
Predictive testing for complex diseases using
multiple genes: Fact or fiction?
A. Cecile J. W. Janssens, PhD1, Yurii S. Aulchenko, PhD2, Stefano Elefante, PhD2, Gerard J. J. M. Borsboom, MSc1,
Ewout W. Steyerberg, PhD1, and Cornelia M. van Duijn, PhD2

Purpose: There is ongoing debate about whether testing low-risk genes at multiple loci will be useful in clinical care

and public health. We investigated the usefulness of multiple genetic testing using simulated data. Methods:

Usefulness was evaluated by the area under the receiver-operating characteristic curve (AUC), which indicates the

accuracy of genetic profiling in discriminating between future patients and nonpatients. The AUC was investigated

in relation to the number of genes assumed to be involved, the risk allele frequency, the odds ratio of the risk

genotypes, and to the proportion of variance explained by genetic factors as an approximation of the heritability of

the disease. Results: We demonstrated that a high (AUC � 0.80) to excellent discriminative accuracy (AUC � 0.95)

can be obtained by simultaneously testing multiple susceptibility genes. A higher discriminative accuracy is

obtained when genetic factors play a larger role in the disease, as indicated by the proportion of explained variance.

The maximum discriminative accuracy of future genetic profiling can be estimated at present from the heritability

and prevalence of disease. Conclusions: Genetic profiling may have the potential to identify individuals at higher

risk of disease depending on the prevalence and heritability of the disease. Genet Med 2006:8(7):395–400.
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Testing single susceptibility genes is of limited value for the
prediction of complex diseases, but there is ongoing debate
about whether genetic profiling, testing at multiple loci, will be
useful in clinical care and public health. Some predict that this
will be an important step toward personalized medicine, in
which the development of complex diseases can be predicted
by simple DNA tests in which several genes are evaluated
simultaneously.1,2 Others have maintained that genetic profil-
ing will be of limited use for the prediction of complex genetic
diseases, because hundreds of genes are likely involved, each
conveying only a minor increase in risk.3,4 Although both
camps have been accumulating support for their viewpoints,
empirical studies that demonstrate the usefulness of predictive
testing by genetic profiling are still lacking.

To be useful for the prediction of disease, genetic profiles
should discriminate between subjects who will develop the dis-
ease and those who will not. The discriminative accuracy of
dichotomous tests or qualitative traits is usually indicated by
the combination of the sensitivity, the percentage of positive
test results among subjects who will develop the disease; and
the specificity, the percentage of negative test results among
those who will not develop the disease. In case of a perfect test,

all subjects who will develop the disease have a positive test
result (sensitivity � 1.0), and all subjects who will not develop
the disease have a negative test result (specificity � 1.0).

Genetic profiling is not a dichotomous test with positive and
negative outcomes, but can be considered as a continuous test
when the profiles are expressed by their associated disease
risks.5 We have proposed that the usefulness of genetic profil-
ing should be evaluated by the area under the receiver-operat-
ing characteristic (ROC) curve.5 The ROC curve presents the
combinations of sensitivity and specificity for each possible
cut-off value of the continuous test result that can be consid-
ered to define positive and negative test outcomes. The mag-
nitude of the area under the receiver-operating characteristic
curve (AUC) indicates whether a test is useful to identify indi-
viduals who are at increased risk of disease (screening; e.g.,
AUC � 0.80) or to diagnose a disease before the onset of symp-
toms (presymptomatic diagnosis; e.g., AUC � 0.99).

Yang et al. demonstrated that a multiple genetic test consist-
ing of 20 susceptibility genes with mutations conveying a 1.5–
1.7-fold increase in risk may yield an AUC of 0.77.6 This level of
discriminative accuracy is comparable to that of total serum
cholesterol testing for the prediction of coronary heart disease
and to neuropsychological testing for the prediction of Alzhei-
mer’s disease in asymptomatic individuals.7,8 Yet, it has been
argued that for most common causes of morbidity and mortality
in Western societies, such as cardio- and cerebrovascular disease,
it is conceivable that hundreds of genes are involved, each convey-
ing only a very small increase in risk (� 1.5-fold).3,4,9 Whether
genetic profiling based on such a high number of weak predic-
tors will yield a useful predictive test remains to be determined.
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The aim of the present study was to investigate the discrim-
inative accuracy of testing multiple low-risk susceptibility
genes for the presymptomatic testing of complex diseases. Us-
ing simulated data, we evaluated the AUC as a function of the
number of genes involved, the frequencies of the risk alleles
and the strength of the relationships between genotypes and
disease. Finally, we investigated the AUC in relation to the
proportion of explained variance by genetic factors, which is
an approximation of the total contribution of genetic factors to
the disease (i.e., heritability).

METHODS
Modeling strategy

The discriminative accuracy, quantified as the AUC, is de-
termined by the distribution of disease risks in those who will
develop the disease and those who will not. The area under the
ROC curve (AUC) indicates the discriminative accuracy of a
continuous test.10 The AUC ranges from 0.5 (total lack of dis-
crimination) to 1.0 (perfect discrimination) and is indepen-
dent of the prevalence of disease.11 The AUC basically can be
considered as the probability that the test correctly identifies
the diseased subject from a pair of whom one is affected and
one is unaffected. An AUC of 0.95 means that 95% of the pairs
is correctly classified, whereas a test with an AUC is 0.50 is
nondiscriminative – as accurate as tossing a fair coin. Figure 1
presents exemplary distributions of disease risks that corre-
spond with AUCs ranging from 0.60 – 0.99. The figure shows
that the distributions considerably overlap when the AUC is
0.60, but less when the AUC is � 0.90. To obtain these distri-
butions of disease risks under different conditions in our sim-
ulation studies, we need to specify: 1) the genetic profiles of all
subjects; 2) the disease risks associated with the genetic pro-
files; and 3) the disease status of all subjects. These are modeled
in three subsequent steps.

Modeling genetic profiles

In each simulation, we considered a disease for which we
assumed that the genetic origin was fully understood and that
all genes predictive for the onset of the disease were used to
define the genetic profiles. We simulated genetic profiles that
consisted of up to 400 genes. This number is arbitrary but
corresponds to the number of genes linked to e.g., obesity.12

We assumed that each single gene had two alleles and that all
genotypes and allele proportions were in Hardy-Weinberg
equilibrium. Under this assumption, genotype frequencies for
the single genes can be calculated from the allele frequencies.
Genes were modeled to be independent, i.e., no linkage dis-
equilibrium existed between genes. For the construction of the
genetic profiles, we first created a vector for each gene with as
many copies of the three genotypes as indicated by the geno-
type frequency and the sample size. Assuming that the genes
segregate independently, we then sampled, randomly without
replacement, for each subject a genotype from each vector.

Modeling disease risks associated with genetic profiles

In the next step, we calculated the disease risks associated with
the genetic profiles using Bayes’ theorem. Bayes’ theorem states
that the posterior odds of disease are obtained by multiplying the
prior odds by the likelihood ratio (LR) of the test result; here,
the genetic profile.13 The prior odds are calculated from the

prevalence of disease �prior odds �
prevalence

1 � prevalence� and

the posterior odds are converted back into probabilities

�probability �
odds

1 � odds� , which is the disease risk associ-

ated with the genetic profile.
When a multiplicative risk model on the odds scale14,15 and

no statistical interaction between the genes are assumed (i.e.,
no statistical interaction terms are included in the model), the
LR of a genetic profile can be obtained by multiplying the LRs

Fig. 1. Frequency distributions of the disease probabilities associated with the genetic profiles of subjects who will develop the disease (solid lines) and those who will not (dashed lines).
Disease prevalence is 30%. AUC, area under the receiver-operating characteristic curve.
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of the single genotypes. The LR of a single genotype is the
percentage of the genotype among subjects who will develop
the disease divided by the percentage of the genotype among
subjects who will not develop the disease. This LR can be cal-
culated from Table 1. We constructed this table for each gene.
The marginal totals of this table are calculated from the prev-
alence of the disease (p), the allele frequency (f) and the sample
size (n). We quantified the risks of disease associated with the
genotypes of a single gene by the odds ratio (OR) of the het-
erozygous risk genotype (as compared to the homozygous
wildtype), with the OR for the homozygous risk genotype be-
ing the square of the OR of the heterozygous genotype. In
Table 1, the ORs of the homozygous and heterozygous risk

genotypes define the ratios
a*f

b*e
and

c*f

d*e
. Because both the

marginal totals and the ratios were specified as model param-
eters, the values for a-f could be logically derived. From Table
1, we calculated the LR of homozygous risk genotype (EE) as

a⁄�p*n�
b⁄��1�p�*n�, of the heterozygous risk genotype (Ee) as

c⁄�p*n�
d⁄��1�p�*n� and of homozygous wildtype (ee) as

e⁄�p*n�
f ⁄��1�p�*n�.

Note that OREE �
LREE

LRee
and OREe �

LREe

LRee
.

Modeling disease status

To model disease status, we used a procedure that compares
the disease risk of each subject to a randomly drawn value
between 0 and 1 from a uniform distribution.16 A subject was
assigned to the group who will develop the disease when the
disease risk was higher than the random value and to the group
who will not develop the disease when the risk was lower than
the random value. Hence, subjects with high disease risks are
more likely to be assigned to the group who will develop the
disease than those with low-risks.

Statistical analyses

The AUC was calculated from the distribution of disease
risks of subjects who will develop the disease and of those who
will not (Fig. 1). The AUC was obtained as the c-statistic by the
function somers2, which is available in the Hmisc library of R
software.16 The proportion of explained variance by genetic

factors was calculated as 1�
�risk*�1 � risk�

prevalence*�1 � prevalence�*n
,

where risk indicates the disease risk conditional on the genetic
profile and n the number of subjects in the study. All analyses
were performed under SuSE 7.3 Linux using R software v
1.7.1.17

Model parameters

We simulated genetic profiles and disease status for 100,000
subjects. For each combination of the model parameters (allele
frequency, ORs and disease prevalence), we considered genetic
profiles that were defined by 1– 400 genes. For genetic profiles
with more than 50 genes, we calculated the AUC for every 10
genes added (i.e., genetic profiles defined by 50, 60 . . . 400
genes). In the first series, we assumed constant ORs for the
heterozygous risk genotypes and considered ORs ranging from
1.05–2.0 in separate simulations. In the second series, we con-
structed genetic profiles with genes that had ORs ranging from
1.05–3.0 and risk allele frequencies ranging from 5–30%. The
relationship of the AUC and the proportion of variance ex-
plained by genetic factors were examined for prevalence of
disease of 1%, 10% and 30%. Unlike the AUC, the proportion
of explained variance is known to vary with the disease
prevalence.11

RESULTS

We first examined the discriminative accuracy of genetic
profiling as a function of the number of genes involved assum-
ing that all genes had the same risk allele frequency and the
same ORs for the genotypes. Figure 2 shows that the discrimi-
native accuracy of genetic profiling was higher when more
genes were involved, but the flattening of the curves shows that
each additional gene had a smaller contribution to the AUC. As

Table 1
Basic table for the calculation of the likelihood ratios of the genotypes

Genotype

Subjects who will
develop the

disease (D�)

Subjects who will not
develop the disease

(D�) Total

EE a b f*f*n

Ee c d 2*f*(1-f)*n

ee e f (1-f)*(1-f)*n

Total p*n (1-p)*n n

n, number of subjects in the study; p, disease prevalence; f, allele frequency.
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Fig. 2. Discriminative accuracy of genetic profiling as a function of the number of genes
involved in the disease. Each smoothed line presents the areas under the receiver-operat-
ing characteristic curves of 400 simulations in which genetic profiles were based on 1– 400
genes with equal odds ratios (ORs) for the genotypes. The number next to each line
presents the magnitude of the OR for the heterozygous genotype, with the OR for the
homozygous risk genotype being the square of this OR. The allele frequency was 10% for
all risk alleles and the disease prevalence was 10%. AUC, area under the receiver-operating
characteristic curve.
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expected, the discriminative accuracy was higher when the in-
dividual genes were stronger predictors of disease, as indicated
by the magnitude of the ORs (Fig. 2), and when the risk alleles
were more common (Table 2). The AUC of genetic profiling
based on 400 genes with an allele frequency of 10% exceeded
0.80 when the ORs of the heterozygous genotypes were 1.25 or
1.5. This level of discrimination was not reached when only
genes with weak effects (OR � 1.10 or 1.05) were modeled to
be involved (Fig. 2). Even when the risk alleles were more
common than 10%, the AUC of profiles consisting of 400
genes with effects of 1.05 or 1.10 did not reach an AUC of 0.80
(Table 2).

Second, we evaluated genetic profiles defined by genes that
had different effects on the disease. We considered a small
number of genes with relatively rare mutations that are
strongly associated with the disease and many genes with com-
mon mutations that are associated with minor increases in
disease risk (Figs 3A,B). We investigated three scenarios that
differed in the ORs of the 20 strongest genes (Fig. 3A) with the
most predictive gene having an OR of 1.5, 2.0 and 3.0 for the
heterozygous genotype. The differences between the curves in
Figure 3C show that the discriminative accuracy of genetic
profiling was markedly improved when at least a few strong
genetic predictors were involved. The figure demonstrates that
an AUC of 0.80 could also be obtained when only the strongest
heterozygous genotype was associated with a 1.5-fold increase
in risk of disease.

Finally, we investigated the AUC in relation to the propor-
tion of variance explained by genetic factors, which is a sum-
mary measure of the total contribution of genetic factors in-
volved in the onset of disease. Because we assumed that the
genetic profiles were based on all genes involved, this propor-

tion of explained variance can be viewed of as an estimate of the
heritability. Hence, the associated AUC indicates the maxi-
mum discriminative accuracy that can be obtained by genetic
profiling for a disease given its heritability. Figure 4 shows the
curvilinear relationship between the AUC and the proportion
of explained variance for diseases with a prevalence of 1%, 10%
and 30%. As expected, we found that the higher the contribu-
tion of genetic factors, the higher the AUC. For each value of
the proportion of explained variance, rare diseases reached
higher AUCs than common diseases. For example, when the
proportion of explained variance was 0.30, the maximum AUC
was 0.83 when the disease prevalence was 30% and 0.97 when
the disease prevalence was 1%. Note that these values are not
merely determined by the strength of the risks associated to the
single genotypes: it does not make a difference whether this
proportion of explained variance is determined by a small
number of genes with a strong effect or a large number of weak
genetic predictors.

DISCUSSION

We quantified the clinical usefulness of genetic profiling as
its accuracy in discriminating between subjects who will de-
velop the disease and those who will not. The results of our
simulation study demonstrate that a high (AUC � 0.80) to
excellent discriminative accuracy (AUC � 0.95) can be ob-
tained by genetic profiling using genes with only a small effect
individually. The discriminative accuracy depends, as ex-
pected, on the number of genes involved, the frequency of the
risk alleles and the risks associated with the genotypes. A higher
discriminative accuracy can be obtained when genetic factors
play a larger role in the disease, as indicated by the proportion

Table 2
Discriminative accuracy as a function of the odds ratio and risk allele frequency

Number of genes needed for AUC of

Odds ratio Risk allele frequency AUC of multiple test with 50 genes 0.70 0.80 0.90 0.95

1.05 5% 0.53 �400 �400 �400 �400

10% 0.54 �400 �400 �400 �400

30% 0.56 �400 �400 �400 �400

1.1 5% 0.56 �400 �400 �400 �400

10% 0.58 330 �400 �400 �400

30% 0.62 150 �400 �400 �400

1.25 5% 0.63 120 320 �400 �400

10% 0.69 70 170 �400 �400

30% 0.76 27 80 240 �400

1.5 5% 0.74 33 100 280 �400

10% 0.80 19 50 150 330

30% 0.88 9 23 70 160

All genes in the genetic profiles have equal odds ratios and risk allele frequencies. The disease frequency was 10%. AUC, area under the receiver-operating
characteristic curve.
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of explained variance. It is irrelevant whether a few rare but
strong genetic predictors or a large number of common sus-
ceptibility genes are involved.

As for most diseases the large majority of genes remain to be
identified, we had to make assumptions of the effect of genes
underlying complex diseases. Our results are valid conditional
on the following three assumptions. First, as others, we as-
sumed a multiplicative model to calculate the probability of
disease for the genetic profiles.14,15 Under the assumption of an

additive risk model, the standard deviations of the probability
distributions will be reduced, which may reduce the discrimi-
native accuracy of the genetic profiling. Second, we did not
consider epistatic effects in this paper as there is an infinite
number of ways through which genes may interact when
studying hundreds of genes. Gene-gene and gene-environ-
ment interactions may further improve the discriminative ac-
curacy of genetic profiling – toward the maximum value that is
predicted based on the heritability and disease prevalence (Fig. 4).
Observational data will be needed to meaningfully examine the
contribution of these interaction effects to the usefulness of ge-
netic profiling. Third, we considered up to 400 genes for which the
ORs of the heterozygous genotypes were as low as 1.05 (Figs 2 and
3). We assumed that we had included all genes involved in the
disease, that genes with low ORs (�1.05) could be identified and
that all effects could be quantified reliably. However, the quanti-
fication of such low-risks may require large epidemiological stud-
ies, which will not be readily available in the near future. Further-
more, it is argued that a substantial proportion of the genetic
variance involves rare variants and gene-gene and gene-environ-
ment interactions that are not easily identifiable. Hence, the pos-
sibilities for presymptomatic genetic testing may eventually be
limited by our capacity to identify and quantify low-risk genes and
rare variants.

When interpreting the implications of our findings, it is im-
portant to realize that the level of discrimination that is re-
quired in clinical care and public health applications depends,
among other things, on the goal of testing, the burden of dis-
ease, the costs of disease, the availability of (preventive) treat-
ment and the adverse effects of false-positive and false-negative
test results. Screening programs, which aim to identify high-
risk groups, typically have AUCs � 0.80.7,8 At this level of dis-
criminative accuracy, however, there is still a considerable

Fig. 3. Discriminative accuracy of genetic profiling based on genes with varying odds ratios and risk allele frequencies. (A) Distributions of the odds ratios (ORs) for the heterozygous risk
genotypes of the 400 genes that are that are considered in the three scenarios. The scenarios differ in the ORs of the 20 strongest genes, whereas the ORs for the other genes decrease from
1.15 to 1.05. The ORs of the strongest gene range from 1.5–1.15 in scenario 1, from 2.0 –1.15 in scenario 2 and from 3.0 –1.15 in scenario 3. (B) The corresponding allele frequencies of the
400 genes: The strongest gene in each scenario has an allele frequency of 0.05, the second of 0.055, and so on. Hence, we assume in these scenarios that genotypes with higher ORs are
infrequent and genotypes with lower ORs are common. (C) The areas under the receiver-operating characteristic curves (AUCs) for the genetic profiles that are based on 1– 400 genes. The
numbers next to the lines (C) refer to the highest OR of the distributions (A).

Fig. 4. Relationship between the proportion of variance explained by genetic factors
and the maximum discriminative accuracy of genetic profiling. The numbers next to the
smoothed lines refer to the prevalence of disease.
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number of subjects who will test positive but will not develop
the disease, or test negative and will develop the disease. When
the medical, financial and psychological costs of both false-
positive and false-negative results are too high, e.g., decreased
survival among false-negatives through the late detection of
cancer and increased screening participation and worries
among the large group of false-positives, the discriminative
accuracy needs to be much higher. Our simulation studies
show that high discriminative accuracy was obtained when the
genetic profiles at least included a few common genes that were
strong predictors of disease either by themselves. This leads to
the conclusion that for most complex disorders genetic profil-
ing may become possible for the identification of high-risk
groups in screening programs, but will only qualify for pr-
esymptomatic diagnosis of rare complex diseases with a high
heritability. This conclusion is similar to that of Yang et al.,
who recently investigated the number of genes that underlie
the occurrence of common complex diseases.18 They found
that a few genes with common risk variants could explain a
major proportion of common complex diseases in the popu-
lation. These conclusions may seem in contrast to previous
studies that doubted the public health benefits of testing low-
risk susceptibility genes.3,4 However, both Vineis et al. and
Holtzman and Marteau quantified the usefulness of genetic
testing for a single susceptibility gene. This paper and that of
Yang et al. show that the simultaneous testing of multiple low-
risk genes can have public health relevance.

We demonstrated that the maximum discriminative accu-
racy of genetic profiling can be deduced from the heritability
and prevalence of disease. Figure 4 shows that excellent dis-
crimination (AUC � 0.95) may become a realistic scenario for
diseases with a prevalence of 1%, when the proportion of vari-
ance explained by genetic factors is �0.23 or higher, but less
realistic for diseases with a prevalence of 30%, unless the pro-
portion of explained variance is �0.63. High levels of herita-
bility have been reported for Alzheimer’s disease and
osteoporosis,19,20 but are unlikely for common cardio- and ce-
rebrovascular diseases for which the heritability is more likely
to be lower than 50%.21 Note that for a given heritability the
discriminative accuracy is higher for rare diseases. This is ex-
plained by the fact that AUC is independent of disease preva-
lence, while the proportion of explained variance (heritability)
does depend on the prevalence of disease. Furthermore, AUC
is a measure of discrimination, whereas heritability refers to
the proportion of explained variance by genetic factors. For
rare diseases a higher AUC can be obtained with a lower heri-
tability, but this may not necessarily mean that the positive
predictive values associated with the genetic profiles are also
higher compared to common diseases with the same heritabil-
ity. It is recommended that further studies also include other
indicators of the usefulness of genetic profiling such as the

positive predictive value, population-attributable fraction and
number needed to treat.

Perhaps the most important conclusion of our paper is that
based on the relationship between heritability and AUC we are
able to predict whether testing by genetic profiling may be feasible,
even if we have not yet identified the genes that are involved.
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