Skip Standard Navigation Links
Centers for Disease Control and Prevention
 CDC Home Search Health Topics A-Z
peer-reviewed.gif (582 bytes)
eid_header.gif (2942 bytes)
Past Issue

Vol. 11, No. 9
September 2005

Adobe Acrobat logo

EID Home | Ahead of Print | Past Issues | EID Search | Contact Us | Announcements | Suggested Citation | Submit Manuscript

PDF Version | Comments Comments | Email this article Email this article



References

Commentary

Syndromic Surveillance in Bioterrorist Attacks

Arnold F. Kaufmann,* Nicki T. Pesik,* and Martin I. Meltzer*Comments
*Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Suggested citation for this article


The article by Nordin et al. (1) in this issue of Emerging Infectious Diseases describes the use of syndromic surveillance to detect inhalational anthrax resulting from a hypothetical covert release of Bacillus anthracis spores at a major shopping mall. This study is an important evaluation of syndromic surveillance's utility in detecting an inhalational anthrax epidemic against a background of real patient presentations. Based on historical clinical data from a large health maintenance organization (HMO), the authors evaluated the sensitivity of a syndromic surveillance system to detect an incident by season of the year, day of the week when the release occurred, and attack rate in mall patrons.

Although numbers of persons exposed and becoming ill, as modeled in the study, are not specified, the effect can be inferred from the specified methods. On the basis of information from the mall's Web site (2) and the methods stated in the article, the number of cases associated with a 15% attack rate in mall visitors (115,000 daily average) and workers (12,000) would be ≈19,000 (if no additional exposures occurred after day of release). Of these patients, 59% would be from the metropolitan area in which the mall was located, an additional 6% would reside within a 150-mile radius of the metropolitan area, and the remainder would be from more distant points, including international visitors. Syndromic surveillance, with the HMO patient database, would detect 50% of such incidents by day 5, with only 20% detected by day 4. Lesser attack rates would notably lower the probability of detection. Even more problematic, the syndromic surveillance systems, as modeled, would fail to detect the outbreak in 13% of releases in summer and 47% of releases in winter. Performance would improve markedly with higher attack rates. After detection of an aberrant signal, the occurrence of a syndrome must be investigated to determine the cause, and exposure history of patients must be determined to discover the source. These investigations could result in additional delay before a targeted response could be mounted to prevent more illnesses. Such delays are problematic because the effectiveness of postexposure prophylaxis for inhalational anthrax is related to speed of implementation (3).

The authors point out that an astute clinician might diagnose inhalational anthrax in a patient before syndromic surveillance detected that an outbreak of some type was occurring. If, as the 15% attack rate scenario suggests, >100 patients had onset of illness on day 2 after exposure, a correct diagnosis could be established for at least 1 patient by day 4. By this time, hundreds of inhalational anthrax patients would be seen at hospitals, at least 1 day before the syndromic surveillance system, as modeled, would have a 50% probability of signaling the outbreak.

The issue now becomes whether or not syndromic surveillance can augment the public health response to an outbreak. For example, if a syndromic surveillance system allowed follow-up of individual cases, it might accelerate case finding and investigation into the source of infection. This potential role of syndromic surveillance was not included in the modeled scenario.

Syndromic surveillance systems, of the type modeled by Nordin et al., may be too slow to allow public health officials and policy makers to mount a sufficiently rapid postexposure prophylaxis campaign. Therefore, the ability of many current syndromic surveillance systems to rapidly detect bioterrorist attacks needs to be improved. Another reason to improve syndromic surveillance systems is that the systems may have public health value other than detecting bioterrorist attacks, such as tracking the course of seasonal diseases. We should not forget, however, that clinical care providers will continue to have a critical role in detecting bioterrorist attacks, and communications must be maintained with these first-line sentinels.

Dr Kaufmann is a senior service fellow in the Environmental Public Health Readiness Branch, Division of Emergency and Environmental Health Services, National Center for Environmental Health, Centers for Disease Control and Prevention. His research interests are preparedness and response to bioterrorism, particularly Bacillus anthracis–related events.

References

  1. Nordin JD, Goodman MJ, Kulldorff M, Ritzwoller DP, Abrams AM, Kleinman K, et al. Simulated anthrax attacks and syndromic surveillance. Emerg Infect Dis. 2005;11:1396–400.
  2. Mall of America: media: mall facts [homepage on the Internet]. [cited 2005 Jul 14]. Available from http://www.mallofamerica.com/about_the_mall/mallfacts.aspx
  3. Kaufmann AF, Meltzer MI, Schmid GP. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis. 1997;3:83–94.

 

Suggested citation for this article:
Kaufmann AF, Pesik NT, Meltzer MI. Syndromic surveillance in bioterrorist attacks. Emerg Infect Dis [serial on the Internet]. 2005 Sep [date cited]. Available from http://www.cdc.gov/ncidod/EID/vol11no09/05-0981.htm

   
     
   
Comments to the Authors

Please use the form below to submit correspondence to the authors or contact them at the following address:

Martin I. Meltzer, Centers for Disease Control and Prevention, 1600 Clifton Rd, Mailstop D59, Atlanta, GA 30333, USA; fax: 404-371-5445; mmeltzer@cdc.gov

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Return email address optional:


 


Comments to the EID Editors
Please contact the EID Editors at eideditor@cdc.gov

Email this article

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Your email:

Your friend's email:

Message (optional):

 

 

 

EID Home | Top of Page | Ahead-of-Print | Past Issues | Suggested Citation | EID Search | Contact Us | Accessibility | Privacy Policy Notice | CDC Home | CDC Search | Health Topics A-Z

This page posted August 18, 2005
This page last reviewed August 19, 2005

Emerging Infectious Diseases Journal
National Center for Infectious Diseases
Centers for Disease Control and Prevention