Energy Price Change; Impact on Selection of Conservation Systems

December 1, 2005 Mike Duffy

Iowa Learning Farm

- The Iowa Learning Farm strives for the development of practical solutions of production and environmental challenges through the adoption of conservation systems and exchange of ideas between framers, practitioners, and scientists.
- The primary goal of this project is the improvement of state water quality through the increased adoption of conservation systems.

Approach

- Establish a regional tillage concept based on soil formation.
- Establish 5 to 10 on-farm demonstrations in each region.
- Agronomic and economic evaluation for each site and region.
- Regional evaluation for communities role in promoting conservation systems.
- Conduct an extensive regional / statewide education and outreach program.

Outline

- General comments/observations
- Iowa farm energy use and cost impacts
- Energy use by crop rotation
- Conclusions

General Calculations

- Approximately 139,000 British Thermal Units (BtU's) in a gallon of diesel fuel
- A BtU is the amount of heat needed to increase the temperature of a pint of water one degree Fahrenheit

Common Units

- Gallons of diesel fuel equivalents
 - Pound of anhydrous .20
 - Pound of urea .25
 - Pound of P2O5 .05
 - Pound of K2O .04
 - Gallon of propane .65
 - Pesticides vary by formulation; approximation 1 pound a.i. 1.00

University Extension

U.S. Energy Use

 Agriculture is approximately 1 percent of total U.S. energy use. What we do as far as energy savings will help us but will not have an impact on price. The exception to this would be how much ethanol, biodiesel and other bioenergy use increases.

Total U.S. Energy Use

Percent of Total Energy Use in U.S. by Sector

Energy Consumption per Person per Year in U.S.

Thousand BtU's per Constant Dollar GDP

Midwest Diesel Prices

Iowa Energy Use and Input Cost Impacts

Percent Change in ISU Variable Cost Estimates by Crop and Yield Level with 75% Higher Fuel and 30% Higher Fertilizer

Percent Change in ISU Total Cost Estimates by Crop and Yield Level with 75% Higher Fuel and 30% Higher Fertilizer

Energy Use for Selected Categories by Crop

Energy Use for Machinery, Fertilizer, and Drying by Rotation

Corn Costs per Acre by Input Class Iowa Farm Business Association

Corn Drying and Storage Costs Iowa Farm Business Association

Soybean Costs per Acre by Input Class; Iowa Farm Business Association

Machinery Fuel, Lube, Repairs, and Hire by Crop; Iowa Farm Business Association

Total Farm Expenses in Iowa

Distribution of Iowa Farm Expenses by Major Categories

Percentage Distribution of Iowa Farm Expenses by Major Categories

Distribution of Intermediate Expenses by Category

Percentage Distribution of Intermediate Expenses by Major Categories

Distribution of Manufactured Input Expense

80% 70% 60% 50% 40% 30% 20% 10% 0% 2002 000 ¹60, ⁴80, ⁶80, ⁶80, ⁶80, ¹60, ¹0, ¹0, ¹0, ¹0, ¹0, ¹00, ¹00 ----- Electricity Pesticides → Fuel - Fertilizer

Percentage Distribution of Manufactured Input Costs

Fuel as a Percent of Total Expenses

Rotation Impacts

Assumptions for Rotation Data

- Yields from research plots at the North Central Research farm, Kanawha, IA
- Four N levels tested; 0, 80, 160, 240
- All N is applied in the form of urea
- Operations and input use are consistent with practices in the area
- Base prices; \$2.34 Corn, \$5.50 Soybeans, \$1.80 Oats, \$80 alfalfa, \$40 Straw

Highest N Use Return to Land Using Base Prices with \$.25 N

Highest N Use Return to Land Using Base Prices with \$.50 N

Highest N Use Return to Land Using Base Prices with \$.75 N

Highest N Use Return to Land with \$100 Alfalfa and \$.25 N

Energy Use by Rotation for N Use with Highest Return to Land

Energy Use in Crop Rotations

0.25 0.2 **Gallons of Diesel Fuel** 0.15 0.1 0.05 0 CC Spring сссо CS CSCO CCOM CC Fall COMM O lbs N 80 lbs N 160 lbs N 240 lbs N

Gallons of Diesel Fuel Used per \$1 of Gross Revenue

Final Thoughts

- U.S. agriculture has become fossil fuel energy intensive, especially for fertilizer
- The price for fossil fuel energy will be subject to supply and demand shocks; it will remain volatile but show an upward trend
- Farmers' options are limited in the short run with conservation being the key, in the longer run different equipment and possibly rotations may be more attractive options

So What Can be Done?

- Conservation of energy use was a very successful strategy in the 1970s
- Think about energy use and where there are ways to save it or alter the use
- Watch fertilizer levels
- Consider moisture content of varieties

So What Can be Done?

- Consider energy cost adjustments in leases
- Remember conservation of energy
- Follow sound farm management and marketing practices
- Remember Machinery

Field operation	Diesel, gal/ac
Subsoil	1.7
Field cultivate	0.7
Plant	0.6
Spray	0.2
Harvest	1.4

Maintenance schedule

- Follow manufacturer recommendations
- Filter and fluid changes
- Missouri study: 99 tractors
- After changing fuel and air filters:
 - Power increased by 3.5%
 - Fuel savings estimate of 100 gal over 500 h

Gear up/Throttle down

- Similar to over-the-road travel
- Lighter drawbar loads (<65% rated power)
- Strategy not suitable for PTO work
- Fuel savings can be significant
 - 5 15% at 75% power
 - 15 30% at 50% power
- Don't lug engine

Example:

300 hp 4WD tractor pulling subsoiler/ripper at 5 mi/h

100/lb/hp x 300 hp = 30,000 lb total tractor weight

%Front/%Rear

Hitch

Tractor type	Pull type	Semi-mounted	Vertical load
2WD	25/75	30/70	NR
FWD	35/65	35/65	40/60
4WD	55/45	55/45	65/35

Example:

300 hp 4WD tractor pulling subsoiler/ripper at 5 mi/h $100/lb/hp \ge 300 hp = 30,000 lb total tractor weight$ Front-axle weight = 0.55 x 30,000 lb = 16,500 lb

Rear-axle weight = $0.45 \times 30,000 = 13,500$ lb

University Extension

