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An Investigation of Two Tsunamis Recorded at Adak, Alaska

Zygmunt Kowalik
Institute of Marine Science
University of Alaska, Fairbanks
Fairbanks, Alaska 99775-1080

Paul M. Whitmore
Alaska Tsunami Warning Center
910 S. Felton St.
Palmer, Alaska 99645

ABSTRACT

Tsunamis generated from the 1952 Kamchatka earthquake and the 1986 Andreanof Islands
earthquake are modeled and compared to recordings at Adak, Alaska. Non-linear, shallow water
equations which include Coriolis and friction forces are solved with a finite difference scheme to
generate and propagate the tsunami. Tsunami propagation over long distances requires solution of a
large system of equations. Therefore, we used a computational grid with different grid sizes over
different geographical domains. This approach reduces computational effort and allows to increase
spatial resolution in the shelf area. The numerical problems which occur at the boundary between two
grids are briefly discussed and formulas for the grid interaction are given.

The two modeled tsunamis at Adak compare well with the recorded waves in respect to
maximum amplitude and build-up, though the 1986 modeled tsunami period is slightly longer than the
recorded period. Inclusion of Coriolis, friction, and non-linear terms in the equations of motion proves
to have only a minor effect on the modeled waves. Simulation of a moving rupture versus
instantaneous source uplift also has a minor effect on the modeled tsunami.
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Introduction

As micro-computers become increasingly faster, numerical modeling of tsunamis gains greater
potential to predict wave heights prior to impact on the coast. In this study, we present a method to
accurately generate and propagate tsunamis. The method is tested with two tsunamis recorded at Adak,
Alaska. These tsunamis, produced by the 1952 Kamchatka and the 1986 Andreanof Islands earthquakes,
provide an opportunity to model both a trans-Pacific and a locally generated tsunami. In addition to
testing the method, we test the significance of various terms in the equations of motion with the
objective of computing an accurate model in the least amount of time. The importance of accounting
for moving fault rupture versus instantaneous uplift is also examined.

Tsunami propagation over long distances requires the solution of the equations of motion and
continuity at a large number of grid points. An approach which decreases the number of grid points
is to subdivide a large computational domain into a few subdomains (Ng et al., 1990). The rationale
behind using multiple domains is to reduce computation time by placing a coarse grid over the deep
water region and finer grids over the shallower coastal regions. Shuto et al. (1985) demonstrated with
a one-dimensional model that each tsunami wavelength should be covered by at least 10 to 20 grid
points to diminish numerical dispersion (dissipation). This implies that using finer grids in shallow
water where tsunami wavelength decreases will prevent either over-defining the deep ocean
propagation or under-defining the coastal region computations.

To propagate tsunamis between grids of different spacing, either an interactive or a non-
interactive connection can be used. In an interactive connection the tsunami signal passes through the
boundary not only from the coarse-grid domain to the fine-grid domain, but in the opposite direction
as well (Ramming and Kowalik, 1980). In a non-interactive approach a tsunami travelling from the fine
towards the coarse grid will not affect the wave in the coarse grid. In this study both approaches are
used. The non-interactive approach is used when connecting a Pacific-wide grid with a grid over the
region of interest while still in deep water. The interactive approach is used when connecting a fine
grid over the shelf with the deep water grid in the area of interest and again when connecting a super-
fine grid over bays and inlets to the fine grid. A detailed approach such as this is important at Adak,
Alaska, which is an area of complex bathymetry with multiple entrances connecting local bays to the
open ocean. :

Numerical Method

The equations of motion and continuity in a spherical coordinate system are used to investigate
tsunami generation and propagation.. These are (Murty, 1984) '
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where; u is the east-west component of particle velocity, v is the north-south component of particle
velocity, { denotes variation of sea-level from equilibrium, t is the time, f is the Coriolis parameter
(f=2wsing), o is the angular velocity of the earth’s rotation, g is the gravity acceleration (g=9.81m/s?,
R is the radius of the earth, ¢ is latitude, A is longitude, 1 is the bottom displacement, r is the coefficient
of bottom friction (r=0.0033), and H is water depth prior to source displacement.

To describe energy transfer from the tsunami source to the various locations an energy flux
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Figure 2. Wave height versus distance from wave generoting source 12500s after
waove motion begins. The sine wave generated ot the left end of a channel prop-—
agotes to the right end, where the radiation condition is applied. The wave has
amplitude 1m, period 600s, wavelength 60km, and speed 100m/s over a flat bottom
with depth 1020m. The grid space step from O to 300km is 4km (15 pts./wave—
length). The space step from 300km to 600km is 12km (5 pts./wavelength). Note
the poor numerical opproximaotion over the coarser grid. _
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vector will be used. This vector characterizes the flux of energy through the unit width surface
extended from the surface to the bottom. The components of the vector along latitude and longitude
are given by Gill (1982).

E, = QuH((u?+v?)/2 ~ g{) T (4)

E, = QvH((u?+v?)/2) + g{). (5)

Here @ is the water density. Usually, in periodical processes the flux vector is taken as an average over
wave period; with tsunamis this approach is difficult to realize because of the unknown period.
Therefore, we shall construct a field of the maximum energy flux. The magnitude of the energy flux
vector, E = (E,2+E,)"2, will be compared at the different time steps and the largest value will be retained
to depict the maximum energy flux. This will help us to study tsunami source directivity.

An explicit-in-time finite difference scheme is used to solve eqgs. {1)-(3) over the area of interest.
This scheme solves for the sea-level height and velocities by application staggered space-grid (Fig. 1).
In finite difference form egs. (1)~(3) become
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where
uPoS = (uf s + |lufzl) /2,
UNEG = ujk—!ujkl)/z
VAUP = (VAU + )/2,
VAUN = (VAU - VAU
VAU = (Vj P Vj 1 k t Vj k-l + Vj—l k—l)/4

Hi1 = M;}X(((Hj,k + {5k - i) + (Hyy,x * Cj—l k- Mi0.60)/2)  Hy)

H,., - minimum depth allowed in computation (10m),
UAVP = (UAV + |UAV
UAVN = (UAV - |UAv)) /2,

VPOS = (Vj k |Vj,k|)/2:

VNEG = (vix - |vixl) /2,

UAV = (th';k + ujt,ku + Uj‘i1,k+§ + ujt»,l,k) /4,

HZ2 = W(((Hj,k + ct-l - nj,k) + (Hj’kq,l + C;,-;l(ﬂ - n;,k+1))/2) 'Hmin) ’
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HJ2 = W(((Hj,k + c;,k - ﬂj,k) + (Hj -1,k + Cj 1 k T‘;—]_,k))/z) l}‘g“in) ’
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SCP = (cose@, + coscpkﬂ)/z

SC = (cos¢@, + cos@,_,)/2,

- time step, .
X - north-south grid step, and
RcoscpA - east-west grid step.

In order to derive a stable solution to the above system, the time step T and space step A should satisfy
the Courant, Friedrich, and Lewy condition (Ramming and Kowalik, 1980),
T B (9)
2GHpay

where A is the minimum space step and H,,,, is the maximum water depth in the space domain. The
term H,;, is the minimum depth allowable in the computations. This must be fixed to prevent the
actual water depth from becoming too small in the bottom friction term and creating an instability.

The ocean boundary conditions are handled as follows. The shoreline is taken along the velocity
computation points and the velocity is set to 0 at the boundary which produces pure reflection. The
radiation conditions are taken at the open ocean boundaries (Reid and Bodine, 1968).

uf e = £({5 % * (—-——Hg Y42y, and

1.k (10)
vie = £ (5% » (Z)).

Hj i

For the west and south boundaries the negative sign is used while for the north and east boundaries
the positive sign is applied.

Although the stability condition (9) assures that the time and space steps have been chosen in
such a manner that the numerical solution converges toward the analytical solution, the condition does
not assure that the numerical solution is close to the analytical solution. In order to achieve an accurate
reproduction of a tsunami by the finite difference technique approximately 10 grid points per
wavelength are necessary (Ramming and Kowalik, 1980). The long wave phase velocity calculated by
a numerical scheme is a measure of the error introduced by numerical approximation. Numerical phase
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Figure 3. This figure shows the estimations which are
performed in the dynamic grid integration scheme used here.
Circled sea-levels and velocities represent estimated points
used in fine grid calculations. Capital letters are used to
denote coarse grid quantities and small letters the fine
grid quantities. As an example of how the estimations are
made, the points 1, 2, and 3 are computed by

Ujs'!“ = (Ugg.xs * Z/FINC + Uﬂ-l‘- * 1/FINC) * 2/(FINC+1) +
u5,k4 * 2/(FINC+1) :

Cise = (Borxe * 2/FINC + By * 1/FINC) * 1/FINC +

Covis * 2/FINC

(Viess * 3/FINC + Vi g * 0/FINC) * 1/FINC +

Vi * 2/FINC. -

Vi1, xa

Here FINC is the increase in resolution from the coarse to
fine grid (in this example FINC=3). The velocities on the
top and left side of the fine grid are necessary for comput-
ing the coriolis and bottom friction forces.



velocity (C,) depends on the spatial grid distance (A) and wavelength (L) (Ramming and Kowalik, 1980)

c, = \/g_H[l—%("—LA-)z]. (11)

If we choose the spatial step to be 10 times shorter than the wavelength (L=10A), the numerically
estimated phase velocity C,=0.98(gH)"/? will be only 2% smaller than the analytical phase velocity. To
demonstrate the error introduced by numerical approximation, we consider a tsunami in a flat-bottom
channel. In the left portion of the channel the wave is resolved by 15 grid points per wavelength and
in the right portion by only 5 grid points per wavelength. The wave is forced by a sine wave oscillation
on the left side and has the open boundary condition given by eq. (10) on the right side. The wave first
propagates through the 15 point per wavelength grid, then is dynamically coupled with the 5 point per
wavelength grid by the method described below. The sea-level after 12500 seconds is shown in Fig. 2
Note how the fine grid preserves the waveform while in the coarser grid the waveform degrades.

The above consideration implies that as water shoals and wavelength decrease, a finer grid
increment must be used to provide at least 10 points per wavelength. Two methods of attaching grids
of different spacing are used here. The first is a non-dynamic scheme. Here wave height over time is
recorded along a line, or series of lines, in the coarse grid. Next, this wave height output is interpolated
and used as input to the finer grid. This method has the disadvantage of no interaction back from the
fine grid into the coarse grid. The main advantages to this technique are models that can be run in
pieces, therefore using less computer memory, and the time step increment, T, can be optimized for each

The second method of grid splicing used is a dynamic scheme. This scheme solves all grids at
each time step which allows the grids to interact with each other. Figure 3 shows graphically how this
works. First the u, v, or { values are solved over the fine grid, then over the coarse grid. Coarse grid
values which overlap the fine grid are then updated with the fine values. Lastly, values around the
edge of the fine grid, which are necessary for computations within the fine grid, are linearly interpolated
between the coarse and fine grids. This technique can be repeated within the same model for more than
just the coarse and fine grid. That is, a 5" grid over the open ocean can be integrated with a 1’ grid over
the shelf, and this grid integrated with a 12" grid in the bay of interest. The main advantage to this
technique is that energy can be transmitted out of the fine grid to interact with approaching waves in
the coarse grid. Another advantage of this method is that any space decrease from the coarse to the fine
grid, if expressed by an odd whole number integer (3,5,7...), can be handled with the same algorithm.
A potential problem is that high frequency waves generated within the fine grid, but not resolved by
the resolution of the coarse grid, will be trapped in the fine grid. Thjs can lead to greater-than-expected
wave heights in the fine grid.

Source

The main generating force of a tsunami triggered by an earthquake is the uplift or subsidence
of the sea-floor which accompanies the earthquake. Determining the actual extent of sea-floor change
in a sub-sea earthquake is very difficult. For earthquakes in which no pre- and post-earthquake
bathymetry studies have been performed, displacement-can be computed from formulae which output
surface deformation as a function of fault strike, dip, slip, length, width, depth, moment, and Lame’s
constants for the surrounding rock (Okada, 1985). These formulae assume an isotropic, homogenous

half-space and a simple source configuration. If these assumptions are not true, errors are produced

in the resulting displacement field.

Okada’s (1985) formulae are used in this study to compute ground displacement from fault
Farameters provided from detailed seismological studies of the source earthquakes. While these
ormulae output a static displacement field (i.e., infinite rupture and slip velocity), the static field can
be manipulated by the program to simulate a finite rupture velocity. The following studies will test
whether a moving source significantly influences the resultant tsunami.
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Figure 4. Area modeled with 10' grid. Initial
sea—level deviation due to an instantaneous source
uplift with fault parameters given in the text for
- the 1952 earthquake is shown. The sea—level is
contoured in cm with an interval of 20em. The ep—
icenter is marked with an asterisk. - The outer box
on the right is the area modeled with a 5' grid.
The inner box is the orea modeled with @ 1" grid
and shown in Fig. 5. Longitude above 180 relates
to west longitude (WLON) by LON = 360-WLON.
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Figure 5. Area which is covered by the 1' grid.

Dashed bathymetry contours are in increments of
'500m. The asterisk shows where the Adak tide gauge
. is locoted. The box around the gauge is the area :
which is covered by the 12 second grid. The sec—
ond box east of Adak is also a 12 second ?rid
which defines the inlet channels. Both the T
grid and the 12 second grid dynamicaily interact
with their respective surrounding grids.



1952 T: Tsunaxm Model

An Mw = 9.0 earthquake occurred November 4, 1952 east of the Kamchatka Peninsula. This
quake produced a tsunami recorded at tide gauges around the Pacific Ocean. Here the tsunami is
modeled over the area shown in Fig. 4 for a comparison with observations at Adak, Alaska.

The earthquake source was studied in detail by Kanamori (1976). Fault parameters are taken
from this study and used as input to Okada’s (1985) surface deformation equations. Figure 4 displays
the initial sea-level configuration due fo instantaneous source movement given the fault parameters:
length = 650km, width = 200km, depth to bottom of fault plane = 103km, strike = 214°, dip = 30°, slip
= 110°, moment = 3.5E29 dyne-cm, and Lame’s constants = 4.2E11 dyne/cm? The maximum sea-floor
uplift produced by this earthquake was 3.3m. Figure 4 shows typical sea-floor movement for
subduction zone, thrust earthquakes. That is, uplift on the ocean-side of the trench and broad
subsidence toward the back-arc side.

The 1952 tsunami is modeled using a 10’ grid (maximum distance 18.5km) over the area shown
in Fig. 4. The sea-level variation over time is recorded at the west and south boundaries of a 5 grid
which extends from 50°N to 52.5°N and from 177.5°W to 173°W. This output is linearly interpolated and
used as input to the 5’ grid. The 5 grid includes a dyn interacted 1’ grid over the shelf and
within that a 12" grid (maximum distance 370m) over eastem Kdak Island. The bathymetries within
the 1’ grid are displayed in Fig. 5. The 5’ grid and the 1’ and 12" grids within are also used in the next
section for modeling the 1986 local tsunami.

The directivity of tsunamis.can best be. described by the energy distribution radiated from the
tsunami source. The maximum energy flux field discussed previously is a better quantity from which
to describe directivity then are maximum current or amplitude because it is not water-depth dependent.
Figure 6 is a contour map. of the maximum energy flux field. - The directivity of the energy flux
perpendicular to the source is apparent from this map. -

As mentioned previously, 10 points per wavelength are needed to accurately propagate a
~ tsunami with the finite difference technique. Table I lists an average number of points per wavelength

for the different grid spacings used here assuming the tsunami period is 50 minutes. Modeling indicates
the period near the source is less than this, decreasing the number of points per wavelength there.

Table I
_ _
grid wavelength points/
spacing depth (m) : (km) wavelength
107 (18.5km) 3000 - 519 28
~5*+ (9.25km) 3000 - _ 519 56
1’ (1.85km) .150 . 116 62
:12® (0.37km) 60 73 197

Table I indicates that the resolution in this study is more than sufficient to propagate the 1952 tsunami.
In fact, we could eliminate the 12" grid and still have enough resolution to model the tsunami. The 12"
grid is included to accurately define the area around Adak, to identify the exact location of the tide
gauge, and allow us to show how the tsunami amplitude varies at Adak. The 12" grid will also be
important in future modeling efforts to include runup effects in the model. .

The Coriolis, friction, and non-linear terms in the equations of motion add 51gmﬂcant1y to the
CPU time required to compute a tsunami model. Here, we will test the significance of these terms.
Figure 7 shows the modeled tsunami at Adak computed with all terms included in the equations of
motion versus the same model with none of the terms included. The cumulative effects of these terms
is minor. Each decreases the tsunami amplitude slightly.

Kanamori (1976) modeled the rupture velocity for this earthquake as v = 3.0 km/s with the
fracture propagating unilaterally from NE to SW. The importance of a moving rupture versus
instantaneous uplift to the modeled tsunami is tested here. To simulate the propagating rupture the
final static displacement is pre—computed Then, at t1me steps of 1s, the portion of the fault zone over
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Figure 6. Tsunami energy flux distribution pro—
duced by the 1952 Kamchotka. earthquake. The
source here is instantaneously uplifted. The
units are given in Newton/s.
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Figure 8. Comparison of instantoneous uplift and moving rupture in the 1952
tsunami modeled at Adak. The moving rupture model shows o decreased amplitude
compared to the instantoneous rupture. As explained in the text this decrease

is due to the location of Adak with reéspect to the direction of rupture propa-
gation and the rupture velocity. - '

which the rupture will have propagated is instantaneously uplifted. For this quake it takes 215s for the
rupture to propagate along the entire fault using the average rupture velocity of 3.0 km/s. Figure 8
compares the modeled tsunami with instantaneous uplift versus the tsunami with uplift described
above. Both of these models include all terms in the equations. This test shows a decrease in the
modeled tsunami amplitude when the source rupture velocity is included. '

Marchuk et al. (1983) show that for a moving rupture, the tsunami wavefront is directed at the
angle 6 = zarccos (c/v) with respect to the direction the fault is propagating. Here, c is the speed of
the tsunami. Computing c for the depth = 3000m implies the wavefront is directed at 86.7° from the
fault strike versus 90° for an instantaneous uplift. That is, the wavefront is directed more to the south
for a moving rupture. Figure 9 demonstrates that the maximum energy flux field is also directed more
to the south. This explains the decrease in amplitude at Adak when the moving rupture is simulated.

The comparison of the modeled tsunami to the recorded tsunami at Adak is obtained by
including friction, Corlolis, and non-linear terms in the equations of motion with the moving rupture
simulated (Fig. 10). This model uses the non-dynamic grid integration scheme for attaching the open
ocean grid with the regional model. Within the regional model two dynamic interactions take place.
That is, the 5 to 1’ resolution increase over the shelf and the 1’ to 12" increase over the area within
10km of the tide gauge.

1986 Tsunami Model

On May 7, 1986 an Mw=8.0 eart e occurred south of the Andreanof Islands in the Aleutian
subduction zone. This earthquake produced a 1.7m tsunami recorded at Adak and was recorded
elsewhere in the Pacific Ocean as a small, non-damaging wave. The wave recorded at Adak provides
us an opportunity to model a tsunami which was recorded within the source zone. That is, the tide
gage at Adak was part of the area of surface deformation. producedH:ly the earthquake. A
source/receiver configuration such as this is very complicated due to initial waves arriving at the
receiver from more than one direction. Several investigators have studied the energy release and
fault motion during the Andreanof Islands quake (e.g., Hwang and Kanamori, 1986, Boyd and Nabelek,
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Figure 10. Actual 1952 tsunami_recording at Adak shown with the

model computed in this study. The modeled tsunami includes friction,

Coriolis, and non-linear terms in the equations of motion and accounts for a
rupture velocity of 3 km/s. This model was run in two poarts (non—dynamically
connected) as discussed in the text.



1988, Houston and Engdahl, 1989). Here we use source parameters from Hwang and Kanamori (1986)
as input to Okada’s (1985) surface deformation equations. Parameters used are: length = 220km, width
= 65km, depth to bottom of fault plane = 24km, strike = 257°, dip = 18°, slip = 116°, moment = 1.3E28
dyne-cm, and Lame's constants = 4.2E11 dyne/cm®. The initial sea-level deviation due to an
instantaneous uplift of this source is depicted in Fig. 11. Note that while the main tsunami is generated
to the south of the Andreanof Islands, a mild sea-level slope was produced to the north. This slope is
a potential wave generating feature. -

The finite difference model used to generate and propagate the 1986 tsunami consists of the 5
grid with the dynamically interacted 1’ and 12" grids as described in the previous section along with
a second 12" grid covering the inlet channels east of Adak (Fig. 5). - This 12" grid was added to aid in

the resolution of these relatively shallow, narrow channels and proved to be helpful in this model as

the tsunami has a shorter period than the 1952 tsunami. Table II lists the average number of grid points

per wavelength for the different grid spacings used in this model, assuming the tsunami period is 14
minutes.

Table II
grid wavelength points/
spacing depth (m) (km) wavelength
5’ (9.25km) 3000 145 16
1’ (1.85km) 150 33 18

12® (0.37km) 60 21 57

Table II shows that the resolution here should be sufficient to propagate the tsunami from the source
to Adak. As an example of the importance of sufficient resolution, Fig. 12 displays the modeled tsunami
at Adak using: 1) only the 5 grid, 2) the 5’ grid dynamically interfaced with the 1’ grid, and 3) the full
5’, 1, and two 12" grids described above. :

Figure 13 compares the observed tsunami at Adak along with the modeled result. The modeled
result matches the observed well with respect to wave height and build-up. However, the period in the
modeled wave is slightly longer than that in the observed. Marchuk et al. (1983) demonstrate that
tsunami period is a function of source width. There are several possible explanations of why the source

182.5 184.5 186.5

Figure 11. Initial sea—level dis—
placement produced by the 1986

52.0 Andreanof Islands earthquake using
fault parameters listed in the text.
The contour interval is 5cm. The
Adak tide gauge location is marked
with an 'X' and the epicenter with
an asterisk.

52.0

51.0

50.0 ' ' ' ‘ 50.0
182.5 184.5 186.5
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Figure 12. Comparison of the 1986 tsunami model using: Solid — full dynamic
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integration consisting of 5' and 1' grids only, and Dotted — only 5' grid.

Note the improved tsunami resolution as finer grids are utilized.

200.0

—~ 1

£ -

(& -

N’

I._

I

O

—

Ll

T

Ll

>

<<

X 7 .
- Modeled 1986 tsunami at Adak
4 T Recorded tsunami at Adak

‘20@-9 1 I T r 1
0.0 ' 7200.0 14400.0
TIME (s)

Figure 13. Comparison of modeled and recorded tsunamis ot Adak from the 1986
Andreanof Islands earthquake. The modeled result employs friction, Coriolis,

and non-linear terms in the equations of motion. The grid used in this model is
the 5'. 1', and 12 second dynamically interacted grid used for the 1952 model
along with a0 12 second grid over the inlet channeis east of Adok (see Fig. 5).



width computed here is broader than the actual width. First, the fault width taken from Hwang and
Kanamori (1986) is greater than the actual rupture width. Second, the surface deformation equations
(Okada, 1985), which assume an isotropic, homogeneous half-space, are computing a broader
deformation than that which actually occurred. Third, the faulting is more complex than can be
accounted for when using the surface deformation equations. Lastly, the effect of waves approaching
from more than one direction make the modeled tsunami sensitive to small variations in source
configuration.

As was demonstrated in the 1952 model, Fig. 14 shows that the addition of Coriolis, friction, and
non-linear terms to the equations of motion make no significant difference in the resul int modeled
tsunami. Modeling indicates that the friction and non-linear terms both have a small negutive effect on
the model which increases with time while the Coriolis force makes no appreciable difference.

Boyd and Nabelek (1988) determined that the average rupture velocity for this quake was
1.5km/s. The earthquake ruptured bilaterally from the epicenter displayed in Fig. 11. Figure 15
compares the tsunami model using an instantaneous rupture velocity with a model using a 1.5km/s

rupture velocity. For this earthquake inclusion of finite rupture velocity makes no significant difference
in the modeled tsunami.
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Figure 14. Comparison of the 1986 tsunami model including friction, Coriolis,
and non-linear terms in the equations of motion against model without the terms
included. The model with all terms included displays slightly decreased amp-
litude over time.
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Figure 15. Comparison of the 1986 tsunami modeled using a moving source with
a model which used instantaneous uplift but otherwise was identical. The moving
source was computed with a rupture velocity of 1.5 km/s (Boyd and Nabelek,
1988). In this model accounting for the moving source makes no practical dif—
ference to the modeled tsunami.
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Conclusions

Comparisons between observed and modeled tsunamis (Figs. 10 and 13) show that the tsunami
modeling technique presented here is successful. The maximum amplitude recorded is within 20% of
the modeled amplitude for both tsunamis. We have also shown that the Coriolis, friction, and non-
linear terms in the equations of motion can be neglected to save CPU time. Their impact on the
modeled tsunamis is relatively minor, though the friction and non-linear terms showed an increasing
negative effect with time in the 1986 model. Friction and non-linear terms may show a greater
importance in the fine grids when models incorporating runup effects in the very fine grids are
employed. The minimum depth allowed, H,,;,, will decrease substantially when runup is accounted for,
thus increasing the importance of these two terms. Inclusion of a moving rupture versus instantaneous
uplift is also shown to have a small effect on the energy flux distribution and the modeled tsunami.
Whether this effect is negative or positive in the modeled tsunami depends on the azimuth of the tide
gauge to the rupture vector and on the rupture velocity.

The comparison between recorded and modeled waveforms was better in the 1952 tsunami than
for the one in 1986. This is likely due to the tide gauge location within the 1986 source displacement
zone. We noted in the many models computed for the 1986 tsunami that a small change in the source
configuration could cause a considerable change in the modeled tsunami period and appearance. This
may be due to incoming waves from different directions which construct or destruct based on the
configuration.

Dynamic connection of grids with different spacing can be accomplished by the method
presented here. Spurious effects generated at the boundaries between grids by poor estimations
(Ramming and Kowalik, 1980) have not presented a problem in either of the models. These effects are
prevented by connecting the grids in water deep enough that the coarser grid sufficiently resolves the
wave. o

Results from this study have ramifications for community planning at Adak. Figure 16 shows
the area near Adak which is covered by a 12" grid (Fig. 5). Both a bathymetric map and an
orthographic projection of the maximum amplitude recorded at each grid point in the 1986 model are
shown. The maximum amplitude plot shows that the tsunami will attain almost twice the amplitude
at the west end of Sweeper Cove compared to the shores just outside the cove. '

N
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Figure 16. Left display is a bathymetric map of
the very fine Adak grid shown in Fig. 5. The con—
tour interval is 25m and the tide gouge location

is shown with an asterisk. On the right is an
orthographic view of the maximum amplitude record—
ed at each grid point in the ver{ fine grid in the
1986 model. The view is from the southeast. Note
the large increase in amplitude at the west end of
Sweeper Cove.
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MODELING HILO, HAWAII TSUNAMI INUNDATION

Charles L. Mader
George Curtis
JTRE - JIMAR Tsunami Research Effort
University of Hawaii, Honolulu, HI., U.S.A.

ABSTRACT

The flooding of Hilo, Hawaii by the tsunamis of April 1, 1946, May 23, 1960 and March 28
1964 have been numerically modeled using the non-linear shallow water code SWAN including the
Coriolis and friction effects. The modeling of each tsunami generation and propagation across the
Pacific Ocean to the Hawaiian Island chain was modeled using a 20 minute grid of ocean depths.
This furnished a realistic input direction and profile for the modeling of the tsunami interaction
with the Hawaiian Islands on a 5 minute grid. The resulting wave profile and direction arriving
outside Hilo Bay was used to model the tsunami wave interaction with the bay, harbor and town
on a 100 meter grid. Each element of the grid was described by its height above or below sea
level and by a DeChezy friction coefficient determined from the nature of the topography.

The 1946 and 1964 tsunamis were generated by earthquakes in Alaska. The 7.5 magnitude
1946 tsunami flooding of Hilo was much greater than the 8.4 magnitude 1964 tsunami. This was
reproduced by the numerical model. The directionality of the tsunami from its source was the
primary cause for the smaller earthquake resulting in greater flooding of Hilo. The 1960 tsunami
was generated by an earthquake in Chile. The observed largest wave was the third bore-like wave.
The numerical model reproduced this behavior. The observed levels of flooding for each event
was reproduced by the numerical model with the largest differences occuring in the Reeds Bay
area where the local topography is poorly described by a 100 meter grid. The observed levels of
flooding at individual locations was not well described by the model. Since the front and back of
a building at a particular location has been observed to have flooding levels varying by a factor
of two, a higher resolution grid including the buildings will be required to describe the flooding
at individual locations.
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INTRODUCTION

The flooding of Hilo, Hawaii by the tsunamis of 1946, 1960 and 1964 was modeled using the
SWAN non-linear shallow water code which includes Coriolis and frictional effects. The SWAN
code is described in Reference 1. Most of the calculations were performed on an IBM PS/2 model
80 with 8 megabytes of memory. The 20 and 5 minute topography was obtained from the NOAA
ETOPO 5 minute grid of the earth. The 100 meter grid topography and friction coefficients were
obtained using available USGS and other topographic maps, photographs and reports.

The extent of flooding for each event is well documented; however the flooding at individual
locations was strongly observer dependent. Often the reported flooding at individual locations
varied by a factor of two between the different observers and whether the front or the back of a
building was used to evaluate the flooding at a location. The available data sources were collected,
and a range of flooding observed for each location determined.

A Hilo tsunami date was selected and the following calculations performed:

First - A 20 minute grid calculation of the North Pacific (and when required for the entire
Pacific) was performed to model the tsunami generation and propagation to the region of the
Hawaiian Island chain. The 20 minute North Pacific grid was from 120 E to 110 W and 10 N to
65 N and 390 by 165 cells. The wave profile arriving in the region of the chain was used to select
a realistic input direction and profile for the second step.

Second - A 5 minute grid calculation of the tsunami wave from the first step interacting with
the Hawaiian Island chain was performed. For the 1946 and 1964 tsunami the 5 minute Hawaiian
Island grid was from 163 W to 154 W and 18 N to 24 N and 108 by 72 cells. The wave direction
and profile arriving in the region of Hilo Bay was used to select a realistic input direction and
profile for the third step.

Third - A 100 meter grid calculation of the tsunami wave from the second step interacting
with Hilo Bay and Hilo harbor, and the resulting flooding was performed using the input wave
direction and profile from the second step. The 100 meter Hilo Bay was 100 by 168 cells and
the lower left grid corner was located at 155 degrees, 5 minutes, 40 seconds and 19 degrees, 42
minutes, 45 seconds.

The results of the calculations were compared with the available Hilo flooding levels for each
event studied.

TSUNAMI of APRIL 1, 1946

The tsunami of April 1, 1946 was caused by an earthquake of 7.5 magnitude off the Aleutian
islands at 53.5 N, 163 W, 12:29 GMT. with a second quake at 12:57 GMT. The source was located
about 60 miles SW of Scotch Cap, Unimak Island where the tsunami destroyed the lighthouse
and radio towers located more than 30 meters above sea level. ,

The tsunami arrived at Hilo at about 7:00 a.m. HST with a small crest followed by a large
recession. The third wave was the largest. Using the first measurable half-wave period, the period
was determined from the Honolulu tide gage to be 15 minutes as described by Green (Ref. 2.)
No instrumental record of the tsunami at Hilo was made. The tide at the time of the tsunami
was at 20 cm above MLLW and falling.

The earthquake source was estimated by Furamoto (Ref. 3) from the travel times to be 100 km
wide and 350 km along the trench. Imaginary wavefronts from observation stations were projected
back toward the tsunami source. The presumed source was within the region circumscribed by



the interacting wavefronts. A source with these dimensions was chosen which would result in
a large negative initial wave at Hawaii and a run-up of 30 meters near Scotch Cap lighthouse.
The source had a sharp dip of 20 meters along the trench on the deep ocean side and decreased
linearly to 0 meters along the shallow ocean side of the source. For a 20 minute grid, a cross
section consisted of cells of -20.0, -15.0, -10.0 -5.0 meters initial displacement.

The wave arriving north of the Hawaiian Islands was a 1.0 meter high, 1000 second period
wave with an initial negative pulse. It arrived from the North with the highest energy directed
at the islands. This wave was used as the source for the Hawaiian Island calculation.

The tsunami wave interacted with the Hawaiian Islands and refracted around the island of
Hawaii such that the tsunami arrived from the North-East on the Hilo side of the island.

The wave arriving outside Hilo Bay had an initial negative amplitude of 2.0 meters and a 1000
second period, followed by four 1000 second period waves with amplitudes of 3 to 4 meters. This
wave was used as the source of the Hilo Bay calculation.

The Hilo Bay calculation was performed for the entire bay for the wave starting from the
North and from the North-East. The wave from the North refracted into a North-East wave as it
interacted with the bay topography. Both calculations gave similar wave interaction and flooding
in Hilo harbor.

The flooding was performed using a constant DeChezy friction coefficient of 30, and using the
topography determined DeChezy coeflicient array shown in Figure 1. The roughness coefficients
for Hilo harbor and town were determined in the Look Lab Hilo Bay model study (Ref. 4).
The coefficient of 60 is for open smooth areas, 40 for lava like surfaces, 30 for coral and rougher
surfaces, 20 for scattered trees and buildings, 10 for buildings and closely spaced trees.

The calculated and observed inundation limits for Hilo are shown in Figure 2. The calculated
and observed inundation limits agree to within the 100 meter grid resolution of the numerical
model throughout most of the flooded region.

The calculated and observed flooding levels at various locations in the harbor are listed in
Table 1 and shown graphically in Figure 3. The flooding levels are strongly dependent upon the
friction. A constant friction model is inadequate to describe either the limits of inundation or
the flood levels at individual locations. The numerical model does not exhibit the observed large
variability in flooding at different locations. The 100 meter grid is inadequate to resolve local
effects of topography or friction that are important at individual locations. The hydraulic model
reproduces the observed local flooding levels better than the numerical model. The model values
were obtained using the hydraulic model of Hilo at Look Laboratories reported in references 5

and 6.
TSUNAMI of MARCH 28, 1964

The tsunami of March 28, 1964 was caused by an earthquake of 8.4 magnitude in Alaska near
Prince William sound at 61 N, 147.5 W, 13:36 GMT.

The tsunami arrived at Hilo at about 17:30 HST with a crest followed by other crests. The
second wave was the largest. Using the first measurable half-wave period, the period was
determined from the Hilo tide gage to be 50 minutes. A record of the tsunami off Wake island in
800 feet of water was made by Van Dorn (Ref. 7). The wave observed at Wake Island was 15 cm
high with a 50 minute period. The tide at the time of the tsunami was at 30 cm above MLLW
and rising.

The earthquake source was studied in detail by Plafker (Ref. 8.). The formation of the tsunami
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and its interaction (not flooding) with Hilo Bay was modeled by Hwang and Divoky (Ref. 9 and
10). The tsunami was also modeled by Houston, Whalin, Garcia, and Butler (Ref. 11).

The source was 300 km wide and 800 km long aligned along a SW-NE direction. The source
was 7 cells wide. The initial amplitudes from ocean to land had heights of +5.0, +9.0, +10.0,
+9.0, +5.0, +1.0, -2.0 meters. This source resulted in a wave at- Wake Island similar to that
observed by Van Dorn (Ref. 7).

The wave arriving north of the Hawaiian Islands was much weaker than for the 1946 tsunami.
The wave had a profile of a 0.50 meter high, half-wave with a period of 4000 sec, followed by a
0.1 meter high half-wave with a period of 2000 sec, then by a 0.25 meter high full wave with a
period of 1750 sec. : '

The tsunami wave interacted with the Hawaiian Islands and refracted around the island of
Hawaii such that the tsunami arrived from the North-East on the Hilo side of the island. The
wave arriving outside Hilo Bay had an initial positive amplitude of 1.0 meters, 4000 second period
half-wave, followed by a 1.0 meter 2000 second period half wave, then by a 1.0 meter, 1750 period
full wave. This wave was used as the source for the Hilo Bay calculation.

- The Hilo Bay calculation was performed for the entire bay for the wave starting from the
North and from the North-East. The wave from the North refracted into a North-East wave as it
interacted with the bay topography. Both calculations gave similar wave interaction and flooding
in Hilo harbor.

The flooding was performed using a constant DeChezy friction coefficient of 30, and using the

~ topography determined DeChezy coeflicient array shown in Figure 1.

The calculated and observed inundation limits for Hilo are shown in Figure 4. The calculated
and observed inundation lunits are much smaller than for the April 1, 1946 tsunami. Throughout
most of the flooded region the calculated model gave more inundation than was observed.

The calculated and observed flooding levels at various locations in the harbor are listed in
Table 2 and shown graphically in Figure 5. The flooding levels are strongly dependent upon the
friction. A constant friction model is inadequate to describe either the limits of inundation or
the flood levels at individual locations. The numerical model does not exhibit the observed large
variability in flooding at different locations. The 100 meter grid is inadequate to resolve local
effects of topography or friction that are important at individual locations. The hydraulic model
reproduces the observed local flooding levels better than the numerical model.

The 1946 and 1964 tsunamis were generated by earthquakes in Alaska. The 7.5 magnitude
1946 tsunami flooding of Hilo was much greater than the 8.4 magnitude 1964 tsunami. This was
reproduced by the numerical model. The directionality of the tsunami from its source was the
primary cause for the smaller earthquake resulting in greater flooding of Hilo. The 1946 tsunami
wave peak energy was directed toward Hawaii while the 1964 tsunami wave peak energy was
directed east of Hawaii toward the Pacific coast of North America. The large waves observed
at Crescent City for the 1964 tsunami and not for the 1946 tsunami are consistent with this
directionality difference.

TSUNAMI of MAY 23, 1960

This study required development of a f::i1 North #.nd South Pacific grid to determine the nature
of the wave arriving at Hilo from South America. A one degree grid from 110 E to 65 W and
65 S to 65 N of 185 by 130 cells and a 20 minute grid of 555 bv 390 cells was developed. The

one degree grid could only resolve the source with a two cell wide source and gave waves with



periods two times larger than observed. So the 20 minute grid tsunami wave profiles were used
to describe the 1964 tsunami.

The tsunami of May 23, 1960 was caused primarily by an earthquake at 19:11 GMT on May 22,
1960 of 8.5 magnitude occurring near Peru, Chile and centered at 38 N and 73.5 W. The major
earthquake was preceeded by two 7.5 magnitude quakes at 10:03 and another at 19:10 GMT.

The main tsunami wave crested at Hilo at 12:13 a.m. HST on May 23. The first wave peak
was followed by a second peak at 12:46 a.m. then by a third peak (a bore at the harbor entrance)
about 20 minutes later which was more than twice as high as the previous waves. This wave was
the highest and most destructive tsunami wave in Hilo’s history.

The tide at 12:07 a.m. HST was at 60 cm above MLLW and increasing. By the time the
largest third and fourth waves arrived the tide was cresting at 70 cm above MLLW.

The earthquake was studied by Plafker and Savage (Ref. 12). The formation of the tsunami
and its propagation across the Pacific Ocean toward Hawaii was numerically modeled by Hwang
and Divoky (Ref. 9). They concluded that peak wave heights occur along a path roughly normal
to the major axis of the elongated source region. They suggested that the preferential directivity
may account for the severity of the Chilean tsunami in Japan.

The source was 6 cells or 150 km wide and 21 cells or 800 km long aligned along a N-S d.lrectlon
The source was six cells wide and an initial upward displacement of 1,2,4,6,4,-2 meters along the
width. The waves arrived at the Hawaiian Island chain from the South-East. The wave had a
profile of a 0.225 meter high, 3000 second half wave followed by a 0.525 meter high 1500 second
wave and then followed by a 0.49 meter high 1500 second wave. The wave that arrived at Johnson
Island was similar to the wave reported by Van Dorn (Ref 7).

The 5 minute Hawaiian Island grid was from 170 W to 140 W and 15 N to 25 N and 360 by
120 cells. The tsunami wave interacted with the Hawaiian Islands and refracted such that the
wave arrived from the East on the Hilo side of the island. The wave arriving outside Hilo Bay
had an initial amplitude of 0.4 meter and a period of 3000 second for 1500 sec, followed by a 1.5
meter 1500 second wave, and then by a 2.0 meter 1500 second wave.

The flooding was performed using a topography determined DeChezy coefficient. The
roughness coefficients for Hilo harbor and town were determined by the Look Lab Hilo Bay
model study and is shown in Figure 1.

The calculated and observed inundation limits for Hilo are shown in Figure 6. The calculated
and observed inundation limits agree to within the 100 meter grid resolution of the numerical
model throughout most of the flooded region with the calculated model giving more inundation
than observed between Reeds Bay and Pier 2.

The calculated and observed flooding levels at various locations in the harbor are hsted in
Table 3 and shown graphically in Figure 7. The numerical model does not exhibit the observed
large variability in flooding at different locations. The 100 meter grid is inadequate to resolve
local effects of topography or friction that are important at individual locations. The hydraulic
model reproduces the observed local flooding levels better than the numerical model.

The calculated third wave was largest and steepest in agreement with the observations although
the difference in amplitude between the second and third wave is not as large as observed.

The numerical modeling results support the suggestion of Hwang and Divoky that the
preferential directivity accounts for the severity of the Chilean tsunami in Hawaii and Japan.
The interaction of the tsunami wave with Hilo Bay resulted in modifying the amplitude of the
waves from the second being the largest to the third being the largest, steepest and most bore-
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like. The wave arriving at Wake Island exhibited none of these characteristics. The interaction of
tsunami waves with Hilo Bay is strongly dependent upon their period and their interaction with
bay topography and with each other. The relative amplitude and steepness of the waves outside
of Hilo Bay may be quite different from the waves flooding the town of Hilo.

CONCLUSIONS

The flooding of Hilo, Hawaii by the tsunamis of April 1, 1946, May 23, 1960 and March 28
1964 have been numerically modeled using the non-linear shallow water code SWAN including
the Coriolis and friction effects. The modeling of each tsunami generation and propagation acroes
the Pacific Ocean to the Hawaiian Island chain followed by modeling of the tsunami interaction
with the Hawaiian islands on a finer grid and then modeling the tsunami wave interaction with
the bay, harbor and town using a high resolution grid results in inundation limits that reproduce
the essential features of the actual inundation limits.

The 1946 and 1964 tsunamis were generated by earthquakes in Alaska. The 7.5 magnitude
1946 tsunami flooding of Hilo was much greater than the 8.4 magnitude 1964 tsunami. This was
reproduced by the numerical model. The directionality of the tsunami from its source was the
primary cause for the smaller earthquake resulting in greater flooding of Hilo. The 1960 tsunami
was generated by an earthquake in Chile. The observed largest wave was the third bore-like wave.
The numerical model reproduced this behavior. The observed levels of flooding for each event
was reproduced by the numerical model with the largest differences occuring in the Reeds Bay
area where the local topography is poorly described by a 100 meter grid. The observed levels of
flooding at individual locations was not well described by the model. Since the front and back of
a building at a particular location has been observed to have flooding levels varying by a factor
of two, a higher resolution grid including the buildings will be required to describe the flooding
at individual locations.
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TABLE 1
April 1, 1946 Tsunami

Number Location Observed Constant Topographic Look Lab
Friction Friction Model

Hilo Sugar Mill 7.6 9.5 6.2

1
.2 Wailuku Bridge 7.3-8.5 8.7 . 5.8 6.1
3 Theater 6.1-8.5 9.0 _ 6.6 _
4 Waiakea 6.7-7.9 6.8 4.8 4.2
5 Reeds Bay 2.4-3.0 8.0 5.7 24
6 ~Pier2 58 7.0 . 60 3.4
TABLE 2

March 28, 1964 Tsunami

Number Location Observed Constant Topographic Look Lab
: Friction Friction Model

Hilo Sugar Mill 2.8 1.9, 2.0

1
-2 Wailuku Bridge 1.8 3.0 2.0, 2.1 2.7
3 Theater 0.0 2.9 2.0, 2.0 0.0
4 Waiakea 1.5 3.0 2.5, 3.0 1.8
5 Reeds Bay 2.1 3.0 2.6, 3.5 2.3
6 Pier 2 2.4 3.0 25,35 2.1
TABLE 3

May 23, 1960 Tsunami

Number Location Observed Topographic Look Lab
Friction Model

Hilo Sugar Mill 4.6-6.1 3.7 6.7

1

2 - Wailuku Bridge 4.3-5.8 4.5 3.8
3 “Theater . 6.7-8.5 4.5 7.6
4 Waiakea 4.6-6.1 4.2 3.5
5 Reeds Bay 2.7-3.7 4.9 4.1
6 Pier 2 3.6-4.3 5.0 4.4
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Fig 2. The calculated and observed Hilo inundation limits for the tsunami
of April 1, 1946. The observed limit is the heavy dashed line.
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Fig 6. The calculated and observed Hilo inundation limits for the tsunami
of May 23, 1960. The observed limit is the h_eavy dashed line.



SOURCE PARAMETERS OF DESTRUCTIVE TSUNAMIS
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ABSTRACT

Published lists of tsunamis were combed to find destructive transoceanic tsunamis from
1800 to 1990. Fifteen tsunamis were so identified. The common factor in this class of tsunamis

was the frequent occurrence of runup heights equal to or greater than 4 m at distances greater
than 1000 km from the source.

These tsunamis were divided into major and giant tsunamis according to size. In cases
where moment magnitudes or their equivalents were obtainable, earthquakes that generated giant
tsunamis had moment magnitudes equal to or greater than 9 and rupture lengths longer than 550
km. Generators of major tsunamis had moment magnitudes from 8.4 to 8.8 and rupture lengths
from 240 km to 530 km. Generators of locally destructive tsunamis were also examined and it
was found that these generators had moment magnitudes less than 8.2 and rupture lengths less

than 280 km. These values however do not constitute rigid criteria because determinations of .

magnitudes have errors of + 0.25 and rupture lengths can be in error of 100 km.

Implications for tsunami response plans are discussed and it is suggested that response
plans be tailored to the size of tsunamis.



INTRODUCTION

Within the Pacific Ocean Basin and along its marginal seas, tsunamis are generated
frequently by earthquakes. In the tabulation of destructive earthquakes of the world compiled
by Utsu [1] are listed 372 occurrences of tsunamis in the Pacific Region from January 1800 to
December 31, 1989, on the average of two tsunamis per year. Tsunamis come in different
categories: (1) most cause no damage; (2) some cause severe damage in the meizoseismal area
and then travel across the ocean but cause no damage to distant shores; and (3) a small number
after causing havoc in the meizoseismal area travel across the ocean thousands of kilometers to
inflict death and destruction to distant coastal communities. Corresponding to the above criteria
for the purpose of this paper tsunamis are classified into (1) no-damage tsunamis; (2) destructive
local tsunamis; and (3) destructive transoceanic tsunamis. As will be shown later in this paper,
the third class of destructive transoceanic tsunamis can be further subdivided according to size
into major and giant types.

This paper intends to contribute toward the formulation of appropriate response plans for
destructive transoceanic tsunamis. Thanks to the efforts of the staff of the Pacific Tsunami
Warning Center located in Ewa Beach, Hawaii, usually there is a time interval of hours between
the issuance of a tsunami warning by the Center and the arrival of a tsunami at distant shores.
Upon reception of a tsunami warning, there is ample time for each local political entity, whether
a nation, state, province or municipality, to mobilize its resources according to its respective
response plan. However most response plans are based on worst case scenarios and consist of
evacuation of perceived potential inundation areas. If industrial and commercial enterprises are
located in the potential inundation areas, mandatory evacuation results in suspension of vital
economic activities. Because the response plans were based on worst case scenarios, when the
tsunami finally arrives, usually only a fraction of the evacuated area is inundated. Then the
authorities who had put the response plan into operation had to sustain criticisms of over-
reaction. Because tsunamis come in different sizes, there should be flexible response plans to
meet the different sizes of tsunamis. We attempt to identify the parameters that will enable

emergency management administrators to judge the size of an approaching tsunami so that more

appropriate response plans can be selected in real time during a tsunami alert or warning.

If flexible response plans are to be adopted, the first step is to discriminate between
destructive local tsunamis and destructive transoceanic tsunamis. The Pacific Tsunami Warning
Center may have to issue a tsunami warning even in the case of a destructive local tsunami
because its responsibility is to the entire Pacific Basin community of nations. The emergency
management agency at the local level should discriminate between local and transoceanic
tsunamis before selecting the appropriate response plan. We address the question of how to
discriminate between destructive local and transoceanic tsunamis.

We have examined the historical records of tsunamis and found that of the 372 tsunamis
in the Pacific Ocean and marginal seas between 1800 and 1990, there were 15 events that can
be classified as destructive transoceanic tsunamis. Of these, 8 were of such severity that the
worst case scenario type response plans would have been appropriate, and we call these giant
tsunamis. For the other 7, worst case response plans would have been an over-reaction and an
unjustifiable drain on the economy of the communities affected. ~The second class will be
referred to as major tsunamis. We also address the question of how to distinguish a major
tsunami from a giant tsunami.



LIST OF DESTRUCTIVE TRANSOCEANIC TSUNAMIS

The databases we searched to find destructive transoceanic tsunamis were bound volur es
of tsunami data [1], [2], [3], [4], [5], [6], as well as journal articles [7], [8].

Diurnal tidal variation can affect tsunami inundation. The parameter called runup height
used in the catalog by Iida et al. [2] considers the effect of tides. Fortunately this parameter nas
been adopted by the other catalogs listed in the previous paragraph so that there is a uniform
parameter to quantify tsunami inundation.

Shepard et al. [7] classified tsunamis that invaded the shores of Hawaii as having caused
"severe," "moderate," "small” or "none" damage. This information aided us in classifying
tsunamis according to size. When runup heights as given in other sources were correlated with
the adjectives used by Shepard et al., it was found that "severe” and "moderate” tsunamis had
runup heights of about 4 m or greater in many places in Hawaii. Hence we used 4-m runup
height as our criterion for selection.

Of the "severe” tsunamis listed by Shepard et al. [7], we decided not to consider that
generated by the Great Kau Earthquake of April 2, 1868, because, although it raised havoc in
the meizoseismal area on the southeast coast of the island of Hawaii, it was reduced to a height
of 1.5.m at Honolulu Harbor, a distance of 300 km from the earthquake epicenter. This was a
"severe" local tsunami.

For our selection we chose tsunamis that caused runup heights of 4 m or more at distant
shores, 1000 km from the earthquake epicenter. We found that 15 events fell into our category
of destructive transoceanic tsunamis (Table 1). The table includes the range of runup heights at
different distant shores and the tsunami magnitude as calculated by the compilers of tsunami data.

The information and data listed in Table 1 may need a few words of explanation. For
example, questions may be asked as to why there is a question mark associated with the source
location of the tsunami of 1869. On July 24, 1869 tsunami arrivals were observed all over the
Hawaiian Islands. Later examinations of earthquake records around the Pacific Ocean failed to
uncover any earthquake that could have generated the tsunami. The waves were not storm
surges, as Hawaiians were well experienced in distinguishing between tsunamis and storm
surges. The several reports of tsunami heights higher than 4 m in the Hawaiian Islands and the
resulting "moderate” damage qualified this tsunami to be classified as destructive transoceanic.
However, there has been no tsunami damage reported from outside the Hawaiian Islands for this
date. Shepard et al. [7] have suggested the source to be South America whereas Lander and
Lockridge [5] have suggested the South Pacific.

The tsunami generated by the Sanriku, Japan, earthquake of June 15, 1896 requires some
justification to be included with other destructive transoceanic tsunamis. Shepard et al. [7] has
listed the tsunami as having caused "none" damage, but examination of other databases showed
that the runup heights ranged from 3 m to 5.5 m along the Kona Coast, the western coast of the
island of Hawaii. The judgment of "none" damage is correct for the nineteenth century because
the Kona Coast was a sparsely populated rural district where the inhabitants lived by taro farming
and fishing. Although in 1896 the tsunami inundated many places, no damage was done to the
houses along the coast, as the inhabitants, heeding centuries of experience, had constructed their
modest homes in places safe from tsunami inundation. On the other hand, should there be a
repeat of the tsunami of 1896, damage will be widespread along the Kona Coast which is now
a highly developed resort area. There will be a high price to pay for restoration of life lines such
as roads, highways and utilities, and the hotels built close to the seashore will suffer from salt
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water soaking.

The Hawaiian Islands are situated in an advantageous position for classification of
tsunamis. Centrally located in the Pacific Ocean, they are in the path of tsunamis from around
the Pacific Rim, and as diurnal tidal variation in the Hawaiian Islands is about 0.6 m [5],
variation of tsunami damage by tidal difference is insignificant. How widespread damage is by
tsunami in the Hawaiian Islands can be used to judge the size of a tsunami. We shall designate
as "giant" those tsunamis that have done damage throughout the Hawaiian Islands and as
"major” those that have done damage in selected places. For example, the tsunami of April 1,
1946 will be considered giant because it caused death and destruction throughout the Hawaiian
Islands, whereas the tsunami of 1896 will be regarded as major because its potential for damage
was limited to the Kona Coast of the island of Hawaii. When so classified, there were 8 giant
tsunamis and 7 major ones.

. Although our classification resulted from consulting damage and runup height reports
from throughout the Hawaiian Islands, in Table 1 the giant tsunamis correspond with "severe”
damage and major tsunamis correspond with "moderate” damage or less. It should be reminded
that in Table 1 we have deleted local destructive tsunamis, although the local tsunami of 1868
caused "severe” damage.

SOURCE PARAMETERS OF DESTRUCTIVE TRANSOCEANIC TSUNAMIS

Por the tsunamigenic earthquakes listed in Table 1, we gathered the following source
parameters from published literature: (1) depth of earthquake focus, (2) surface wave magnitude,
M,; (3) seismic moment, M,; (4) moment magnitude, M,,; (5) earthquake magnitude by tsunami
data, M;; and (6) sizes of source areas. The collated information is listed in Table 2. We did
not list the seismic moments in the table since the moment magnitudes, M,,, were derived from
the seismic moments, Mo, by use of the textbook formula [10]:

M, = .670og M ) - 10.7. (1)

- The fifth and sixth parameters, magnitude by tsunami data and sizes of source areas, need
explanation. As determination of seismic moment requires records from long period

-seismographs, Abe [9] devised a method to determine magnitude from tsunami data for those

earthquakes that do not have long period records. By appropriate normalization, he has shown
that the magnitude by tsunami data can be made numerically equivalent to moment magnitude.
Hence in Table 2, magnitude by tsunami data can be considered to be equivalent to moment
magnitude. Moment ‘magnitudes for some earthquakes earlier than 1960 were obtained in a
round about way by considering the size of the meizoseismal area [9]. It should be clarified that
earthquake magnitude by tsunami data M; is an index of the energy content of the earthquake
whereas tsunami magnitude m is the index of the size of the water wave in a tsunami.
Tsunami source areas can be calculated in several different ways. The basic assumption
is that the tsunami source area coincides with the rupture area of the generating earthquake.
Rupture areas can be derived from any one of following methods: (1) plotting the aftershock
area; (2) inversion of long period body waves; (3) inversion of surface wave data; and (4)
inversion of tsunami data. Of these, the most direct method for tsunami source delineation is the
inversion of tsunami data, but this method has been the least used of the four methods. The first



method plotting of aftershocks, is based on the assumption that the aftershock area coincides
with the rupture area of an earthquake. This has been a widely accepted assumption among
seismologists although a definitive demonstration of the validity of the assertion has so far
eluded publication. Aftershock method is the most indirect of the four methods, but it has been
the most widely used.

The Aleutian earthquake and tsunami of April 1, 1946 have been a mystery to
seismologists, therefore we shall devote a section to the problem related to the tsunami source
area. '

Aleutian Earthquake and Tsunami of April 1, 1946.

Of all the tsunamis listed in Table 1, the Aleutian tsunami of April 1, 1946, caused the
most wide-ranging devastation. In Hawaii it has been the most destructive tsunami in terms of
deaths and damage since recorded history began and in the Marquesas Islands recorded run-up
heights amounted to 9 to 10 m. Yet, the surface wave magnitude M, of the generating
earthquake calculated from seismograms was only 7.4. Sykes’ [11] plot of the aftershocks gave
an elliptical area 170 km by 100 km, a rather small area for such a destructive tsunami. Because
of the low quality of seismograms during that time, only eight months after the end of World
War II which had left many seismograph stations understaffed and in need of extensive repairs,
records usable for seismic moment calculations are not available in the archives. However, Abe
[9] determined the earthquake magnitude by tsunami data M; as 9.3.

Hatori [12] attempted to determine the tsunami source area by using tsunami data and
outlined a source length of 400 km and an area of 48,000 sq km. To determine the western end
of the source area, he retraced the tsunami arriving at Miyako and Ayukawa in Japan to its
source, but for the eastern anchor he assumed that the aftershock area given by Sykes [11] was
appropriate. '

We decided to redetermine the tsunami source area by retracing the waves to the source.
For the western edge of the generating area, we agreed with Hatori and accepted his
determination. But we disagreed on the appropriateness of using the aftershock area of Sykes
for the eastern end. We examined the tide gage records of the tsunami as published by Bodle
[13] and Green [14] and picked the tsunami arrivals for Yakutat, Sitka, Crescent City, La Jolla
and Valparaiso, and then used the Tsunami Travel-Time Charts published by the U. S.

Department of Commerce, National Oceanic and Atmospheric Administration (1971), to retrace

the tsunami to its origin time. The selection of tide gage records was limited by the availability
of travel time charts.. The tide gage records of Sitka and Yakutat (Fig 1) illustrate where we
had picked the tsunami arrivals. At Sitka the first upward motion of a 20-minute wave was
selected as the arrival; at Yakutat the beginning of a 30-minute period, somewhat obscured by
background oscillations, was selected as the arrival. Tide gages from Crescent City, La Jolla
and Valparaiso had such definitive first arrivals that there was no doubt about when the tsunami
arrived. In Table 3 are the arrival and travel times of the tsunami to the five stations. The
results of retracing the tsunami to its origin time are shown in Figure 2. The elliptical area
which we consider to be the tsunami source area is 570 km x 260 km, an area of roughly
150,000 sq km. This is a respectable generating area.

The discrepancy between the severity of this tsunami and the apparent low energy release
of the earthquake as indicated by surface wave magnitude rests with the poor quality of
seismological observation in the early months of 1946. World War II had only ended eight
months prior to the earthquake and the seismograph stations were in need of staff members and
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repair. Besides the problem of maintenance, seismographic data of those days were not suited
for seismic moment calculation. Furthermore, epicenter determinations were done in the tedious
and time consuming graphic method on a model globe. The list of epicenters of the aftershocks
published by the United States Coast and Geodetic Survey for this earthquake show that about
half of the aftershocks have the same geographical coordinates as the main shock. This is not
consonant with aftershock distributions of similar large earthquakes.

The curious phenomena associated with the earthquake and tsunami of April 1, 1946 do
not constitute a puzzle. It was just unfortunate that such a giant tsunami should have been
generated at a time when seismological observation was at the lowest ebb since the invention of
the seismograph.

Source Parameters of Giant and Major Tsunamis.

When comparing Tables 1 and 2, we note that all the tsunamis that were classified as
"severe" in the Hawaiian Islands had magmtudes by tsunami data M; of 9 or over. This may be
arguing in a circle, as tsunami data were used to determine the magnitudes, however in the latter
half of the twentieth century, all "severe" or giant tsunamis had moment magnitudes of 9 or
greater. Also in the twentieth century, giant tsunamis had source areas or rupture areas with the
main axes longer than 550 km. We deduce from the data that the threshold for giant tsunamis
are a moment magnitude M,, of 9 or over and a rupture area with the main axis longer than 500
km.

We can go further and deduce that major tsunamis, those transoceanic tsunamis that cause
destruction spottily in a distant coastline, have a threshold at M,, = 8 and a rupture length of
200 km to 500 km.

SOURCE PARAMETERS OF DESTRUCTIVE LOCAL TSUNAMIS

Since 1974 seismic moments M, of large earthquakes have been routinely calculated and
published [15, [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32]. From the data sets tsunamigenic earthquakes [1] were selected; seismic
moments M, were converted to M,,; and the information was tabulated in Table 4. From this
list, earthquakes with M, or M, greater than 8 were selected to compile information on rupture
areas. As rupture areas of most of these earthquakes were already published by various
investigators, we had to determine the rupture areas of only a few, namely the Tonga earthquake
of 1977 and the McQuarie earthquake of 1989. As a check on previous results, we also
determined rupture areas of a few more earthquakes.

Tonga Earthquake of June 22, 1977.

The Preliminary Determinations of Epicenters, Monthly Listings, published by the United
States Geological Survey, were consulted to ferret out the aftershocks of this earthquake. In the
month following the earthquake, only nine earthquakes were listed for the Tonga region. These
nine were plotted (Figure 3), but only six were judged to be aftershocks. This gave an
aftershock area of 160 km by 80 km.

Chile Earthquake of March 3, 1985 and the Andreanof Island Earthquake of May 7, 1986.
We publish our findings on these two earthquakes because of significant differences from



previously published results. In our study the rupture areas were determined by the inversion
of body wave data, as refined by Yoshida [33], [34], [35]. As details of these analyses were
published elsewhere [36], we shall give the results only. For the 1985 Chile earthquake, an
uplift zone extends for 320 km with a width of roughly 80 km (Fig. 4, upper). Choy and Dewey
[37] calculated a rupture area of 90 km by 10 km. For the Andrea.nof Island earthquake the
uplift zone is 120 km by 80 km (Fig. 4, lower). As a check on the body wave analyses,
Rayleigh waves R1 and R2 from the Andreanof Island earthquake were analyzed by the method
proposed by Ben-Menahem [38]. The Rayleigh wave method gave a rupture length of less than
100 km [36]. On the other hand Boyd and Nabelek [39] found an aftershock area of 266 km by
110 km. _

' In the Andreanof Island earthquake of 1986 the discrepancy is between aftershock method

on one hand and on the other hand seismic wave methods. For the Chile earthquake of 1985 the -

discrepancy occurs among seismic wave methods themselves. The d1screpanc1es afford a topic
for further study.

McQuane Island Earthquake of May 23, 1989.

‘To determine the rupture area for this earthquake we used the aftershock method. The
plot of earthquakes near McQuarie Island in the month following the earthquake is shown in
Figure 5. What we judged to be aftershock area, enclosed by dashed lines, has dimensions of
250 km by 150 km.

Source Parameters of Earthquakes Generating Local Tsunamis.

Table 4 can be considered to be a rather inclusive list of tsunamigenic earthquakes in the
Pacific Area since 1974. Notice that none of the earthquakes had a surface wave magnitude or
moment magnitude greater than 8.5. None of the calculated rupture areas had a rupture length
longer than 300 km, and none of the ensuing tsunamis caused damage at distant shores.

DISCUSSIONS

Class;ﬁcaaon of Ils'unamzs
- - From the numerical values of Tables 1, 2 and 3, we classify tsunamls according to M,
and size of source areas: -

: Gianttsunann M, 2> 9.1.
Rupture length > 550 km.
Major tsunami: 84<M, <09
240 km < Rupture length < 550 km.

Local tsunami: M, < 8.4.
- S Rupture length < 240 km.

However, such neat divisions are not practicable as magnitude determinations have errors

of + 0.25 and rupture length determinations can be in error of 100 km. These criteria should -

be considered as guidelines to judge the size of tsunamis. Relaxing the above criteria, a more
practical approach towards tsunami classification may be the following:
A. If M, of the generating earthquake is greater than 8.7, and if the source length has

101



102

been found to be greater than 500 km, the chances of a giant tsunami are high.

B. If M, is between 8 and 8.7, and the rupture length is under 500 km the tsunanu w111
probably be a ma_]or one.

C. If M, is less than 8 and the rupture length is under 250 km; the tsunanu 1s probably

of local destrucuveness

Sometimes moment magnitude and source area mformatlon may not be consistent. None
of the cases we have examined had such inconsistency, but it may occur. In that case the
deciding factor will be source area length.  For example if M,, was calculated to be 7.5 but the
source area had a length of 500 km, the tsunami wﬂl probably be a giant one.

Time and Space Distribution of Tsunamigenic Earthquakes -

In scanning the tables, odd patterns of geographical and temporal dlstnbutlons of
tsunamigenic earthquakes were noticed. Giant tsunamis were generated during the period from
1800 to 1990 from the following subduction zones: Kamchatka, Aleutian Islands, Gulf of Alaska,
and Chile. Although the Japanese Islands subduction zone generated furious local tsunamis, such
as the Sanriku earthquakes of 1896 and 1933 and the Nankaido earthquake of 1946, tsunami
destruction has been limited to the Japanese Islands. Even in the Bonin Islands, roughly 1000
km from the Japanese Islands, the only Japanese tsunami that caused a significant runup height
(4.5 m) was that generated by the Tokaido wrthquake of 1854. In Hawaii damage from that
tsunami was categorized as "none".

Other subduction zones where destructive transoceanic tsunamis, whether major or giant,
have not been generated during the 190-year period from 1800 to 1990 are those in the southwest
Pacific area, the west coast of North America from Canada to Mexico, and the Ecuador-
Colombia section of the west coast of South America. But these regions have had very
destructive local tsunamis.

The temporal distribution of large tsunamigenic earthquakes has an odd, but s1gmﬁcant
pattern. Large earthquakes with moment magnitudes greater than 9 and generating giant

~ tsunamis clustered in time during the 41-year period from 1837 to 1877 and during the 19-year

period from 1946 to 1964. During the 68-year period from 1878 to 1945, there has been no
giant tsunami. And since 1964 there has been no tsunanugemc wrthquake w1th M,, greater than
or equal to 9.

. There is another odd pattern. During the nineteenth century and well into the twentieth
century, although there were many destructive local tsunamis, there has been no maJor or giant
tsunami originating in the Aleutian and Alaskan subduction zones, whereas in the twentieth

* century 3 of the § giant tsunamis have originated in these zones. As the Alaska-Aleutian Region

contains recognizable subduction zones [40], the giant tsunami dlstnbutlon may indicate a time
dependent energy release pattern, which is a challengmg problem to pursue [41], [42].

Are Aftershock Areas Equivalent to Rupture Areas?

Another matter that should be considered is the inconsistency in some cases between the
aftershock area and the earthquake rupture area as determined by seismic waves and by retracing
tsunami wavefronts. The salient case is the earthquake and tsunami of 1946 in the Aleutians,
where the aftershock area was only 160 km by 120 km [11], while retracing tsunami wavefronts
gave a tsunami source area of 570 km by 260 km. The other prominent case is the earthquake
and tsunami of May 7, 1986 near Andreanof Islands, where the aftershock area was 260 km by
160 km [39], while seismic body wave and Rayleigh wave analyses gave a rupture length in the



range of 100 km. There is also a discrepancy between the aftershock area of the November 4,
1952 (1030 km x 240 km, [43]) and the rupture length as determined by Rayleigh waves ( 700
km, [44]). It has been taken for granted among seismologists that aftershock area outlines the
fault rupture dimensions of an earthquake. Examination of data for tsunamigenic earthquakes
have uncovered a few cases where the differences in the lengths of the long axis of the aftershock
area and the rupture length are significant and not within the limits of error. The case of the
earthquake and tsunami of 1946 may be explained on the grounds that the earthquake recording
system in 1946 was inadequate for the purpose of aftershock area determination. Another source
of difference may be the judgment of seismologists in deciding which earthquakes are aftershocks
and which are earthquakes from a neighboring tectonic process. But as there were cases of
discrepancy, the assumption of equating aftershock area with rupture area should be questioned
and the problem thoroughly investigated.

CONCLUSIONS

The present study concludes that from the earthquake source parameters of moment
magnitude and rupture area, we can distinguish among giant tsunamis, major tsunamis, and local
tsunamis. The critical numbers are moment magnitude 9 and rupture length of 500 km, which
are the thresholds for giant tsunamis. The other numbers are moment magnitude 8 and rupture
length of 200 km, which define the threshold for major tsunamis. Lesser values are appropriate
to locally destructive tsunamis or non-destructive tsunamis.

IMPLICATIONS FOR TSUNAMI WARNING AND ALERT

Rather obviously response plans to tsunamis should be tailored to the size of the tsunamis,
Response plans based on worst case scenarios are appropriate for giant tsunamis, but such plans
would be an overreaction for major tsunamis, wherein damage would be limited to selected
places.

This study has shown that classes of tsunamis are correlatable to moment magnitude and
tsunami source area. If these parameters can be determined within the time constraint of a
tsunami alert, then decisions can be made on response plans. Can these parameters be
determined within the allotted time?

At the present state of science and art, it takes a much longer time than available during
a tsunami alert to determine M, and hence M,. In place of M,,, however, its equivalent called
mantle magnitude as proposed by Talandier and Reymond [45] should be determined and used.
Some seismic observatories may not be equipped even to determine mantle magnitude. In that
case, as the Polynesian Geophysical Laboratory at Papeete, Tahiti, routinely determines mantle
magnitude for large earthquakes, a quick long distance call to the laboratory will provide the
needed information.

As for tsunami source area or the earthquake rupture area, the P wave inversion method
(Fig. 4) can perform the task. As travel time of P waves even to stations at distance of 105
degrees (11,500 km) is about 15 minutes and as the P wave inversion method can be done in
about 20 minutes, the earthquake rupture area is determinable within the time constraint,
provided that personnel and facilities for such determinations have been set up.
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The next question is: Who should be responsible for the source area determinations? The
Pacific Tsunami Warning Center or the various regional emergency management agencies?
Ideally the Center and the agencies should do the task so that there can be second opinion and
cross checks. The main burden, however, rests with the regional emergency management
agencies. The Center has responsibility to the Pacific-wide community and is an operational
agency. Before a real-time source area determination system becomes operational, much research
is necessary. The regional emergency management agencies can readily tar the resources of
nearby seismological research organizations if the agencies can provide funds. Hence the

‘regional emergency management agencies are the more appropriate locus for the source

parameter determinations.

In this present day when real-time seismograph data are available from distant stations,
carrying out the task is not insurmountable. Cooperating seismologists should be provided with
telecommunications gear and computers so that the task can be done. The budget needed for the
hardware is very affordable.

In any inversion method, a rough preliminary solution is assumed and entered as part of

‘the input. The inversion method then refines the solution to obtain the best fit to the data. Prior

research should be carried out to have a catalog of rough preliminary solutions for future
earthquakes that may occur along the subduction zones with potential for tsunami generation.
If preliminary solutions are available, inversion can proceed rapidly and be done within the time
constraint.

Once the rupture area has been calculated from seismic data, the emergency management
agency should call on its file of pre-calculated tsunami propagation charts and runup charts and
plan for response measures at the critical places. Should the Pacific Warning Center issue a
warning, then the emergency management agency is ready to swing into action.

The pre-calculated tsunami propagation charts and runup charts can be produced at rather
affordable rates. Today seismological research has so progressed that the seismic gaps and
potential tsunami producing seismic areas in the Aleutian Islands, Alaska, Kurile Islands, Japan,
and Kamchatka regions can be identified [40]. From this information, expected tsunami
wavefronts from seismic gaps and potential tsunami generators can be calculated. The calculated
propagation charts can be stored on file to be tapped whenever a potential tsunamigenic
earthquake has occurred in the North Pacific subduction zones.
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Year

1837

1841

1854

1868

1869
1877

1906

1923

1933

1946

1952

1967

Mo-Day .

Nov 7

May 17

Dec 23

Aug 13

Jul 24
May 10

June 16

Aug 17

Feb 3

Mar 2

Apr 1

Nov 4

Mar 4

Source
Location

Valdivia,
Chile

Kamchatka
Tokaido,

Japan
Arica, Chile

So. Pacific ?
Iquique, Chile

Sanriku,
Japan

Central Chile
Kamchatka
Sanriku,

Japan

East
Aleutlans

Kemchatka

Adak,
Aleutians

TABLE 1.
DESTRUCTIVE TRANSOCEANIC TSUNAMIS

Affacted
Areas

Hawail
Mangareva
Samoa
Japan

Hawali
Japan

Bonin
Islands

Hawaii
Japan
New Zealand

Hawaii

Hawali
Japan
New Zealand

Hawall
Bonin
US West Coest

Hawaii
San Pedro, Cal.

Hawaii
Japan

Hawaii

Hawali

US West Coast

Japan
Marquesas

Hawaii

Japan
Aleutians

US West Coast
Hawaii

US West Coast
Japan

Tsunami
Heights
(meters)

25106
3
0.6
1t0 2

1to 4
Tto 2

4.5

2to 45
2t0 3
304

46 to b.b

3to4.8
2t 3
T1to 2

3t05.5
1
1.5

1.5t0 3.6
1.8

3.7t0 6.1

05t 1.8
3133

10to 16

2t03
0.6to 1
9t 10

0.8 10 9.1
2t0 3
1.5
1t0 1.4

10 to 16
1.5
0.5t01

Damage in
Hawaii (1)

" Severe

Small
None

Severe

Moderate

Seve_re
None

Small
Sm_al_l
Small

Severe
Savere -

Seve_re

Tsunami
Mag.
m

3

35

Size

Giant

‘Major

Major

Gilant

Major

: "Gl'ant

Major

Major

- .Major

Major

Glant

. Giant

Giant



1960 Mar 22 Chlle Hawali 5to 10 Severs 4.5 Glant
. Japan 3to4
US West Coast 1t0 1.7
Samoa 1t024
1964  Mar 28 Alaska Hawall 3.6104.6 Severe 4.5 Giant
US West Coast 3.5to4.5
Japan 1t01.5
{1) Classification for tsunamis up to 1946 found In (7}, after 1946 was done by present author.
Data were assembled from [2], [3), (4], 5], (6], (7], [8] and [9].
TABLE 2.
SOURCE PARAMETERS OF DESTRUCTIVE TRANSOCEANIC TSUNAMIS
Year Mo-Deay Location Depth Tsunami Ms Mw M Source Area Ref.
(km) Size 9] {km x km)
1837 Nov 7 Chile Glant 8.6 9.3
1841 May 17 Kam- 30 Major 8.4 9
chatka
1854 Dec 23 Japan Major 8.4 8.3
1868 Aug 13 Chile Giant 8.5 9
1869 Jul 2 S. Pac? Major
1877 May 10 Chile Giant 8.5 9
1896 Jun 15 Japan Shallow Major 7.6 8.6 430x120,(T) [46)
1906 Aug 17 Chile Shallow Major 8.4 8.2 84 360x120, (A) [46]
1923 Feb 3 Kam- 40 Major 8.3 83 88 240x120,(T [48]
chatka
1933 Mar 2 Japen 0-20  Major 84 84 83 B530x165 (T  [46]
19486 Apr 1 " Aleutians  Shallow Giant 7.4 9.3 180 x 100, {A) [11]
400 x 140, (T) [12]
| ‘ 670 x 260, (T) .
1962 Nov 4 Kam- 30 - 60 Giant 8.3 9 9 1030 x 240, (A) [43]
chatka 675 x 240, (A) (491
700x?, (S) [44]
19567 Mar 9 Aleutian Normal Glant 8.1 91 9 1220 x 145, (A) (39]
1960 Mar 22 Chile Normal Glant 86 956 94 950x 240, (A) (501
1200x ?, (8) 511
_ 1300x ?, (S) [52]
1964 Mar 28 Alaska a3 Giant 84 9.2 9.1 500x 100, (A) [53]
800 x 150, (S) [54]
800 x 150, (T} [55]

Data In Depth column were complled from [2]. Keys to Source Area column. A = aftershock data:
S = Inversion of seismic wave data; T = retracing tsunaml data. In Reference column, * = this paper.
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TABLE 3.

ARRIVAL TIMES AND TRAVEL TIMES OF THE TSUNAM! OF APRIL 1, 1946
Origin time of earthquake was 1946 April 1, 12h 29m, G. C. T.

TIDE STATION ARRIVAL TIME TRAVEL TIME
Sitka April 1, 15h 05 m 2h36m
Yakutat April 1, 15h 08 m 2h39m
Crescent City April1, 17h 16 m 4h47 m
La Jolla Aprii1, 18h 44 m 6h15m
Valparaiso April2, 06 h 38 m 18h09m
TABLE 4.
SOURCE PARAMETERS OF EARTHQUAKES
GENERATING LOCAL TSUNAMIS
Year Date Location Depth Ms Mw Rupture Refer-
(km) Dimensions ences
{km x km)

1974 Sep 27 Kuriles 45 7.6
1975 Jul 20 Papua N-G 49 7.6 7.9
1975 Oct 31 Philippines 50 7.6
1975 Nov29  Hawaii 7 7.2 7.5  60x40 [56]

(58]
1976 Jan 14 Kermadec a3 7.9 8.2 240 x 180 [48]
1976 Aug 14 Mindanao 8.0 8.15 160 x 80 [65, 591
1977 Apr 2 Samoa 33 7.6 7.3
1977 Apr 21 Solomons 33 7.2 7.4
1977 Jun22  Tonga 65 7.2 8.1 190 x 105 .
1977 Aug 19 Sumbawa 3 8.0 8.4 160 x 80 [60]
1978 Jun 12 Japan 40 7.5 7.7
1978 Nov 29 Mexico 49 7.8 7.8
1979 Sep 12 West Irian 33 7.9 7.6
1979 Nov 16 Fiji 33 6.9 6.8
1979 Dec 12 Colombia 32 7.9 8.1 235 x 135 (58, 61]
1980 Jul 17 Solomon 30 7.9 7.8
1981 Sep 1 Samoa 20 7.7 7.5
1982 Mar 21 Japan 40 71 6.9
1982 Dec 19 Tonga 7.7 7.5



1983
1883
1983
1984
1985

1985
1985
1986
1986
1986
1987
1987
1987
1987
1987
1987
1987
1987
1988
1988
1988
1989
1989
1989

Mar 18

May 26

Oct 4
Aug 7
Mar 3

Jul 3
Sep 19
May 7
May 17
Oct 20
Mar 5
Jul 6
Oct5
Oct 12
Oct 16
Nov 17
Nov 26
Nov 30
Mar 6
Jul B
Aug 10
May 23
Jun 26
Oct 18

Papua N-G
Japan
Chile
Japan
Chile

Papua N-G
Michoacan
Andreanof
Andreanof
Kermadec
Chile
Vanuatu
Tonga
Solomons
Papua N-G
Alaska
Indonesia
Alaska
Alaska
Papua N-G
Solomon
Macquarie
Hawaii

Loma Prieta,
U.s.

* Results of this paper.

88
14
31
33
<33

37
16
19
<33
29
<33
<33
16
<33
<33

<33
10
10
63
38
109
9
19

7.8
7.8
7.3
7.1
7.8

7.2
8.1
7.7
6.6
8.2
7.3
6.6
7.3
6.9
75
7.0
6.5
7.6
7.6
6.8
7.4
8.2
6.1
7.1

7.7
7.9
7.4
6.9
7.9

7.2
8.0
8.0
6.5
7.5
7.6
6.6
7.3
7.0
7.1
7.2
6.5
7.8
7.3
6.8
7.2
8.2
6.5
6.9

130 x 45

280 x 140
90 x 10

90 x 90
120 x 100

170 x 80

250 x 150
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ting;s of the Aleutian tsunami of April 1, 1946. Records were originally published by Bodle
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Figure 2. Retracing waves to origin for the
Aleutian tsunami of April 1, 1946. MI is Figure 3. Aftershock area of the Tonga
the wave retraced from Miyuko, Japan earthquake of June 22, 1977. Solid circles
(Hatori, 1981); AY from Ayukawa, Japan are earthquakes; the dashed line encloses the
(Hatori, 1981); LJ from La Jolla; CC from aftershock area.

Crescent City; SIT from Sitka; YAK from
Yakutat; and VAL from Valparaiso. The
solid line ellipse outlines the tsunami source;
the hatchured ellipse, the aftershock area.
The triangle is the epicenter of the
generating earthquake.
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ANALYTICAL THEORY FOR TSUNAMI RUN UP
ON A SMOOTH SLOPE

V. M. Kaistrenko, R. Kh. Mazova,
E. N. Pelinovsky, and K. V. Simonov

Institute of Applied Physics, Academy of Sciences of the USSR
Gorky, USSR

The description of the tsunami run-up is of greatest importance for tsunami
zonation and evaluation of tsunami hazard for hydrotechnical and coastal
constructions. The difficulties arising here are evident: the complexity of coastal
zone morphology and the variety of underlying surfaces changing due to their
interaction with the water flows caused by tsunamis, the possibility of wave breaking,
stream turbulization, and competition of nonlinear and dispersion effects. In this
context the analytical theories for tsunami run-up acquire greater importance since
they provide a means to show the effect of different factors, to obtain the run-up
determining parameters, and to test the numerical algorithms for solving the equations
involved. In this paper the analysis of non-breaking long waves run-up on an
impermeable smooth slope is given. This situation is typical for tsunami waves
initiated by underwater earthquakes with their lengths far exceeding the depth of a
basin and the probability of breaking no higher than 0.5 [1,2] (at least up to the run-
up height of 10 m). The obtained solutions were applied to improve the existing
tsunami zonation map of the USSR Pacific coast.

As initial equations when no wave breaking takes place and dissipation is
neglected, we take the nonlinear shallow water equations:

on ,, 54,0 g,
o odx Ox

a9 (1)
Py +5;[(h+11)"]=°

Here n is water elevation U is depth averaged wave stream velocity, g is acceleration
due to gravity, and h(x) is the variable depth of the basin. It is assumed that h/x) =
-ax with X axis directed to the shoreline and a = const. First we obtain the similarity
criteria for set (1) from [3,4]:

u=te, 2

where H and w are typical wave height and wave frequency, respectively. In those
variables set (1) has the following form (further the tildes are omitted):
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which contains only one dimensionless parameter,

Br = Ho?ga? 4)

Of course, the existence of only one similarity parameter is due to the neglect of some
factors (dissipation, dispersion and others). This neglect under certain conditions can
be employed when analyzing tsunamis. From that fact the similarity criterion for
tsunami modelling in a hydraulic chute can be derived, the vertical and horizontal
scale can be changed independently as long as the correlation between them fits
conditions (4) (identical scale changing is not achieved due to large lengths of tsunami
waves). It should be also stressed that the parameter Br is not related to the
nonlinearity of system (3). It shows certain relationship between the solutions of
linear and nonlinear problems which will be discussed further. Note also that the
parameter Br appeared when particular solutions of set (3) [3] or experimental data
[6,7]1 were analyzed. In this paper it is obtained from dimensional analysis. This fact
confirms the fundamental importance of the parameter. Further it will be shown that
this parameter determines the character of the tsunami run-up: quiet flooding on the
shore or run-up of a broken wave.

In solving set (3) the transformation first introduced by Carrier and Greenspan
[8] proves to be effective:

v-12%
Br o do
n - 1[@ _ 3(@)1
x=1@_1_£(24_>)]
Br{ oA 4 o2\ 00
t=2-29%
o do

Fo_ P12 6)

Note that the new variation o is proportional to the absolute basin depth,
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so that Eq. (6) is solved on the fixed semiaxis 0 < o < o (with 0 = 0 corresponding
to a8 moving run-up boundary) unlike the varying region for (3).
Along with the nonlinear shallow-water equations consider the linear set

o , 1 on

* Brax (8)
ﬂ-}i(—xu):O

a

If in the analysis of set (8) the linear variant of Carrier-Greenspan transformations [9]
is used then

g2 %

. o2Br do,

L1 @
Bra}.o

x = -ciABr, t = Ag

Set (8) also reduces to the linear wave equation:

Po T _ 13 o (10)

where g, = O corresponds to the shoreline. The comparison of linear and nonlinear
problems appears to be useful for the tsunami run-up calculation as it will be shown
below.

Consider the particular solution of Eq. (6) in the form,

&(0,1) = AJ,(c)cosAr (11)

where Jo is the Bessel function with zero index, A is an arbltrary constant and in
analogy the solution of Eq. (10):

$o(0gihe) = Aglo(oy) COSA, . (12)

Assuming that a tsunami wave runs from a remote source (o0 -+ =) where it is linear
we can say that the asymptotic forms (11) and (12) coincide and represent the
superposition of two waves propagatlng in opposite directions:

NG = ——A—Jein(o2/BTR] - ) + sina - 2B - 21 13
28r/x |x[Br 4 4

Here the argument of the function A+2/Brlx]is the "classical™ argument
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t + | [ghfx)]'?dx and the wave amplitude changmg according to Green’s. Iaw as:
|| - " is equal to _ .

Hole) = Al2Br/ VTRIER). o '.'-2-~“'4>”

It aIIows the determmatlon of constant A through the |n|t|al ‘wave: helght at the
distance | x| from the shoreline. :
Solutions (11) and (12) are obtained through tsunami parameters in the open -_
ocean and they permit estimation of wave field in all cases including wave climbing
on the shore. In contrast to the solution of linear problem (12) the solution to the
nonlinear one is not explicit and wave shape analysis is difficult. Consider the tsunami
run-up characteristics which are of primary practical importance. Using function (11).
for . transformation (5) with o0 = 0 we find the water. boundary moving in the-
parametric form: : c

=
[}

-A,. | A
Er—(sm). + Eeoszx) . (15)
A + Acos).

-
]

It is easy to determine _.frdm this expressioh the maximum range of the horizontal run-
up L. = X, OF the height of the vertical run-up measured from the sea level: -

R=ABr ey

S'Ubstituting A from Eq. (14) we find relative strengtﬁening:

cEYEE. . an

Hy(x)

Taking into account the importance of this formula we transform it usnng dimensional

variables,
RIH -=2ulﬂ N (18) -

Where L, is the distance from the shoreline to the isobath A at wﬁich.the initial -wave
amplitude was found, and 4 = 2xyghlw is the wave length at the same place. It
should be stressed that Eq. (18) is accurate within-the nonlinear theory. Therefore the
relative tsunami run-up height does not depend on the initial height and is determined

by the correlation between the slope width and the wave Iength “Within the' linear _
theory Eqs {9) and (12) give the water level oscillations on the’ shorelme '

(o, t) =Rsint. R S (19) |

where R is determined by Egs. -(16)-(18). Thus the maximum wave height on the
shoreline in the linear theory coincides with the maximum vertical run-up height within-
the nonlinear theory. Thereby:a "linear” method for estimating the run-up maximum -



by the wave height on the shoreline can be suggested. This method has been used
heuristically by many scientists [10,11,12]. The given comparison was introduced
in [9] and actually verifies this approach. '

The obtained results are true only with the uniqueness of the Carrier-Greenspan
transformation, i.e., if the Jacobian 3(x,t)/d(o,A) does not converge to zero. If this
condition is valid, the solution is everywhere smooth and this fact corresponds to
tsunami non-breaking when the run-up is but a flooding on a beach. The
mathematical condition of uniqueness has the form [8] A = 7 or with regard to (16)
R Br < 1. We have not yet defined the characteristic height A to which the initial
parameters are normalized. It is natural to choose for this characteristic height either
the initial amplitude H, or the run-up height A and it is most convenient to choose R
for the height scale taking into account dependence of H, on the distance to the
shoreline. Then the dimensionless run-up height R is equal to unity and the condition
A < 71 comes to the expression, '

o |
Br - R—"’z <1 (20)
ga '

(see Refs. [3,4,5,6,7]). Therefore the fundamental role of the run-up height
determining the character of the process is clear. When the opposite condition (Br <
7) is met within the nonlinear shallow-water theory, "the gradient catastrophe” must
occur and the front slope of the wave must break. In practice the actual behavior of
the wave with Br > 7 depends on the correlation between nonlinearity, dispersion and
dissipation and is not necessarily followed by breaking. Nevertheless for brevity sake
we call the condition Br = 7 the condition of breaking.

For every sloping beach characterized by the tangent a of the slope angle, the
critical run-up height is obtained. If the run-up height is more than critical, then
breaking must take place. This value depends on the wave period T = 2x/w:

2 .
_ ga
R, = fﬁﬂ | (21)

Thus for typical values a = 1/50 and 7 = 70 min R,, equals to 10 min. It proves that
tsunami non-breaking is quite common. ' (This conclusion is confirmed further for
predictable tsunami waves in the Far East of the USSR.) Within the linear theory the
solution can be extended to the dry zone case. With total depth reduced to zero a
criterion of the smooth solution of Eq. (8) can be obtained in the form Br < 0.65.
This criterion results from the formula given in [13] and differs by 30% from condition
(20). It shows once more that using the linear approach when analyzing the tsunami
run-up is possible. : :

The observational data attest that if after tsunami a group of waves comes to

the shore the maximal of them are the second 1o fifth [14,15]. There are also data
and predictions attesting that in the open ocean tsunami waves also propagate in
groups [16,17,18,19]. It proves the possibility of using partial quasi-monochromatic
solutions for analysis and prediction of tsunami elements in the coastal zone. In
practice the knowledge of tsunami dynamic characteristics (level shifting, flow
velocity) in the sea and on the beach is necessary for the estimation of tsunami hazard
for hydrotechnical and coastal constructions. It is easier to take the wave parameters
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for the beach than for the open sea since the open sea data are extremely scanty if
any. These parameters can be obtained from the analysis of the tsunami behavior on
the beach described in catalogues [14,15]. This kind of an approach to calculating
tsunami elements was set forth in [20]. If the run-up height and tsunami flooding
duration or the tsunami period are known we can transforms solutions (5) and (11)
with regard to (20): ' '

n = -Jyolsint - ZZo)c0s?,
ag
u = ——2-11(0)0031.
° 2 (22)
x = Jfa)sin - 2B R(o)c0s? -
o .

4Br'

= A+ —Z%J',(o)cos).

-
I

where J,(o) is the Bessel function. These solutions are given in the closed form. But
their immediate application is difficult because of their implication. There are
numerical solutions for the periodic tsunami transformation process on a sloping
beach. In the analytic form it is possible to obtain the extrema of the time functions
n and u. These functions define the maxima of up and down level shifts and run-up
and run-down velocities. The details of the calculations [21] are omitted and the level
shifting extrema formula is given in the parametric form,

o2

New = £o(0)) X = Mgy - i (23)

In Fig. 1 the calculation results for Eq.(23) are given. With rather small values of 8r
in the region x > -1/2Br. Eq. (23) gives simple asymptotic formulae:

" 1+Brx

rlmax— ’
1+Br - 24
Mou = 1+Brx° ’ (24)
mn 4 +Br

Thus for non-breaking waves the run-up height is equal to the run-down depth. From

X, = -6%/4Br, (25)

(where 0. = 2.45 is the first zero of the function J,(0)) run-up levels decrease

monotonically. The value x. can be identified with the width of the coastal zone
where the tsunami danger is considerable. This characteristic is very important and
formula (25) is given in the dimensional form,
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h‘ _ g, (26)

R 4Br

Here A. is the maximum basin depth down to which taking into account the tsunamn
effect is necessary.

Similar formulae can be obtained for the extreme of the flow velocity (Fig. 2)
[21]. The absolute maximum of velocity is reached on the moving shoreline:

=1 with x = -Br/2. (27)

or in the dimensional variables
u=0wRlc. (28)

(The same result can be easily obtained within the linear theory [13]). The maximum
of velocity proves to be 5 m/sec with R = 70 m and the period of 20 min on the
slope with @ = 1/100. It is reached at the depth of 1.25 m. Note that the maxima
of run-up and run-down velocities coincide. In this paper only two formulae for the
maximal values of the flow velocity [21] on the dry shore are given (the exact
formula):

=2 (1 +27 x) (29)

In the sea -Br € x < - Br/2 with rather small Br,

u=¢J—2— 1+2]7+1 2x 2 . (30)
Br\ Br Br Br pr2

These formulae give the complete description of changing of periodic waves

parameters on a plane slope. In practice a tsunami wave represents a finite wave

train. If the length of a wave train is limited it results naturally in "blurring™ of the
wave field nodes and field antinode lessening. The exact solutions can be formally
obtained by superposition of the particular solutions similar to (11),

¢(o,2) = fA(Q) Jo(Qa) cos[QA - y(Q)ldQ (31)

If the wave source is rather distant from the shore the constants A and g are
determined through the Fourier spectrum of the incident wave. Some particular
solutions.are formed this way in [8, 22, 23, 24]. The calculations are so complicated
that they prompted the authors of review [12] to say that the basic contribution in [8]
is the demonstration that in the non-linear long-wave approximation there are
elevation waves propagating without breaking on a permanent sloping beach, rather
than the run-up calculation. Nevertheless a simple calculation procedure to obtain the
maximum run-up can be suggested. The water boundary motion is found in account
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with transformations (5):

1 1 | (32)
x = o [a A() sin(ax - v)da - E[f QZA(Q) cos(QA - y)daP)

The maximum run-up is determined by the maximum of only the first component (the
second component is ¢ and in the maximum u = 0). thus

o - 41 exr [ Q A(@) sin(@2 - ¥), (33)

Within the linear theory Eq. (33) describes the maximum of the wave height on the
shoreline [9,13]. Therefore the "linear"” approach to finding the maximum levels of
water elevation on the shore for the arbitrary form of the tsunami wave is verified.
Of interest is to compare the specific run-up height value for different forms of
tsunami waves. Similar to Eq. (18) the formula for the vertical run-up can be given
in dimensional variables:

R_|L

Hy \ A (34
m=2/x. emff c(Q)expli(QAr- 6+—)]d0

where { is the dimensionless amplitude spectrum and & is the phase spéctrum of the
incident tsunami wave with the height H, and length A at the distance L, from the

shoreline. For the monochromatic wave m=2xy2=8.9. Different types of pulse
perturbation run-up are considered in [13]. In this paper we give only one solution
corresponding to the single perturbation wave run-up:

. H - o
) = —2— (35)
Nxea ) 1"’(2‘11)2 .

I n this case calculation (3 4) leads to

m, = ny/2(cos—~)R=4.4, m_= -n/2 (cos )5"2 = -0.23.
10 Here m, corresponds to
the run-up and m. to the run-down of the tsun_aml wave. (Compare the values of m
for the elevation wave of the sine pulse type m, = 3.9 and m. = -1.4 [13]}). Thus
the motion of a single elevation wave leads not only to tsunami run-up but also to the
following run-down with the run-down depth about 30% of the run-up height. It
should be also stressed that run-up value depends on the shape of the wave and this
must be taken into consideration when analyzing laboratory experiments data. At the
same time it is possible to use m, = 5 for rough tsunami zonation calculations
[13,25]. '
These formulae give the complete description of the tsunami run-up on the
sloping beach. In case the beach has complex configuration the solutions of he
nonlinear problem in the explicit form are not obtained. Nevertheless the given



verification of the linear theory for the run-up of tsunami waves with rather distant
sources makes it possible also to investigate the tsunami run-up in these cases since
the linear problem is solved for many laws of depth changing [12,26,27]. Therefore
we can considerably expand the framework of the theory for the non-breaking tsunami
run-up on the beach. Only one solution (in dimensional variables) is given here. It
corresponds to the monochromatic wave run-up on the beach conjugate with an even
bottom at the distance L, from the shoreline [13,26]:

R _ 2
Ho [R@nLnysi@nL )

(36)

This solution can be easily approximated by simple dependencies:

R | 2 L0051, - (37)
H, Pn/2LJ%, L,>0.051.

Fig. 3 shows the relative heights of the run-up, obtained from these formulae. The
first line is for (36) and the second one is for (37). The linear approach is verified for
rather distant sources only, i.e., with great L,/A and this fact should be taken into
account. Otherwise the linear theory can lead to miscalculations of the run-up height:
the exact solution of the nonlinear problem with L, = O (the vertical wall) gives run-
up values greater than in the linear case:

__R_= 1+ﬂ= ——H—o.-
H kN h

In conclusion we can give the 100 years prediction for the tsunami dynamic
characteristics on the Kurils shore: the maximum stream velocity, breaking parameter,
maximum level elevation on the shoreline and critical run-up height corresponding to
wave breaking [3,28]. They were calculated by the period and run-up height [29,30].
We made use of formulae (20), (21, (23), (28). These data are tabulated. It is
evident from the table that practically all Br < 7 are smaller than unity. Therefore in
these regions one can expect quiet flooding on the beach and other tsunami effects
in predicted characteristics. Near Severo-Kurilsk Br > 1 is greater than unity; hence
tsunami waves are likely to break here. This situation was observed on 4-5 November
1952 when waves with abrupt front ran up on Severo-Kurilsk. Methods of calculating
tsunami effects with Br > 1 greater than unit need further verifying and this case is
not tabulated. - The data on the characteristics of the tsunami waves far from the
shore also are not given since for the analysis of tsunami behavior in gulfs and bays
it is necessary:to take into account the resonance effects caused by two-
dimensionality of the problem. But tsunami behavior on the dry shore is described by
the one-dimensional theory and the given data are more reliable. The large-scale
tsunami zonation with regard to the two-dimensional effects is already under way.
The practical experience of the Yuzhno-Kurilsky Bay tsunami zonation accompllshed
near Yuzhno-Kurlisk is described in [3].

(38)
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PREDICTION OF THE TSUNAMI DYNAMIC CHARACTERISTICS
ON THE KURILS ZONE SHORES

Point

Slope of
the
Bottom

Period
min

Run-up
m

Critical

Run-Up

Height
m

Height on
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Shoreline,
m

Flow
Velocity
m/sec

Br

Isl.
Paramushir
(Severo-
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0.33*10°
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9

2.0
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9.9
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2.2

0.0
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Cape)

N
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26

8.2

7.5

2.6

0.1
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(Van-der-
Lind Cape)
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20

6.8
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15.3

3.5

0.1

Isi. Iturup
(Kasatka
Bay)
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1.9

0.0

Isl. Kunashir
{(Yuzhno-
Kurilsk)

Nea

25*10

20

6.8

56

6.2

2.9

0.1

Isl. Shikotan
(Malo-
kurilskaya
Bay)

[JV Y

.25*10°

20

6.8

56

6.2

2.9

0.1
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| Figure 1. Extrema values of surface elevation as functinn of distance from shoreline
(Equation 23).
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Figure 2. Maximum flow velocities as a function of distance from shoreline.
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Figure 3. Run-up as a function of distance from shoreline. Line 1 is from equation 36;
line 2 is from equation 37.

127



128

APPLICATION FOR MEMBERSHIP
THE TSUNAMI SOCIETY

P.O. Box 8523
Honoluluy, Hawaii 96815, USA

I desire admission into the Tsunami Society as: (Check appropriate box.)

3 Student 0 Member O Institutional Member
Name Signature
Address Phone No.
Zip Code Country
Employed by ‘
Address

Title of your position

FEE: Student $5.00 Member $25.00 Institution $100.00
Fee includes a subscription to the society journal: SCIENCE OF TSUNAMI HAZARDS.

Send dues for one year with application. Membership shall date from 1 January of the year
in which the applicant joins. Membership of an applicant applying on or after October 1 will
begin with 1 January of the succeeding calendar year and his first dues payment will be
applied to that year. ’




	AN INVESTIGATION OF TWO TSUNAMIS RECORDED AT ADAK, ALASKA
	MODELING HILO, HAWAII TSUNAMI INUNDATION
	SOURCE PARAMETERS OF DESTRUCTIVE TSUNAMIS
	ANALYTICAL THEORY FOR TSUNAMI RUN UP ON A SMOOTH SLOPE

