Link to the Global Volcanism Program Home Page Volcano Photo National Museum of Natural History Home Page

Volcanic Activity Reports   »  SI / USGS Weekly Volcanic Activity Report   »  

SI / USGS Weekly Volcanic Activity Report

SI Logo USGS Logo

31 December-6 January 2009

This page is updated on Wednesdays, please see the GVP Home Page for news of the latest significant activity.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.

New Activity/Unrest

CLEVELAND Chuginadak Island 52.825°N, 169.944°W; summit elev. 1730 m

AVO reported that cloud cover prevented satellite observations of Cleveland during 31 December, and 1, 3, and 5 January. The brief explosive emission of ash was detected on 2 January. A resultant ash plume rose to an altitude of 6 km (20,000 ft) a.s.l. and drifted about 240 km ESE. A thermal anomaly over the summit was detected on 4 January. No current seismic information was available because Cleveland does not have a real-time seismic network. The Volcanic Alert Level remained at Advisory and the Aviation Color Code remained at Yellow.

Geologic Summary. Symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited dumbbell-shaped Chuginadak Island in the east-central Aleutians. The 1,730-m-high stratovolcano is the highest of the Islands of Four Mountains group and is one of the most active in the Aleutians. Numerous large lava flows descend its flanks. It is possible that some 18th to 19th century eruptions attributed to Carlisle (a volcano located across the Carlisle Pass Strait to the NW) should be ascribed to Cleveland. In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Map

Source: Alaska Volcano Observatory (AVO)

DEMPO Sumatra (Indonesia) 4.03°S, 103.13°E; summit elev. 3173 m

CVGHM reported that on 1 January, a phreatic eruption from Dempo resulted in a strong sulfur odor and "ash rain" that was noted as far as about 10 km from the summit. Fog prevented direct observations of the summit. The Alert Level was raised to 2 (on a scale from 1-4). Visitors and residents were advised not to go within a 2-km radius of the summit.

Geologic Summary. Dempo is a prominent 3173-m-high stratovolcano that rises above the Pasumah Plain of SE Sumatra. Remnants of 7 craters are found at or near the summit, with volcanism migrating to the WNW with time. The historically active summit crater of Gunung Dempo contains a 400-m-wide lake, located at the NW end of the crater complex. Historical eruptions have been restricted to small-to-moderate explosive activity that produced ashfall near the volcano.

Map

Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM)

KORYAKSKY Eastern Kamchatka 53.320°N, 158.688°E; summit elev. 3456 m

KVERT reported that during 26 December-7 January seismic activity at Koryaksky was at background levels. Observers reported that during 30-31 December gas-and-steam plumes possibly containing a small amount of ash drifted along the surface of the NW flank. During 6-7 January gas-and-steam plumes drifted SW. The Level of Concern Color Code was lowered to Yellow.

Geologic Summary. The large symmetrical Koryaksky stratovolcano is the most prominent landmark of the NW-trending Avachinskaya volcano group, which towers above Kamchatka's largest city, Petropavlovsk. Erosion has produced a ribbed surface on the eastern flanks of the 3456-m-high volcano; the youngest lava flows are found on the upper western flank and below SE-flank cinder cones. No strong explosive eruptions have been documented during the Holocene. Extensive Holocene lava fields on the western flank were primarily fed by summit vents; those on the SW flank originated from flank vents. Lahars associated with a period of lava effusion from south- and SW-flank fissure vents about 3900-3500 years ago reached Avacha Bay. Only a few moderate explosive eruptions have occurred during historical time. Koryaksky's first historical eruption, in 1895, also produced a lava flow.

Map

Source: Kamchatkan Volcanic Eruption Response Team (KVERT)

SHISHALDIN Fox Islands 54.756°N, 163.97°W; summit elev. 2857 m

AVO reported that significant thermal anomalies over Shishaldin's summit were detected in satellite imagery during 5-6 January. Seismic activity had also increased slightly. AVO raised the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory.

Geologic Summary. The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2,857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. Constructed atop an older glacially dissected volcano, Shishaldin is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. Shishaldin contains over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, sometimes producing lava flows, have been recorded since the 18th century.

Map

Source: Alaska Volcano Observatory (AVO)

SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m

MVO reported that during 26 December-2 January activity from Soufrière Hills lava dome was characterized by significantly increased lava extrusion, ash emissions, and pyroclastic flows. Lava extrusion on the top, N, W, and SW sides of the dome continued, and incandescence on the dome was visible at night when weather was favorable. Pyroclastic flows regularly reached the bottom of Tyers Ghaut (NW); surges associated with the larger flows spilled into the next valley to the W. Deposits filling Tyers Ghaut caused the flows to travel farther, into the upper part of the Belham River. Pyroclastic flows were also noted in valleys to the W. Ash emissions from the top of the lava dome increased; although most pyroclastic flows originated from rockfalls, some originated at the vent. Ashfall was reported in areas 6-7 km NW. Large incandescent blocks, deposited by rockfalls and pyroclastic flows, were visible on multiple occasions at night in the lower parts of Tyers Ghaut. Fires triggered by surges were visible in the neighboring valley. The Hazard Level remained at 4.

Based on analysis of satellite imagery and information from MVO, the Washington VAAC reported large eruptions on 3 January. Ash plumes drifted NE at an altitude of 7.6 km (25,000 ft) a.s.l., E at an altitude of 10.7 km (35,000 ft) a.s.l., S at an altitude of 6.1 km (20,000 ft) a.s.l., and W at an altitude of 2.4 km (8,000 ft) a.s.l. A thermal anomaly was detected. According to news articles, about 70 people were evacuated from Area B, about 6-8 km NW. The next day, steam-and-gas plumes possibly containing ash drifted W and WSW.

Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Map

Sources: Montserrat Volcano Observatory (MVO), Washington Volcanic Ash Advisory Center (VAAC), Antigua Sun

TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m

The IG reported that during 31 December-6 January ash plumes from Tungurahua rose to altitudes of 6-7 km (19,700-23,000 ft) a.s.l. and drifted SW, W, and NW. Ashfall was reported in areas downwind during 31 December-3 January; ashfall was heavy in Choglontus (W) on 2 January. Roaring, explosions, and "cannon shot" noises were reported almost daily, and large windows vibrated on 1, 3, and 4 January. During 2-4 January, incandescence at the summit was noted and blocks rolled up to 800 m down the flanks. Strombolian activity occurred at the summit on 4 January.

Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.

Map

Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)

Ongoing Activity

BAGANA Bougainville 6.140°S, 155.195°E; summit elev. 1750 m

Based on analysis of satellite imagery, the Darwin VAAC reported that on 31 December an ash plume from Bagana rose to an altitude of 2.4 km (8,000 ft) a.s.l.

Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. Bagana is a massive symmetrical lava cone largely constructed by an accumulation of viscous andesitic lava flows. The entire lava cone could have been constructed in about 300 years at its present rate of lava production. Eruptive activity at Bagana is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides.

Map

Source: Darwin Volcanic Ash Advisory Centre (VAAC)

BARREN ISLAND Andaman Is 12.278°N, 93.858°E; summit elev. 354 m

Based on analysis of satellite imagery, the Darwin VAAC reported that during 4-6 January ash plumes from Barren Island rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted SW and NW.

Geologic Summary. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of volcano that rises from a depth of about 2,250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the W, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. The morphology of a fresh pyroclastic cone that was constructed in the center of the caldera has varied during the course of historical eruptions. Lava flows fill much of the caldera floor and have reached the sea along the western coast during historical eruptions.

Map

Source: Darwin Volcanic Ash Advisory Centre (VAAC)

BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m

Based on analysis of satellite imagery, the Darwin VAAC reported that on 6 January an ash plume from Batu Tara rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted ENE.

Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow.

Map

Source: Darwin Volcanic Ash Advisory Centre (VAAC)

CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m

Based on analysis of satellite imagery, pilot observations, and web camera views, the Buenos Aires VAAC reported that during 31 December-2 January and 4-5 January ash plumes from Chaitén continuously rose to altitudes 1.8-2.4 km (6,000-8,000 ft) a.s.l. and drifted NW, N, NNE, and SE. Ash plumes were visible through the web camera on 3 January.

Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m-high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m.

Map

Source: Buenos Aires Volcanic Ash Advisory Center (VAAC)

COLIMA México 19.514°N, 103.62°W; summit elev. 3850 m

On 2 January, incandescent material from Colima was propelled 100 m above the summit and a gray plume rose to an altitude of 4.1 km (13,500 ft) a.s.l. During 3-5 January, gray and white plumes rose to altitudes of 4-4.2 km (13,100-13,800 ft) a.s.l. The plumes drifted N, NE, E, and SE.

Geologic Summary. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4,320 m high point of the complex) on the N and the historically active Volcán de Colima on the S. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the S, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Map

Source: Gobierno del Estado de Colima

DUKONO Halmahera 1.68°N, 127.88°E; summit elev. 1335 m

Based on analysis of satellite imagery, the Darwin VAAC reported that on 6 January an ash plume from Dukono rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted E.

Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the N-flank cone of Gunung Mamuya. Dukono is a complex volcano presenting a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of Dukono's summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Map

Source: Darwin Volcanic Ash Advisory Centre (VAAC)

FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m

Based on analysis of satellite imagery, the Washington VAAC reported that on 1 January two ash plumes from Fuego drifted N. INSIVUMEH reported that during 4-6 January multiple explosions produced ash plumes that rose to altitudes of 4.1-5.1 km (13,500-16,700 ft) a.s.l. and drifted 12 km W and SW. Ashfall was reported in areas downwind. Some explosions produced rumbling sounds and shock waves that were detected 10 km away. Constant avalanches of blocks descended the S and SW flanks.

Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua.

Map

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH), Washington Volcanic Ash Advisory Center (VAAC)

KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m

KVERT reported during 26 December-2 January seismic activity from Karymsky was not evaluated due to technical issues. Clouds prevented satellite observations of the volcano. The Level of Concern Color Code remained at Orange.

Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.

Map

Source: Kamchatkan Volcanic Eruption Response Team (KVERT)

KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m

HVO reported that during 31 December-6 January lava flowed SE through a tube system from underneath Kilauea's Thanksgiving Eve Breakout (TEB) and rootless shield complex, reaching the Waikupanaha ocean entry. Surface flows were noted on the coastal plain and incandescence was seen at the base of the pali. Explosions at the ocean entry were seen on 31 December and 5 January.

Earthquakes strong enough to be located were variously scattered beneath the caldera, along the SW rift zone, and along the S-flank fault. The vent in Halema'uma'u crater continued to produce a predominantly white plume that drifted mainly SW. Consistent with a decreasing trend of ash production since 15 December, the vent produced minimal amounts of fine tephra; essentially no tephra was collected during 5-6 January. Sounds resembling rockfalls were sometimes heard in the vicinity of the crater. The sulfur dioxide emission rate at the summit was 500 tonnes per day on 31 December and 2 January; the 2003-2007 average rate was 140 tonnes per day.

Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Map

Source: US Geological Survey Hawaiian Volcano Observatory (HVO)

KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m

KVERT reported that seismic activity at Kliuchevskoi was above background levels 26 December-2 January. Strombolian activity was noted on 25 and 27 December, and lava effusion on the NW flank continued. On 25 December gas-and-steam plumes containing ash rose to an altitude of 5.5 km (18,000 ft) a.s.l. Analysis of satellite imagery revealed a large daily thermal anomaly in the crater. Ash plumes drifted 250 km NE during 25-26 December. On 27 December ashfall was reported in Kozyrevsk village. The Tokyo VAAC reported that on 2 January ash plumes were continuously observed on satellite imagery.

Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters.

Map

Sources: Kamchatkan Volcanic Eruption Response Team (KVERT), Tokyo Volcanic Ash Advisory Center (VAAC)

RABAUL New Britain 4.271°S, 152.203°E; summit elev. 688 m

Based on analysis of satellite imagery and pilot observations, the Darwin VAAC reported that on 31 December, 1 January, and 3-5 January, ash plumes from Rabaul caldera's Tavurvur cone rose to an altitude 2.4 km (8,000 ft) a.s.l. and drifted W, NW, NNW, and SE.

Geologic Summary. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the E, where its floor is flooded by Blanche Bay.Two major Holocene caldera-forming eruptions at Rabaul took place as recently as 3,500 and 1,400 years ago. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Map

Source: Darwin Volcanic Ash Advisory Centre (VAAC)

SANGAY Ecuador 2.002°S, 78.341°W; summit elev. 5230 m

Based on a pilot observation, the Washington VAAC reported that on 5 January an ash plume from Sangay rose to an altitude of 7 km (23,000 ft) a.s.l. and drifted S. Ash was not identified on satellite imagery.

Geologic Summary. The isolated Sangay volcano, located E of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. It has been in frequent eruption for the past several centuries. The steep-sided, 5,230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the E, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. Sangay towers above the tropical jungle on the E side; on the other sides flat plains of ash from the volcano have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of an historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The more or less constant eruptive activity has caused frequent changes to the morphology of the summit crater complex.

Map

Source: Washington Volcanic Ash Advisory Center (VAAC)

SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m

Based on analysis of satellite imagery, the Washington VAAC reported that two small ash plumes from Santa María's Santiaguito lava dome complex drifted ESE on 1 January. During 4-5 January, gas and steam plumes possibly containing some ash drifted SW and WSW. INSIVUMEH reported that on 5 and 6 January fumarolic plumes drifted 100 m above the crater. Five explosions produced ash plumes that rose to altitudes of 2.8-3 km (9,200-10,000 ft) a.s.l. and drifted W and SE. A few avalanches originating from a lava flow descended the W flank.

Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Map

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH), Washington Volcanic Ash Advisory Center (VAAC)

SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m

KVERT reported that seismic activity at Shiveluch was above background levels during 25 December-2 January. Based on interpretations of seismic data, ash plumes rose to an altitude of 7 km (23,000 ft) a.s.l. on 25 and 26 December, and to an altitude of 5.5 km (18,000 ft) a.s.l. on the other days during the reporting period. An ash plume was seen on 25 December at an altitude of 5.5 km (18,000 ft) a.s.l. and gas-and-steam emissions were noted on 25 and 30 December, and on 1 January. Analysis of satellite imagery revealed a daily thermal anomaly on the lava dome and an ash plume that drifted 40 km NW on 30 December. The Level of Concern Color Code remained at Orange.

Based on information from KEMSD and analysis of satellite imagery, the Tokyo VAAC reported that during 1, 2, 5, and 6 January eruptions produced plumes to altitudes of 4.6-5.8 km (15,000-19,000 ft) a.s.l.

Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. During the 1990s, intermittent explosive eruptions took place from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.

Map

Sources: Kamchatkan Volcanic Eruption Response Team (KVERT), Tokyo Volcanic Ash Advisory Center (VAAC)

SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m

Based on information from JMA, the Tokyo VAAC reported an eruption from Suwanose-jima on 3 January. A plume rose to an altitude of 1.2 km (4,000 ft) a.s.l. and drifted E.

Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884.

Map

Source: Tokyo Volcanic Ash Advisory Center (VAAC)

UBINAS Perú 16.355°S, 70.903°W; summit elev. 5672 m

Based on a SIGMET notice, the Buenos Aires VAAC reported that on 5 January an ash plume from Ubinas rose to an altitude of 5.5 km (18,000 ft) a.s.l. and drifted SE.

Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.

Map

Source: Buenos Aires Volcanic Ash Advisory Center (VAAC)

Additional Reports of Volcanic Activity by Country

The following websites have frequently updated activity reports on volcanoes in addition to those that meet the criteria for inclusion in the Weekly Volcanic Activity Report. The websites are organized by country and are maintained by various agencies.

Ecuador, Indonesia, Japan, New Zealand, United States and Russia


URL: http://www.volcano.si.edu/reports/usgs/


Global Volcanism ProgramDepartment of Mineral SciencesNational Museum of Natural HistorySmithsonian Institution

Copyright  |   | Privacy  |