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Abstract: It is now fairly well established that physiological methyl group deficiency and abnormal 
DNA methylation are involved in the etiology of several pathological processes. The proceedings of a 
recent meeting on this subject held at the NIH campus in Bethesda, MD, the "Trans-HHS Workshop: 
Diet, DNA Methylation Processes and Health", have recently been described [Journal of Nutrition, 132 
(8S):2329S-2484S, 2002]. The pathologies considered at the workshop included: cancer, atheroscle­
rosis, birth defects, aging, diabetes and pancreatic toxicity, and hepatotoxicity. Two major causes of 
the diseases related to methyl group insufficiency were considered at this conference: dietary defi­
ciency and genetic polymorphism. A third prospective cause, chemicals, was not treated in depth. 
The purpose of this article is to explore the evidence that exogenous chemicals, like dietary imbal­
ances and genetic defects, may produce the abnormal methylation processes linked to the etiology of 
disease. The pathologies considered are cancer, pancreatic toxicity and diabetes, atherosclerosis, 
birth defects, and neurotoxicity. Four categories of toxic chemicals are considered: the antimetab­
olites of the methyl donors, the anticonvulsants, polyhalogenated compounds, and metals. The re­
sults indicate that a number of such agents appear to exert their pathological effects, at least in part, 
through abnormal methylation processes.       

Introduction	 mal DNA methylation in various toxicity and diabetes (6,7), athero­
physiological conditions involved in sclerosis (8), aging (9,10), birth de­

     In August 2001, a meeting enti- growth, normal development and fects (11-13), and neurological dis­
tled, “Trans-HHS Workshop: Diet, differentiation, and disease preven- turbances (14,15). Many of these 
DNA Methylation Processes and tion. The underlying premise of the pathologies could be induced by 
Health” was held at the NIH, which meeting was that abnormal meth- dietary deficiencies (16,17), genetic 
explored the relation between ab- ylation was a common feature of alterations (18-20) and chemicals 
normal methylation and several dis- many diseases and that derange- (3,21,22) . The Workshop was prin­
ease processes (1). It considered in ment in methylation reactions could cipally focused on the nutritional 
some depth the role of dietary fac- foster the development of several causation of disease but did con-
tors in DNA methylation processes diseases by similar or common sider, to a lesser extent, genetic al-
and attempted to delineate the mechanisms. These pathologies 

(Continued on page 2) 
causes and mechanisms of abnor- included cancer (2-5), pancreatic 
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(Continued from page 1) 
terations (18-20)  especially in con­
junction with dietary imbalances 
(18). Because of the Workshop's 
focus on diet, the chemical causa­
tion of methyl deficiency and of the 
diseases associated with abnormal 
methylation processes did not re­
ceive much emphasis (1). However, 
three excellent reviews (2,23,24) 
have recently described the possi­
ble role of abnormal DNA methyla­
tion as a major factor in chemical 
carcinogenesis by epigenetic 
agents. The present review at­
tempts to summarize evidence that 
specific categories of epigenetic 
carcinogens exert a pattern of 
pathological effects caused, at least 
in part, by abnormal methyl group 
metabolism and abnormal DNA 
methylation.
     At the core of any consideration 

of abnormal methyl metabolism in 
the etiology of disease are the com­
plex metabolic interrelations be­
tween the various sources and uses 
of the methyl intermediates (Figure 
1). While all such schema are of 
necessity incomplete, the main die­
tary and metabolic features relative 
to disease etiology can be illus­
trated. There are four major dietary 
sources of methyl groups (Figure 
1). Two, methionine and choline, 
provide preformed methyl groups; 
two, the vitamins B12 and folic acid, 
are used in the de novo synthesis of 
methyl groups in vivo (Figure 1). 
Deficiencies of one or more of these 
four essential nutrients have been 
shown to exert pathologic effects in 
humans and/or experimental ani­
mals (1). Such pathologies include: 
cancer (25,26), atherosclerosis 
(27,28), pancreatic toxicity and dia-

betes (29,30), birth defects (31,32), 
neurological disturbances (33,34) 
and abnormal neurological develop­
ment (33,34), and hepatotoxicity 
(35,36). While each of these nutri­
ents exerts important roles other 
than those listed in Figure 1, they do 
share one metabolic feature in com­
mon: the biosynthesis of S­
adenosylmethionine (SAM). SAM is 
the body's chief physiological methyl 
group donor. It is used to methylate 
a host of substrates, including pro­
teins, phospholipids, RNA, and DNA 
(37-39). DNA is the macromolecule 
on which most attention is focused 
in studies on abnormal methylation 
processes and disease. The de-
methylated metabolic product of 
SAM, S-adenosylhomocysteine 
(SAH) is produced in all SAM-
dependent methylations and is a 

(Continued on page 3) 
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Figure 1. The metabolism of methionine and related compounds. 
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(Continued from page 2) 
strong competitive inhibitor of all 
methylases studied (38,40). Two 
other compounds deserve special 
mention because of their close as­
sociation with SAM and with meth­
ylation reactions: homocysteine 
(HCys) and vitamin B6. In humans, 
hyperhomocysteinemia has long 
been associated with the develop­
ment of atherosclerosis (41). In re­
cent studies, homocysteinemia has 
been associated with the develop­
ment both of birth defects (42,43) 
and of cancer (44). The accumula­
tion of HCys in blood can result 
from nutritional deficiencies of folate 
and vitamin B12, as well as of vita­
min B6 (45-49). The effect of B6 on 
HCys is thought to be due to its role 
as a coenzyme in the enzyme cys­
tathionine ß synthetase (CBS) 
(46,50). Hence a deficiency of vita­
min B6 is becoming increasingly as­
sociated with high risks of athero­
sclerosis (49,51,52), cancer (53,54), 
and birth defects (55,56). While 

several mechanisms have been 
brought forth to explain the patho­
logical effects of HCys (57,58), it is 
its role as a source of SAH that has 
received most of the recent atten­
tion (30,59,60). By reversing the 
normal direction of the enzyme SAH 
hydrolase, high levels of HCys may 
produce high intracellular levels of 
SAH and, consequently, a hypo-
methylating environment (60-62).  
     Alterations in the levels or activi­
ties of enzymes associated with the 
formation and utilization of SAM 
have also exerted pathologic effects 
resembling those produced by 
methyl group insufficiency caused 
by methyl-deficient diets (Table I). 
For example, alterations in the poly­
morphism or expression of the en­
zyme methylenetetrahydrofolate re­
ductase (MTHFR), the enzyme ac­
tually responsible for the formation 
of labile methyl groups in vivo 
(Figure 1) have been associated 
with increased risk of cancer 
(depending upon tissue and dietary 
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Table I  
Associations between disease and methyl  

insufficiency caused by diet or enzyme defects  

 

PARAMETER  

 

AGENTS  

DIET  ENZYME  
DEFECT  

Disease  

Cancer  + (2-5,16,25,53,54)  + (4,18,63,68-70)

Pancreatic toxicity  + (6,29)  + (66,67)  

Atherosclerosis  + (8,26-28)  + (40,41,79)  

Birth defects  + (11,12,31,32,55,56)  + (42,64,65)  

Neurotoxicity  + (14,15,33,34)  + (73)  

Biochemical alterations  

SAM/SAH  + (3,18,19,33,34)  + (19,20,30,73,74)  

Homocysteine  + (13,18,19,44-46,48,51,52,80,81)  + (19,79)  

DNA methylation  + (3,11,16,17,19)  + (19,20)  

MTase  + (82)  

factors) (4,18,63) and birth defects 
(64,65) . Abnormal MTHFR activity 
in diabetics has been associated 
with the more advanced stages of 
the disease rather than with its in­
ception (30,66,67). The enzyme 
catechol -O -methy l t ransferase 
(COMT) uses SAM to methylate 
catechols, including the estrogen 
metabolites 2- and 4-hydroxy­
estradiol. In most studies, the low 
activity polymorphic form of COMT 
(met/met) is associated with in­
creased risk of breast cancer for­
mation compared to that observed 
with the high activity polymorphic 
form of this enzyme (val/val) (68­
70). However, in some populations, 
part icular ly post-menopausal 
women with a low body mass index 
(BMI), the low activity polymorph is 
associated with decreased risk of 
developing breast cancer (71,72). 
One hypothesis suggested for these 
observations is that in the sensitive 
women the less active form of the 
enzyme allows more of the tumori­
genic estrogens to remain in circu­
lation, while in the protected 
women, the less active form of 
COMT places less of a drain on the 
available SAM. Finally, diminished 
activity of methionine adenosyl­
transferase, the enzyme that actu­
ally synthesizes SAM, is associated 
both with demyelination of nervous 
tissue in man (73) and with hepato­
toxicity in rodents (74).
     Because of time constraints, the 
recent meeting "Trans-HHS Work­
shop: Diet, DNA Methylation Proc­
esses and Health" was unable to 
adequately consider chemicals as 
prospective causes of the methyl 
deficiency-related diseases. This 
was a bit of a paradox, for early 
studies utilizing the chronic admini­
stration of toxic chemicals, particu­
larly carcinogens, were among the 
first to link an insufficiency of "labile" 
methyl groups with multiple patholo­
gies (75,76). Particularly notewor­
thy in this regard were the synergis­
tic hepatotoxic and hepatocarcino­
genic effects by aflatoxin and cho­
line deficiency (75) and the hepato­
toxicity, hepatocarcinogenicity and 

(Continued on page 4) 
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(Continued from page 3)  
pancreatotoxicity in rats of the 
methionine antagonist ethionine 
(76). Interestingly, in 1953 J. A. and  
E. C. Miller suggested, "The Methyl  
Deficiency Hypothesis" as a possi­
ble explanation for the carcinogenic  
activity of the aminoazo dye hepato­
carc inogen N-,N-dimethyl -4­
aminoazobenzene (77). Twenty 
years later, direct biochemical evi­
dence that physiological methyl in­
sufficiency resulted from the chronic 
feeding of a hepatocarcinogen was  
published (78). 
     The current evidence, from the  
Bethesda Workshop as well as from 
other sources, shows that five bio­
chemical parameters related to 
methylation: SAM, SAH, HCys, 
DNA, and gene methylation may be  
reasonably used to assess overall  
methylation status  in vivo and in  
particular organs (1). The major dis­
eases linked to abnormal methyla­
tion reactions and treated at the Be­
thesda Workshop were: cancer (2­
5,25), atherosclerosis (8), pancre­
atic toxicity and diabetes (6,7), birth  
defects (11-13), neurological distur­
bances and abnormal neurological  
development (14,15), hepatotoxicity  
(21,22), and aging (9,10). The effect 
of diet and genetic alterations on  
methylation status and on five re­
lated pathologies is summarized in  
Table I. The aim of this manuscript  
is to provide evidence that specific  
categories of chemicals cause the  
same pathologies that result from  
an insufficient supply of physiologi­
cal methyl groups produced by die­
tary deficiencies or by enzymatic  
changes resulting from genetic poly­
morphisms or gene expression. 
Since the body of literature in this  
area is both broad and diffuse,  
some practical limits had to  be set  
on the agents and the parameters  
to be evaluated. The major catego­
ries of chemicals to be considered  
are 1) the antimetabolites of the  
methylation reactions, 2) the anti-
convulsants, 3) the polyhalogenated 
organics, and 4) the metals. As was 
described above with the dietary  
and genetic causes of abnormal 
methyl group metabolism, the bio-

 
 

 
 

 

logical endpoints to be focused 
upon will be cancer, pancreatic tox­
icity and diabetes, atherosclerosis, 
birth defects, and neurotoxicity. He­
patotoxicity has been excluded as a 
separate pathologic category since 
the hepatotoxic chemicals whose 
effects on methyl metabolism have 
been investigated are almost in­
variably hepatocarcinogens as well. 
Aging has also been excluded as a 
separate category because, apart 
from the five pathology endpoints 
that will be discussed, there are few 
studies linking the chemical prolon­
gation of life with improvements in 
methylation status. The biochemical 
parameters altered by the chemi­
cals will include SAM and SAH, 
HCys, DNA methylation, and DNA 
methyltransferase (MTase). Except 
in the cases of cancer and aging, 
there are relatively few studies in 
which alterations in methyl metabo­
lism and DNA methylation have 
been examined in the target tissue. 
Hence, the general, rather than the 
tissue-specific, effects of toxic 
agents on methylation reactions will 
often be considered. 

Section II:
 
The Antimetabolites 


Ever since the early studies on 
vitamins, antimetabolites have dem­
onstrated their usefulness in deter­
mining the essentiality and mecha­
nism of action of various nutrients 
(83). Later (84,85), antimetabolites 
of specific nutrients and their me­
tabolites found great applicability as 
chemotherapeutic agents against 
cancer. The pathological and bio­
chemical effects of four antimetab­
olites, ethionine, azacytidine, 
methotrexate (MTX), and fluorode­
oxyuridine (FUDR), which inhibit the 
formation and/or use of physiologi­
cal methyl groups, often resemble 
those associated with methyl group 
deficiencies produced by dietary de­
ficiency or enzyme polymorphisms 
(Table II). Of these, it is the methio­
nine antagonist ethionine whose re­
ported effects appear to resemble 
most closely those produced by a 
dietary methyl group deficiency 

(Table II). Ethionine is a good hepa­
tocarcinogen in both rats and mice 
(76,86-88), and its carcinogenic ac­
tivity is inhibited by methionine (76) 
and enhanced by dietary methyl 
group deficiency (86). Ethionine is 
also toxic to the pancreas of rats 
and other species (76,89) and is a 
part of a regimen that results in the 
hepatization of pancreatic acinar 
cells in hamsters (90). Ethionine 
pancreatotoxicity in rats is marked 
by destruction of the exocrine pan­
creas, is enhanced by choline defi­
ciency, and can be prevented by 
methionine (89). Ethionine treat­
ment has also caused birth anoma­
lies in rats and chicks (76,91). 
Ethionine is an effective competitive 
inhibitor of methionine in the synthe­
sis of SAM (76,92,93), especially in 
the liver. It produces a hypometh­
ylating environment in the liver, both 
by reducing the hepatic contents of 
SAM, as well as by the accumula­
tion of the ethyl analogue of SAM, 
S - adenosy le th i on ine  (SAE) 
(76,92,93). SAE is an effective 
inhibitor of several SAM-dependent 
methylases, including MTase (94). 
As expected, both the acute (94) 
and the chronic (95,96) treatment of 
rats with ethionine results in global 
DNA hypomethylation. SAE, like 
ethionine, transforms rat liver 
epithelial cells in culture (97). The 
administration of ethionine has also 
resulted in increased hepatic levels 
of HCys (93).
     Both in vivo and in cell culture, 
azacytidine is an excellent DNA hy­
pomethylating agent (Table II) (98­
101). Azacytidine is incorporated 
into DNA as an analogue of cytidine 
and, through its subsequent chemi­
cal interaction with MTase, prevents 
the normal methylation of DNA 
(99,101). Azacytidine has exhibited 
tumorigenic activity in several ani­
mal studies (Table II) (102-105). It 
has also shown cell transforming 
activity in cell culture (105-108). 
Azacytidine is teratogenic (Table II) 
and has produced neural tube de­
fects in developing rat embryos in 
vitro (109,110). While we could find 
no evidence of any direct effect of 

(Continued on page 5) 
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TABLE II  
THE ANTIMETABOLITES  

PARAMETER AGENTS 

ETHIONINE AZACYTIDINE MTX FUDR 

Disease 

Cancer + (76,86-88) + (102-105) +/- (111-114) +/- (141-145) 

Pancreatic toxicity + (76,89,90) +/- (115-117) 

Atherosclerosis +/- (118,119) 

Birth defects  + (76,91) + (105,109,110) + (120-122) + (147-149) 

Neurotoxicity +/- (124-131) + (152-154) 

Biochemical alterations 

SAM/SAH + (76,92,93) + (47,127,128,133) 

Homocysteine + (93) + (134-136,138) 

DNA methylation + (94-96) + (98-100,105) +/- (137-140) - (140) 

MTase + (94) + (99,102) 

(Continued from page 4) 
azacytidine on SAM, SAH or HCys, 
it did reverse the chemopreventive 
effects of SAM during the early 
stages of liver tumor promotion by 
phenobarbital in rats (100). 

Unlike ethionine and azacytidine, 
the one-carbon antimetabolites 
MTX and FUDR have not been 
shown to inhibit SAM-related en­
zymes. Their pattern of biological 
effects might thus be expected to 
differ from those of the former two 
antimetabolites. This is somewhat 
the case with MTX. MTX is a very 
well established chemotherapeutic 
drug, which exerts its activity princi­
pally by the inhibition of the enzyme 
dihydrofolate reductase leading to a 
deficiency of reduced folate inter­
mediates (84). MTX has not shown 
marked carcinogenicity either in hu­
mans or in experimental animals 
(Table II). IARC considers the evi­
dence for carcinogenicity both to­
wards humans and towards experi­
mental animals to be inadequate 
(111,112). In experimental studies, 
MTX appeared to exert co­

carcinogenic activity towards the 
buccal pouches of hamsters treated 
with benzpyrene (113) and towards 
the mammary glands of male rats 
receiving procarbazine (114). In one 
study, MTX has caused, significant 
but moderate, pancreatic toxicity in 
mice, as evidenced by fatty meta­
morphosis and diminished levels of 
amylase, lipase and other enzymes; 
but other studies showed no clear 
evidence of such toxicity either in 
humans or in rats (115-117). Simi­
larly, in its effects on heart disease, 
methotrexate treatment caused 
varying effects: In cholesterol-fed 
rabbits, MTX treatment protected 
against the formation of aortic 
artherosclerotic plaques, but in pa­
tients with rheumatoid arthritis, it 
increased cardiovascular comorbity 
associated with atherosclerosis 
(118,119) (Table I). MTX is a well-
known teratogen in both humans 
and experimental animals (120-122) 
(Table II), with cleft palates as a 
major presenting lesion. In addition, 
MTX enhanced the formation of 
neural tube defects (NTDs) in the 

embryos of pregnant mice treated  
with valproic acid (123). MTX ther­
apy exerts significant effects on the  
nervous system (Table II), but these 
vary with the disease treated and  
the administration  protocols used  
(124-131). When used to treat  
acute lymphocytic leukemia or non­
Hodgkin’s lymphoma, MTX caused  
neurologic problems, neuropsy­
chological deficits, white matter  
changes in the brain, leukoen­
cephalopathy, and demyelination  
(125-129). However, MTX has been 
used with some benefit to treat two  
other disorders associated with de­
myelination: multiple sclerosis (MS)  
(130) and chronic inflammatory de­
myelinating polyneuropathy (131).  
     In one study (127), the leukoen­
cephalopathy caused by MTX treat­
ment of ALL patients could be asso­
ciated with decreased SAM levels,  
increased SAH and decreased  
SAM/SAH ratios in the cerebrospi­
nal fluid (CSF). In another study  
(128), the demyelination produced  
by MTX was accompanied by low  

(Continued on page 6)  
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(Continued from page 5) 
levels of SAM, methionine and 5­
methyltetrahydrofolic acid in the 
CSF. Consistent with the effects of 
MTX on SAM in the CSF and demy­
elination is the observation that 
treatment with the methyl donors 
methionine, betaine and SAM in­
duced remyelination in patients with 
inborn errors of folate and one-
carbon metabolism (132). In addi­
tion to the clinical studies described, 
MTX has also altered the SAM/SAH 
ratios in the livers of rats and mice 
(47,133). Increases in plasma and 
CSF levels of HCys have been de­
scribed for patients treated with high 
doses of MTX (134-136). As are its 
effects on some other parameters, 
the effects of MTX on DNA methyla­
tion are mixed (Table II). MTX treat­
ment decreased the extent of DNA 
methylation in the brains and livers 
of rats (137,138). On the other 
hand, MTX reversed the hypometh­
ylation seen in the peripheral blood 
mononuclear cells of patients with 
arthritis and, like other chemothera-

peutic inhibitors of DNA synthesis, 
induced DNA hypermethylation in 
cells (139,140). 
     FUDR is an analogue of deoxy­
uridine that exerts its chemothera­
peutic activity through the inhibition 
by its metabolite FdUMP of the en­
zyme thymidylate synthetase (85). 
Cell transformation by FUDR has 
been described with both hamster 
and mouse fibroblast cells in culture 
(141,142), but no solid studies ap­
pear to have been published dem­
onstrating the carcinogenic activity 
of this compound in vivo. An early 
report with newborn Swiss mice ap­
peared to show the production by 
FUDR of lung adenomas in this 
strain (143), but a larger study using 
lung adenoma formation in Strain A 
mice failed to demonstrate signifi­
cant tumorigenicity by this com­
pound (144). FUDR enhanced skin 
tumor formation in mice treated with 
3-methylcholanthrene (145), but this 
experiment did not use control 
groups treated with FUDR only. We 
could find no significant effect of 

FUDR on pancreatic changes or on 
atherosclerosis. It does, however, 
exhibit significant teratogenic activ­
ity in rats, with cleft palates being 
among the major anomalies de­
scribed (Table II) (146-149). The 
effects of FUDR on SAM, SAH and 
HCys levels either in animals or in 
cell culture do not appear to have 
been widely investigated. However, 
like MTX and several other cancer 
chemotherapy agents, FUDR, at 
cytotoxic levels, caused hypermeth­
ylation of DNA in human cancer 
cells in culture (140).

 Very recent studies have de­
scribed another antimetabolite of 
methyl metabolism with carcino­
genic activity (150,151). The com­
pound is diethanolamine (DEA). 
DEA acts as an antagonist of cho­
line, and its chronic administration 
causes an increased incidence of 
liver cancer in B6C3F1 mice 
(150,151). The administration of 
DEA to mice for four weeks led to 
markedly diminished hepatic levels 

(Continued on page 7) 

TABLE III  
THE ANTICONVULSANTS  

PARAMETER AGENTS 
PHENOBARBITOL PHENYTOIN DIAZEPAM OTHER 

Disease 

Cancer + (157-160)  + (161,162) + (163,164) + (163,165) 

Pancreatic toxicity + (177,214,215) + (167) + (168-174) 

Atherosclerosis -/+ (178,179,181,182,184) -/+ (182,184) - (180) -/+ (181,182,184) 

Birth defects  + (185-188) + (185-187,189-191) + (186,187,192) + (161,185,186,188­
190,193,194) 

Neurotoxicity + (196-198) + (199) 

Biochemical alterations 

SAM/SAH + (200-202) + (202,203) + (204) + (193,205,206) 

Homocysteine + (155,209) + (155,208,209) + (208-210) 

DNA methylation + (201,211-213) + (205) 

MTase 
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(Continued from page 6) 
of the methyl intermediates choline, 
phosphocholine, and SAM, as well 
as to elevated levels of SAH (150). 
DEA may thus provide another tool 
in detailing the respective contribu­
tion of various methylation proc­
esses in the development of dis­
ease. 

Section III
 
The Anticonvulsants
 

Introduction and Cancer: After the 
antimetabolites of the methyl group 
donors, it is probably the anticonvul­
sants that constitute the category of 
agent whose correlation with methyl 
metabolism has been most widely 
investigated. The major reason for 
this is the widely recognized antago­
nism between the anticonvulsants 
and folic acid (155,156), which has 
often resulted in fetal abnormalities 
in epileptic mothers treated with an­
ticonvulsants. In addition, the anti-
convulsants, as a chemical class, 
have frequently been tested as po­
tential carcinogens or tumor pro­
moting agents (Table III) (157-166). 
In its assessment of the sporadic 
tumors arising in patients treated 
with one or more of the anticonvul­
sants, IARC had generally catego­
rized the information supporting the 
human carcinogenicity of these 
compounds as "inadequate" or 
"limited" (161,164). However, in 
standard animal carcinogenicity 
studies, a number of anticonvul­
sants of varying structures have 
demonstrated carcinogenic or liver 
tumor promoting activity in mice and 
rats (157-166). In fact, it was the 
use of phenobarbital as a tumor 
promoter that provided the first di­
rect experimental evidence of the 
applicability of the two-stage model 
of carcinogenesis in the rodent liver 
(166). Several studies since then 
have amply confirmed the tumori­
gencity of phenobarbital and of 
other anticonvulsants in rodents. 
Pancreatic toxicity and diabetes: 
Pancreatotoxic effects of the anti-
convulsants have been described in 
both humans and in experimental 
animals (Table III). Pancreatitis in 

epileptic patients has occasionally 
been observed following treatment  
with phenytoin (167), carbamaz­
epine (168-171) and valproic acid  
(172-174). Phenobarbital treatment  
of rats has been reported to dimin­
ish replication of the beta-islet cells  
(175) and to increase the levels of  
amylase and lipase in blood, signs  
of pancreatic injury (176). The com­
bination of KBr and phenobarbital to 
treat epileptic dogs has led to the  
formation of pancreatitis in this spe­
cies (177)  
Atherosclerosis:  With regard to  
the formation of heart disease and  
atherosclerosis, the anticonvulsants  
present a mixed picture (Table III).  
In most studies, both in humans  
and in experimental animals, ad­
ministration of anticonvulsants has  
resulted in an improved distribution  
of the lipids associated with athero­
sclerosis. Thus, phenobarbital treat­
ment increased the ratio of HDL  
cholesterol to total serum choles­
terol in human subjects and de­
creased the serum cholesterol lev­
els and the formation of atheromata 
in rabbits fed an atherogenic, cho­
lesterol-containing diet (178,179).  
Diazepam also protected against  
the formation of atherosclerotic le­
sions in roosters fed an atherogenic 
diet (180), while treatment of epilep­
tic children with valproic acid low­
ered the total cholesterol and the  
ratio of total cholesterol to HDL cho­
lesterol in blood (181). A mini-
review on the subject (182)  de­
scribed the improved ratios of HDL  
cholesterol to total cholesterol and  
noted the diminished mortality from  
coronary deaths in epileptic patients 
receiving long-term therapy with  
such anticonvulsants as phenobar­
bital, diphenylhydantoin and car­
bamazepine. On the other hand,  
anticonvulsant therapy has been  
shown to cause a rise in serum  
HCys levels (Table III) and to cause 
a rise in total cholesterol and/or LDL 
cholesterol in epileptic children  
(181). In addition, lipoprotein levels  
and carotid intimal thickness were  
reported to be elevated in epileptic  
patients receiving long-term medi­
cation with carbamazepine, pheny-

toin, phenobarbital or valproate 
(183,184). To quote Eiris et al. 
(181), "The literature on the effects 
of hepatic enzyme-inducing anti­
inflammatory drugs [AEDs] on se­
rum lipid profiles and, by extension, 
on risk of atherosclerosis, is thus 
contradictory." 
Birth defects: The teratogenic ac­
tivity of the anticonvulsants both in 
humans and in experimental ani­
mals is now well established (Table 
III) (155,185-195). The compounds 
exhibiting such activity include the 
three representative anticonvulsants 
listed in Table III: phenobarbital, 
phenytoin and diazepam, as well as 
carbamazepine and valproic acid. 
The principal developmental defects 
seen both in humans and in experi­
mental animals were NTDs 
(185,189,192,193), although con­
genital heart malformations and fa­
cial clefts were also associated with 
the ingestion of barbiturates and 
phenytoin during pregnancy (189). 
Neurotoxicity: In three small, sepa­
rate studies (196-198) neuropatho­
logic changes were seen in the 
brains of patients treated with 
phenytoin; in each case the 
changes were accompanied by re­
versible demyelination of the tissue. 
In another clinical study, the pro­
gression of a demyelinating disease 
was exacerbated by treatment with 
valproic acid (199). 
SAM/SAH: Several studies have 
demonstrated the direct effects of 
anticonvulsants on SAM and SAH in 
the target tissues of experimental 
animals (Table III) (193,200-206). 
The chronic administration of phe­
nobarbital under liver tumor-
promoting conditions, as well as the 
similar chronic administration of 
phenytoin both gave rise to de­
creased levels of SAM and/or SAM/ 
SAH ratios in the livers of rats 
(200,201,203). In addition, pheny­
toin, phenobarbital and diazepam 
appeared to prevent both the sei­
zures and the rise in SAM/SAH ra­
tios in the brains of rodents treated 
with the convulsant methionine sul­
foximine (202,204). The effects of 
valproic acid on the hepatic con­

(Continued on page 8) 
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TABLE IV  
POLYHALOGENATED COMPOUNDS  

PARAMETER AGENTS 
CCl4 DDT DIOXIN OTHER 

Disease 

Cancer  + (216,217)  + (158,231-236)  + (250-254)  + (278,296) 

Pancreatic toxicity  + (218,219)  + (241-243)  + (252,255,256,258)  + (279-281) 

Atherosclerosis  + (244)  + (262-264)  + (244,282,283) 

Birth defects  + (221,222)  + (246,247)  + (251,272-274)  + (284-287) 

Neurotoxicity  + (223-226)  + (232,248,249)  + (224,225,274-277)  + (285,288) 

Biochemical alterations 

SAM/SAH  + (227)  + (200) 

Homocysteine  + (227) 

DNA methylation  + (227) + (289-292) 

MTase + (293) 

(Continued from page 7) 
tents of SAM and SAH were varied 
(193,205,206). In one mouse study, 
an acute dose of valproate caused 
a sharp rise in the hepatic contents 
of SAM and SAH, along with a de­
crease in the SAM/SAH ratio (193). 
In a chronic study with pregnant 
rats, valproic acid administration led 
to altered hepatic contents of SAM 
and SAH, but no changes in the 
SAM/SAH ratios (205), while in an­
other chronic study, valproic acid 
treatment led to elevated hepatic 
contents of SAM (206). 
     There is much indirect evidence, 
as well, linking methylation status 
with the biological effects of the an­
ticonvulsants. The antagonism be­
tween folate and the anticonvul­
sants in humans has already been 
noted (155,156). Methionine and 
SAM have both been shown to in­
hibit liver tumor promotion by phe­
nobarbital in rodents (158-160). 
Phenytoin treatment of pregnant 
mice under a regime known to 
cause birth defects caused a signifi­
cant drop in the MTHFR activity in 

maternal liver (191,207). Treatment 
with folinic acid and a combination 
of vitamins B12 and B6 effectively 
inhibited the fetal malformation in­
duced by valproic acid in mice 
(195). Folate, but not exogenous 
SAM, protected against the terato­
genic effects of valproic acid in rats 
(194). Diminished levels of folate 
were seen in the plasma of mice 
treated with phenytoin (207) and in 
the livers of rats receiving valproate 
(206). Finally, the co-administration 
of the folate antimetabolite MTX en­
hanced the formation of neural tube 
defects produced in mice by val­
proic acid (123). 
Homocysteine: HCys is one me­
tabolite whose blood levels are fre­
quently elevated with anticonvulsant 
therapy (Table III) (155,208-210). In 
epileptic patients treated with phe­
nobarbital, phenytoin, primidone or 
carbamazepine, both the fasting 
and the post-methionine load levels 
of HCys in serum were elevated 
compared to those of control sub­
jects; correspondingly, their blood 
folate levels were depressed 

(155,209,210). Valproic acid did not 
exert any significant effect in these 
studies, either on plasma HCys or 
on blood folate levels. Finally, epi­
leptic patients who were homozy­
gous for the 677T mutation in the 
enzyme MTHFR exhibited high 
HCys levels if they received the an­
ticonvulsants phenytoin and car­
bamazepine, but not if they were 
treated with valproic acid (208). 
DNA methylation: Both global and 
gene-specific DNA hypomethylation 
has been observed in the livers of 
rats and mice during carcinogenesis 
or tumor promotion with phenobar­
bital (Table III) (201,211-213). Phe­
nobarbital treatment induced hypo-
methylation and increased expres­
sion of the hepatic oncogenes c-Ha­
ras and c-raf in mice and of c-myc, 
c -Ha-ras and c-K-ras in rats 
(201,211-213) . Similarly, the ad­
ministration of a teratogenic dose of 
valproic acid to pregnant Wistar rats 
resulted in DNA hypomethylation in 
the fetal livers (205). 

(Continued on page 9) 
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(Continued from page 8)  
Section IV 
 

The Polyhalogenated 
 
Compounds 
 

 
Carbon tetrachloride:   The poly-
halogenated compounds encom­
pass a large number of chemicals  
that exert carcinogenic and other  
toxic effects. Many produce one or  
more of the pathologic and bio­
chemical changes described in this  
review; three are described in Table 
IV: CCl4, DDT, and dioxin. Of these, 
the one exhibiting  the broadest  
range of effects is CCl4 (Table IV).  
CCl4 has exhibited hepatocarcino­
genic and liver tumor promoting ac­
tivity in rodents and has been asso­
ciated with increased risk of rectal  
cancer in humans (216,217). In rats 
it also causes pancreatic toxicity  
(Table IV) (218,219). While we did  
not find direct evidence of a causal  
association between CCl4 ingestion  
and atherosclerosis, the treatment  
of arteriosclerotic and nonarterio­
sclerotic rats with sufficient CCl4 to  
induce cirrhosis led to myocardial  
necrosis, calcification and a high  
incidence of atrial thrombi (220).  
The ingestion of CCl4 has been as­
sociated with the formation of birth  
defects in humans as well as in rats 
(Table IV). The contamination of  
public drinking water with CCl4 has  
been associated with several birth  
defects including: CNS defects,  
NTDs and oral cleft defects (221).  
CCl4 was shown to be teratogenic in 
rats, significantly decreasing the  
crown-rump length in the embryos  
of CCl4-treated dams (222). CCl4 is  
a neurointoxicant (223-226), and its  
activity has been suggested to oc­
cur through abnormal signal trans­
duction (226). The studies by the  
group of J. M. Mato (227) have pro­
vided convincing evidence that  
many of the hepatoxic effects of  
CCl4 occur through a deficiency of  
SAM (Table IV). Hepatotoxic doses 
of CCl4 have produced decreased  
hepatic levels of SAM and of SAM/ 
SAH ratios while increasing the  
blood levels of HCys, as well as the  
extent of DNA hypomethylation in  
the livers of rats (Table IV) (227). In 

addition, the exogenous provision of 
the physiological methyl donors 
SAM and betaine has inhibited the 
toxicity of CCl4 toward hepatocytes 
(228-230). 
DDT: Dichlorodiphenyltrichloro­
ethane (DDT), a halogenated hydro­
carbon, was introduced as an insec­
ticide in the 1940s. Its use was 
banned in the 1970s by most devel­
oped countries due to its persis­
tence in the environment, bioaccu­
mulation in alimentary chains, nega­
tive impact on wildlife, and pre­
sumed adverse effects on human 
health. Rodent studies showed a 
significant association between 
DDT administration and lymphoma, 
respiratory cancer, liver cancer, and 
estrogenic effects on mammary tis­
sue (158,231). The tumorigenic po­
tential of DDT, however, was negli­
gible after dosing for 15-22 years in 
nonhuman primates; few animals 
administered DDT developed tu­
mors, although hepatic and central 
nervous system toxicity was com­
monly observed (232). In humans, 
epidemiological studies have shown 
controversial results. In fact, the In­
ternational Agency for Research on 
Cancer qualified early studies as 
providing inadequate evidence for 
carcinogenicity in humans since 
several of them were deficient in 
satisfactory sample sizes and were 
not exempt from such confounding 
factors as multiple chemical expo­
sure, lifestyle factors, genetic, and 
other environmental influences 
(231,233-237). Recent investiga­
tions, in which those confounding 
factors were more controlled, have 
reported some risk of lymphoma, 
leukemia, pancreatic cancer, and 
breast cancer in humans exposed 
to DDT (237-241). Adipose levels of 
DDE, one of the main DDT metabo­
lites that persist for long periods in 
human tissues, have also been as­
sociated with high mortality rates for 
liver cancer, but not for pancreatic 
cancer, multiple myeloma, non-
Hodgkin lymphoma, breast cancer, 
and uterine cancer (240). High ex­
posure to or internal levels of DDT 
or its metabolites, as well as other 
chlorinated compounds, have been 

associated with such other diseases 
as diabetes, atherosclerosis, some 
neurological afflictions, and repro­
ductive alterations (Table IV) 
(232,242-249). For example, signifi­
cant amounts of DDT were found in 
the serum of patients suffering from 
slight to severe atherosclerotic le­
sions, compared to the correspond­
ing levels seen in normal subjects 
(244). Acute DDT intoxication 
causes tremor and hyperexcitability 
that may be related to its effects on 
the sodium channel (248). Low-
dose exposure to DDT during the 
'brain growth spurt', a period occur­
ring in the course of perinatal devel­
opment of the brain that can be criti­
cal for its normal maturation, can 
lead to irreversible changes in adult 
brain function in the mouse. Fur­
thermore, neonatal exposure to a 
low dose of a neurotoxic agent can 
lead to an increased susceptibility in 
adults to an agent having a similar 
neurotoxic action, resulting in addi­
tional behavioral disturbances and 
learning disabilities (249). 
     Recent reports have raised new 
concerns DDT may disrupt normal 
reproduction and development 
through inhibition of androgen re­
ceptor function (245). Normal devel­
opment of male genitalia in mam­
mals depends on androgen action. 
DDE was found to inhibit binding of 
androgen to its receptor and to 
block androgen action in rodents, 
yet studies in humans are still in­
conclusive (246). Although there are 
several indications that chronic ex­
posure to chlorinated compounds, 
such as polychlorinated biphenyls 
and dioxins, could induce diabetes 
mellitus, there is as yet no solid evi­
dence linking DDT exposure with 
this disease (242). Two studies 
have linked abnormal methyl group 
metabolism with liver tumor forma­
tion by DDT (158,200). The sub-
chronic feeding of the liver tumor 
DDT led to a 50% drop in the he­
patic levels of SAM (200), and this 
effect could be partially prevented 
by supplemental dietary methionine. 
In a long-term study, the same sup­
plementation by methionine signifi­

(Continued on page 10) 
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(Continued from page 9) 
cantly diminished the formation of 
metastatic hepatocellular carcino­
mas by DDT in diethylnitrosamine­
initiated rats (158). We were unable 
to find any publications describing 
the effects of chronic DDT admini­
stration on the serum levels of 
HCys, on MTase activity or on DNA 
methylation. 
Dioxin:  Dioxin appears to be a car­
cinogen both in humans and in ex­
perimental animals (Table IV) (250­
254). In humans, this increased tu­
mor incidence was most notable 
with cancers of the rectum, the lung 
and the lymphohemopoietic system 
(251,252,254). In rodent species, 
liver cancer is the major tumor stud­
ied (250-252). In addition to its can­
cer-causing potential, dioxin in­
duces many non-neoplastic patholo­
gies (Table IV). Several studies 
have associated high human expo­
sures to dioxin with the eventual for­
mation of diabetes (252,254-257). 
Others observed either little or no 
correlation between diabetes and 
dioxin exposure (258-260). How­
ever, this apparent disparity may be 
attributable to differences in expo­
sure levels in the populations con­
cerned (252). As another manifesta­
tion of its pancreatotoxicity, dioxin 
induced hepatic transdifferentiation 
in the pancreas of hamsters (261). 
In addition, dioxin treatment in ex­
perimental animals produced hy­
poinsulinemia (255,259). The evi­
dence in favor of a causal role of 
dioxin in atherosclerosis is indirect 
(262-266) and consists of: 1. the 
hyperlipidemia, resembling that of 
atherosclerosis, seen in dioxin-
treated animals (262,265-268), 2. 
the elevated incidence of ischemic 
heart disease found in the popula­
tions exposed to high levels of di­
oxin (263,269), and 3. the shared 
risk factors previously described for 
cancer and atherosclerosis 
(264,270,271). Dioxin has produced 
a variety of birth defects, including 
spina bifida in humans and cleft pal­
ates in mice (251,272-274). Simi­
larly, exposure to dioxin has re­
sulted in peripheral neuropathy in 
humans (275,276) and polyneu-

ropathy in rats (277) (Table IV). In 
humans at least, the neuropathy 
has been proposed to result from 
an incipient diabetes (275,276), 
also associated with exposure to 
dioxin. The effects of dioxin on the 
methylation parameters considered 
in this review do not appear to have 
been described in the scientific lit­
erature to a significant degree. 
Others: A number of additional 
polyhalogenated compounds have 
exhibited carcinogenic activity 
(274,278). Many have demon­
strated the pattern of pathologic ef­
fects and the alterations in methyla­
tion processes seen with the previ­
ously considered carcinogens. For 
example, pancreatitis has resulted 
from methylene chloride poisoning 
in humans and chloroform injection 
into dogs (279,280). The serum lev­
els of polychlorinated biphenyls in 
pregnant women with diabetes were 
found to be significantly higher than 
in the corresponding pregnant con­
trol subjects (281). Similarly, the 
blood levels of total organochlorine 
residues were highest in severely 
atherosclerotic patients compared 
to the corresponding levels in con­
trol subjects or moderately athero­
sclerotic patients (244). In different 
studies, polychlorinated biphenyls 
diminished blood levels of HDL in 
one animal model for atherosclero­
sis (282) and caused vascular en­
dothelial cell dysfunction in another 
(283). The developmental toxicity of 
the organohalides has been amply 
demonstrated in experimental ani­
mals. PBB treatment of pregnant 
animals led to the formation of cleft 
palate in developing mouse em­
bryos and to decreased crown-rump 
lengths in male rat embryos with 
eventual behavioral toxicity in the 
resulting rat pups (284,285). Chloro­
form inhalation by pregnant dams 
produced fetal anomalies in both 
rats and mice (286,287); these in­
cluded decreased fetal crown-rump 
lengths in both rats and mice, de­
layed ossification and missing ribs 
in rats and cleft palates in mice. 
Polybrominated biphenyls have ex­
hibited neurotoxic effects both in 
developing rats and in humans 

(285,288). 
In a series of recent studies 

(289-292), the group of Pereira has 
examined the effects on DNA meth­
ylation by the carcinogen tetrachlo­
roethylene (TCE), its metabolites 
dichloroacetic acid (DCA) and tri­
chloroacetic acid (TCA), and sev­
eral related compounds in the livers 
of mice. The subchronic administra­
tion of chloroform and CHBrCl2 

caused global DNA hypomethylation 
in livers of B6C3F1 mice; the similar 
administration of chloroform, 
CHBrCl2, CHBr2Cl and CHBr3 led to 
the hypomethyaltion of the promoter 
region of the c-myc oncogene 
(292). In the model system em­
ployed, TCE, DCA and TCA all pro­
moted liver tumor formation in initi­
ated B6C3F1 mice and produced 
both global and gene-specific hypo-
methylation of hepatic DNA 
(290,291,293). The genes shown to 
be hypomethylated following treat­
ment with DCE, DCA, and TCA are 
the protooncogenes c-jun and the c­
myc, with hypomethylation of both 
genes shown to occur in their pro­
moter regions (289,291,293). The 
hypomethylation of both oncogenes 
was accompanied by increased 
gene expression (290). Liver tumor 
promotion by DCA and TCA led to 
increased MTase activity in the re­
sulting liver adenomas and to de­
creased MTase activity in the adja­
cent non-tumorous tissue (293). 
The possible involvement of SAM in 
the hypomethylation produced by 
subchronic doses of DCA, TCA and 
DCE was shown by the observa­
tions that the simultaneous admini­
stration of methionine reversed both 
the decrease in c-myc and c-jun 
methylation and the accompanying 
increase in the expression of these 
genes produced by DCA and TCA 
(291). Additional links between ab­
normal methyl metabolism and the 
toxicity of the polyhalogenated car­
cinogens are seen in the formation 
of methylmercapto metabolites of 
PCBs (294) and of the inhibition by 
both carbon tetrachloride and chlo­
roform of methionine biosynthesis in 
a B12-dependent auxotroph of E. 

(Continued on page 11) 
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coli (295).  
 

Section V  

The Metals 
  

 
Arsenic: Exposure to inorganic ar­
senic in drinking water affects mil­
lions of people, primarily in Asia and 
South America where the concen­
tration of arsenic considerably ex­
ceeds the standard of 50 µg/l, rec­
ommended by the U.S. Environ­
mental Protection Agency. Chronic  
exposure to inorganic arsenic com­
pounds is responsible for the preva­
lence of various tumors, as well as  
of other diseases in human beings  
such as diabetes, cardiovascular  
and peripheral vascular disease, 
developmental anomalies, neuro­
logical and neurobehavioral disor­
ders, portal fibrosis of the liver, and  
lung fibrosis (242,297-312) (Table  
V). Several mechanisms of action  
have been proposed to explain the  
observed associations between  
chronic arsenic exposure and hu­
man diseases. For instance, some  
data suggest that inorganic arsenic  
increases oncogene expression,  
cellular proliferation and apoptosis 
(312-318). In addition, in vitro and in 
vivo studies, as well as examination 
of people exposed to high concen­
trations of inorganic arsenic in  
drinking water indicate that this met­
alloid may intensify toxic effects of  
other physical and chemical agents, 
especially by DNA repair inhibition.  
Inorganic arsenic compounds also  
cause DNA damage, changes in the 
cell redox potential, and alter DNA  
methylation and phosphorylation of  
cell cycle control proteins (312,318­
326).  
     As mentioned above, perturba­
tion of DNA methylation has been  
expected as a potential mechanism  
whereby arsenic could induce hu­
man diseases such as cancer. Inor­
ganic arsenic exhibits a complex  
metabolism. Arsenate is first re­
duced in the blood and enzymati­
cally in the liver to arsenite, which is 
then methylated to monomethylar­
sonic acid and dimethylarsinous  
acid (DMA) (327). It has been pro-

posed that inorganic arsenicals 
were the species that accounted for 
the toxic and carcinogenic effects of 
this metalloid, and that methylation 
was a mechanism for detoxification 
of arsenic. Methylation of inorganic 
arsenic consumes SAM in the proc­
ess. Since DNA methyltransferases 
require this same methyl donor, it is 
possible that arsenic-induced initia­
tion results from DNA hypomethyla­
tion caused by continuous methyl 
depletion, and that over-methylation 
of specific CpG sequences may ex­
ist over the entire genome in re­
sponse to arsenite exposure (323). 
Experiments with rat liver cells 
showed that whereas transcription 
of MTase was elevated, its enzy­
matic activity was reduced following 
arsenic transformation (326). Of 
possible relevance is the observa­
tion of a chemical reaction between 
the arsenic metabolite DMA and 
bacterial MTase (328).
     Recent experimental and epide­
miological evidence has shown that 
arsenic biotransformation including 
methylation capacity may have a 
role in the development of arsenic-
induced DNA damage and diseases 
(311,329,330). Although it has not 
been possible to isolate an arsenic 
methyltransferase in humans, the 
putative enzyme has been isolated 
from the liver cytosol of rats; its 
mRNA could be detected by reverse 
PCR in human cell lines that meth­
ylate arsenite but not in a cell line 
that does not methylate arsenite 
(331). In non-human primates, only 
4 out of 17 investigated species had 
arsenite methyltransferase activity 
in vitro suggesting that methylation 
of inorganic arsenic is not a detoxifi­
cation mechanism for many non­
human primates (332). A recent 
study suggested that the uptake of 
dimethylated arsenic by red blood 
cells is a contributing factor to the 
animal species differences in the 
metabolism of arsenic, in addition to 
the reduction and methylation ca­
pacity in the liver (333). Methylated 
and dimethylated arsenicals that 
contain arsenic in the trivalent oxi­
dation state are more cytotoxic, 
genotoxic and potent inhibitors of 

the activities of some enzymes than 
are inorganic arsenicals that contain 
arsenic in the trivalent oxidation 
state (329,334). The administration 
of a methyl-deficient diet to mice, 
prior to treatment with sodium ar­
senite, resulted in a hepatic methyl 
donor deficiency, altered arsenic 
metabolism and modulated the tar­
get organ specificity of arsenic-
induced DNA damage with an ap­
parent shift from liver and bladder to 
skin (335). In methylation defects 
such as MTHFR deficiency, the 
concentration of methyl donors is 
severely reduced, and it has been 
suggested that this defect may in­
crease the neurotoxicity of arsenic 
(336). Other methyl-metabolism de­
fects such as impaired folate trans­
port have been suspected to play 
an important role for arsenic terato­
genicity (337). Even more, the 
eventual involvement of arsenic 
methylation on the generation of 
acute and chronic toxicity promoted 
research on the use of compounds 
that interfere with arsenic methyla­
tion as potential preventive meas­
ures (338,339). 
Nickel:  Nickel is a well-established 
carcinogen both in humans and in 
experimental animals (Table V) 
(340,341). It is also toxic towards 
the pancreas (Table V). Acute injec­
tion of Ni in rats produces hypergly­
cemia and hypoinsul inemia 
(340,342), which may be caused by 
the induction of nitric oxide syn­
thase. Ni also played a role in the 
development of heart disease 
(Table V). In rats, arteriosclerotic 
lesions could be observed 7-9 
weeks after an intrarenal injection of 
Ni3S2; hypertension and hyperlipide­
mia were excluded as contributing 
causes to the Ni-induced cardiovas­
cular lesions (343). In humans, the 
serum levels of Ni were found to be 
elevated in patients with unstable 
angina or with acute myocardial in­
farction, but not in patients with ath­
erosclerosis (344). Ni is also terato­
genic (Table V). The children born 
of Ni-exposed mothers exhibited an 
elevated incidence of malforma­
tions, especially cardiovascular de­

(Continued on page 12) 
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TABLE V  
THE METALS  

PARAMETER AGENTS 

As Ni Cd Zn Deficiency 

Disease 

Cancer  + (311-313,316,319,452,453) + (340,341)  +(353) + (385-392,454) 

Pancreatic toxicity  + (242,301-303,309,312) + (341,342,455) + (354-360,456) + (394-397,401,403,404) 

Atherosclerosis + (264,298,299,307,308,312,322,453,457)  + (343,344) + (361-368) + (398,399,406-411) 

Birth defects + (337,453,458-460) + (345-347) +(353,373,374,421,461) + (412-419,421) 

Neurotoxicity + (312,336,453) + (375-380) +/- (422-427) 

Biochemical alterations 

SAM/SAH + (326,327,335,462,463) - (349) + (428,429) 

Homocysteine - (352) +/- (429,430) 

DNA methylation + (313,315,316,323,326) + (350,351) + (429) 

MTase + (328) + (350,351) + (384) + (384) 

(Continued from page 11) 
fects (345). The progeny of mice 
and hamsters treated with Ni mani­
fested several defects including ex­
encephaly and cleft palate 
(346,347). While we could find no 
direct evidence of the neurotoxic 
effects of Ni, there was an associa­
tion between high soil content of Ni, 
as well as Zn and Pb, in a high clus­
ter population of multiple sclerosis 
cases (348). 
     Compared to other carcinogens, 
Ni's effects on methylation proc­
esses appear somewhat paradoxi­
cal (349-352). In rats, Ni treatment 
reversed both the elevated urinary 
levels of FIGLU and the decreased 
hepatic contents of SAM produced 
by the chronic administration of a 
folate-deficient diet (349). In vitamin 
B12-deficient pigs, Ni decreased the 
elevated levels of serum HCys and 

increased the serum and hepatic 
contents of vitamin B12 (352). In cell 
studies, Ni induced time-dependent 
changes in global and gene-specific 
DNA methylation; the Ni-induced 
DNA hypermethylation was ob­
served even as the level of MTase 
was decreased (350,351). 
Cadmium:  Cd is another metal 
that is deemed by IARC to be car­
cinogenic both to man and to ani­
mals (353). Cd exhibits multiple tox­
icities towards the pancreas (Table 
V). In rats and hamsters it causes 
hepatization of pancreatic acinar 
cells (354,355). In rats, subchronic 
doses of Cd were diabetogenic, 
causing hyperglycemia and de­
creased serum insulin levels in oth­
erwise normal rats (356,357) and 
exacerbating the hyperglycemia and 
diabetic glomerulopathy in rats with 
pre-existing diabetes (358,359). In 

mice, acute, nontoxic exposure to 
Cd inhibited pancreatic protease 
activities (360). The evidence link­
ing Cd exposure with the develop­
ment of atherosclerosis is quite 
strong (Table V). Chronic Cd ad­
ministration led to the formation of 
atherosclerotic plaques and to hy­
pertension in pigeons (361,362) and 
to thrombi, altered lipid profiles and 
atherosclerotic changes in rabbits 
(363,364). In another study with 
rabbits, Cd inhibited the atherogenic 
effects of a high cholesterol diet 
(365). In a series of human studies 
(366-368), the tissue levels of Cd 
correlated well with the degree of 
atherosclerosis in autopsied sub­
jects, and a significantly elevated 
incidence of atherosclerosis was 
detected in subjects living in a spe­
cific region of the Netherlands con­

(Continued on page 13) 
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(Continued from page 12) 
taminated with Cd and Zn. Consis­
tent with the animal and human 
data correlating Cd with athero­
genesis in vivo is the finding that Cd 
stimulates the proliferation of vascu­
lar smooth muscle cells in culture 
(369,370). Cd has been shown to 
be teratogenic in a number of ani­
mal species, including mice, rats, 
hamsters, and frogs (Table V). 
Among the anomalies found were 
decreased crown-rump length and 
cleft palate (371,372). Cd's terato­
genicity was inhibited by Zn (373). 
One report indicates that the forma­
tion of neural tube defects in human 
embryos could be correlated with 
maternal exposure to Cd (374). The 
neurotoxicity of Cd has been well 
studied, especially in occupationally 
exposed populations (Table V). The 
chief symptoms are peripheral poly­
neuropathy and neurobehavioral 
and neuropsychological deficits 
(375-378). Rats receiving a long-
term exposure to Cd in the drinking 
water developed a peripheral poly­
neuropathy that was accompanied 
by myelin degeneration (379). Con­
sistent with these findings was a 
conclusion from an epidemiologic 
study showing that an outbreak of 
30-40 cases of multiple sclerosis, 
and other demyelinating syndromes 
in Galion, Ohio, could be correlated 
with an excess concentration of 
heavy metals, particularly of Cd and 
Cr in the local sewage and river wa­
ter (380). The inhibition by Cd of 
superoxide dismutase has been 
proposed as the mechanism re­
sponsible for Cd's neurotoxic ef­
fects (381).
     We could find no studies show­
ing direct effects of Cd on the levels 
of SAM, SAH, or HCys or on DNA 
methylation in vivo or in vitro. How­
ever, synergistic interactions be­
tween Cd and hypomethylating en­
vironments have been observed. 
The induction of metallothionein by 
Cd was markedly enhanced in the 
livers of rats pretreated with azacyti­
dine and in hepatocytes in culture 
treated with azadeoxycytidine 
(382,383). Recent studies have 
shown that Cd is an effective inhibi­

tor of mammalian MTase and that 
the kinetics of such inhibition is 
quite different with DNA samples 
from the livers of methyl-deficient 
rats than with DNA samples from 
control livers (384). 
Zinc Deficiency: Zn deficiency ap­
pears to play a significant role both 
in experimental and in human carci­
nogenesis (Table V). In rats, Zn de­
ficiency has acted as a co­
carcinogen, or as a tumor promoter, 
in the esophagus as well as in other 
organs (385-389). Zn deficiency has 
also enhanced the formation of Cd­
induced injection site sarcomas and 
testicular carcinomas in rats (390). 
Zn deficiency also enhanced the 
development of tumors induced by 
the Moloney sarcoma virus (391). 
Further, Zn deficiency alone has 
been shown to cause esophageal 
cancer in rats (388). Two clinical 
studies have shown that patients 
with esophageal cancer have de­
creased levels of Zn in their sera 
and in other tissues (385,392), sug­
gesting that Zn deficiency may play 
a similar role in humans as it does 
in rats. A number of associations 
have been made between diabetes, 
pancreatic toxicity and Zn deficiency 
(Table V). Patients with chronic 
pancreatitis and diabetes frequently 
display low serum (393-397)  and 
tissue (398-400) levels of Zn, while 
low groundwater Zn levels were as­
sociated with the eventual develop­
ment of type 1 diabetes (401). Ex­
perimental studies with a diabetes-
prone strain of rat showed that Zn 
supplementation in the diet delayed 
or prevented the onset of the dis­
ease (402). Zn deficiency also led to 
decreased zymogen granules and 
increased lipid droplets in rat pan­
creatic acinar cells both in vivo and 
in vitro (403,404).

 Zinc deficiency has frequently 
been linked to atherosclerosis and 
other forms of heart disease (Table 
V) (367,398,399,405-411). Most of 
the evidence supporting a role for 
Zn deficiency in the development of 
atherosclerosis is indirect and con­
sists of biochemical markers of oxi­
dative stress in vivo or of inflamma­
tory response and increased apop­

tosis in vascular endothelial cells in 
vitro  (406,408,410,411). Similarly, 
the weight of evidence indicates 
that zinc deficiency can produce 
birth defects both in animals and in 
humans (Table V). In pregnant rats, 
Zn deficiency led to the formation of 
skeletal malformations, altered pan­
creatic function and neural tube de­
fects in their embryos (412-414). In 
humans, zinc deficiency and low 
maternal zinc levels have been as­
sociated with the birth of children 
with neural tube defects (415,416). 
In this regard, the impact of the low 
Zn levels, described above for dia­
betic patients, has been examined 
in studies with rats. Pregnant rats 
with experimentally induced diabe­
tes produced progeny with an ele­
vated incidence of birth defects as 
well as with diminished fetal liver 
contents of Zn (417,418), and feed­
ing a Zn-deficient diet to the diabetic 
dams markedly enhanced the for­
mation of such defects (417). Other 
studies (419,420) have failed to cor­
relate fetal abnormalities in children 
with the maternal Zn or folate levels 
or with Zn supplementation. Finally, 
Zn itself has shown teratogenic ac­
tivity toward frog embryos (421). 
The ties between Zn and neurologi­
cal disturbances appear to be 
mixed (Table V). Many studies have 
examined the correlations between 
Zn and the demyelinating disease 
multiple sclerosis (MS). A high ex­
posure to Zn was associated with 
an increased incidence of MS in an 
industry-based cluster (422), but the 
blood levels of Zn in the patients 
were not found to be significantly 
different than those of the non-MS 
workers in the same plant. MS pa­
tients typically exhibit higher blood 
levels of Zn than do control subjects 
(423). The associations between 
high Zn levels and neurotoxicity are 
consistent with the observations 
that Zn is toxic to neuronal cells in 
vitro and led to the proposal that Zn 
itself may cause demyelination 
(424,425). On the other hand, 
women with MS were found to con­
sume less Zn than did control sub­
jects (426). Zn deficiency has also 

(Continued on page 14) 
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(Continued from page 13) 
been shown to alter neurotransmit­
ter activity in rats (427).

 Zn deficiency alters methyl group 
metabolism in experimental animals 
(Table V). In liver perfusion studies 
with rats fed Zn-adequate and Zn­
deficient diets, it was found that the 
livers of Zn-deficient rats had lower 
SAM/SAH ratios, produced more 
HCys and were less capable of en­
zymatic methylation, including DNA 
methylation, than were the corre­
sponding Zn-adequate animals 
(428,429). Other studies showed 
increased hepatic methionine syn­
thetase activity and reduced plasma 
HCys and folate in Zn-deficient rats 
(430,431). The importance of Zn for 
the normal interaction of the Zn­
binding domain of mammalian 
MTase with its catalytic site has re­
cently been described (432). 
Other Metals: Two other metals 
exhibit many of the same pathologic 
and biochemical effects described 
above: lead and cobalt. Both are 
recognized carcinogens (433,434). 
A number of cardiovascular abnor­
malities, including atherosclerosis, 
have been associated with Pb expo­
sure in humans (367,435). In addi­
tion, Pb, similar to HCys in vivo, 
stimulates the proliferation of vascu­
lar smooth muscle cells in vitro 
(370). Co appears to exert mixed 
effects on the cardiovascular sys­
tem of mammals. In humans, ele­
vated Co exposure resulted in ele­
vated mortality from ischemic heart 
disease (433). In sheep, it partially 
prevented the cardiovascular le­
sions caused by Co and/or vitamin 
B12 deficiency (436); this finding is 
probably due to the fact that Co is 
an essential component of vitamin 
B12. Co is teratogenic to mice, rats 
and frogs (437,438). Pb appears to 
produce neural tube defects in hu­
mans (439,440). In a matched 
case-control study, English districts 
with high levels of Pb exhibited in­
creased rates of NTDs (439). An­
other study, comparing the amniotic 
fluid levels of B12, Ca, methionine, 
and Pb in NTD and non-NTD preg­
nancies (440), found: 1) the NTD 
pregnancies were marked by lower 

levels of Ca, methionine, and B12 

and higher levels of Pb compared to 
the non-NTD pregnancies, and 2) a 
negative correlation existed be­
tween Pb and both B12 and methio­
nine. Pb is also a neurotoxicant that 
can cause hypo- and demyelination 
(441). 
     There are a number of interrela­
tions between the toxic metals Pb 
and Co and the processes of methyl 
metabolism and methylation. Treat­
ment with SAM protected against 
Pb toxicity in mice and rats 
(442,443) and lowered blood Pb 
levels and raised GSH levels in Pb­
intoxicated patients (444). Similarly, 
dietary methionine protected 
against the toxic and growth sup­
pressing effects of Pb in chicks 
(445,446). The effects of Co on 
methyl metabolism appear to be 
due less to heavy metal toxicity than 
to the essentiality of Co in vitamin 
B12. Thus, in sheep, low Co intake 
resulted in decreases in the hepatic 
contents of SAM, of methionine syn­
thetase activity, and of phospholipid 
methylation (447). Low Co intake in 
sheep also resulted in hepatotoxic­
ity, low blood levels of B12 and high 
serum levels of methylmalonic acid 
and HCys (448); these changes 
were prevented by vitamin B12 injec­
tions. In cattle Co intake was in­
versely related to serum levels of 
HCys (449), while in pigs vitamin 
B12 deficiency and hyperhomocys­
teinemia could be partially pre­
vented by Co supplementation 
(352). Biochemical studies showed 
that Pb inhibited mammalian 
MTase, but that divalent Co stimu­
lated the activity of MTase from rat 
kidney, brain and spleen (450). In 
an in vitro enzymatic study, methyl-
cobalamine, the Co-containing co­
factor for methionine synthetase, 
acted as a substrate in DNA meth­
ylation by Mtase and was an inhibi­
tor of SAM in that reaction (451). 

Section VI
 
Summary


     The present review summarized 
evidence supporting the generaliza­
tion that physiological methyl group 

deficiency and abnormal methyla­
tion processes caused by specific 
categories of chemicals, like those 
caused by dietary deficiencies and 
enzymatic defects, produce a pat­
tern of pathological alterations. 
Such pathologies include cancer, 
pancreatic toxicity, atherosclerosis, 
birth defects, and neurotoxicity. The 
categories of agents that appear to 
act via abnormal methylation are 
the antimetabolites of essential 
methyl intermediates, the anticon­
vulsants, polyhalogenated com­
pounds and certain metals. It is in­
teresting to note that these agents 
are thought to act via epigenetic, 
and not by classical genotoxic, 
mechanisms. The evidence com­
piled here presents a reasonable 
case that the pathologies induced 
by these chemical categories of 
agents share common causal 
mechanisms centered on abnormal 
one-carbon metabolism.  
     The evidence presented above 
showed that representative com­
pounds from each of the categories 
significantly altered methyl group 
metabolism, particularly DNA meth­
ylation. In addition, the SAM precur­
sors methionine, choline, betaine, 
and folic acid inhibited many of the 
toxic and biochemical effects of the 
representative compounds dis­
cussed above. The toxic com­
pounds whose activity was inhibited 
by the methyl donors included: the 
antimetabolites ethionine and MTX; 
the anticonvulsants phenobarbital, 
diphenylhydantoin, and valproic 
acid; the polyhalogenated com­
pounds DDT and CCl4, and the 
metal Pb (vide supra). Also, as 
noted above, azacytidine inhibited 
the chemopreventive effects of 
SAM. 
     Three, more specific, toxic end­
points of the representative agents 
included in this study provided addi­
tional links with abnormal methyl 
metabolism: NTDs, demyelination 
of nervous tissue, and hepatic 
transdifferentiation of the pancreas. 
NTDs, demyelination, and pancre­
atic hepatization have all been de­
scribed in animals or humans that 

(Continued on page 15) 
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(Continued from page 14) 
were deficient in methyl donors due 
to diet, defective enzymes or dis­
ease (vide supra, (464,465)). The 
same biological effects have been 
noted in animals or humans ex­
posed to the chemicals in the vari­
ous categories of this report. NTDs 
have been observed following expo­
sure to the anticonvulsants in gen­
eral, to the polyhalogenated com­
pounds CCl4 and dioxin, and finally 
to the metals Pb and Cd, as well as 
to Zn deficiency (vide supra). In ad­
dition, the antimetabolite MTX en­
hanced the formation of NTDs by 
valproic acid, while azacytidine itself 
produced NTDs in vitro (vide su­
pra). Similarly, demyelination, par­
ticularly of peripheral nerves, has 
been observed following treatment 
with, or exposure to: methotrexate, 
the anticonvulsants, and the metals 
Pb, Cd and As ((466) vide supra). 
Hepatization of the pancreas has 
been induced in rats and hamsters 
by Cd, by dioxin, and by a regimen 
that included ethionine ((465) vide 
supra). 
     The results compiled in the pres­
ent review may provide useful les­
sons regarding the mechanism of 
action of the diverse agents exam­
ined. For example, ethionine and 
azacytidine clearly exhibit tumori­
genic activity, while FUDR does not. 
Ethionine and azacytidine also in­
hibit SAM-dependent DNA methyla­
tion, while FUDR does not appear 
to do so. These observations indi­
cate that the SAM-dependent meth­
ylation may be more directly in­
volved in the carcinogenic process 
than is the inhibition of thymidylate 
synthetase and of DNA synthesis. 
In this regard, the fact that MTX 
acts to block both DNA synthesis 
and DNA methylation may explain 
why it has so seldom been found to 
exhibit tumorigenic activity. Further 
evidence on the role of SAM-
dependent DNA methylation in car­
cinogenesis is seen in comparing 
the tissue specificities of ethionine 
and azacytidine. Azacytidine exerts 
its tumorigenicity and DNA hypo-
methylating activity in several or­
gans; to date, the carcinogenic and 

DNA hypomethylating activity of 
ethionine has been confined to the 
liver. It is in the liver that ethionine is 
most readily converted to its hypo-
methylating metabolite SAE. 

Altered methyl metabolism in the 
liver appears to play a particularly 
important role in the toxicology of 
the anticonvulsants and the polyha­
logenated compounds. In rodents, 
both categories of chemicals are 
hepatotoxic and generally exert 
their major carcinogenic effects in 
this organ (vide supra). Specific an­
ticonvulsants and polyhalogenated 
compounds have been effective in 
decreasing SAM/SAH ratios and 
increasing the extent of DNA hypo-
methylation in this organ. Two dif­
ferent mechanisms may be pro­
posed for the diminished availability 
of SAM in the livers of animals 
treated with hepatotoxic agents: di­
minished synthesis and increased 
utilization. Defects in the expression 
of the liver-specific methionine ade­
nosyltransferase MAT1A gene, and 
thus the activity of the correspond­
ing enzyme, have been shown to be 
a major cause of SAM insufficiency 
caused by hepatotoxic agents (vide 
supra) (467,468). A second possi­
ble mechanism is the drain on he­
patic SAM caused by many anticon­
vulsants and polyhalogenated com­
pounds tested in rodents (vide su­
pra, (469)); SAM is used for the 
synthesis of the phosphatidylcholine 
required in the induction of the he­
patic cytochrome P450s caused by 
these agents. Such biosynthesis 
also results in the elevated forma­
tion of SAH. 
     The demonstration of the validity 
of either mechanism is not without 
implications for the regulatory agen­
cies. As has frequently been noted 
(470), liver tumor formation in rats 
and mice is responsible for a high 
proportion of the carcinogenic com­
pounds detected by the NTP. Many 
of these compounds also appear to 
act as secondary agents or epige­
netic carcinogens. Demonstration 
that the tumorigenic activity of such 
compounds towards the liver is de­
pendent upon an altered methyla­
tion status in vivo would strengthen 

the hypothesis that these com­
pounds do in fact have a threshold 
of activity. 

The hypomethylating environ­
ment produced in the liver by the 
anticonvulsants and the polyhalo­
genated compounds may affect 
other organs as well. A high degree 
of correspondence was seen be­
tween the decreased SAM/SAH ra­
tios in liver and the rise in serum 
HCys by the same compounds 
(Tables III and IV). The elevated 
serum levels of HCys may thus con­
tribute both to the formation of a hy­
pomethylating environment and to 
the development of extrahepatic pa­
thologies caused by the chronic ad­
ministration of the anticonvulsants 
and the polyhalogenated com­
pounds. 
     Time did not permit a considera­
tion of other categories of chemical 
agents, which also alter methyl 
group metabolism and cause patho­
logical changes. These include 
some electrophilic carcinogens, ni­
trous oxide, sulfa drugs, and alco­
hol. The same constraints did not 
permit a consideration of alternate 
mechanisms of toxicity not centered 
on abnormal methylation proc­
esses. The authors are aware of the 
fact that in some biological systems, 
particularly in rodent liver, methyl 
deficiency leads to oxidative dam­
age and, correspondingly, oxidative 
damage can lead to methyl insuffi­
ciency and abnormal DNA methyla­
tion ((468,471), vide supra). In this 
case the alternate potential mecha­
nisms are not mutually exclusive.
     In conclusion, the results indi­
cate that abnormal methylation pro­
cesses caused by chemical agents, 
like those caused by dietary defi­
ciencies or by metabolic defects, 
can be associated with a general 
pattern of specific pathological ef­
fects. 
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     DNA hypomethylation: The 
process by which nuclear DNA, ei­
ther global or gene-specific, loses a 
portion of its normal complement of 
5-methyldeoxycytidine as a fraction 
of total cytidine residues. Its oppo­
site is DNA hypermethylation, which 
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Glossary 

Antimetabolite: A structural 
analogue of a nutrient or metabolite 
which prevents the proper utilization 
of the nutrient or metabolite in bio­
logical systems. 

describes an increase, compared to 
normal, in the fraction of 5­
methyldeoxycytidine in DNA. 

Epigenetic: The characteristic 
describing an agent which produces 
a stable, heritable change in the ge­
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netic and/or phenotypic expression 
in cells without a direct, chemical 
reaction of the agent or its metabo­
lites on cellular DNA. Also used to 
describe the alteration thus pro­
duced. 

FIGLU: Abbreviation for the his-

tidine catabolite formiminoglutamic 
acid, the elevated presence of 
which in urine indicates a folate de­
ficiency. 

Methyltransferase: An enzyme 
which transfers a methyl (CH3-) 
group from S-adenosylmethionine 
(SAM) to one of any number of low 
and high molecular weight sub-

strates; e.g., DNA methyltransfer­
ase (MTase). 

Polymorphism: That character­
istic of a specific gene which, be­
cause of relatively minor mutations, 
exists in multiple forms within a sin­
gle species or population. Also ap­
plied to the enzyme product of such 
a gene. 
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