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Background Despite earlier doubts, a string of recent successes indicates that
if sample sizes are large enough, it is possible—both in theory and
in practice—to identify and replicate genetic associations with
common complex diseases. But human genome epidemiology is
expensive and, from a strategic perspective, it is still unclear what
‘large enough’ really means. This question has critical implications
for governments, funding agencies, bioscientists and the tax-paying
public. Difficult strategic decisions with imposing price tags and
important opportunity costs must be taken.

Methods Conventional power calculations for case–control studies dis-
regard many basic elements of analytic complexity—e.g. errors in
clinical assessment, and the impact of unmeasured aetiological
determinants—and can seriously underestimate true sample size
requirements. This article describes, and applies, a rigorous
simulation-based approach to power calculation that deals more
comprehensively with analytic complexity and has been imple-
mented on the web as ESPRESSO: (www.p3gobservatory.org/
studySimulation.do).

Results Using this approach, the article explores the realistic power profile of
stand-alone and nested case–control studies in a variety of settings
and provides a robust quantitative foundation for determining the
required sample size both of individual biobanks and of large disease-
based consortia. Despite universal acknowledgment of the impor-
tance of large sample sizes, our results suggest that contemporary
initiatives are still, at best, at the lower end of the range of desirable
sample size. Insufficient power remains particularly problematic for
studies exploring gene–gene or gene–environment interactions.
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Discussion Sample size calculation must be both accurate and realistic, and we
must continue to strengthen national and international cooperation
in the design, conduct, harmonization and integration of studies in
human genome epidemiology.

Keywords Human genome epidemiology, biobank, sample size, statistical
power, simulation studies, measurement error, reliability, aetiologi-
cal heterogeneity

Introduction
By 2020, common chronic diseases will account for
almost three-quarters of deaths worldwide.1 The quest
to find genetic variants underlying these disorders
is in a ‘fast-moving, exciting and highly productive
phase’.2 If the common disease common variant
hypothesis3–8 is true for at least some genetic deter-
minants of chronic diseases, their aetiological effects
will typically be weak9,10 and they will be identified
more readily by association rather than linkage
studies.11 In consequence, although alternative stra-
tegies could have been adopted,12 the majority of
contemporary gene discovery studies are based on
association studies in unrelated individuals.

A series of recent publications has convincingly
identified or replicated genetic associations for a range
of chronic diseases including: type 1 diabetes;13,14 type 2
diabetes;14–18 coronary artery disease;14,19–21 breast
cancer;22,23 colorectal cancer;24–26 prostate cancer;27,28

age-related macular degeneration29–31 and Crohns
disease.14,32 But, prior to these recent contributions,
genetic association studies were strikingly inconsis-
tent.7–9,33–42 Although numerous scientific and techni-
cal issues were blamed,10,33,35,37,40,43–47 perhaps the
most fundamental problem was a serious lack of
statistical power.10,33,35,37,40,43–47 This raises important
questions: how large must stand-alone and nested
case–control studies really be if they are to power
contemporary gene discovery? And specifically, will
the current generation of ‘large’ initiatives,14,48,49

http://www.genome.gov/17516722, http://www.p3gob
servatory.org, generate enough power to study the
joint effects of genes and environment?50

These questions are crucial. Governments and
funding agencies worldwide are deciding whether,
and how much, to invest in population genomics.
Difficult strategic decisions, with imposing price
tags and substantial opportunity costs have to be
taken. In Europe, for example, national governments
must decide whether to adopt the European Union’s
regional road map for research infrastructures in ‘big
science’. This proposes development of a harmonized
pan-European network of biobanks. But, are pre-
existing projects, like UK Biobank,48 the Wellcome
Trust case control consortium (WTCCC),14 EPIC
(European prospective investigation into cancer and
nutrition)51 and BioHealth Norway52 already large
enough to service all foreseeable needs, or is further

investment required to facilitate larger pooled ana-
lyses and more powerful replication studies?

Rigorous power calculations are needed, but conven-
tional approaches disregard key elements of analytic
complexity, including the bioclinical complexity of
causal pathways leading to disease and the inferen-
tial complexity that arises from key aspects of study
design, conduct and analysis. For example, errors in
assessing disease status and aetiological determinants
are known to dramatically reduce statistical power if
the primary outcome is a quantitative disease-related
phenotype.53 But, although their importance has been
emphasized,54 they are typically ignored by conven-
tional power calculations for case–control studies.

This article describes and applies a simulation-based
approach to power calculation for case–control studies
in population genomics, generating a realistic power
profile across a range of meaningful bioclinical
scenarios. It also explores the incidence of common
chronic diseases in a typical population-based cohort
study recruiting middle-aged adults. Taken together,
these data provide a logical basis for deciding the
appropriate size of major new initiatives in population
genomics, including the construction of disease-based
and population-based biobanks and the pulling
together of consortia based on case series, population
controls, case–control projects and/or cohort studies.

Materials and methods
All simulations were carried out in the statistical
programming environment ‘R’.55

The required size of case–control analyses
Simulation-based power calculation involves two
steps—simulation and analysis. Here, both steps
were based on logistic regression. All analyses in the
main paper utilize an unmatched case–control design
enrolling unrelated individuals with four controls
per case (alternative case: control ratios are consid-
ered in Supplementary materials, and Supplementary
Figure S1). Unless otherwise stated, genetic and
environmental determinants are all dichotomous (as
explained in Supplementary Box S1). Supplementary
methods include: (i) full specification of the mathe-
matical models used (equations A–K); (ii) an anno-
tated version of the R code for the primary simulation
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programme and (iii) discussion of the key assump-
tions invoked in the analysis and the effect of
modifying them. Formal estimates of type 1 error
were all nominal (Supplementary Table S1).

Genetic variants were modelled as having two
levels: ‘at risk’ and ‘not at risk’. This would apply,
for example, under a dominant genetic model
(Supplementary box S1): one detrimental allele puts
you ‘at risk’, but that risk is increased no further by a
second copy. Under such a model, 9.75% of the general
population would be ‘at risk’ if the minor allele
frequency (MAF) was 5%, and at-risk prevalences of
19, 51 and 75% would correspond to MAFs of 10, 30
and 50%, respectively. A dichotomous genetic variant
represents the setting of least power that is commonly
encountered and it was for this reason that it was used
as the default in the main paper. When it is
mathematically valid, more power and a smaller
sample size requirement, may be obtained if an
additive genetic model (in contrast to a dichotomous
model) is used. This model, which is used widely—
e.g.14—is considered further in the discussion.

Interaction terms reflect departures from a multi-
plicative model—i.e. from additivity on the scale of
log odds—[Supplementary methods, equations (A–C)].
In simulation studies, where a gene–environment
interaction is of primary interest, the main effect ORs
(odds ratios) associated with the genetic and environ-
mental determinant is fixed at 1.5 while the magnitude
of the interaction term is varied: results are insensitive
to changing this fixed magnitude (Supplementary
Table S2).

Step 1 (simulation)
The parameters characterizing each scenario (a series of
simulations all using the same bioclinical parameters)
were set, and varied, under the following assumptions:
(i) Prevalence of the ‘at risk’ genotypic and envi-
ronmental determinants [0.0975 (MAF¼ 5%) or 0.51
(MAF¼ 30%), and 0.1 or 0.50, respectively]; (ii) ORs
associated with genotypic and environmental main
effects (1.10–3.0), and gene–environment interactions
(1.20–10.00); (iii) Sensitivity and specificity of disease
assessment appropriate to the particular disease
under consideration (e.g.56, Supplementary box S2);
Supplementary materials and Supplementary Figure S2
explore the impact of changing sensitivity and specifi-
city; (iv) Controls assessed clinically in the same way as
cases (except in the real WTCCC data); (v) Errors in
classifying genotypes modelled as if arising primarily
from incomplete linkage disequilibrium (LD) between
an observed marker and a causative variant [R2

¼ 1.00
(no error), 0.8057 or 0.50]; (vi) Lifestyle/environmental
exposure status determined by dichotomization of an
underlying quantitative variable measured with
error equivalent to a test–retest reliability of (a) 100%,
(b) 90%, (c) 70%, (d) 50% or (e) 30%; (vii)
Heterogeneity of underlying disease risk modelled
using a random effect58 with a variance reflecting

a 10-fold ratio in baseline risk between individuals
on ‘high’ (95%) and ‘low’ (5%) population centiles;
Supplementary materials and Supplementary Figure S3
investigate changing the heterogeneity of risk;
(viii) Disease prevalence appropriate to the particu-
lar disease under consideration56; Supplementary
materials and Supplementary Figure S4 explore chan-
ging disease prevalence; (ix) Statistical significance
defined at 10�7 for a genome wide association (GWA)
study and 10�4 for a candidate gene study or for gene–
environment interactions (Supplementary methods)
and (x) No correction was made for substructure in
population ancestry.14

Having set the required parameters, a dataset (D1)
was simulated (Supplementary methods, equations
A–F), containing cases and controls each associated
with a set of aetiological determinants (e.g. a gene
and an environmental determinant) distributed as
would be expected for a case–control study given the
particular bioclinical parameters specified.

Step 2 (analysis)
Dataset D1 was analysed using unconditional logistic
regression (Supplementary methods, equations G–J),
as if it were a real case–control study. This generated
estimates (and associated standard errors and P-values)
for the regression coefficients reflecting the genetic
and environmental main effects and, where incorpo-
rated, a gene–environment interaction. On the basis
of the pre-specified type 1 error, D1 was categorized
as either ‘significant’ or ‘non-significant’ for each of
the genetic, environmental and interaction effects.

Under each scenario, steps 1 and 2 were repeated
many times (51000), generating and analysing
datasets D2,D3, . . ., etc. The empirical statistical power
of the test for each effect was then estimated as the
proportion of the simulated datasets for which step 2
generated a ‘statistically significant’ result. Given the
estimated power of a study based on whatever
number of cases and controls had actually been
specified under the particular scenario being consid-
ered, the sample size for an equivalent study
(including the same ratio of controls to cases) that
would generate a power of 80% was estimated as
described in Supplementary methods (equation K). In
exploring the power profile across a range of ORs, the
required sample size for each OR was calculated,
tabulated and plotted (Figures 1 and 2).

This approach is very flexible and can easily be
extended by adding additional terms (Supplementary
methods).

The expected incidence of chronic disease
in population-based cohorts
The number of incident cases of selected chronic
diseases of public health relevance expected to
accumulate over time was estimated in a simulated
cohort of 500 000 individuals, recruited over 5 years,
with equal numbers enrolled in all 5 year age
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bands between 40 and 69 years at entry (Figure 3).
This simulated cohort corresponds closely to the
design of UK Biobank48 and provides important
parallels to other cohorts worldwide (www.p3gobser
vatory.org). Each recruit was simulated in ‘R’ and his/
her subsequent life-course was simulated taking
appropriate account of the chance occurrence of
disease, migrations, loss to follow-up and deaths
(sources for the vital statistics are detailed in
Supplementary Table S3). Adjustment was also
made for the ‘healthy cohort effect’, whereby subjects
recruited to cohort studies typically experience lower
rates of morbidity than the general population.

Results
Figure 1 presents the sample size needed for 80%
power to detect (at P< 0.0001) the main effect of a
dichotomous (binary) genetic variant in a vague
candidate gene, using an unmatched case–control
design enrolling four controls per case. As detailed in

Figure 1 A genetic main effect, in a candidate gene study.
The number of cases required to detect ORs from 1.1 to
3.0 for a genetic main effect with a power of 80% (at
P< 0.0001—assuming a vague candidate gene) in a study
with four controls per case. Assumptions (see Materials and
methods section for details): (i) population genotypic
prevalence¼ 9.75% [dashed lines] or 51% [solid lines],
corresponding to dominant SNP effects with MAFs (minor
allele frequencies) of 5 and 30%, respectively; (ii) genotypic
‘error’ corresponding to: R2

¼ 1.0, 0.8 or 0.5; (iii) case-status
determined with sensitivity 89.1% and specificity 97.4%: as
for a study of diabetes diagnosed by a composite test (GP
diagnosis or HbA1C 52 SD above the population mean56);
(iv) controls phenotypically assessed in the same way as
cases; (v) incorporation of heterogeneity in the baseline risk
of disease arising from unmeasured determinants, corre-
sponding in magnitude to a 10-fold risk ratio between
individuals on the high (95%) and low (5%) centiles of
population risk

Figure 2 (A) An uncommon interaction. The number of
cases required to detect ORs from 1.2 to 10.0 for a gene–
environment interaction with a power of 80% (at P< 10�4)
in a study with four controls per case. Assumptions (see
Materials and methods section for details): (i) population
genotypic prevalence¼ 9.75%, corresponding to a dominant
SNP effect with a MAF of 5%; (ii) population prevalence of
binary environmental determinant¼ 20%; (iii) genotypic
‘error’ corresponding to r2¼ 0.8; (iv) environmental error
corresponding to dichotomization of an underlying normally
distributed latent quantitative variable measured with a
reliability of 100, 90, 70, 50 or 30%; (v) case–control status
determined with sensitivity 89.1% and specificity 97.4%: as
for a study of diabetes diagnosed by a composite test (GP
diagnosis or HbA1C 52 SD above the population mean56);
(vi) controls phenotypically assessed in the same way as
cases; (vii) incorporation of heterogeneity in the baseline
risk of disease arising from unmeasured determinants,
corresponding in magnitude to a 10-fold risk ratio between
individuals on the high (95%) and low (5%) centiles of
population risk. The prevalences of the ‘at risk’ genotype
and the ‘at risk’ environmental determinant imply a
prevalence of �2% for the doubly ‘at risk’ interaction.
(B) A common interaction. As (A), but assuming: population
genotypic prevalence¼ 51% (corresponding to MAF¼ 30%)
and prevalence of the environmental determinant¼ 50%,
implying prevalence of the doubly ‘at risk’ interaction �25%
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the Materials and methods section, and summarized
in the figure legend, these calculations all incorporate
cardinal elements of realistic analytic complexity.
Table 1 details the multiplicative factor by which the
sample sizes in the figure should be scaled if a P-value
other than P< 0.0001 is to be used or if one requires a
power of 50 or 90% rather than 80%.

Figures 2A and B present sample size requirements for
studies of gene–environment interaction (see Materials

and Methods section, with details in Supplementary
methods). Phenotypic and genotypic characteristics
are detailed in the figure legend. Figure 2A considers
an uncommon interaction where ‘doubly-at-risk’
individuals (i.e. subjects exposed to the at-risk level of
both the genetic and the lifestyle determinant) repre-
sent �2% of the general population. Figure 2B
addresses a common interaction with �25% of individ-
uals being doubly-at-risk. Each figure details the
sample size profile for a range of errors in assessing
the environmental factor (see Materials and methods
section). As a benchmark, Table 2 presents biocli-
nical exemplars that are typically measured with a
corresponding reliability. Significance testing is at
P< 0.0001: i.e. it is assumed that research involving
the joint effects of genes and environment will focus
on specific interactions with at least some vague basis
for candidature. If a more rigorous threshold is
required, the sample size multipliers in Table 1 may
be used.

In light of the daunting sample size requirements
implied by Figures 1 and 2, Figure 3 demonstrates
that a cohort of 500 000 middle-aged recruits may be
expected to generate 10 000 incident cases of very
common conditions (e.g. diabetes and coronary artery
disease) within 7–8 years, and 20 000 cases within
15 years. But even for the commonest cancers it will
take �20 years or more to generate 10 000 cases and
440 years to generate 20 000 cases. Such targets will
never be attained for rarer conditions. However,
population-based cohort studies also recruit prevalent
cases of chronic disease (Supplementary Table S4)
and, if it is appropriate, these can be used to
supplement statistical power.

Figure 3 Time to achieve required numbers of cases.
The expected rate of generation of incident cases of 16
common complex diseases (MI¼myocardial infarction;
COPD¼ chronic obstructive pulmonary disease) in a cohort
of 500 000 men and women recruited over 5 years, aged
40–69 years at baseline, assuming rates of mortality and
morbidity as in the UK and that drop-out mirrors that of
the British 1958 birth cohort and with adjustment for the
‘healthy cohort’ effect (for full details see68)

Table 1 The multiplicative change in required sample size, for a statistical power of 50, 80 or 90% using different levels of
statistical significance, relative to the sample size indicated by Figures 1 and 2 (i.e. when P< 0.0001 and power¼ 80%)

P-value defining ‘statistical significance’ Sample size multiplier for specified power

Power¼ 50% Power¼ 80% Power¼ 90%

Significance thresholds conventionally used in medical statistics

P< 0.05 0.172 0.350 0.469

P< 0.01 0.296 0.522 0.664

Significance thresholds widely used in candidate gene studies

P< 0.005 0.352 0.594 0.746

P< 0.001 0.484 0.762 0.933

P< 0.0005 0.541 0.834 1.013

P< 0.0001 0.676 as in figures 1.195

Significance thresholds widely used in GWA studies

P< 5�10�7 1.128 1.538 1.777

P< 10�7 1.267 1.699 1.950

P< 5�10�8 1.327 1.768 2.024

P< 10�8 1.467 1.929 2.196

Sample size multipliers more than 1 indicate that the required sample size is larger than implied by the figures, values less than 1
that it is smaller.
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Discussion
‘Big’ bioscience is critically poised. It is now known that
genetic associations with complex diseases can reliably
be detected and replicated if sample sizes are large
enough. This will fuel international investment in
biobanking. But, how far should that investment go?

It is essential to close the ‘reality-gap’ that currently
exists between the sample sizes really required to
detect determinants of scientific interest that have
plausible bioclinical effects, and the sample sizes that
are typically used when studies are being designed.
Extensive theoretical work has been undertaken to
explore statistical power and sample size in human
genomics. This includes studies of the effect of geno-
type misclassification on power,59–62 and of strategies
for power optimization for genetic main effects63–64

and for gene–gene65 and gene–environment interac-
tions.66 Furthermore, the effect of measurement error
in both outcomes and exposures on statistical power
of gene–environment interaction studies has been
explored thoroughly for quantitative traits.53 But,
previous work on the power of case–control analyses
(i.e. binary traits) has not addressed the impact of
realistic assessment errors in both exposures and
outcomes and the impact of unmeasured aetiological
determinants. The important original contributions of
the current article are 3-fold, therefore: (i) to extend
the classes of analytic complexity addressed in a
straightforward simulation-based power calculation
engine; (ii) to use this calculator to undertake realistic
sample size calculations for a class of analyses (case–
control analyses with unavoidable assessment errors
in both exposures and outcomes) that will be utilized
widely over the next few decades—analyses in this
class are the least powerful that are likely to be
applied commonly, and the resultant calculations,
therefore, provide a valuable guide to study design in
the many large-scale biobanks that are currently

being conceived and launched; (iii) to alert readers,
particularly those setting up new biobanks, to a
web-based implementation—ESPRESSO (Estimating
Sample-size and Power in R by Exploring Simulated
Study Outcomes)—of the power calculator used in
this article and to provide detailed information
(in Supplementary methods) about the mathematical
models on which it is based.

Studies enrolling several hundred subjects are
commonplace in human genome epidemiology. But,
even conventional power calculations67 indicate that
400 cases and 400 controls provide <1% power to
detect (at P< 0.0001) an OR of 1.4 for a binary
‘at risk’ genetic variant with a general population
frequency of 0.0975 (e.g. a dominant risk-determining
allele with MAF¼ 0.05). There can be no doubt that a
study involving several hundred cases and controls
demands hard work and is large by historical
comparison; nevertheless, the reality is that to gen-
erate a power of 80%, such a study would actually
require 4000 cases and 4000 controls.

But even these figures substantially understate the
challenge that really faces us. Conventional power
calculations ignore many aspects of analytic complex-
ity. Using ESPRESSO, the R-based55 simulation-based
power calculator68 jointly developed by P3G, PHOEBE
and UK Biobank (www.p3gobservatory.org/
studySimulation.do), such complexities can be taken
into proper account. Using this approach to mimic the
conventional power calculation (above)—i.e. assum-
ing disease and genotype to be assessed without error
and no heterogeneity in disease risk—confirms a
requirement for approximately 4000 cases and 4000
controls. But the sensitivity and specificity of the
diagnostic test ought to be taken into proper account:
e.g. 0.891 and 0.974, respectively, for a published
screening test for type 2 diabetes based on glycosy-
lated haemoglobin56 (see Supplementary box 2).
Genotyping error must also be considered. It may,
for example, be reasonable to assume that this
corresponds to incomplete LD with an R2 of 0.8.57

Finally, heterogeneity in disease risk might be
reflected in an assumed 10-fold ratio in the risk
between subjects on high (95%) and low (5%) centiles
of population risk. Having built in these assumptions,
the required sample size more than doubles to 8500
cases and 8500 controls.

It might be argued that substantial power could be
gained if a multiplicative model based on additive allelic
effects [Supplementary methods, equations (H and I)],
as in WTCCC,14 were used instead of a binary genetic
model (Supplementary box S1). Statistical power will
be increased if there is a systematic gradation in the
strength of association across the three genotypes
defined by two alleles. This may reflect biological
reality, or it may arise as an artefact of the decay of
incomplete LD when working with a linked marker
rather than a causative variant. But (Supplementary
Figure S5), the reduction in required sample size

Table 2 Formal estimates of test–retest reliability for a
number of exemplar lifestyle/environmental determinants
that are widely studied

Reliability of
measurement

Lifestyle/environmental
factor

50.95 Body mass index (BMI)
calculated from measured height
and weight in various studies76

�0.9 Measured hip or waist
circumference76,77

�0.7 Blood pressure measurement in
the Intersalt Study78

�0.5 Many nutritional components in
a dietary recall study, mean
of four 24 h assessments79

�0.3 Many nutritional components in
a dietary recall study, a single
24 h assessment79
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(typically, 5–50%) is only substantial for SNPs with a
common minor allele. This is because when the minor
allele is rare, subjects homozygous for the minor allele
will be very rare and the genetic determinant will
effectively act as if it were a binary exposure. But,
power limitation is less of a problem for SNPs with a
common minor allele and so the impact of moving to
a valid multiplicative genetic model is less dramatic
than might otherwise be assumed.

One of the landmark genomic studies of 2007 was
the WTCCC that reported robust ‘hits’ in seven of
eight complex diseases in its main experiment.14 But
the basic design—involving 2000 cases and 3000
controls for each disease—seems, at first sight, to be
at the lower limit of required sample size as implied
by our calculations (Figure 1). Therefore, it is tempt-
ing to conclude either that the WTCCC was lucky or
that our calculations are overly conservative. But, the
main experiment of WTCCC had a number of design
features that contrast with the assumptions of the
primary power calculations reported in our article.14

The most relevant of these are: (i) use of a model
invoking an additive genetic effect rather than a
binary ‘at-risk’ genotype; (ii) cases rigorously pheno-
typed so that few, if any, non-diseased subjects will
have appeared as cases; (iii) a P-value threshold of
5� 10�7; (iv) a case : control ratio of 2 : 3; (v) no
phenotyping of controls so diseased subjects will have
contaminated the controls to an extent determined
solely by general population prevalence. On the basis
of simulations that invoke all of these assumptions,
Supplementary Figure S6 presents the precise equiva-
lent to Figure 1, but uses the design parameters of the
WTCCC. On the basis of their own simulation-based
power calculations (incorporating errors consequent
upon incomplete LD),14 the design team of the
WTCCC estimated that its power would be ‘43% for
alleles with a relative risk of 1.3, increasing to 80% for
a relative risk of 1.5’.14 These power calculations were
based on averaging across all MAFs40.05,14 and the
design should, therefore, be underpowered for SNPs
with an uncommon minor allele and to have more
power than required for common SNPs.14 Our
methods (Supplementary Figure S6) concur that for
SNPs with a MAF in the range 0.2–0.5, the WTCCC
design was well powered to detect heterozygote ORs14 of
1.3 or greater and that even ORs as low as 1.2 should
have been detected with a non-negligible probability
(power �9%). On the other hand, the power to detect
rarer SNPs (MAF¼ 0.05–0.1) with ORs <1.5 should
have been low. Without knowing which SNPs are
truly associated with which complex disease, or how
strong those associations might be, it is impossible to
use the empirical evidence to precisely quantify how
accurately our approach predicts the power of the
WTCCC. But, the predicted power profile is certainly
consistent with the results reported in Table 3 of the
WTCCC paper.14 Three of the 19 SNPs they identified
as having a ‘significant heterozygous OR’, had a MAF

between 0.05 and 0.1 and these all had OR41.5. In
contrast, 13 had a MAF between 0.2 and 0.5 and of
these, four exhibited an OR < 1.3 (1.19–1.29), five an
OR between 1.3 and 1.5 and four an OR41.5. SNPs
with a rarer minor allele are typically most common,57

and if power was not a substantial issue, one would
have expected more ‘hits’ to arise in rare SNPs. It is
true that the observed ORs would have been subject
to the ‘winner’s curse’,69 but this does not detract
from the consistency of the overall pattern that was
found. As a second test of its validity, the ESPRESSO
model was then used to estimate the power of the
WTCCC to reconfirm the effect of 12 (non-HLA) loci
that had been ‘previously robustly replicated’.14 On
the basis of the published bioclinical characteristics of
these 12 variants (Supplementary Table S5), our
simulations predicted a 24% probability that all 12
would replicate and probabilities of 44, 26 and 6%,
respectively, that 11, 10 or 49 would replicate. These
predictions are closely consistent with the published
WTCCC analysis in which 10 of the 12 actually
replicated.14 Of course, these analyses provide no
more than a rudimentary check of the calibration
of our approach, nevertheless, it is encouraging that
the predictions appear sensible and it would, there-
fore, seem reasonable to apply the methods to new
problems, including those involving environmental as
well as genetic determinants.

The fact that our power estimates appear consistent
with those of the WTCCC team itself suggests that
any additional elements of analytic complexity that
were addressed by our methods had a limited impact
on required sample size in this particular setting.
Therefore, we explored the relative contribution to
increased sample size requirement that was consequent
upon those specific elements of our model that are not
included in a conventional power calculation. Across an
arbitrary, but not atypical, set of models incorporating a
gene–environment interaction (see Supplementary
materials, and Supplementary Table S6), it was found
that it is a realistic level of error in assessing the
environmental determinant that was most influential
in inflating the required sample size. But, the WTCCC
analysis focused solely on genetic main effects and so
this was irrelevant. Furthermore, all cases in WTCCC
were carefully phenotyped. Specificity was, therefore,
close to 100% and very few, if any, healthy subjects
would have appeared as cases (Supplementary materi-
als and Supplementary Figures S2a and S2b). Finally,
the sophisticated power calculations undertaken by
WTCCC took appropriate account of error arising from
incomplete LD, and so the only additional factor that
did come into play in the WTCCC was heterogeneity
in underlying disease risk—but, on its own, this has
little impact (Supplementary Table S6).

Can biobanks ever be large enough? Although our
methods are in accord with the power calculations
undertaken by the WTCCC and suggest that it was
appropriately powered to detect the effects that it set
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out to study, larger—sometimes much larger—sample
sizes will be required (Figures 1 and 2) to reliably
detect: (i) ORs at the lower end of the plausible
range; (ii) SNP effects associated with rarer minor
alleles; (iii) genotypic effects that are binary rather
than multiplicative in nature; (iv) gene–environment
(or, gene–gene) interactions or (v) aetiological effects
in case series subject to less exhaustive phenotyping.
If bioscience aims to rigorously investigate such
effects, it will be necessary to design studies enrolling
not thousands, but tens of thousands of cases. But,
studies of such a size should not be contemplated
unless relative risks 41.5 are really worth investigat-
ing. A central aim of modern bioscience is to under-
stand the causal mechanisms underlying complex
disease49,70 and each quantum of new knowledge has
the potential to provide an important insight that may
have a dramatic impact on disease prevention or
management. This implies that scientific interest may
logically focus on any causal association that can
convincingly be identified and replicated—it need not
be ‘strong’ by any statistical or epidemiological cri-
terion. The fundamental need, therefore, is for
research platforms to support analyses powered to
detect plausible aetiological effects. But, what does this
mean? The majority of genetic effects on chronic
diseases that have so far been identified and
replicated are characterized8,9,13–32 by allelic or geno-
typic relative risks of 1.5 or less—many in the range
1.1–1.3. Effect sizes may be greater for causal variants
than for markers in LD, but it would be unwise to
assume that the gain will necessarily be substantial.
Although the search for ‘low hanging fruit’ must
continue, therefore, we agree with Easton et al.22 that
much of the future harvest will be rather higher up
the tree. But, even if they are of scientific interest, can
ORs 41.5 reliably be detected by any observational
study? In 1995, Taubes argued that: ‘[observational
epidemiological studies]. . . are so plagued with biases,
uncertainties, and methodological weaknesses that
they may be inherently incapable of accurately dis-
cerning . . .weak associations’.71 Fortunately, several of
the central arguments underlying this bleak assessment
do not hold in human genome epidemiology.
Randomization at gamete formation renders simple
phenotype–genotype associations robust to life style
confounding and to uncertainty in the direction of
causality—in other words, enhanced inferential rigour
is a direct, but wholly fortuitous, consequence of
what is often called Mendelian randomization.70,72–74

At the same time, the increasing accuracy and precision
of measurements in genome epidemiology14,53,54 mean
that—in the absence of intractable confounding
and reverse causality—sufficient statistical power can
realistically be accrued to draw meaningful inferences
for small effect sizes. Despite important caveats,70,73,75

therefore, small effects reflecting the direct impact
of genetic determinants (main effects and gene–gene
interactions) or the differential impact of genetic

variants in diverse environmental backgrounds
(gene–environment interactions) are more robust
than their counterparts in traditional environmental
epidemiology.

Finally, we note that the primary simulations that
underpin our conclusions are all based on a case:
control ratio of 1 : 4, while a 1 : 1 ratio was adopted
in considering the ‘conventional’ power calculations
(see above). Furthermore, most of the case–control
studies that we reference (including the WTCCC) are
based on ratios that are much closer to unity.13–32 But
this presentation was deliberate. Given access to a
fixed number of cases and an unrestricted number of
well-characterized controls, substantial additional
power can be obtained using a design based on four
or more controls per case (Supplementary Figure S1).
In the future, the existence of massive population-
based biobanks such as UK Biobank48 and extensive
sets of nationally representative controls (e.g. as in
WTCCC14) will mean that designs based on multiple
controls will be highly cost effective and will be
widely used. It would, therefore, have been inap-
propriate to present power calculations based primar-
ily on the 1 : 1 design as this would have increased the
estimated sample size requirement, thereby strength-
ening our main message in a manner that could have
been seen as misleading. On the other hand, in
exploring the implications of conventional power
calculations (see above), most contemporary work is
based on designs with approximately equal number of
cases and controls and it was, therefore, felt to be
more intuitive for readers to focus on designs of this
nature. For the sake of completeness, Supplementary
Figures S7, S8a and S8b replicate Figures 1, 2A and B
but use equal numbers of cases and controls.

To finish, we note that the basic conclusions we have
reached are stark and may appear disheartening. But,
pessimism is unwarranted. Disentangling the causal
architecture of chronic diseases will be neither cheap
nor easy and it would be unwise to assume otherwise.
But it has the potential to return investment many-
fold with future improvements in promoting health
and combating disease. Therefore, it is encouraging that
several international case–control consortia have
already managed to amass sample sizes of
the magnitude that is realistically required.16,19,22,26

Furthermore, the largest contemporary cohort-based
initiatives48,49,51,52 will generate enough cases to study
the commonest diseases in their own right (Figure 3).
To take things further, three complementary strategies
will markedly enhance the capacity to study plausible
relative risks right across the spectrum of complex
diseases: (i) improve the accuracy and precision of
measurements and assessments;14,53,54 (ii) increase the
size of individual studies and biobanks8 and (iii) har-
monize protocols for information collection, processing
and sharing10,46–49,70 (http://www.p3g.org). Taken tog-
ether, these actions will provide for a powerful global
research platform to drive forward our understanding
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of the causal architecture of the common chronic
diseases. But, such a platform will be of little value
unless power calculations are both accurate and realistic.
It is our hope that this article and access to ESPRESSO
will be viewed as providing valuable guidance to those
setting up individual biobanks and designing the case–
control analyses to be based upon them.

Supplementary data
Supplementary data are available on the P3G
Observatory http://www.p3gobservatory.org.
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