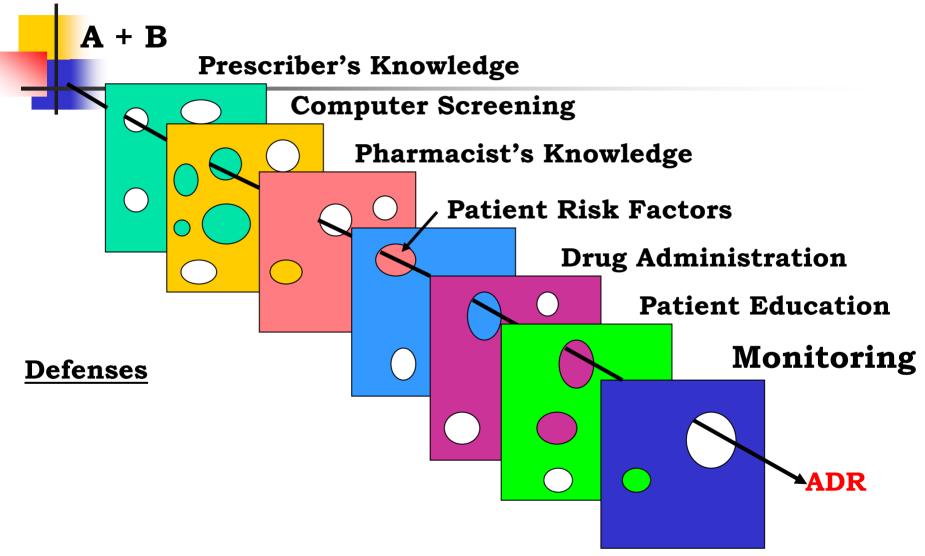
Lessons Learned from Drug-Drug Interactions: Implications for Risk Management

> Daniel C. Malone, R.Ph., Ph.D. Professor Colleges of Pharmacy and Public Health Director, Division of Pharmaceutical Policy Center for Health Outcomes and PharmacoEconomic Research

University of Arizona

Investigator, Arizona CERT


Risk and Pharmaceuticals

- Restatement of Torts (Second)
 - Strict Liability
 - Comment k
 - Pharmaceuticals considered exempt from strict liability
 - Unavoidably unsafe
 - Benefit to society outweighs inherent risks

Continuum of Risk

 From over-the counter to restricted distribution

Drug Interactions "When the Holes Line Up"

Hansten PD, Horn JR. Modified from: James Reason, Human Error, 1990

Computerization of Potential Drug-Drug Interactions

- Pharmacy Computer Systems
 - Perform routine check of medications on the patient's profile for potential interactions
 - Alerts provided to the pharmacy staff
 - Numerous methods to classify interaction severity

Rating Systems for Drug-Drug Interactions

Reference	Levels
Evaluation of Drug Interactions	1: highly clinically significant; 2: moderate; 3: minimally; 4: not
Drug Interaction Facts	Severity: Major; moderate; minor Documentation: Established, probable, suspected, possible, unlikely
Drug Interactions: Analysis and Management	1: contraindicated; 2: usually avoid; 3: conditional; 4: minimal risk; 5: no interaction
DRUG-REAX®	Major; moderate; minor

Problems with Identifying Drug-Drug Interactions

"Major" Drug Interactions (at *Medication Class Level*) by Compendium

Compendium	No.
MicroMedex DRUG-REAX®	275
Evaluation of Drug Interactions	64
Drug Interactions: Analysis and Management	94
Drug Interaction Facts	141
Total	406*

* Sum of column exceeds total due to duplicate interactions.

Concordance of "Major" Drug Interaction Classifications by Compendia

Number of compendia listing interaction	Micro- Medex	Evaluation of Drug Interactions	Drug Interactions: Analysis and Management	Drug Interaction Facts	Total Cumulative Total
Four	9	9	9	9	9 (2.2%)
Three	3	3	3		
	7	7		7	
	20		20	20	
		5	5	5	35 (8.6%)

Abarca et al. J Am Pharm Assoc 2004: 44:137-141

In-store Pharmacy Software to Detect Drug-Drug Interactions

	<u>Sensitivity</u>	<u>Specificity</u>	<u>PPV</u>	<u>NPV</u>
Overall	0.71	0.89	0.83	0.80
Best	0.88	1.00	1.00	0.90
Median	0.69	0.90	0.83	0.79
Worst	0.44	0.71	0.67	0.69

Hazlet TK et al. J. Am Pharm. Assn 2001: 41:200-204

In-store Community Pharmacy Software to Detect Drug-Drug Interactions – An Update

	<u>Sensitivity</u>	<u>Specificity</u>	<u>PPV</u>	<u>NPV</u>
Overall	0.88	0.89	0.86	0.90
Best	0.94	1.00	1.00	0.95
Worst	0.81	0.67	0.68	0.87

Abarca et al. JMCP 2006: 12:383-89

Hospital Pharmacy Software to Detect Drug-Drug Interactions – "Warning"

	<u>Sensitivity</u>	<u>Specificity</u>	<u>PPV</u>	<u>NPV</u>
Overall Median	0.44	0.95	0.83	0.67
Best	0.94	0.95	0.94	0.95
Worst	0.15	0.95	0.67	0.65

Abarca et al. JMCP 2006: 12:383-89

Why the "poor" performance of pharmacy systems to "catch" interactions

- Poor definitions of what "significant" means
 - The risk/benefit formula is determined in subjective manner
 - Few studies to support interactions
 - Those studies are evaluated by a few persons operating in different environments than the end users
- Ability to enter new drug products into the pharmacy system – not linked to the underlying databases
 - Most clinical support systems use NDC codes opportunity for error or work a rounds.

Computerization of Potential Drug-Drug Interactions

- Pharmacy Computer Systems
 - Perform routine check of medications on the patient's profile for potential interactions
 - Alerts provided to the pharmacy staff
 - Numerous methods to classify interaction severity
- Pharmacy Benefit Managers
 - Provide real-time checking for drug-drug interactions

Pharmacy – PBM Communications

- Pharmacy claims processing
 - Types of verifications/information
 - Pharmacy eligibility
 - Patient eligibility
 - Medication eligibility
 - Utilization review
 - Dose considerations
 - Refill history
 - Interactions
 - 2 seconds per transaction
 - Warning messages sent to pharmacy

Alert "Fatigue"

- Pharmacists commonly see 2 alert messages for each potential interaction
 - Pharmacy software
 - PBM
- Many alerts are for refills, low risk of ADEs
- Failure to incorporate time element
- Most alerts ignored by pharmacists
 - Chui and Rupp (JMCP 2000)
 - Murphy et al (Am J. Health-Sys Pharm 2004)

Pharmacists Workload and Dispensing of Potential Drug-Drug Interactions

- Merged pharmacy store data with prescription claims from 4 PBMs
- Examined pharmacy characteristics and work volume and rate of dispensed potential DDIs
- Significant factors affecting rate of potential DDIs:
 - Pharmacist workload
 - Pharmacy staff workload

Malone et al. Medical Care 2007

Prescribing Safety During Pregnancy

- Randomized trial of a computerized alert to pharmacist when pregnant women prescribed a "D" or "X" medication
- Results
 - Main findings (receiving an inappropriate drug)
 - 2.9% (intervention)
 - 5.5% (usual care)
 - Study stopped due to false positive alerts
 - Misidentification of contraindicated medications by pharmacy computer system
 - Misidentification of women who were not pregnant

Raebel MR et al. J Am Med Inform Assoc (in press)

Computerized Physician Order Entry

Reasons Provided by Prescribers When Overriding Drug-Drug Interaction Alerts

- Objective:
 - Determine why prescribers override drug-drug interaction (DDI) alerts
 - Evaluate whether reasons provided were helpful to pharmacists
- Study Design:
 - Observational, retrospective database analysis using override reasons from 6 Veterans Affairs Medical Centers

VA Drug-Drug Interaction Alert System

- VA specific methods that classifies interactions into "Critical" and "Significant"
- Alert specification set at a national level
- Individual VAMCs can add new interactions or upgrade a significant interaction to critical
- Prescribers required to response to critical interactions
 - Some VAMCs may require response to significant

Analysis by Severity of DDIs

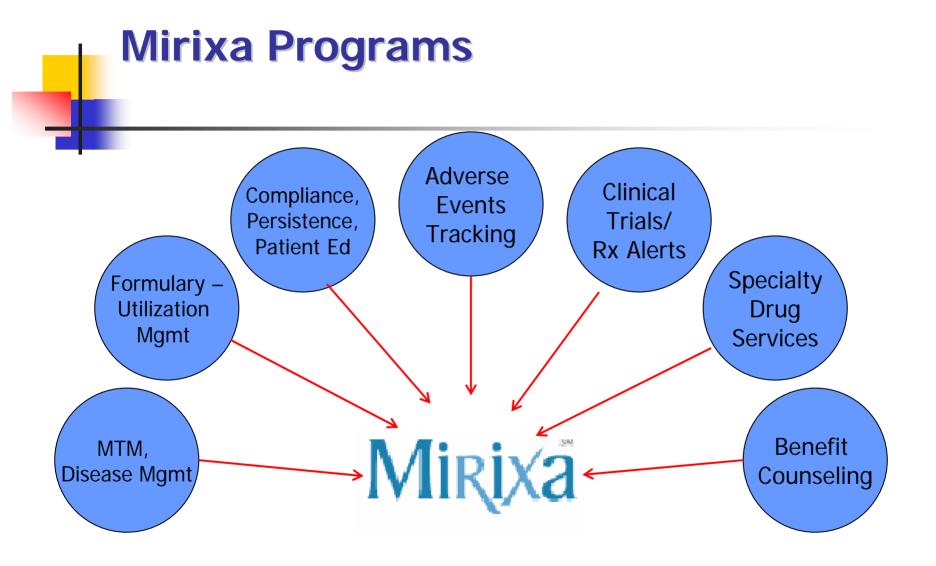
Critical DDIs (72% of sample)

- Reason provided 47%
 - Rated useful
 20%
 - Rated not useful
 80%
- No reason provided 53%

Significant DDIs (28% of sample)

- Reason provided 4%
 Rated useful 2%
 Rated pot useful 08%
 - Rated not useful
 98%
- No reason provided 96%

Issues Relevant to RiskMAPs


- Poor specification of risk
- One size does not fit all
 - Multiple vendors/multiple systems
 - Setting risk levels

 Non-staff model MCOs creating own RiskMAP – likely to create confusion among providers/pharmacists

New models constantly being developed

Evolving Systems for RiskMAPs: The Mirixa Corporation

- MirixaPro: Web-based delivery system for ANY pharmacist services programs (including MTM, Adverse Events Tracking, Clinical Trials, etc.)
- Platform configured to meet Program Sponsor design needs
- A solution for creating a network of patient care programs
- Network of 41,000 pharmacies

Issues Relevant to RiskMAPs

Ability to verify/document 24/7 @ 365

- Patients show up at the pharmacy in the middle of the night
- Many clinical decision support systems not "real time" – even in the best environments

Issues Relevant to RiskMAPs

- Don't assume that linking to the NDC will be successful
 - New drugs often entered manually
 - Re-labelers result in a new NDC
- Pharmacists are extremely busy difficult to change the dispensing process
- Silo computer software packages abound even within the same institution/system

Consequences of Computerization/Automation

- Thinking ceases
- "asdf" is a four letter response to a "required" action
- Implementing hard edits can have adverse consequences
 - People often act like water
 - Seek the lowest point
 - Exploit every "crack" to get there
- Details are "everything" to get buy-in