Figure 4H

Figure 4I

Figure 5A
Catch distribution of juvenile chinook salmon off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984. The 26 and 32% surface isohaline lines are also indicated as well as areas where the surface temperature was $\leqslant 10.0^{\circ} \mathrm{C}$ (shaded).

Figure 5B

Figure 5C

Figure 5D

CHINOOK - 1983

Figure 5E

Figure 5F

Figure 5G

Figure 5H
\qquad

CHINOOK - 1985

MAY 29 - JUNE 5

JUNE 10-25

Figure 5I

Figure 6A
Catch distribution of juvenile chum salmon off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984.

Figure 6B

Figure 6C

Figure 6D

Figure 6E

Figure 6F

Figure 6G
\qquad

Figure 6H

Figure 7A
Catch distribution of juvenile pink salmon off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984.

Figure 7B

Figure 7C

Figure 7D

Figure 8A
Catch distribution of juvenile sockeye salmon off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984.

Figure 8B

Figure 8C
\qquad

Figure 8D

Figure 8E

Figure 8F

Figure 9A
Catch distribution of juvenile steelhead off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984.
\qquad

Figure 9B

Figure 9C
\qquad

Figure 9D

Figure 9E

Figure 9F

Figure 9G

Figure 10A
Catch distribution of cutthroat trout off Oregon and Washington for each cruise. Sampling was extended to British Columbia and California in 1984.

Figure 10B

CUTTHROAT - 1982

MAY

JUNE

Figure 10C

Figure 10D

Figure 10 E

Figure 10F

Figure 10G

Figure 11
Average chlorophyll-a concentration at the surface during the May and June cruises combined vs. average catch/set of juvenile coho during those same cruises.

Figure 12
Length-frequency distributions of juvenile chum salmon in purse seine catches in different months and years, all transects combined.

Figure 13
Length-frequency distributions of juvenile pink salmon during September 1982 and July and September 1984, when the largest catches occurred, all transects combined.

SOCKEYE

Figure 14
Length-frequency distributions of sockeye salmon in different months.
Catches in all years and transects have been combined.

Appendix

Salmonids tagged with coded wire collected in purse seines, 1981-1985.
Abbreviations of tagging agencies stand for the following:

ANAD	Anadromous Inc.
CDFG	California Department of Fish and Game
CDFO	Canada Department of Fisheries and Oceans
COOP	Washington Department of Fisheries-Cooperative
DOMS	Domsea Farms, Inc.
FWS	U.S. Fish and Wildlife Service
HOH	Hoh Indian Tribe
IDFG	Idaho Department of Fish and Game
NMFS	National Marine Fisheries Service

OAF	Oregon Aqua Foods, Inc.
ODFW	Oregon Department of Fish and Wildlife
QDNR	Quinault Department of Natural Resources
SQAX	Squaxin Indian Tribe
TULA	Tulalip Indian Tribe
UI	University of Idaho-FWS Cooperative
UW	University of Washington
WDF	Washington Department of Fisheries
YAKI	Yakima Indian Tribe

Abbreviated with hatcheries:
M Fish caught in Columbia River at this location and released downstream.
NFH National Fish Hatchery

Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
				1981					
031733	chinook	80	NMFS	McNary (M)	228	4609.5	12406.4	08/12/81	137
066109	chinook	79	CDFG	Trinity R.	16	4425.0	12419.0	05/18/81	290
072220	chinook	79	ODFW	McKenzie	57	4635.0	12411.1	05/23/81	277
072222	chinook	79	ODFW	McKenzie	151	4610.2	12408.8	07/11/81	206
072229	chinook	79	ODFW	Rock Creek	122	4311.4	12429.6	06/16/81	295
072253	chinook	79	ODFW	Marion Forks	65	4609.0	12420.1	05/22/81	185
072254	chinook	79	ODFW	Marion Forks	183	4555.0	12420.2	07/14/81	214
102236	chinook	79	IDFG	Rapid R.	26	4451.5	12414.6	05/19/81	145
632251	chinook	80	WDF	Washougal	164	4619.9	12414.4	07/12/81	91
050638	coho	78	FWS	Willard	7	4438.1	12417.7	05/16/81	514
050739	coho	79	HOH	Chalaat Cr.	30	4555.1	12412.5	05/20/81	143
050826	coho	79	FWS	Eagle Cr. NFH	30	4555.1	12412.5	05/20/81	153
050826	coho	79	FWS	Eagle Cr. NFH	90	4610.0	12420.8	06/11/81	173
050827	coho	79	FWS	Eagle Cr. NFH	30	4555.1	12412.5	05/20/81	150
050828	coho	79	FWS	Eagle Cr. NFH	30	4555.1	12412.5	05/20/81	154
050828	coho	79	FWS	Eagle Cr. NFH	230	4555.3	12427.2	08/13/81	286
050828	coho	79	FWS	Eagle Cr. NFH	35	4610.0	12428.0	05/21/81	144
072033	coho	78	ODFW	Sandy	56	4635.1	12413.5	05/23/81	455
072113	coho	79	ODFW	Big Creek	6	4438.1	12417.6	05/16/81	146
072117	coho	79	ODFW	Big Creek	17	4425.1	12426.0	05/18/81	142
072118	coho	79	ODFW	Big Creek	47	4620.0	12425.4	05/22/81	154
072122	coho	79	ODFW	Big Creek	91	4610.6	12420.0	06/11/81	177
072123	coho	79	ODFW	Big Creek	190	4438.6	12419.6	07/17/81	186
072125	coho	79	ODFW	Big Creek	91	4610.6	12420.0	06/11/81	153
072130	coho	79	ODFW	Cascade Creek	83	4609.9	12420.3	06/11/81	183
072132	coho	79	ODFW	Cascade Creek	164	4619.9	12414.4	07/12/81	138
072132	coho	79	ODFW	Cascade Creek	198	4451.2	12416.3	07/18/81	156
072132	coho	79	ODFW	Cascade Creek	247	4438.2	12424.7	08/15/81	202
072238	coho	79	ODFW	Big Creek	234	4555.7	12407.9	08/13/81	188
072256	coho	79	ODFW	Sandy	30	4555.1	12412.5	05/20/81	146
72257	coho	79	ODFW	Sandy	77	4620.1	12418.3	06/10/81	190
072262	coho	79	ODFW	Sandy	30	4555.1	12412.5	05/20/81	140
072262	coho	79	ODFW	Sandy	30	4555.1	12412.5	05/20/81	136
072313	coho	79	ODFW	Butte Falls	91	4610.6	12420.0	06/11/81	200
072315	coho	79	ODFW	Nehalem	21	4451.5	12412.5	05/20/81	172
072316	coho	79	ODFW	Nehalem	25	4450.8	12420.2	05/19/81	151
072323	coho	79	ODFW	Siletz	10	4438.3	12417.8	05/18/81	150
072357	coho	80	ODFW	Cedar Cr.	226	4610.1	12418.3	08/12/81	163
600362	coho	80	OAF	Oregon Aqua-Foods	243	4438.3	12406.3	08/15/81	138
603153	coho	79	OAF	Oregon Aqua-Foods	7	4438.1	12417.7	05/16/81	437
603218	coho	80	OAF	Oregon Aqua-Foods	231	4555.2	12419.7	08/13/81	203
603343	coho	79	OAF	Oregon Aqua-Foods	83	4609.9	12420.3	06/11/81	495

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1981 (continued)									
603347	coho	79	OAF	Oregon Aqua-Foods	15	4425.0	12415.1	05/18/81	140
603354	coho	80	OAF	Oregon Aqua-Foods	127	4331.7	12415.8	06/17/81	121
603354	coho	80	OAF	Oregon Aqua-Foods	180	4555.4	12408.2	07/13/81	161
603360	coho	80	OAF	Oregon Aqua-Foods	104	4440.0	12431.7	06/14/81	124
603361	coho	80	OAF	Oregon Aqua-Foods	190	4438.6	12419.6	07/17/81	167
603361	coho	80	OAF	Oregon Aqua-Foods	191	4438.2	12420.3	07/17/81	181
603361	coho	80	OAF	Oregon Aqua-Foods	234	4555.7	12407.9	08/13/81	191
603403	coho	80	OAF	Oregon Aqua-Foods	243	4438.3	12406.3	08/15/81	144
603411	coho	80	OAF	Oregon Aqua-Foods	190	4438.6	12419.6	07/17/81	153
603412	coho	80	OAF	Oregon Aqua-Foods	193	4438.2	12425.1	07/17/81	139
603425	coho	80	OAF	Oregon Aqua-Foods	191	4438.2	12420.3	07/17/81	170
622205	coho	79	ANAD	Anadromous, Inc.	127	4331.7	12415.8	06/17/81	173
622205	coho	79	ANAD	Anadromous, Inc.	275	4401.2	12413.2	08/19/81	337
622405	coho	79	ANAD	Anadromous, Inc.	180	4555.4	12408.2	07/13/81	195
622605	coho	79	ANAD	Anadromous, Inc.	124	4321.5	12424.4	06/16/81	156
622605	coho	79	ANAD	Anadromious, Inc.	177	4555.0	12408.2	07/13/81	223
622705	coho	79	ANAD	Anadromous, Inc.	127	4331.7	12415.8	06/17/81	169
622804	coho	79	ANAD	Anadromous, Inc.	127	4331.7	12415.8	06/17/81	179
623504	coho	79	ANAD	Anadromous, Inc.	250	4438.3	12414.1	08/15/81	230
624704	coho	79	ANAD	Anadromous, Inc.	80	4610.0	12407.1	06/10/81	199
631634	coho	78	WDF	Puyallup	140	4635.1	12407.5	07/09/81	468
631909	coho	78	WDF	Wild Fish	194	4438.3	12432.4	07/17/81	564
631954	coho	78	WDF	Washougal	41	4610.0	12412.7	05/21/81	344
631954	coho	78	WDF	Washougal	84	4610.0	12427.1	06/11/81	417
631954	coho	78	WDF	Washougal	227	4609.9	12412.5	08/12/81	486
631954	coho	78	WDF	Washougal	181	4555.4	12408.2	07/14/81	505
631954	coho	78	WDF	Washougal	41	4610.0	12412.7	05/21/81	442
631954	coho	78	WDF	Washougal	173	4620.0	12418.5	07/13/81	567
632037	coho	78	WDF	Washougal	153	4610.2	12412.6	07/11/81	495
632037	coho	78	WDF	Washougal	181	4555.4	12408.2	07/14/81	585
632038	coho	78	WDF	Washougal	6	4438.1	12417.6	05/16/81	507
632038	coho	78	WDF	Washougal	41	4610.0	12412.7	05/21/81	466
632038	coho	78	WDF	Washougal	77	4620.1	12418.3	06/10/81	390
632038	coho	78	WDF	Washougal	227	4609.9	12412.5	08/12/81	427
632038	coho	78	WDF	Washougal	225	4609.5	12419.3	08/12/81	443
632049	coho	78	WDF	Fox Is. Pens	173	4620.0	12418.5	07/13/81	502
632106	coho	79	WDF	Grays R.	10	4438.3	12417.8	05/18/81	159
632106	coho	79	WDF	Grays R.	30	4555.1	12412.5	05/20/81	135
632106	coho	79	WDF	Grays R.	42	4610.0	12408.3	05/21/81	132
632119	coho	78	COOP	Seattle Aquarium	154	4609.8	12412.4	07/11/81	414
632150	coho	79	WDF	Washougal	30	4555.1	12412.5	05/20/81	134
632151	coho	79	WDF	Washougal	79	4620.0	12412.0	06/10/81	139
632151	coho	79	WDF	Washougal	227	4609.9	12412.5	08/12/81	224
632203	coho	79	WDF	Washougal	233	4555.3	12412.8	08/12/81	256
632203	coho	79	WDF	Washougal	224	4609.5	12419.3	08/12/81	262
632243	coho	79	WDF	Grays R.	183	4555.0	12420.2	07/14/81	240
050758	steelhead	80	FWS	Quinault NFH	72	4635.0	12418.2	06/09/81	172
102252	steelhead	80	IDFG	Dworshak NFH	35	4610.0	12428.0	05/21/81	206
				1982					
031733	chinook	80	NMFS	McNary (M)	129	4520.4	12412.0	06/22/82	355
050659	chinook	80	IDFG	Dworshak NFH	57	4500.9	12404.9	06/01/82	183
051041	chinook	80	YAKI	Nile Spring	62	4440.7	12424.4	06/01/82	173
066133	chinook	79	CDFG	Trinity R.	36	4559.8	12416.9	05/27/82	519
072054	chinook	80	ODFW	McKenzie	91	4622.9	12426.8	06/11/82	280
072141	chinook	80	ODFW	Bonneville	59	4500.6	12407.7	06/01/82	306
072143	chinook	80	ODFW	Bonneville	89	4622.7	12415.6	06/11/82	227
072143	chinook	80	ODFW	Bonneville	129	4520.4	12412.0	06/22/82	284

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1982 (continued)									
072350	chinook	80	ODFW	Round Butte	34	4600.3	12410.0	05/27/82	192
072350	chinook	80	ODFW	Round Butte	51	4520.1	12419.4	05/31/82	191
072350	chinook	80	ODFW	Round Butte	59	4500.6	12407.7	06/01/82	302
072350	chinook	80	ODFW	Round Butte	81	4640.9	12429.2	06/08/82	287
072419	chinook	80	ODFW	Willamette	79	4640.7	12417.8	06/08/82	247
072419	chinook	80	ODFW	Willamette	86	4630.0	12425.0	06/10/82	287
072422	chinook	80	ODFW	Willamette	87	4630.3	12418.0	06/10/82	260
072502	chinook	80	ODFW	Rock Creek	67	4419.7	12412.4	06/02/82	248
072507	chinook	80	ODFW	Bonneville	56	4500.4	12415.0	05/31/82	289
072518	chinook	80	ODFW	McKenzie	34	4600.3	12410.0	05/27/82	207
072524	chinook	80	ODFW	Marion Forks	82	4640.2	12419.4	06/10/82	150
072525	chinook	80	ODFW	Marion Forks	86	4630.0	12425.0	06/10/82	210
072526	chinook	80	ODFW	Marion Forks	82	4640.2	12419.4	06/10/82	193
072527	chinook	80	ODFW	Marion Forks	62	4440.7	12424.4	06/01/82	179
072527	chinook	80	ODFW	Marion Forks	81	4640.9	12429.2	06/08/82	165
072528	chinook	80	ODFW	Marion Forks	35	4600.0	12410.0	05/27/82	213
072529	chinook	80	ODFW	Marion Forks	36	4559.8	12416.9	05/27/82	186
072529	chinook	80	ODFW	Marion Forks	87	4630.3	12418.0	06/10/82	228
072536	chinook	80	ODFW	Elk R.	56	4500.4	12415.0	05/31/82	316
102412	chinook	80	IDFG	McCall	86	4630.0	12425.0	06/10/82	168
102413	chinook	80	IDFG	McCall	34	4600.3	12410.0	05/27/82	139
102413	chinook	80	IDFG	McCall	81	4640.9	12429.2	06/08/82	140
624832	chinook	80	DOMS	Domsea	22	4640.4	12418.2	05/23/82	270
624832	chinook	80	DOMS	Domsea	82	4640.2	12419.4	06/10/82	309
632307	chinook	80	WDF	Soleduck	20	4659.9	12431.9	05/22/82	203
632310	chinook	80	WDF	Cowlitz	173	4418.6	12410.4	09/14/82	340
632311	chinook	80	WDF	Cowlitz	33	4600.4	12403.6	05/27/82	159
050757	coho	79	TULA	Tulalip	45	4540.6	12410.4	05/30/82	399
050845	coho	80	QDNR	Wild	62	4440.7	12424.4	06/01/82	143
051019	coho	80	QDNR	Wild	72	4720.3	12439.3	06/07/82	127
051035	coho	80	FWS	Eagle Cr. NFH	131	4719.8	12431.7	09/04/82	373
051035	coho	80	FWS	Eagle Cr. NFH	59	4500.6	12407.7	06/01/82	156
051036	coho	80	FWS	Eagle Cr. NFH	86	4630.0	12425.0	06/10/82	147
051037	coho	80	FWS	Eagle Cr. NFH	58	4500.3	12405.2	06/01/82	146
051038	coho	80	FWS	Eagle Cr. NFH	101	4550.3	12414.7	06/13/82	204
051038	coho	80	FWS	Eagle Cr. NFH	130	4520.6	12419.7	06/22/82	156
051039	coho	80	FWS	Eagle Cr. NFH	127	4520.1	12426.3	06/21/82	156
051039	coho	80	FWS	Eagle Cr. NFH	143	4640.4	12422.1	09/06/82	317
051040	coho	80	FWS	Eagle Cr. NFH	58	4500.3	12405.2	06/01/82	147
071310	coho	80	ODFW	Big Creek	130	4520.6	12419.7	06/22/82	193
071511	coho	80	ODFW	Big Creek	59	4500.6	12407.7	06/01/82	153
072263	coho	79	ODFW	Sandy	41	4607.6	12429.0	05/28/82	480
072403	coho	80	ODFW	Rock Creek	61	4440.9	12417.7	06/01/82	193
072403	coho	80	ODFW	Rock Creek	124	4500.0	12422.1	06/20/82	198
072404	coho	80	ODFW	Rock Creek	123	4500.0	12422.1	06/20/82	205
072406	coho	80	ODFW	Fall Cr.	108	4520.4	12412.9	06/16/82	210
072427	coho	80	ODFW	Cascade	131	4719.8	12431.7	09/04/82	279
072432	coho	80	ODFW	Cascade	125	4520.6	12426.2	06/21/82	160
072434	coho	80	ODFW	Cascade	131	4719.8	12431.7	09/04/82	320
072455	coho	80	ODFW	Salmon R.	107	4520.4	12412.3	06/16/82	162
072456	coho	80	ODFW	Salmon R.	59	4500.6	12407.7	06/01/82	147
072456	coho	80	ODFW	Salmon R.	130	4520.6	12419.7	06/22/82	212
072458	coho	80	ODFW	Siletz	107	4520.4	12412.3	06/16/82	204
072458	coho	80	ODFW	Siletz	150	4620.1	12418.2	09/07/82	352
072458	coho	80	ODFW	Siletz	160	4540.0	12400.8	09/09/82	336
072508	coho	80	ODFW	Butte Falls	112	4440.2	12431.5	06/18/82	165
072534	coho	80	ODFW	Fall Cr.	107	4520.4	12412.3	06/16/82	274
072534	coho	80	ODFW	Fall Cr .	108	4520.4	12412.9	06/16/82	200

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1982 (continued)									
072549	coho	80	ODFW	Sandy	150	4620.1	12418.2	09/07/82	268
072550	coho	80	ODFW	Sandy	150	4620.1	12418.2	09/07/82	353
072556	coho	80	ODFW	Sandy	59	4500.6	12407.7	06/01/82	153
072556	coho	80	ODFW	Sandy	61	4440.9	12417.7	06/01/82	163
072557	coho	80	ODFW	Sandy	59	4500.6	12407.7	06/01/82	152
072557	coho	80	ODFW	Sandy	59	4500.6	12407.7	06/01/82	150
072557	coho	80	ODFW	Sandy	108	4520.4	12412.9	06/16/82	163
072558	coho	80	ODFW	Sandy	123	4500.0	12422.1	06/20/82	174
072648	coho	80	ODFW	Big Creek	130	4520.6	12419.7	06/22/82	173
072649	coho	80	ODFW	Big Creek	58	4500.3	12405.2	06/01/82	142
090211	coho	80	ODFW	Big Creek	62	4440.7	12424.4	06/01/82	188
600516	coho	81	OAF	Oregon Aqua-Foods	155	4556.3	12406.7	09/08/82	246
600533	coho	81	OAF	Oregon Aqua-Foods	150	4620.1	12418.2	09/07/82	242
600540	coho	81	OAF	Oregon Aqua-Foods	154	4556.3	12402.9	09/08/82	184
600540	coho	81	OAF	Oregon Aqua-Foods	172	4419.1	12410.7	09/14/82	204
600541	coho	81	OAF	Oregon Aqua-Foods	163	4520.7	12405.3	09/12/82	186
600542	coho	81	OAF	Oregon Aqua-Foods	116	4440.2	12410.7	09/11/82	157
600555	coho	81	OAF	Oregon Aqua-Foods	154	4556.3	12402.9	09/08/82	245
600560	coho	81	OAF	Oregon Aqua-Foods	151	4620.1	12417.7	09/08/82	182
603423	coho	80	OAF	Oregon Aqua-Foods	171	4419.9	12412.6	09/14/82	552
604148	coho	80	OAF	Oregon Aqua-Foods	171	4419.9	12412.6	09/14/82	408
632130	coho	79	SQAX	Squaxin Is. Pens	22	4640.4	12418.2	05/23/82	444
632130	coho	79	SQAX	Squaxin Is. Pens	41	4607.6	12429.0	05/28/82	433
632139	coho	79	WDF	Green R.	19	4700.0	12424.9	05/22/82	460
632203	coho	79	WDF	Washougal	47	4540.3	12424.6	05/30/82	518
632249	coho	80	WDF	Wild	81	4640.9	12429.2	06/08/82	168
632303	coho	80	WDF	Lower Kalama	59	4500.6	12407.7	06/01/82	164
632303	coho	80	WDF	Lower Kalama	59	4500.6	12407.7	06/01/82	160
632303	coho	80	WDF	Lower Kalama	59	4500.6	12407.7	06/01/82	169
632303	coho	80	WDF	Lower Kalama	59	4500.6	12407.7	06/01/82	161
632303	coho	80	WDF	Lower Kalama	108	4520.4	12412.9	06/16/82	205
632304	coho	80	WDF	Speelyai	59	4500.6	12407.7	06/01/82	148
632305	coho	80	WDF	Speelyai	131	4719.8	12431.7	09/04/82	330
632313	coho	79	WDF	Wild	104	4540.6	12410.3	06/14/82	455
632357	coho	80	WDF	Wild	77	4700.3	12424.8	06/07/82	150
632358	coho	80	WDF	Wild	87	4630.3	12418.0	06/10/82	128
632363	coho	80	WDF	Grays R.	57	4500.9	12404.9	06/01/82	161
632401	coho	80	WDF	Naselle R.	82	4640.2	12419.4	06/10/82	224
632402	coho	80	WDF	Nemah	78	4700.3	12424.8	06/07/82	165
632402	coho	80	WDF	Nemah	79	4640.7	12417.8	06/08/82	133
632402	coho	80	WDF	Nemah	107	4520.4	12412.3	06/16/82	145
632404	coho	80	WDF	Humptulips	82	4640.2	12419.4	06/10/82	150
632404	coho	80	WDF	Humptulips	88	4629.8	12417.5	06/10/82	149
632408	coho	80	WDF	Simpson	56	4500.4	12415.0	06/01/82	133
632408	coho	80	WDF	Simpson	88	4629.8	12417.5	06/10/82	133
632409	coho	80	WDF	Willapa	78	4700.3	12424.8	06/07/82	160
632415	coho	80	WDF	Wild	86	4630.0	12425.0	06/10/82	167
632423	coho	80	WDF	Cowlitz	56	4500.4	12415.0	05/31/82	141
632427	coho	80	WDF	Cowlitz	59	4500.6	12407.7	06/01/82	164
632436	coho	80	WDF	Cowlitz	58	4500.3	12405.2	06/01/82	136
632436	coho	80	WDF	Cowlitz	59	4500.6	12407.7	06/01/82	158
632437	coho	80	WDF	Cowlitz	107	4520.4	12412.3	06/16/82	164
632438	coho	80	WDF	Cowlitz	130	4520.6	12419.7	06/22/82	141
632439	coho	80	WDF	Cowlitz	59	4500.6	12407.7	06/01/82	149
632446	coho	80	WDF	Cowlitz	39	4609.3	12419.1	05/28/82	138
632448	coho	80	WDF	Cowlitz	131	4719.8	12431.7	09/04/82	316
632449	coho	80	WDF	Cowlitz	131	4719.8	12431.7	09/04/82	332
632516	coho	80	WDF	Washougal	102	4539.6	12401.6	06/13/82	136

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1982 (continued)									
632518	coho	80	WDF	Washougal	90	4623.1	12418.2	06/11/82	137
632519	coho	80	WDF	Washougal	123	4500.0	12422.1	06/20/82	155
632526	coho	80	WDF	Washougal	125	4520.6	12426.2	06/21/82	165
632529	coho	80	WDF	Washougal	104	4540.6	12410.3	06/14/82	146
632530	coho	80	WDF	Washougal	150	4620.1	12418.2	09/07/82	270
632548	coho	80	WDF	Wild	81	4640.9	12429.2	06/08/82	144
051043	steelhead	81	HOH	Quinault lake	52	4520.9	12425.8	05/31/82	185
1983									
051122	chinook	81	FWS	Quinault NFH	75	4800.2	12448.1	06/15/83	238
051339	chinook	81	YAKI	Leavenworth NFH	30	4619.8	12425.9	05/21/83	152
072547	chinook	81	ODFW	Bonneville	8	4800.0	12455.8	05/17/83	254
072836	chinook	82	ODFW	Round Butte	63	4640.8	12411.5	06/12/83	124
102318	chinook	81	IDFG	Rapid River	26	4640.2	12432.7	05/20/83	158
102458	chinook	81	IDFG	McCall	39	4540.9	12410.6	05/23/83	146
632505	chinook	81	WDF	Cowlitz	28	4620.7	12411.4	05/21/83	225
632609	chinook	81	WDF	Cowlitz	28	4620.7	12411.4	05/21/83	224
632609	chinook	81	WDF	Cowlitz	28	4620.7	12411.4	05/21/83	254
050929	coho	81	FWS	Willard NFH	90	4600.1	12405.6	06/23/83	134
050938	coho	81	FWS	Willard NFH	95	4540.0	12359.6	06/23/83	145
051062	coho	80	TULA	Tulatip Cr.	5	4820.4	12509.5	05/16/83	370
051136	coho	81	FWS	Eagle Creek NFH	66	4640.0	12426.3	06/13/83	195
051137	coho	81	FWS	Eagle Creek NFH	39	4540.9	12410.6	05/23/83	153
072445	coho	81	ODFW	Fall Creek	32	4619.8	12425.0	05/21/83	170
072449	coho	81	ODFW	Klaskanine	39	4540.9	12410.6	05/23/83	173
072450	coho	81	ODFW	Siletz	68	4700.0	12432.3	06/13/83	222
072456	coho	80	ODFW	Salmon River	14	4740.4	12434.5	05/18/83	544
072544	coho	80	ODFW	Cole Rivers	34	4600.3	12406.0	05/22/83	444
072559	coho	81	ODFW	Nehalem	87	4600.4	12401.4	06/23/83	325
072561	coho	81	ODFW	Nehalem	28	4620.7	12411.4	05/21/83	200
072561	coho	81	ODFW	Nehalem	80	4740.0	12437.5	06/15/83	233
072639	coho	81	ODFW	Rock Creek	107	4327.5	12419.0	06/23/83	315
072642	coho	81	ODFW	Fall Creek	59	4419.8	12433.4	05/27/83	173
072642	coho	81	ODFW	Fall Creek	66	4640.0	12426.3	06/13/83	190
072735	coho	81	ODFW	Sandy	34	4600.3	12406.0	05/23/83	146
600533	coho	81	OAF	Oregon Aqua-Foods	69	4700.0	12424.0	06/13/83	400
600548	coho	82	OAF	Oregon Aqua-Foods	122	4820.0	12450.8	09/15/83	272
600617	coho	82	OAF	Oregon Aqua-Foods	149	4540.0	12403.1	09/20/83	232
603556	coho	82	OAF	Oregon Aqua-Foods	155	4520.2	12401.3	09/22/83	198
603557	coho	82	OAF	Oregon Aqua-Foods	149	4540.0	12403.1	09/20/83	206
603559	coho	82	OAF	Oregon Aqua-Foods	163	4440.0	12406.7	09/23/83	152
621521	coho	81	ANAD	Anadromous, Inc.	109	4327.5	12430.1	06/26/83	157
621521	coho	81	ANAD	Anadromous, Inc.	109	4327.5	12430.1	06/26/83	144
621521	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	153
621522	coho	81	ANAD	Anadromous, Inc.	109	4327.5	12430.1	06/26/83	158
621522	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	151
621526	coho	81	ANAD	Anadromous, Inc.	111	4327.6	12436.4	06/26/83	167
621532	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	147
621532	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	152
621533	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	151
621533	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	174
621534	coho	81	ANAD	Anadromous, Inc.	109	4327.5	12430.1	06/26/83	148
621534	coho	81	ANAD	Anadromous, Inc.	109	4327.5	12430.1	06/26/83	167
621534	coho	81	ANAD	Anadromous, Inc.	109	4327.5	12430.1	06/26/83	161
621534	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	155
621535	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	153
621535	coho	81	ANAD	Anadromous, [nc.	111	4327.6	12436.4	06/26/83	159
621535	coho	81	ANAD	Anadromous, Inc.	110	4327.5	12430.1	06/26/83	160

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1983 (continued)									
632334	coho	80	WDF	Wild	13	4740.5	12437.6	05/17/83	435
632334	coho	80	WDF	Wild	5	4820.4	12509.5	05/16/83	392
632445	coho	80	WDF	Cowlitz	8	4800.0	12455.8	05/17/83	394
632529	coho	80	WDF	Washougal	61	4629.7	12421.5	06/09/83	468
632605	coho	81	WDF	Lower Kalama	61	4629.7	12421.5	09/06/83	203
632605	coho	81	WDF	Lower Kalama	66	4640.0	12426.3	06/13/86	210
632632	coho	81	WDF	Cowlitz	37	4540.5	12359.1	05/23/83	134
632645	coho	81	WDF	Washougal	61	4629.7	12421.5	09/06/83	198
1984									
050859	chinook	82	FWS	Carson NFH	13	4740.1	12501.3	06/06/84	179
050860	chinook	82	FWS	Carson NFH	17	4720.1	12439.0	06/08/84	168
050916	chinook	82	FWS	Carson NFH	26	4620.0	12413.0	06/10/84	180
050918	chinook	82	FWS	Carson NFH	10	4739.7	12439.0	06/06/84	165
051140	chinook	82	FWS	Little White Salmon	14	4720.1	12447.0	06/06/84	170
051528	chinook	83	FWS	Leavenworth NFH	111	4659.6	12419.3	07/28/84	138
072840	chinook	82	ODFW	Round Butte	13	4740.1	12501.3	06/06/84	205
072858	chinook	82	ODFW	Big Creek	147	4759.7	12455.6	09/01/84	389
072863	chinook	82	ODFW	Marion Forks	17	4720.1	12439.0	06/08/84	164
102413	chinook	80	IDGF	McCall	33	4559.5	12417.0	06/12/84	856
102607	chinook	83	IDGF	Hagerman NFH	26	4620.0	12413.0	06/10/84	149
102738	chinook	82	IDGF	McCall	148	4759.7	12449.2	09/01/84	236
102738	chinook	82	IDGF	McCall	19	4700.0	12432.0	06/08/84	164
102738	chinook	82	IDGF	McCall	26	4620.0	12413.0	06/10/84	148
102738	chinook	82	IDGF	McCall	140	4820.3	12448.5	09/01/84	267
621761	chinook	83	ANAD	Anadromous	205	4400.1	12411.1	09/15/84	211
621761	chinook	83	ANAD	Anadromous	196	4440.0	12407.2	09/14/84	213
621761	chinook	83	ANAD	Anadromous	196	4440.0	12407.2	09/14/84	217
632156	chinook	80	WDF	Cowlizz	126	4858.0	12541.8	08/01/84	601
632834	chinook	82	WDF	Cowlitz	36	4540.1	12403.2	06/12/84	214
632844	chinook	82	WDF	Rocky Reach	36	4540.1	12403.2	06/12/84	186
632844	chinook	82	WDF	Rocky Reach	23	4639.6	12419.5	06/09/84	150
632844	chinook	82	WDF	Rocky Reach	115	4659.1	12439.2	07/29/84	223
022463	coho	82	CDFO	San Juan River CDP	7	4800.4	12455.1	06/05/84	155
051119	coho	81	FWS	Quilcene NFH	126	4858.0	12541.8	08/01/84	541
072615	coho	82	ODFW	Cole Rivers	72	4045.1	12419.6	07/10/84	200
072637	coho	82	ODFW	Wahkeena Pond	119	4729.9	12441.2	07/29/84	269
072638	coho	81	ODFW	Rock Creek	60	4420.6	12409.5	06/19/84	582
072746	coho	81	ODFW	Cascade	39	4519.8	12405.5	06/13/84	505
072854	coho	82	ODFW	Cole Rivers	71	4031.7	12428.8	07/09/84	191
072945	coho	82	ODFW	Cascade	142	4820.8	12459.9	09/01/84	293
072949	coho	82	ODFW	Cascade	35	4540.1	12410.4	06/12/84	162
073014	coho	82	ODFW	Bonneville	160	4700.0	12432.1	09/03/84	259
231703	coho	82	NMFS	Priest Rapids (M)	18	4700.0	12439.6	06/08/84	176
603609	coho	82	OAF	Oregon Aqua-Foods	94	4459.6	12408.2	07/25/84	498
603633	coho	83	OAF	Oregon Aqua-Foods	41	4520.3	12419.5	06/14/84	143
603644	coho	83	OAF	Oregon Aqua-Foods	167	4639.9	12425.7	09/04/84	197
621742	coho	82	ANAD	Anadromous, Jnc.	165	4640.0	12418.7	09/04/84	260
632554	coho	81	WDF	Green River	125	4833.4	12455.1	07/30/84	462
632561	coho	81	COOP	George Adams	122	4800.0	12455.9	07/30/84	534
632562	coho	81	COOP	Port Gamble Pens	125	4833.4	12455.1	07/30/84	539
632730	coho	81	WDF	Skykomish	8	4800.0	12449.0	06/05/84	485
632739	coho	82	WDF	Soleduck	18	4700.0	12439.6	06/08/84	160
632742	coho	82	WDF	Naselle	18	4700.0	12439.6	06/08/84	168
632742	coho	82	WDF	Naselle	20	4700.0	12424.5	06/08/84	158
632746	coho	82	WDF	Simpson	16	4720.0	12432.0	06/08/84	135
632921	coho	82	WDF	Cowlitz	97	4530.1	12401.8	07/26/84	245
632924	coho	82	WDF	Cowlitz	41	4520.3	12419.5	06/14/84	168

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1984 (continued)									
632945	coho	82	WDF	Washougal	161	4700.4	12439.1	09/03/84	303
632946	coho	82	WDF	Washougal	163	4700.3	12431.9	09/03/84	269
632957	coho	82	WDF	Washougal	47	4459.4	12422.4	06/16/84	145
632960	coho	82	WDF	Washougal	170	4620.4	12417.9	09/05/84	289
632961	coho	82	WDF	Washougal	163	4700.3	12431.9	09/03/84	280
633016	coho	82	WDF	Speelyai	46	4500.0	12414.9	06/16/84	157
633027	coho	82	WDF	Wild	146	4759.7	12503.2	09/01/84	266
051335	steelhead	83	FWS	Dworshak	27	4620.0	12433.8	06/10/84	194
1985									
051155	chinook	83	FWS	Carson NFH	6	4558.9	12425.1	05/30/85	169
051158	chinook	83	FWS	Carson NFH	1	4620.1	12411.1	05/29/85	142
051158	chinook	83	FWS	Carson NFH	30	4619.9	12432.5	06/05/85	159
051159	chinook	83	FWS	Carson NFH	1	4620.1	12411.1	05/29/85	155
051160	chinook	83	FWS	Carson NFH	1	4620.1	12411.1	05/29/85	142
051216	chinook	83	FWS	Carson NFH	1	4620.1	12411.1	05/29/85	159
051525	chinook	83	FWS	Spring Creek NFH	77	4600.1	12417.3	06/17/85	220
051527	chinook	83	FWS	Little White Salmon	1	4620.1	12411.1	05/29/85	177
051533	chinook	83	FWS	Leavenworth NFH	6	4558.9	12425.1	05/30/85	172
072749	chinook	83	ODFW	Rock Creek	49	4419.9	12407.0	06/11/85	276
072749	chinook	83	ODFW	Rock Creek	117	4759.7	12448.3	06/25/85	295
072902	chinook	83	ODFW	Marion Forks	1	4620.1	12411.1	05/29/85	168
073007	chinook	83	ODFW	Bonneville	1	4620.1	12411.1	05/29/85	187
073007	chinook	83	ODFW	Bonneville	1	4620.1	12411.1	05/29/85	219
073007	chinook	83	ODFW	Bonneville	1	4620.1	12411.1	05/29/85	230
073023	chinook	83	ODFW	Marion Forks	11	4600.3	12359.7	05/31/85	261
073127	chinook	83	ODFW	Bonneville	1	4620.1	12411.1	05/29/85	158
073127	chinook	83	ODFW	Bonneville	8	4559.3	12417.2	05/30/85	237
073128	chinook	83	ODFW	Round Butte	115	4800.3	12503.0	06/25/85	275
073155	chinook	83	ODFW	Lookingglass	1	4620.1	12411.1	05/29/85	158
073155	chinook	83	ODFW	Lookingglass	1	4620.1	12411.1	05/29/85	155
102518	chinook	83	IDFG	McCall	1	4620.1	12411.1	05/29/85	138
102518	chinook	83	IDFG	McCall	1	4620.1	12411.1	05/29/85	142
102518	chinook	83	IDFG	McCall	1	4620.1	12411.1	05/29/85	155
102523	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	147
102523	chinook	83	UI	Eagle Creek NFH	30	4619.9	12432.5	06/05/85	162
102524	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	145
102524	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	146
102524	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	166
102526	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	141
102526	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	170
102526	chinook	83	UI	Eagle Creek NFH	26	4620.0	12411.4	06/03/85	118
102532	chinook	83	UI	Eagle Creek NFH	15	4605.8	12400.8	05/31/85	149
102532	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	178
102532	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	170
102533	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	166
102533	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	164
102533	chinook	83	UI	Eagle Creek NFH	11	4600.3	12359.7	05/31/85	155
102533	chinook	83	UI	Eagle Creek NFH	3	4610.0	12404.6	05/30/85	210
102533	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	129
102533	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	200
102533	chinook	83	UT	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	225
102533	chinook	83	UI	Eagle Creek NFH	1	4620.1	12411.1	05/29/85	149
102633	chinook	83	IDFG	McCall	1	4620.1	12411.1	05/29/85	140
102633	chinook	83	IDFG	McCall	1	4620.1	12411.1	05/29/85	135
231713	chinook	83	NMFS	Priest Rapids (M)	110	4740.1	12438.7	06/25/85	180
231713	chinook	83	NMFS	Priest Rapids (M)	6	4558.9	12425.1	05/30/85	160
231714	chinook	83	NMFS	Priest Rapids (M)	1	4620.1	12411.1	05/29/85	126

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1985 (continued)									
231748	chinook	83	NMFS	Priest Rapids (M)	110	4740.1	12438.7	06/25/85	180
231748	chinook	83	NivFS	Priest Rapids (M)	1	4620.1	12411.1	05/29/85	119
231753	chinook	83	NMFS	Priest Rapids (M)	27	4619.6	12418.4	06/03/85	149
231756	chinook	83	NMFS	Priest Rapids (M)	93	4700.3	12432.0	06/22/85	190
632152	chinook	83	WDF	Lyons Ferry	117	4759.7	12448.3	06/25/85	233
632152	chinook	83	WDF	Lyons Ferry	92	4700.2	12425.2	06/22/85	236
632152	chinook	83	WDF	Lyons Ferry	83	4619.9	12418.4	06/18/85	247
632152	chinook	83	WDF	Lyons Ferry	74	4600.0	12400.2	06/17/85	242
632152	chinook	83	WDF	Lyons Ferry	94	4700.0	12439.7	06/22/85	220
632152	chinook	83	WDF	Lyons Ferry	94	4700.0	12439.7	06/22/85	209
632152	chinook	83	WDF	Lyons Ferry	77	4600.1	12417.3	06/17/85	212
632152	chinook	83	WDF	Lyons Ferry	6	4558.9	12425.1	05/30/85	184
632152	chinook	83	WDF	Lyons Ferry	14	4600.2	12403.3	05/31/85	197
632152	chinook	83	WDF	Lyons Ferry	15	4605.8	12400.8	05/31/85	176
632152	chinook	83	WDF	Lyons Ferry	67	4540.3	12358.6	06/14/85	220
632152	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	188
632152	chinook	83	WDF	Lyons Ferry	117	4759.7	12448.3	06/25/85	215
632152	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	187
632152	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	199
632152	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	194
632152	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	170
632152	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	215
632326	chinook	83	WDF	Wells Channel	1	4620.1	12411.1	05/29/85	189
632747	chinook	83	WDF	Cowlitz	88	4620.0	12411.0	06/20/85	237
632747	chinook	83	WDF	Cowlitz	15	4605.8	12400.8	05/31/85	220
632747	chinook	83	WDF	Cowlitz	15	4605.8	12400.8	05/31/85	230
632747	chinook	83	WDF	Cowliz	11	4600.3	12359.7	05/31/85	210
632747	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	206
632747	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	207
632747	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	182
632748	chinook	83	WDF	Cowlitz	89	4620.4	12419.0	06/20/85	232
632748	chinook	83	WDF	Cowlitz	55	4439.8	12418.2	06/12/85	198
632748	chinook	83	WDF	Cowlizz	11	4600.3	12359.7	05/31/85	229
632748	chinook	83	WDF	Cowlitz	9	4621.0	12410.0	05/31/85	205
632748	chinook	83	WDF	Cowlitz	12	4559.9	12403.2	05/31/85	213
632748	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	175
632748	chinook	83	WDF	Cowlitz	19	4600.3	12359.5	06/01/85	179
632836	chinook	82	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	462
632857	chinook	83	WDF	Rocky Reach	9	4621.0	12410.0	05/31/85	170
632857	chinook	83	WDF	Rocky Reach	89	4620.4	12419.0	06/20/85	196
632857	chinook	83	WDF	Rocky Reach	88	4620.0	12411.0	06/20/85	190
632857	chinook	83	WDF	Rocky Reach	105	4720.1	12446.7	06/24/85	228
632857	chinook	83	WDF	Rocky Reach	1	4620.1	12411.1	05/29/85	186
632857	chinook	83	WDF	Rocky Reach	1	4620.1	12411.1	05/29/85	182
632857	chinook	83	WDF	Rocky Reach	1	4620.1	12411.1	05/29/85	175
632857	chinook	83	WDF	Rocky Reach	1	4620.1	12411.1	05/29/85	184
633054	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	190
633055	chinook	83	WDF	Cowlitz	89	4620.4	12419.0	06/20/85	237
633055	chinook	83	WDF	Cowlizz	14	4600.2	12403.3	05/31/85	215
633055	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	202
633056	chinook	83	WDF	Cowlitz	3	4610.0	12404.6	05/30/85	195
633056	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	215
633117	chinook	83	WDF	Washougal	1	4620.1	12411.1	05/29/85	147
633122	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	194
633122	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	204
633122	chinook	83	WDF	Cowlitz	1	4620.1	12411.1	05/29/85	223
633218	chinook	83	WDF	Lyons Ferry	110	4740.1	12438.7	06/25/85	220
633218	chinook	83	WDF	Lyons Ferry	93	4700.3	12432.0	06/22/85	216

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1985 (continued)									
633218	chinook	83	WDF	Lyons Ferry	117	4759.7	12448.3	06/25/85	221
633218	chinook	83	WDF	Lyons Ferry	83	4619.9	12418.4	06/18/85	220
633218	chinook	83	WDF	Lyons Ferry	94	4700.0	12439.7	06/22/85	241
633218	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	177
633218	chinook	83	WDF	Lyons Ferry	1	4620.1	12411.1	05/29/85	175
633218	chinook	83	WDF	Lyons Ferry	8	4559.3	12417.2	05/30/85	183
h50606	chinook	83	FWS	Spring Creek NFH	82	4619.4	12410.8	06/18/85	354
022458	coho	82	CDFO	Thornton Cr. CDP	92	4700.2	12425.2	06/22/85	530
022651	coho	82	CDFO	Tenderfoot Cr.	89	4620.4	12419.0	06/20/85	445
022723	coho	82	CDFO	Puntledge R.	105	4720.1	12446.7	06/24/85	495
072654	coho	83	ODFW	Bonneville	68	4540.4	12403.3	06/14/85	164
072756	coho	83	ODFW	Butte Falls	30	4619.9	12432.5	06/05/85	200
072756	coho	83	ODFW	Butce Falls	12	4559.9	12403.2	05/31/85	207
072761	coho	83	ODFW	Rock Creek	111	4740.3	12446.1	06/25/85	264
072762	coho	83	ODFW	Rock Creek	52	4439.7	12417.5	06/12/85	185
072763	coho	83	ODFW	Salmon River	111	4740.3	12446.1	06/25/85	263
072763	coho	83	ODFW	Salmon River	95	4700.2	12446.6	06/22/85	233
072763	coho	83	ODFW	Salmon River	12	4559.9	12403.2	05/31/85	214
072801	coho	83	ODFW	Klaskanine	94	4700.0	12439.7	06/22/85	204
072801	coho	83	ODFW	Klaskanine	11	4600.3	12359.7	05/31/85	186
072801	coho	83	ODFW	Klaskanine	12	4559.9	12403.2	05/31/85	184
072811	coho	83	ODFW	Sandy	14	4600.2	12403.3	05/31/85	174
072958	coho	83	ODFW	Fall Creek	113	4740.1	12453.4	06/25/85	233
072959	coho	83	ODFW	Fall Creek	113	4740.1	12453.4	06/25/85	243
072962	coho	83	ODFW	Fall Creek	106	4720.1	12439.3	06/24/85	264
072962	coho	83	ODFW	Fall Creek	80	4600.1	12438.7	06/17/85	300
072963	coho	83	ODFW	Fall Creek	15	4605.8	12400.8	05/31/85	165
072963	coho	83	ODFW	Fall Creek	8	4559.3	12417.2	05/30/85	189
072963	coho	83	ODFW	Fall Creek	12	4559.9	12403.2	05/31/85	179
073026	coho	83	ODFW	Siletz	11	4600.3	12359.7	05/31/85	171
073026	coho	83	ODFW	Siletz	30	4619.9	12432.5	06/05/85	180
073029	coho	83	ODFW	Cascade	79	4600.5	12432.2	06/17/85	168
073032	coho	83	ODFW	Big Creek	80	4600.1	12438.7	06/17/85	180
073032	coho	83	ODFW	Big Creek	90	4620.1	12425.8	06/20/85	181
073032	coho	83	ODFW	Big Creek	70	4540.2	12411.1	06/16/85	164
073045	coho	83	ODFW	Sandy	30	4619.9	12432.5	06/05/85	150
073046	coho	83	ODFW	Sandy	79	4600.5	12432.2	06/17/85	186
073046	coho	83	ODFW	Sandy	85	4620.7	12432.0	06/18/85	195
073046	coho	83	ODFW	Sandy	25	4600.1	12407.0	06/02/85	180
073047	coho	83	ODFW	Sandy	31	4619.9	12439.7	06/05/85	168
073049	coho	83	ODFW	Sandy	15	4605.8	12400.8	05/31/85	152
073049	coho	83	ODFW	Sandy	11	4600.3	12359.7	05/31/85	148
073050	coho	83	ODFW	Sandy	81	4600.4	12446.2	06/17/85	210
073105	coho	83	ODFW	Sandy	14	4600.2	12403.3	05/31/85	182
073106	coho	83	ODFW	Sandy	11	4600.3	12359.7	05/31/85	159
073107	coho	83	ODFW	Sandy	87	4619.8	12418.3	06/18/85	192
073107	coho	83	ODFW	Sandy	79	4600.5	12432.2	06/17/85	183
073107	coho	83	ODFW	Sandy	11	4600.3	12359.7	05/31/85	160
073108	coho	83	ODFW	Sandy	78	4600.2	12424.7	06/17/85	188
073108	coho	83	ODFW	Sandy	105	4720.1	12446.7	06/24/85	216
073108	coho	83	ODFW	Sandy	11	4600.3	12359.7	05/31/85	153
073204	coho	83	ODFW	Cascade	14	4600.2	12403.3	05/31/85	147
073204	coho	83	ODFW	Cascade	14	4600.2	12403.3	05/31/85	156
073204	coho	83	ODFW	Cascade	15	4605.8	12400.8	05/31/85	141
073204	coho	83	ODFW	Cascade	11	4600.3	12359.7	05/31/85	158
073204	coho	83	ODFW	Cascade	12	4559.9	12403.2	05/31/85	155
073204	coho	83	ODFW	Cascade	12	4559.9	12403.2	05/31/85	151
073206	coho	83	ODFW	Cascade	79	4600.5	12432.2	06/17/85	172

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1985 (continued)									
073206	coho	83	ODFW	Cascade	90	4620.1	12425.8	06/20/85	172
073206	coho	83	ODFW	Cascade	94	4700.0	12439.7	06/22/85	183
073206	coho	83	ODFW	Cascade	9	4621.0	12410.0	05/31/85	134
073207	coho	83	ODFW	Cascade	85	4620.7	12432.0	06/18/85	160
073208	coho	83	ODFW	Cascade	15	4605.8	12400.8	05/31/85	151
073344	coho	83	ODFW	Cascade	106	4720.1	12439.3	06/24/85	240
073344	coho	83	ODFW	Cascade	12	4559.9	12403.2	05/31/85	164
111704	coho	83	UW	Coll. Fisheris	99	4640.2	12432.8	06/23/85	465
211601	coho	82	TULA	Tulalip Creek	105	4720.1	12446.7	06/24/85	495
211626	coho	82	QDNR	(Wild)	24	4600.3	12407.0	06/02/85	476
211636	coho	83	QDNR	Quinault NFH	110	4740.1	12438.7	06/25/85	201
211643	coho	83	QDNR	Quinault Lake	102	4700.2	12453.8	06/24/85	254
603645	coho	83	OAF	Oregon Aqua-Foods	85	4620.7	12432.0	06/18/85	517
603709	coho	83	OAF	Oregon Aqua-Foods	60	4500.0	12415.2	06/13/85	497
603723	coho	84	OAF	Oregon Aqua-Foods	55	4439.8	12418.2	06/12/85	129
621723	coho	82	ANAD	Anadromous, Inc.	58	4459.9	12407.9	06/13/85	510
621749	coho	83	ANAD	Anadromous, Inc.	16	4559.6	12402.6	06/01/85	492
623024	coho	83	ANAD	Anadromous, Inc.	43	4359.8	12416.1	06/11/85	183
623024	coho	83	ANAD	Anadromous, Inc.	41	4359.7	12408.9	06/11/85	153
623027	coho	83	ANAD	Anadromous, Inc.	48	4420.1	12412.2	06/11/85	166
623126	coho	83	ANAD	Anadromous, Inc.	83	4619.9	12418.4	06/18/85	197
623126	coho	83	ANAD	Anadromous, Inc.	48	4420.1	12412.2	06/11/85	175
623127	coho	83	ANAD	Anadromous, Inc.	90	4620.1	12425.8	06/20/85	201
632809	coho	83	WDF	Naselle	1	4620.1	12411.1	05/29/85	143
632814	coho	83	WDF	Nemah	105	4720.1	12446.7	06/24/85	213
632815	coho	83	WDF	Nemah	94	4700.0	12439.7	06/22/85	237
632820	coho	83	WDF	Humptulips	82	4619.4	12410.8	06/18/85	132
632829	coho	83	WDF	Satsop Springs	94	4700.0	12439.7	06/22/85	155
632852	coho	82	SQAX	Squaxin Island Pens	105	4720.1	12446.7	06/24/85	495
632921	coho	82	WDF	Cowlitz	75	4600.3	12402.9	06/17/85	560
632930	coho	82	WDF	Cowlitz	88	4620.0	12411.0	06/20/85	545
633010	coho	83	WDF	(Wild)	82	4619.4	12410.8	06/18/85	109
633014	coho	82	WDF	Willapa	101	4700.3	12447.6	06/24/85	555
633021	coho	82	COOP	George Adams	111	4740.3	12446.1	06/25/85	520
633023	coho	82	WDF	Skykomish	101	4700.3	12447.6	06/24/85	470
633024	coho	82	SQAX	Squaxin Island Pens	105	4720.1	12446.7	06/24/85	483
633026	coho	82	WDF	(Wild)	6	4558.9	12425.1	05/30/85	421
633135	coho	83	WDF	Washougal	90	4620.1	12425.8	06/20/85	186
633156	coho	83	WDF	Kalama Falls	72	4540.3	12425.3	06/16/85	119
633156	coho	83	WDF	Kalama Falls	11	4600.3	12359.7	05/31/85	150
633156	coho	83	WDF	Kalama Falls	30	4619.9	12432.5	06/05/85	143
633157	coho	83	WDF	Kalama Falls	90	4620.1	12425.8	06/20/85	157
633157	coho	83	WDF	Kalama Falls	22	4559.7	12407.9	06/01/85	163
633157	coho	83	WDF	Kalama Falls	11	4600.3	12359.7	05/31/85	162
633157	coho	83	WDF	Kalama Falls	25	4600.1	12407.0	06/02/85	163
633162	coho	83	WDF	Cowlitz	83	4619.9	12418.4	06/18/85	180
633232	coho	83	WDF	Kalama Falls	83	4619.9	12418.4	06/18/85	118
633232	coho	83	WDF	Kalama Falls	30	4619.9	12432.5	06/05/85	163
633232	coho	83	WDF	Kalama Falls	23	4600.3	12407.7	06/02/85	148
633232	coho	83	WDF	Kalama Falls	23	4600.3	12407.7	06/02/85	145
633233	coho	83	WDF	Kalama Falls	83	4619.9	12418.4	06/18/85	187
633233	coho	83	WDF	Kalama Falls	83	4619.9	12418.4	06/18/85	181
633249	coho	83	WDF	Cowlitz	12	4559.9	12403.2	05/31/85	150
633250	coho	83	WDF	Cowlitz	80	4600.1	12438.7	06/17/85	143
633250	coho	83	WDF	Cowlitz	8	4559.3	12417.2	05/30/85	148
633252	coho	83	WDF	Cowlitz	30	4619.9	12432.5	06/05/85	144
633253	coho	83	WDF	Elkomin	12	4559.9	12403.2	05/31/85	169
633254	coho	83	WDF	Elkomin	6	4558.9	12425.1	05/30/85	162

Appendix (continued)									
Release data					Recovery data				
Tag code	Species	Brood year	Agency	Hatchery	Set	Latitude	Longitude	Date	Length (mm)
1985 (continued)									
633259	coho	83	WDF	Grays River	90	4620.1	12425.8	06/20/85	178
633261	coho	83	WDF	Grays River	30	4619.9	12432.5	06/05/85	175
633262	coho	83	WDF	Grays River	90	4620.1	12425.8	06/20/85	205
633342	coho	83	WDF	Willapa	80	4600.1	12438.7	06/17/85	230
633347	coho	83	WDF	Simpson	89	4620.4	12419.0	06/20/85	149
633348	coho	83	WDF	Simpson	79	4600.5	12432.2	06/17/85	130
h10603	coho	83	WDF	Humptulips	89	4620.4	12419.0	06/20/85	168

[^0]: U.S. DEPARTMENT OF COMMERCE

 Robert Mosbacher, Secretary
 National Oceanic and Atmospheric Administration
 John A. Knauss, Under Secretary for Oceans and Atmosphere
 National Marine Fisheries Service
 William W. Fox Jr., Assistant Administrator for Fisheries

[^1]: ${ }^{1}$ Age designation follows that recommended by Koo (1962), where the numbers before and after the decimal point indicate winters spent in fresh water and in the ocean, respectively.

[^2]: ${ }^{2}$ Data on total smolts released in each region were obtained from Tom Lichatowich, Oregon Department of Fish and Wildlife, Portland, OR and D. O'Conner, Washington Department of Fisheries, Olympia, WA; data on total releases of CWT smolts were obtained from J.K. Johnson, Pacilic States Marine Fisheries Commission, Portland, OR.

[^3]: Bottom, D.L., T.E. Nickelson, and S.L. Johnson. 1986. Research and development of Oregon's coastal salmon stocks. Coho salmon model. Oregon Dep. Fish. Wildl. Ann. Prog. Rep., 29 p .

