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Subduction zones occur where a plate created by sea-floor 22N — Moo - 505

Our Earth is a dynamic planet, as clearly illustrated on the main map (on front) by its spreading comes together or converges with another plate by
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normally anc.:l reversely magnetized crust allows the calculation of past rates of sea- L \ ity N measure of surface features. Shading—as if the topographic images were illuminated by : Photograph by Shigeo Aramaki, used with permission. D, Japanese woodblock print by Hiroshige II 26, 2004, earthquake that triggered deadly tsunamis (see table 3). B, Same
floor spreading. From these data, and traces of transform faults, past plate ctificial ¢ 90° ab th thwest hori helns the visualizati ¢ . e . (1829-1863) of Mount Asama, showing an ash plume and volcanic bombs ejected by explosive scene 2 days after the tsunamis struck; most buildings have been washed
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The "embryo" of a future midocean ridge segment begins to take shape when Figure 5.—A, Schematic cross section showing inferred structure and rock types eatures. e . o . s s Collection. © MK Krafft CRI Nancy-Lorraine (http://www.imagesdevolcans.fr ). missing. QuickBird images acquired and processed by DigitalGlobe.
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unts’; | [ i the long span of geologic time, new rifts break through some plates, other plate Scheirer (2004). Used with permission of Cambridge University Press. 1500 B.C. First historicall fon: - d e s : Jo N 0°F
’ s C: y documented eruption; Europe's largest volcano, Etna has been frequently active since. 37.7° N. 15.0°E.
2900 , b ol v j e : boundaries become inactive (see interpretive map), and existing plate boundaries Earthquakes /esuvius (Italy) A.D.79 Pompeii and Herculaneum buried; earliest known written account for any eruption, by Pliny the Younger. 40.8°N. 14.4°E.
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2650 Do Ny L b el 5.7 ntd mlgriﬁl lov? the deeper. mantlte. in an elvzr ghlfngé; rr}:.)salc ocli plat?s. Otceanl? ; Earthquakes are vibrational motions produced mostly by rupture of rock along faults. Impact Craters aupo (New Zealand) 180 16,000 km? (15 percent of North Island) devastated; only a tranquil caldera lake now marks the eruption site. 38.8°S. 176.0°E.
i l even ie, as oceanic crust is recycle subduction and continents collide, Tl e . . . .
3000 : ‘ ik Ay e B lezving osrllly new mountain chains asyevi d enscl e ) : The most common measure of earthquake "size,” based on the amount of seismic Discoveries during the past decade allow us to show 30 more impact craters than ~ 6 Rabaul {Papua New Guinea) 540+90 Explosive eruption formed caldera, later filled by the sea; regional volcano observatory established after 1937 eruption. 4.3°S. 152.2°E.
050 ol L Ao S ey : . : ground motion, is called magnitude. This concept was introduced in the mid-1930s by we did on the 1994 edition of the map (Simkin and others, 1994). Still, the IV. BedrOCk Ages Show Oceans Far Younger I han Contlnents 7 Ojos del Salado (Chile) ~700  World's highest active volcano, at 6,887 m; no known historical eruptions, but strong fumarolic activity. 27.1°S.  68.5°W.
3 N gyl B 1ES 57 : | X seismologist Charles F. Richter. He measured a seismic-wave characteristic called id f other i + t has b st d hidden b t t 8 Laki-Grimsvotn (Iceland) 1783 Enormous lava flows; livestock poisoned by volcanic fluorine and 10,000 Icelanders starve; cooled Europe's climate. 64.4°N.  17.3°W.
4 v a f NEw ) ; \ A } Mg e evidence of other impact craters has been destroyed or hidden by post-impac : : ¢ . .
3100 ‘ 3 A \ it 1 ! - : ) S S amplitude (the height of the peak seismic wave recorded by standard seismographs at loai th v kn impl ind f thi 120° 190° 120° & 0° 0° BEDROCK AGE 9 Unzen (Japan) 1792  Japan's deadliest eruption; collapse of dome produced debris avalanche and tsunami, killing 14,500. 32.8°N. 130.3°E.
fxy ) Apgah y &) I i e N A N K \ o S ' ) ) geologic processes; the presently known craters simply serve as a reminder ot this s S ‘ 10 Tambora (Indonesia) 1815 Largest historical explosive eruption, resulting in ~60,000 deaths and 1816's "year without summer" (June snow in New England!). 8.3°S. 118.0°E.
8180 Reverse Polarity Normal Polarity P . e ; il a standard distance from the earthquake source). Because peak amplitudes vary over cataclysmic process, particularly early in the history of the Earth-Moon system (see . T o S ‘ £ : ‘ Continents
. PACIFIC PLATE 'y /[ ()] _ i ... 1 : such an enormous range among earthquakes, the Richter scale is logarithmic: a inset VI and timeline). ‘ : hs 0 11 Krakatau (Indonesia) 1883  Caldera collapse; 40-m-high tsunamis kill >34,000; explosions heard >4,500 km away; vivid sunsets. 6.1°S. 105.4°E.
LA I AR i , ; e ; 9 : = magnitude-6 earthquake has 10 times the peak amplitude and releases about 30 times v 7 o . ‘1I§ g/lontalg\;,lne'PeIZe (Westllndies) 1332 ;Ii(g);&;sk[._)ltleeg, ir;]candelscent pyroclas]:ctic f:ows kill 28,900 in mhin:;ces; rgsponze Iaun;:ged moldern vo(ljcanolpgy. ’ :Ilj,g: m g:;: W
L el e U st Cl | . | - R e more energy than a magritude 5 earthquake. A magnitude-3 carthquake is about the Plate Motions . a : & o Miocene 14 Novarupta-Katmai (Alaska, U.S.A) 1912 Largost 20th contury eruption fincluding ~Valley of T Thousand Smokess sound heard 1,200 km away. 583N, 155.2° W,
3400 A K0 (8 (4N G M % ¥ i fnapgle%izggosrgfet)}(uzrgzsel:gic cerust as : : IO 55 i "3 smallest that can be felt by humans, and the largest ever recorded was 9.5. In general, 9Q Oligocene g 15 Paricutin (Mexico) 1943  Volcano birth in cornfield witnessed by farmers; cinder cone grows to 336-m height in first year, to 424 m by 1952. 19.5° N. 102.3° W.
5500 i 0 (e it magped e R _ i e, the larger the magnitude, the larger the rupture area and movement along the fault. Divergent plate speeds, measured largely from separations of magnetic stripes at o) =
UL Sk A 1 A i st Rt f e S e e - - _ 33 . = T s L . Small-magnitude earthquakes occur much more frequently than large-magnitude oceanic ridge crests, generally confirmed by global positioning system (GPS) data, S Eocene 542 _1|(75 _?ulrtt)se\t/‘ _ I((ICtla(land)h ) ng Elew island formzd ?y 4-year erurtnon,dprov&dng\gl; field Iaboratoryhfor(:)lqloglstsl J.o study ar:"’a'.°f|’il°ra and fauna to new land. gg'g: “ 12822 \év
in figure 5B. Mapping of magnetic , ot ' T earthquakes (see earthquake explanation on front). and then integrated into plate motion models, are shown on the main map with ; . %= , ; 18 Nyitagongo (Congo) 1977 Highly fluid flows from summi lava lake reached speads of 60 ki slower flows in 2002 angulfed canter of Goma city. 155, 293°F.
vagatlcins'recc;rg:r?hg Chang“}(.g ?riggtbﬂ] ! P - Map locations of earthquakes (epicenters) are determined from the precise arrival white numerals. Convergent plate motions (stubby arrows with numerals) are ke o s y ; : sy Paleocene 19 Mount St. Helens (Washington, U.S.A.) 1980  Well-studied landslide showed that flank collapse can trigger explosive eruptions; such occurrences found to be common worldwide. 46.2° N. 122.2°W.
;2013;2rt1it:1: il dfnrgigﬁitﬁr;if p‘:l’:ate s : ' times of seismic waves at global seismic stations, the known speeds of those waves, and calculated from the same model. Thin arrows in plate interiors show less accurate ; : ! N 20 Kilauea (Hawaii, U.S.A.) 1983  Start of ongoing rift eruption, longest-running in Hawaii since A.D. 1400; has already created ~2.2 km? of new land. 19.4°N. 155.3° W.
Figure 8.—A, Computer image of multibeam-mapped topography (mapped from a el (e e o dleavssion), Thmes o E the principle of triangulation. Our ability to locate earthquake epicenters has greatly "absolute" plate motions (over the deeper mantle). , . . . . . . . . .
St ) o ke s sy (1A mom o) e of e et [Peeie e, @ nEE magnetic reversals given in Ma, Map from Figure 6.—Iceland is a "hotspot” (see interpretive map of plate tectonics, on improved during the last decade because of sensitive digital seismic instruments and 21 Rmz_ (Colombia) 1985 Sl_'nall eru_ptnor_m melted icecap of 5,389-m-high \_/o!cano; resulting mudflows killed >22,000, in town§ 240 k_m from crater. 4.9°N. 75.3° W.
the axial high, small seamounts, and abyssal hills on its flanks. Gray patches indicate Suzanne Carbotte (Lamont—D01:1e Earth ! ‘ front) and one of the few places where the global Mid-Oceanic Ridge system : d d ; h ; d : h h 22 Oshima (Japan) 1986  Highest historical lava fountains (>1,500 m}); this island south of Tokyo has erupted more than 80 times since A.D. 605. 34.7°N. 139.4°E.
areas of no data. B, Detailed topography showing a very small part of the axial high, as Observat i ' emerges above sea level. This southeast-looking aerial view shows Krafla improved data processing. On the main map, modern accurate epicenters show that ACKNOWLEDGMENTS 23 Redoubt (Alaska, U.S.A.) 1989  Jumbo jet's engines all fail in ash cloud, but two were restarted 1,500 m above mountains; $80 million damage to plane. 60.5°N. 152.8°W.
mapped by the subr,narine free-swimming, but remotely operated (from surface ship): servators). ' Volcano, Iceland, erupting on September 8, 1977. Lava fountains spout from most earthquakes are closely clustered along plate boundaries. The most demanding ) . o o 24 Pinatubo (Philippines}) 1991 Evacuations save up to 20,000 lives; mudflow damage, some recurring long after eruption ended, leaves >200,000 homeless. 15.1°N. 120.4°E.
Autonomous Benthic Explorer (ABE) skimming back and forth 5 to 40 m above the e o o a 900-m-long fissure—part of the spreading Mid-Atlantic Ridge—and feed test of earthquake-location accuracy is along oceanic plate boundaries that are typically This map is a joint product of the Volcano Hazards Program and the Earthquake o) 25 Juan de Fuca Ridge (off northwestern U.S.A.) 1993  First well-documented deep ocean eruption—world's most common type, but never witnessed—along divergent boundary (see inset ). 46.5°N. 129.6° W.
deep'sea floor. Note the narrow (SQ—m-Mde), 10-m-deep centr:al fissure Valley, the Normal polarity lava f!OWS ad‘.’andng over snow-covered gr(.-)und- Dunng this intermittent distant from seismic stations on land. Comparison of the new ear‘thquake locations with Hazards Program Of the U.S. GeOIOQical Survey, the Global Volcanism Program Of §
remains of a long lava lake that drained through channels feeding lobes to the west. A Sefloor. | <. Reversepolarity A' ;r}llllf[hon, lisgngslfroné 19_171';'3 to 1984, the fissure widened by 8 m. the similarly improved mapping of oceanic plate boundaries shows that most of these the Smithsonian Institution, and the U.S. Naval Research Laboratory. Many S <
Images from Marie-Héléne Cormier (Lamont-Doherty Earth Observatory). s =l S otograph by Sigurdur Thorarinsson. earthquakes occur neatly along transform fault segments. In contrast, spreading ridge institutions and individuals helped us in its preparation in important ways, most é
Magnetization Model crests, linked by these transforms, generate few detectible earthquakes, because plates notably R.G. Bilham and E.R. Engdahl (University of Colorado); S.M. Carbotte g
there are too thin and weak to allow large stresses to build. (Lamont-Doherty Earth Observatory); D.C. DeMets (University of Wisconsin); J. &
A small number of intraplate earthquakes are shown (as hexagons) on the main map Hasse (Naval Ice Center); M. Holzer (Chatham High School, N.J.); W.-Y. Jung (U.S. o : : o : : :
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Cambridge, United Kingdom, Cambridge University Press, p. 59-107. For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO 80225; Cubic kilometer (km®)  0.23992  Cubic mile (mi®) symbols for the first three categories. Thus, any one of them might erupt within our geoscience teachers, and students who provided thoughtful comments and helpful Newly created crust becomes progressively older, colder, and denser as it is carried away from divergent plate 1 Shanxi (eastern China) 1556  Deadliest earthquake on record with 830,000 reported killed. Near Xian, China's ancient capital. 355°N. 109.7°E.
Collier, Michael, 1999, A land in motion; California's San Andreas fault: Berkeley, University of California telephone 1-888-ASK-USGS; World Wide Web: http:/www.usgs.gov/ Diameter (D) Mega-annum (Ma) million vears ago lifetimes. Remember, though, that most of Earth's volcanism occurs along the advice on how to improve the previous editions (1989, 1994) of this map and text. boundaries (generally the youngest oceanic rocks on the planet). Dense oceanic crust is ultimately recycled into the 2 Cascadia (Pacific Northwest, U.S.A) 1700  M~9 shock; subsidence drowned local coastal forests and triggered tsunamis that damaged distant Japan. 476°N. 125.1°W.
Press, 128 p. Printed in the USA by The Pikes Peak Lithographing Co. Magnitude (M) S s YEREE8 midocean ridge crests, where countless submarine eruptions take place each For a comprehensive summary of the contributors to the preparation of this edition, upper mantle at subduction zones. In contrast, less dense continental crust tends to "float," so that, over geologic time, : ‘31 :;l':‘t”v°|’\‘,|a(gr‘;;t”(?\;’i';so G : 8117 1551 5 %ﬁﬂ:ﬁ e"IZ'r“ ;hsar;‘::k”ssgs;t?;?nﬂ‘ri'ﬂ"%’r?(;;"r;:'";;]h'?cmtz:{l‘:’:;'rapnhd“:;gle rlwri]aL;t:jogrg::iLglIi?edi;igf(():%esa cake Ba gg'go m ;g'go w
DeMets, Charles, Gordon, R.G., Argus, D.F., and Stein, Seth, 1994, Effect of recent revisions to the year—sight unseen—deep on the ocean floor. see the online version at http://www.minerals.si.edu/minsci/tdpmap much of it escapes this recycling process. Thus, as this map shows, the oldest bedrock of the sea floor (~170 Ma) is far 5 Charleston (South Cl:m’)Iir;a,. US.A) 1886 Shaking ;th frgm Bermuda to Minnesota‘? moderatg to :evere damage to masoF:lry buildings in Charleston. ‘ - 329°N.  80.1°W.
geomagnetic reversal time scale on estimates of current plate motions: Geophysical Research Letters, v. younger than most continental bedrock. Precambrian rocks, older than 542 Ma, form the interiors of most continents
21, no. 20, p. 2191-2194. and the cores of old continental mountain ranges, such as the Appalachians, Caledonides, and Urals. The yellow-green 6 Nobi (Japan) 1891  Ground ruptures showed that movements along faults caused this M8 earthquake. First modern aftershock study. 35.4°N. 136.8°E.
Engdahl, E.R., and Villasefior, Antonio, 2002, Global seismicity: 1900-1999, in Lee, W.H.K., Kanamori, color boundary—between the Upper Cretaceous and Paleocene—represents oceanic crust that is 65 Ma, the age of the 7 Assam (northeastern India) 1897 M->8 earthquake in Himalaya collision belt; Earth's liquid iron core deduced from seismograms of the earthquake. 26.0°N. 91.0°E.
Hiroo, Jennings, P.C., and Kisslinger, Carl, eds., International handbook of earthquake and engineering Chicxulub impact in eastern Mexico (see inset VI). This event caused massive extinctions. About 59 percent of the _— 8 North Shikoku Basin (Japan) 1906  Earliest well-documented deep earthquake (340 km), showing that earthquakes can occur in Earth's deep mantle. . 34-0: N. 137-0: E.
seismology, Part A: Boston, Academic Press, p. 665-690. present-day oceanic crust has formed since Cretaceous time, when dinosaurs last roamed the land. core-mantle Boung, = 9 San F_rancnsco (California, U.S.A.) 1906 M?7.8 shock on San A_ndreas fault, and fire destroyed rpuch of city fsee |ns_et VII). Stlmulateq _earthquakt_e science gnd elastic-rebound theory. 38.0°N. 123.0°W.
¢ ’ ¢ . . . . . 10 Messina (ltaly) 1908 ~85,000 dead from widespread effects of ground shaking, slope failures, fire, and a tsunami in the Strait of Messina. 38.0°N. 15.5°W.
Goodwin, A.M., 1991, Precambrian geology; The dynamic evolution of the continental crust: London, l?urmg .the recsyclnjlg process, SUbfiUCth plz?tes can r.emam.largely undeformed to great depths before heatmg. up, Figure 1.—Computer image of seismic-wave speeds along profile A-A'
Academic Press, 666 p. . -1 - : v - ] ; < RRi111 H ‘t ‘t V l losing their physical identity, and ultimately being assimilated into the weak, slowly flowing mantle. An example is a across Central America. Seismic waves pass more quickly through 11 Zagreb (Croatia) 1909 Mohoroviti¢ discovered a jump in seismic-wave speeds, generally marking the crust-mantle boundary (the "Moho"). 458°N. 15.9°E.
Gordon, R.G., 2000, Diffuse oceanic plate boundaries; Strain rates, vertically averaged rheology, and ' L1 L1k 7 v : C 4 AN 2 i 0 Spo . O Canoes profile (A-A', center of map) across Central America (fig. 1), where the deep part of the subducting Cocos plate in the colder, denser rocks (blue tones) and more slowly through warmer, 12 Gansu Province (China) 1920 MB8.3-8.6 earthquake in the broad India-Eurasia collision belt. Widespread damage and ~200,000 deaths. 36.6°N. 105.3°E.
comparisons with narrow plate boundaries and stable plate interiors, in Richards, M.A., Gordon, R.G., > : rs 2 eastern Pacific Ocean projects beneath the Atlantic Ocean, offshore from North Carolina. Over geologic time, the less dense rocks (yellow to red tones). The inclined blue-colored zone 13 Kanto (south of Tokyo, Japan) 1923  M?7.9 subduction shock killed 146,000 (99,000 in Tokyo), including losses from a tsunami and giant firestorm. 35.4°N. 139.1°E.
and van der Hilst, R.D., eds., The history and dynamics of global plate motions: American Geophysical positions of the continents and their associated subduction plate boundaries have shifted dramatically (compare Late ext:[;lldmg to g,O(t)g km dep;h 1—115 mterpretled to r(eipresentdthe 14 We_st'NeIson (New Zgaland) 1929 Earth's solid inner core, |ns_|d<=: the liquid out_er core, revealed in |_ts seismic record.«? (by Inge Lehmann in _1936). . . 41.8: S. 172.2: E.
Union Geophusical M h 121 143-159 % J ic. K/T Bound d Last Glacial Maxi I hi below). During the last 100 milli f northeastward subduction of the Cocos plate and its predecessor 15 Chillan (southern Chile) 1939  Occurred at 80-km depth within the subducting Nazca slab, causing 28,000 deaths; led to improved building codes in Chile. 36.2°S. 72.2°W.
nion Geophysical Monograp! , D- . rth America plate urassic, oundary, and Last Glacial Maximum paleogeographic maps below). During the las million years o e (s Comiy s i et Axiraten (7 2ha Lile A
Grieve, R.AF., 1998, Extraterrestrial impacts on Earth; The evidence and the consequences, in Grady, =4 eastward subduction under the Americas, the positions of the active plate boundaries have gradually shifted westward from Karason and van der Hilst (2000). Used with permission of 16 Unimak Island (Alaska, U.S.A.) 1946  M8.5 shock triggered submarine landslide, generating tsunami with run-up to 31 m high on nearby Unimak Island and 18 m in Hawaii. 53.3°N. 162.9°W.
M.M., Hutchison, R., McCall, G.J.H., and Rothery, D.A., eds., Meteorites; Flux with time and impact = ‘ p” : i : Figure 6 —Ma I Il wide by more than 1,000 km. American Geophysical Union. 17 Offshore Kamchatka (Russia) 1952  Seismograms of this well-recorded M9 earthquake showed early evidence of slow, whole-earth vibrations. 52.8°N. 159.5°E.
effects: Geological Society [of London] Special Publication 140, p. 105-131. Sy JEZ0 : distribution of ash-fall deposits from 18 Adreanof Islands (Alaska, U.S.A.) 1957 At M9.1, one of only five earthquakes in the magnitude 9 range, four in a 12-year period, since global recording began around 1895. 51.3°N. 175.8°W.
Izett, G.A., and Wilcox, R.E., 1982, Map showing localities and inferred distributions of the Huckleberry : -~ ; . e e three powerful caldera-forming - 19 Valdivia (southern Chile) 1960  Largest earthquake (M9.5) yet recorded, confirming whole-earth vibrations; triggered a giant Pacific-wide tsunami. 38.2°S.  72.6°W.
Ridge, Mesa Falls, and Lava Creek ash beds (Pearlette family ash beds) of Pleistocene age in the western L o i _ explo/sive eruptions from the 20 Southern Alaska (U.S.A.) 1964 Second largest recorded earthquake (M9.2) caused extensive soil failure in Anchorage area and widespread tsunami damage. 61.1°N. 147.6°W.
i . i 1 iqati | ; , il = Yellowstone volcanic system -
}J?gez(ir, Statles la.rzldoi)o(;lt(l)'lg(r)n (Cenrety (U (Caalogenl iy Liitesleeet) [Lhieirlnn St Iiep : o Fig : over the past 2 millizf;ears’ 21 Offshore northern Peru 1970  Within Nazca slab at 73-km depth, killing ~54,000, including 25,000 at Yungay, a town buried by an associated rock avalanche. 9.2°S. 78.8°W.
» o SRl Ll ’ : o Z i ; 3 (Izett and Wilcox 1982)‘. 5 22 Tangshan (China) 1976 Devastated the city, causing the most fatalities for a 20th century earthquake—estimates range from 255,000 (official) to 655,000 (unofficial). 39.5°N. 117.9°E.
Kérason, Hrafnkell, and van der Hilst, R.D., 2000, Constraints on mantle convection from seismic ” e % - T Inset (black outli : 23 Northridge (California, U.S.A.) 1994  Rocked the Los Angeles basin; economic losses estimated to exceed $20 billion, a record for U.S. earthquakes. 34.2°N. 1185°W.
tomography, in Richards, M.A., Gordon, R.G., and van der Hilst, R.D., eds., The history and dynamics - AHim < : — /s sbicatos t 7 F St R e < 24 Northwestern Bolivia 1994 Deepest large-magnitude earthquake (M8.3 at 636 km), with shaking felt to Canada; study of this event greatly refined Earth's structure. 13.8°S. 67.6°W.
of global plate motions: American Geophysical Union Geophysical Monograph 121, p. 277-288. s ' . =, A ; in figure . A Figure 5.—Snow-capped 4,172-m-high 25 Kobe (Japan) 1995  Major port city devastated: 5,500 dead, 310,000 homeless, and world record $150 billion in earthquake and fire losses. 34.6°N. 135.0°E.
Copyright 2000 American Geophysical Union. : ' ; 5 g S : 2 S Mauna Loa, a classic shield volcano, as 26 Sumatra-Andaman (Indonesia) 2004  M9.0+ earthquake ruptures >1,000 km of subduction boundary; tsunamis kill a record ~230,000, some deaths as distant as Africa. 3.3°N. 96.0°E.

Kious, W.J., and Tilling, R.I,, 1996, This dynamic Earth; The story of plate tectonics: Reston, Va., U.S. 8%:’:5;:8:;%?1 g:;z;inb\;%iﬁ% L

Geological Survey General Interest Publication, 77 p. (Also available online at 7 RS p : : e ; 2, . Tilling (USGS).
http://pubs.usgs.gov/publications/text/dynamic.htm] ) / Z = ' ¥ :

1.—Notable impact craters

[Craters lis ered craters—arranged by age, oldest (no. 1) to youngest (no. 25)—selected from the 170 known

craters in mplete listing of the 25 craters. Ma=million years ago. D=diameter]
Miiller, R.D., Roest, W.R., Royer, J.-Y., Gahagan, L.M., and Sclater, J.G., 1997, Digital isochrons of the N
world's ocean floor: Journal of Geophysical Research (Solid Earth and Planets), v. 102, no. B2, p. G : rrallan p. ; - - _ , : . Figure 4.—A high lava fountain map Importance Lat Long
3211_32_14‘ Copyright 1997 ‘_Am'encan Geophysical Union. i Sbl - Lt By » ; ; : X jetting from the Pu‘u ‘O°6 vent on 2 Vredefort (South Africa) 202314 Largest known structure (D=300 km); unique textural features indicate high-pressure shock impact. 27.0° S. 27.5° E.
Pearce, Julian, 2:02, The OCeZmCll;t;;SF;}Efe: J?(IDIf-:shJoum]?]’ v. 28, 1}110- 1, p. 61‘166- f1 . G 2L ; ‘ # _ ; e AL ; — P, Kilauea's east-rift zone in 1984; 3 Sudbury (Ontario, Canada) 185013 This large crater (D=200 km) is the only one with shock-melted body that hosts rich nickel-copper ore deposits. 46.6° N. 81.2° W. -
Pierce, K.L., and Morgan, L.A., , The track of the Yellowstone hot spot; Volcanism, faulting, an o2 7 Rt r '- ) ; T > helicopter (circled) gives scale. 8 Clearwater (Quebec, Canada 290+20 Rare paired craters (D=26 and 36 km) formed by two close but separate bolides. 56.2° N. 74.5° W.
uplift, chap. 1 of Lir?k, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional l;eology of eastern Idahgo and the southeastern end of the Hawaiian ¥ : > 7 - 57 s ; Photograpﬁl by M)agdie Lane (Hawait 13 Chicxulub (I(Vlexico) ) 64.98+0.05 Prodl?ced K/T (dinos(aur) extinction eilent and g\I/obaI ejecta (with “F:‘ingerprint“ iridium layer); see inset VI. 21.3° N. 89.5° W. VII o TraHSform Fault Where Plates Scrape Horlzontally PaSt EaCh Other
western Wyoming: Geological Society of America Memoir 179, p. 1-53, 1 oversize pl. Rihqgﬁ-Emp?ror S;?)m?utm thtain, 2 ” : oz o s : 7 o : : . : Volcanoes National Park). 14 Montagnais (Nova Scotia, Canada) 50.50+0.76  First crater recognized at sea (buried on continental shelf); nearly all other known craters are on land. 42.9° N. 64.2° W. Oregon
Py : . . . whicn was rorme niraplate , 7. i ) ? 5 f ol v = - (= 1 i ¥z
Sc%ise’l%ilzc" LD, 1Dl peleegzs pmelate mg el e (CLsROW IO IMazal) fn Tagton, volcanism (see text);yred dop‘:s indicate - 7 i Al % v 2 15 Wanapitei (Ontario, Canada) 37.2+1.2 Younger, smaller crater inside Sudbury (no. 3); only known example of a second impact in the same place. 46.8° N. 80.8° W, ik _ & Plates slide horizontally past each other along transform plate boundaries. Transforms
2 . . selected hOtSpOtS (See interpretive : z o G " S 2 16 Poplgal (Russia) 35.7+0.2 Detailed studies of this Iarge (D=100 km) crater discovered diamonds produced by high-pressure shock waves. 71.7° N. 111.2° E. i i ’ s occur both on land and in the ocean basins’ linklng spreading ridges and other plate
Shoemaker, E.M., and Shoemaker, C.S., 1999, The role of collisions, chap. 6 of Beatty, J.K., Petersen, map of plate tectonics, on front). = : E v , 17 Chesapeake Bay (Virginia, U.S.A.) 35.5140.3 Largest crater in U.S.A. (D=85 km), buried by younger sediments, was discovered in 1980s by geophysical surveys. 37.3°N. 76.0° W. \ % o boundaries. They typically produce shallow earthquakes, with accompanying ground
C.C., and Chaikin, Andrew, The new solar system: New York, Cambridge University Press, p. 69-86. : : o 2 DS found along plate boundaries, but some 23 Barringer (Meteor) (Arizona, U.S.A.) 0.049+0.003 "Textbook" crater (see inset VI}—the first recognized as caused by meteorite impact—was used in astronaut training. 35.0°N. 111.0°W. faulti d v it lcan Hvity, T i Ilkn tinental I
Simkin, Tom, Unger, J.D., Tilling, R.I., Vogt, P.R., and Spall, Henry, 1994, This dynamic planet; World ‘ : E . ) ate int e g;a(ﬁlplés'of such intraplate volcanoes are =7 7 T TR B . 25 Sikhote Alin (Russia) 0.000055  Large meteorite shower, seen by many in 1947, left >100 small craters and >8,000 meteorites over ~50 km? area. 46.1°N. 134.7°E. au ﬂ?g I?Inﬁge:er? ‘i’ 1 feﬁ': r_lro V]S canlcdatch W;y' X]odwe ¢ Sl‘:m c:)n mér;l'? ex:aml?nis
map of volcanoes, earthquakes, impact craters, and plate tectonics: U.S. Geological Survey, scale s : - - SR - Hawaii, ne ,000 km from the nearest plate boundary (fig. 1). The ' 155 ok gre Ai d ° r;a otlan fa l( u; esll) ta r(;f ulet an ; reas al ; szs emd( 1orn1a(). e
1:30,000,000. (Also available online at http://pubs.usgs.gov/pdf/planet.html ) - O - Se <A Sl e RN S Hawaiian Islands are the above-sea-level summits of volcanoes that form the _ "2“ ﬁreas sys erfn 115 f fmtl p ORI ? i . ;]m & d'flf “s.le li abe ‘(’j“" ary zlonehsee ,
U.S. Geological Survey, 1997, GTOPO30: U.S. Geological Survey Web site, available at e - = Kaua'{ : e ‘ = S . southeastern end of the Hawaiian Ridge-Emperor Seamount Chain (figs. 1, 2). n ert];)r% ve r.rtl)az of plate teic omfcs, ol TR S an Is 1;m atxlzthroa hzonef efste}:v eret.a S0
http://edcdaac.usgs.gov/gtopo30/gtopo30.asp (accessed June 11, 1997). e, CSSNET N e RIS LRSS This 6,000-km-long, mostly submarine volcanic mountain range formed over lc)artin ; ?{imNe nisgoml-s o ?1 Ig)ne.f-or nlu:re mlcmpa? e th g ugArr:ios of ETOI}OH
Zhao, Dapeng, Hasagawa, Akira, and Horiuchi, Shigeki, 1992, Tomographic imaging of P and S wave — b < - = AN the past 80 million years by the combined processes of magma formation, eb teertl. al e o tmilrlca' an ! acthc pla esllocc;utlslt ong .Z an r; reas alf( 15; ) q
velocity structure beneath northeastern Japan: Journal of Geophysical Research (Solid Earth and ; SN B, S e o ey ' _— eruption, and movement of the Pacific plate over a mantle source—called a Sl Sﬁa?l 1 rgml/_?mep sf' 58 in‘? Vg rggny SrtEc e lrtlha V;’Ih.e zone “})lm wes e(;n ;va a
Planets), v. 97, no. B13, p. 19,909-19,928. | >3 S Ny Molokai S s T . ——— melting anomaly or hotspot— generally assumed to be relatively fixed in to ofishore California (figs. 1, . )- udden movements within this system have produced
e o . oloka'i R Maui SR T 1 - T NG . many damaging earthquakes, including the famous M7.8 San Francisco shock of 1906 (fig.
: j - : ? s @ == =SS position. The sharp bend in the chain (fig. 1) is still not well understood despite 3). the M7.1 I ial Vall rthquake of 1940 (fig. 4), and the M6.7 Northridge jolt
SELECTED REFERENCES s b : - e, Lamai | W—— : ; intensive research. A recent explanation is that the northern segment (Emperor ’ ofe199 4 (t;&z eg ano aZe?f; earthquake '8 %), and the b./ HNorthricge Jo

planetary bodies that lack water, forests, ice,
and sediment that hide them on Earth. Other

anets also lack the post-impact tectonics and
erosion that destroy craters on our planet. This
Apollo-11 photograph shows part of our
moon's far side. The largest crater shown,
Daedalus, is 93 km in diameter. Image from
NASA, no. AS11-44-6609.

Kaho'olawe = \ Seamount Chain) formed as the hotspot migrated southward until about 45 Ma,
X ' when its position became fixed. Then the northwesterly plate movement
prevailed, forming the Hawaiian Ridge "downstream” from the hotspot.
Many scientists attribute the Hawaiian and some other hotspots to narrow

plumes of hot, but not molten, material rising through the mantle (fig. 3). Partial
melting of the mantle produces new magma that collects into blobs that rise
through the overriding plate and ultimately erupt to form a new volcano on the
sea floor. After many .eruptions, the growi.ng submarine volcano may emerge Figure 7.—Map showing the Yellowstone caldera and older
above sea level as an island volcano. Continued movement of the Pacific plate s mames detmed fn pet), s e ireskimarding
eventually carries each volcano away from the sustaining hotspot. Then, alignment and age progression of these centers are thought to
severed from their feeding magma sources, the eruptions ultimately cease. Even represent the "volcanic trail" of a continental hotspot fed by a
as a new volcano grows over the hotspot, it undergoes erosion. However, once mantle plume. Modified from Pierce and Morgan (1992, pl. 1.)
eruptive activity stops, the volcano subsides as the plate cools and contracts,
eventually sinking below sea level to form a flat-topped seamount. Recently
active Hawaiian volcanoes—Kilauea, Mauna Loa, and the present-day
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The surface expressions of continental transform plate boundaries depend
largely on the orientation of the boundary in relation to the direction of plate
motion across the boundary. For the San Andreas system, faults that veer
to the left (or to the west when looking north) of the direction of Pacific
plate motion produce compressive (squeezing) deformation and uplift,
thus forming mountains such as the Transverse Ranges in
southern California (figs. 1, 2). This deformation also splinters
the western fringe of the North America plate, forming a
microplate extending from the San Andreas fault to
smaller faults east of the Sierra Nevada. Conversely,
fault segments that veer to the right cause
el ; 1 extensional ("pull-apart”) deformation and
Wallace Croek~ - ‘ . subsidence, producing topographic lows,
Carrizo Plain My = T se. Lk S | such as the Salton Sea in southern Figure 2.—View from space looking northwest showing a part of the San Andreas
' ‘ California (figs. 1, 2). Strands of the San fault system {main fault shown by heavy red line, less active faults shown by thin

San Francisco

Ejecta™s
curtain

~ photog
- Arizona, showing the well-preserved 1.2-km-
wide crater indenting the surface of the arid

Gripp, A.E., and Gordon, R.G., 2002, Y. tracks of hotspots and t plate velocities: Geophysical . . . L " . . e . . submarine but growing L&'ihi (figs. 2, 3}—presumably still lie above, and are . . L _ ; red lines). Major surface expressions of the transform plate motion in this zone
ripp and Jorcorn oungi EIEE) @ (eI ZlelEs) ENie) (BRIARes 21N WATElEs (EISeRlipte Figure 2.—Oblique view of the principal Hawaiian Islands and (the still submarine) Lo'ihi Volcano. Inset gives a closer view of three presently tapping, the Hawaiian hotspot. Midplate oceanic lavas are more fluid Figure 1.—Map of California showing - - ; W Andreas fault Wlth tren.ds ﬂ'_lat more closely (white block arrows) depend on the interplay between fault orientation and direc-
Journal International, v. 150, no. 2, p. 321-361. of the five volcanoes that form the Island of Hawai'i (historical lava flows are shown in red). The longest duration historical f . the main fault (heavy red line) and the - : g parallel plate motion directions show ; ;

Hough, S.E., 2002, Earthshaking science; What we know (and don't know) about earthquakes: Princeton, eruption on Kilauea's east-rift zone at Pu‘u ‘06 (inset), which began in January 1983, continues unabated (as of spring 2006). than those that build str:atovolcanoes along c_onvergent plate boundarle-s; they less active strands (thin red lines) that T e Ay smaller scale features, such as offsets of ﬁz:hzfe{)g;r:&tggégage from NASA, no. STS103-701-39; faults drawn by
N.J., Princeton University Press, 238 p. View prepared by Joel E. Robinson (USGS). usually erupt nonexplosively, and some eruptions can last for decades (figs. 2, together compose the San Andreas fault system. Los Angel E N S tion o stream channels (fig. 5) or rows of trees .

4). Over geologic time, repeated outpourings of fluid lava, which can travel
great distances from eruptive vents, form gently sloping shield volcanoes such
as Hawaii's Mauna Loa (fig. 5).

This system is part of a long, diffuse continental
transform plate boundary that accounts for about
75 percent of the motion between the Pacific and

Jakobsson, Martin, Grantz, Arthur, Kristoffersen, Yngve, and Macnab, Ron, 2003, Physiographic
provinces of the Arctic Ocean seafloor: Geological Society of America Bulletin, v. 115, p. 1443-1455.

{fig. 4). Natural or manmade features also
can be shifted by slow fault movements

Joltll?sit::i::’ ali;a%rhiii?yg:%eizﬁgzalr?lzzlrig I;f:fﬁ;?::;fj ; ;r;l"lglf%k;;_g;;table Grliioricll Ll . Intraplate volcanism also occurs in cc?ntinental interiors. For example, the _ C.rfz_iter formation by impact of extraterres’qia}- ? i , Figure 3.—Sequential cross sections illustrating Eﬁ&g?ﬁgcjoziagsigi?nggh?)' USGS imagery N e gf;gllliag,:sesf))éi;?:ie\;:tiaga?hiﬁ?{zz

Kearey, Philip, and Vine, F.dJ., 1996, Global tectonics (2d ed.): Oxford, Blackwell Science Ltd., 333 p. S e e e s g Veeng (alesiee: Neiterel Pui) bes etz iz signficantpfoses °“f.the rody moons 0 p;a“ : e - , ' the formation of  simple, small crater by ’ | :

Kleinrock, M.C., and Humphris, S.E., 1996, Structural asymmetry of the TAG rift valley; Evidence from a Ni‘thau Kaua‘i O‘ahu Moloka'i Maui Hawai'i e s e.rL.lptlons (g6l et assocllated WIt-h caldera collapse-~during xﬂz;tr?‘::sc}:gg %r:h Eagit ei?zo mlelg?nﬂ'sll:af:ll%fli:::t 2: extraterréss;t.rii)l- ff: nci)ugté' forrrtlin‘ giant | = o 3 ’ : f gzgi;l;nkz?%91\38()11%133;1?&52:%2;;1? Figure 4.—Rows of orange trees were offset 6 m by e 1 Figure 5.—Aerial view of the
near-bottom survey for episodic spreading: Geophysical Research Letters, v. 23, no. 23, p. 3439-3442. (5.6-4.9 Ma) (3.4 Ma) (1.8 Ma) (1.3 Ma) (0.7-0 Ma) MaunaKLif;auea the past 2 million years. When an explosive eruption expels magma from a e 3 e 93 ' - ; sudden slip on the Imperial fault (part of the San -8 3 stream channel of Wallace

Andreas fault system) during the M7.1 Imperial Valley : ‘ ‘ Creek offset by San
earthquake of 1940. Photograph by John S. Shelton, Andreas fault motion on the
1959, used with permission. X & ; | Carrizo Plain, central

) E N California. The fault shifted
the creek on the North
America plate to the right
by 130 m over a period of
several thousand years. A
single great earthquake in
1857 caused about 9.5 m
of this motion. Photograph
from Collier (1999), used
with permission.

impact craters, is (fortunately) infrequent. Evidence for large prehistoric impacts includes not L ' Cambridge University Press.
only preserved crater shape and ejecta, but also mineralogic and structural changes caused by j
hlgh-pre.ssure' shock waves. Nearly 170 terrestrial c.ratgrs have so far been discovered, and they | e it oMo T % Ciradlar auline of
range widely in age (2,000 Ma to A.D. 1947). Their diameters can reach 300 km, and even Her the crater is indicated by dashed lines. A, View from
larger craters may have been eroded away or covered by younger rocks. y . | space of the shallow (3- to 5-m-deep), subtle trough

One of the best-known and well-preserved craters is the Barringer (Meteor) Crater in S N——— expressing the southern rim of the crater, which is
Arizona, which was formed about 50,000 years ago (fig. 2). The incoming object is estimated / ; deeply buried by younger sediments. The Chicxulub

2 : 1 impact event caused widespread extinctions 65 million
to have measured about 50 m across and to have traveled at 65,000 km/hr (fig. 3). An impact
2 y years ago. Image from NASA, no. PIA03379.

crater this small might be formed somewhere on Earth every 1,000 years on average, whereas b B, Gravity-gradient map of the same area. Gravity
a 100-km-diameter crater might be produced once every 25 to 50 million years. E measurements, processed to emphasize edges of dense

Most scientists—after lively debate—now accept the 1980 hypothesis that a bolide, ~10 km ' - ~ rock bodies, reveal the multi-ring structure characteristic

Seamount - ) & S subsurface reservoir, the overlying volcano may collapse into the resulting void,
earthquake and engineering Seismology Part A: Boston, Academic Press, 933 p sl B s S O ,,._‘_,7_ R Fol 7 leaVing a shallow depression, or Caldera’ in place of the more familiar Conically
Luhr, J.F., ed., 2003, Earth: New York, Dorling Kindersley, 520 p ’ . < PACIFIC PLATE e shaped Volcafm& Ash-fallfdeposits from these huge efruptions have been mapped
,J.F., ed., ; : , orie : o : : : T — : , thousands of kilometers from their source calderas {fig. 6). The Yellowstone
Pal_rger, A.R'.[E 19§ﬂ?,7The Ear;h hasta] {nst%ry.' Boulderi Colo., Geological Society of America, 20-minute Asthenosphere “?:;:\S\e &“\"‘“‘\‘3\:;\ ‘ volcanic plateau lies at the northeastern end of the Snake River Plain, a zone of
videocassette with 7-p. supplemental teacher's manual. logicall (<17 Ma) volcanism that slash the Rock
S : ; _ - geologically young (< a) volcanism that slashes across the Rocky
Rci;:lfem,éz%n, 2001, Origins; The evolution of continents, oceans, and life: Tulsa, University of Oklahoma . Mountains, a mountain belt composed primarily of much older rocks (2,790-65
ress, p. Ma). The geologic ages of the volcanic centers of the Snake River Plain are
Scotese, C.R., 2091, Palef)geography, v. 1 of Atlas of Earth history (PALEOMAP Project): Arlington, progressively older to the southwest (fig. 7). This age progression has been
Tex., 52 p. (Available online at http://www.scotese.com/ ) interpreted as resulting from volcanism associated with the passage of the North

Siebert, Lee, and Simkin, Tom, 2002-, Volcanoes of the world; An illustrated catalog of Holocene R e et e ey e R A i, ‘ America plate over a Yellowstone hotspot, presumably sustained by a long- Y TR PP S

Lee, W.H.K., Kanamori, Hiroo, Jennings, P.C., and Kisslinger, Carl, eds., International handbook of
Figure 4.—Chicxulub impact crater, on the northern

Lithos};here

The Hawaiian Hotspot

volcanoes and their eruptions: Smithsonian Institution, Global Volcanism Program Digital Information showing the inferred mantle plume that has sustained the lived, relatively fixed, mantle plume. However, we emphasize that commonly Figure 8.—Historic (1872) photograph, taken during in diameter, impacted Earth 65 million years ago and was largely responsible for abrupt 2 - ] °lf] la"gg imF:jaC’f C"%tet‘:;- Yellowktgot;(;d CO}OS?fgnqicate ¥e RN L~ A ?

oz VS, (rrilkble etine av ity i e enna sl ety irale /| Hawaiian hotspot on the overriding Pacific plate. The geologic held ideas such as rooting of thermal plumes deep in the mantle (>200 km) are the Hayden Survey, showing a towering fountain of changes in the fossil record. These changes, including the extinction of dinosaurs, define the e Wi Ao T it il oot i) ; B = : 3
ngur-dsson, Haraldur, .ed., 2000, Encyclopedia of volcanoes: San Diego, Ac.ademic. Press, 1417 p. ?geﬂi of thr?h OIdetSt volc§110 ctm ‘_"t;‘:l&qid;"? aret progrle?sivcte}l]y older topics of ongoing scientific debate. Yellowstone's most recent volcanic activity water and steam jetting from Old Faithful Geyser in a boundary.bej[ween the. Cre.taceous and Tertiary Period§ (common!y .called tl'.le "K/T Boundary") R L Wee s flow et 1 : —6;‘ % 'f"e;d i e ‘t.' S F i }:‘ e 3',’
Simkin, Tom, and Sle.bert, Lee, 1994, Volcanoes of the w.orld; .A reglon?l directory, gazetteer, and o?( thz ;c; wa\;iI::l X (i::-l)n:i: rer? e\:/(l) ¢ Se:m(c: u?[oc }rlr;ion eViZ‘l:v feogg:é occurred about 70,000 years ago, but ground-deformation measurements region of Wyoming later designated as the first U.S. of geologic time (see timeline below). The crater resulting from this impact is thought to be the e = rock Tactires iU AT oL el ¥ subsuriace lg:ﬂr:in - ni(;weoca ;sed %wr:hea;:;?tr;:eg a?(e <;fe(;9l(;l6 asr:n c:li:(i:rlf(t:)c; csk C;‘g’lé;‘ifi L 7 4 £33

chronology of volcanism during the last 10,000 years: Phoenix, Ariz., Geoscience Press, 368 p. by Joel E. Robinsong(US Gg). . prep indicate that the caldera is restless. The dynamics of its still-hot subsurface E:i??ilfpzktgizﬁzme)' Ictzrﬂ?:lf}(g g‘;gs;ftl;l now-buried 170-km-wide Chicxulub structure in Mexico (fig. 4). This impact involved a huge ‘ ay e TNV EENTENSY  crater rim. Modified from Geological Survey of Canada, approagching fg' - wefe ultimatel?/ g damagi.ng PRl alging itsclf. Photogtaphty ‘
Smith, W.H.F., and Sandwell, D.T., 1997, Global sea floor topography from satellite altimetry and ship ‘ magmatic system are evident from its present-day spectacular expressions of s visitgr& photograph%‘; William Henry Jackson. energy release, equivalent to that of an M13 earthquake, dwarfing the world's largest historical o~ \ Jiookm - Natural Resources Canada, image on Web site Armold Genthe {American 1869-1942); silver gelatin print; image 200 x 329 mm (77/s x 121/ in). ™

(] | o
depth soundings: Science, v. 277, p. 1957-1962. MO O SRS geothermal energy, including Earth's most active geyser system (fig. 8). earthquake (M9.5, Chile, 1960). . Viies = 24|, http://miac.ugac.ca/
Stein, Seth, and Wysession, Michael, 2003, An introduction to seismology, earthquakes, and Earth

structure: Malden, Mass., Blackwell Science, 498 p.

Courtesy of Fine Arts Museums of San Francisco, Museum Collection A046248.

EARTH'S LONG LIFE HISTORY

— Middle Devonian , Late Carboniferous Middle Triassic = Late Jurassic : — K/T Boundary - Last Glacial Maximu . 7 Future World?
The maps to the right show one scientific EXPLANATION i ///'/( : A il s " Aasta vl nols . - T\ A 4 ‘ *' e '

interpretation of Earth's many changes—in loca- g — G ; i, N k. North LAU/',“‘S,!{,‘,OP, Ching i : ; o . O
tions of continents, sea level, and global climate— Y Qi , <A ' . Turkey ran  Tibet ©"* t NoRTH & x - ormia “Amarica i . &g:hsm
through geologic time. These maps, together with Australia South Chin-(l, North China - South ot - Chicxulu& s e : N L [ 4 g Baluks

) J " X Ice covered \ ¢ ' Malaya # : China _— Atlantic b2y OCEAN N - ” 2 indoshin California
the geologic timeline below, emphasize that the / / foaty B U /i Turkey / b < e BB @& ey

$ 7 ¥ ¥ 5
dynamic processes illustrated on the main map and ‘ BRcrth Ameiic ‘ . R L T FOFE N iy Africa f ~ el PAGIFIC
elaborated above have been operating for hundreds z ' - P e Rocky Mts. B Lok Arabia G Arabia . INDIAN g
o1: o . . / Y 7 § Appalachian Mts. . : alaya _ India \ : OCEAN lia \
of millions of years and will continue far into the c  iote bound Baltica * Africa  Europe L N 7 1P Andes Mts. 1§ “ ™y -
i fs . ——— Convergent plate boundary South e 4 - WANA" india i Andes Mts. \ y ,."u
f}lturl'e. l\élaps : mOdlfle?' 1;rom Scotese (13001), | Magnetic polarity—Normal 2 ANA America = rotica \ B, ncastra ,)' . p— " > O
timeline data from multiple sources (see http:// izl e (Gl G5 s rica - , , i Y
www.minerals.si.edu/tdpmap ). inset I, fig.7, for discussion S il g South America Antarctica Antarctica a— —— e
458 Ma 390 Ma 306 Ma 237 Ma 152 Ma 66 Ma 0.018 Ma (18,000 years ago) +50 Ma

Oldest shelled organisms; trilobites followed by other invertebrates [First vertebrates (jawless fish)? { First land plants |—First jawed fish First wingless msects] |—Iapetus Ocean (ancestral Atlantic) closed {First amphibians; first seed plants { First reptiles |—Pangea break-up starts . II\_/Iassive biotic extinction irst dinosaurs |—Early mammals [Beginning of rifting between North America and Africa

z xtinc eparation of India from Australia-Antarctica; first flowering plants lia separates First primates [ChiCXU|Ub; ia first collides with Asia Main Himalavan1 First HominidS'| Panama closes; Arctic glaciation begins
" luding last trilobites) 1 {
S —

Olde OCKk Know O .
[modern sea floor r First placental mammals Antarctica last dinosaurs rst horses mountain building Red Sea opens- rHomo sapiens (modern) 50 Ma
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550 million years ago (Ma) CAMBRIAN 500 | ORDOVICIAN 450 | . SILURIAN 400 DEVONIAN | 350 CARBONIFEROQUS PERMIAN 250 TRIASSIC 200 RA CRETACEOUS 100 I \ 1 TERTIARY QUATERNARY in the future

|—Birth of Solar System, 4,666+2 Ma; accretion over first ~8 Ma, Earth formed over first ~120 Ma est known ro [First stromatolites rCooIing of lunar mantle ends voluminous volcanism on Moon End of oxygen-poor atmosphere [ Peak of banded iron formation (95 percent are 1,300 to 2,500 Ma [ Oldest megascopic algae Formation of Rodinia, oldest [Youngest lunar volcanism(?) [Explosion of multicellular life g:f'rgoscekal%noo“rm from Homo sapiens (modern)
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See expanded timeline above




