

Environmental Programs
P.O. Box 1663, MS M991
Los Alamos, New Mexico 87545
(505) 606-2337/FAX (505) 665-1812





National Nuclear Security Administration Los Alamos Site Office, MS A316 Environmental Restoration Program Los Alamos, New Mexico 87544 (505) 667-4255/FAX (505) 606-2132

*Date*: December 21, 2007 *Refer To*: EP2007-0772

James P. Bearzi, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303

Subject: Submittal of Periodic Monitoring Report for Vapor Sampling Activities at Material Disposal Area G, Technical Area 54, for Fiscal Year 2007

Dear Mr. Bearzi:

Enclosed please find two hard copies with electronic files of the "Periodic Monitoring Report for Vapor Sampling Activities at Material Disposal Area G, Technical Area 54, for Fiscal Year 2007."

If you have any questions, please contact John Hopkins at (505) 699-1116 (johnhopkins@lanl.gov) or Ed Worth at (505) 606-0398 (eworth@doeal.gov).

Sincerely,

Susan G. Stiger, Associate Director

**Environmental Programs** 

Los Alamos National Laboratory

Sincerery

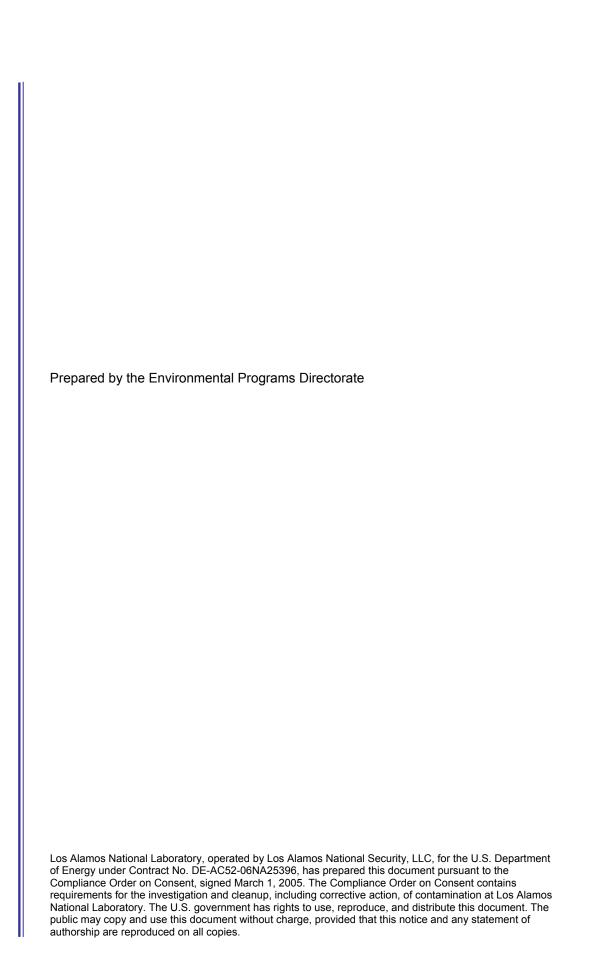
David R. Gregory, Project Director

Environmental Operations

Los Alamos Site Office

# SS/DG/GD/JH:sm

Enclosures: 1) Two hard copies with electronic files - Periodic Monitoring Report for Vapor Sampling Activities at Material Disposal Area G, Technical Area 54, for Fiscal Year 2007 (EP2007-0772)


Cy: (w/enc.)
Paul Mark, Apogen
Ed Worth, DOE-LASO, MS A316
John Hopkins, EP-CAP, MS M992
RPF, MS M707 (with two CDs)
Public Reading Room, MS M992

Cy: (Letter and CD only)
Laurie King, EPA Region 6, Dallas, TX
Steve Yanicak, NMED-OB, White Rock, NM
Peggy Reneau, EP-ERSS, MS M992
EP-CAP File, MS M992

Cy: (w/o enc.)
Tom Skibitski, NMED-OB, Santa Fe, NM
Bonita Eichorst, DOE-LASO (date-stamped letter emailed)
Susan G. Stiger, ADEP, MS M991
Carolyn A. Mangeng, ADEP, MS M991
Alison M. Dorries, ERSS-DO, MS M992
Gordon Dover, EP-CAP, MS M992
Dave McInroy, EP-CAP, MS M992
IRM-RMMSO, MS A150

# Periodic Monitoring Report for Vapor-Sampling Activities at Material Disposal Area G, Technical Area 54, for Fiscal Year 2007





# Periodic Monitoring Report for Vapor-Sampling Activities at Material Disposal Area G, Technical Area 54, for Fiscal Year 2007

| Responsible project leade |            |                       |                           |          |
|---------------------------|------------|-----------------------|---------------------------|----------|
| John Hopkins              | Il Ahr     | Project<br>Leader     | Environmental<br>Programs | 12/19/07 |
| Printed Name              | Signature  | Title                 | Organization              | Date     |
|                           |            |                       |                           |          |
| Responsible LANS repres   | entative:  |                       |                           |          |
| Susan G. Stiger           | Morgers    | Associate<br>Director | Environmental<br>Programs | 12/20/07 |
| Printed Name              | Signature  | Title                 | Organization              | Date     |
|                           |            |                       |                           |          |
| Responsible DOE represe   | ntative:   |                       |                           | Δ .      |
| David R. Gregory          | - Alan Cov | Project<br>Director   | DOE-LASO                  | 12/2/07  |
| Printed Name              | Signature  | Title                 | Organization              | Date     |
|                           |            |                       |                           |          |

#### **EXECUTIVE SUMMARY**

This periodic monitoring report summarizes the fiscal year (FY) 2007 monitoring and sampling activities conducted at Material Disposal Area (MDA) G, located in Technical Area 54 at Los Alamos National Laboratory (the Laboratory). The purpose of sampling is to implement the proposed long-term subsurface vapor-monitoring plan described in Appendix I of the MDA G investigation report. The objective of the monitoring activities is to evaluate trends in volatile organic compounds (VOCs) and tritium concentrations in subsurface vapor at MDA G over time.

Monitoring conducted in FY2007 included field screening of every port in 18 existing boreholes at MDA G, collecting pore-gas samples for laboratory analysis of VOCs and tritium from selected boreholes, and monitoring moisture. Validated analytical results confirm the presence of VOCs and tritium in vapor samples. Concentrations of VOCs from pore-gas analyses at four locations sampled periodically since 1997 show stable or decreasing VOC concentrations.

Concentrations of some VOCs in the central portion of the plume exceeded screening levels based on groundwater cleanup levels. Concentrations of all VOCs in the deepest pore-gas sample (i.e., the sample closest to the regional aquifer), however, are below screening levels. These results show no immediate threat to groundwater from the VOC plume but do indicate the need for continued monitoring of pore gas at a reduced frequency.

# **CONTENTS**

| 1.0 I    | INTRODUCTION        |                                                                                                      |    |  |  |  |  |
|----------|---------------------|------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 2.0      | SCOPE OF ACTIVITIES |                                                                                                      |    |  |  |  |  |
| 3.0 F    | REGU                | LATORY CRITERIA                                                                                      | 3  |  |  |  |  |
| 4.0 N    | MONI.               | TORING RESULTS                                                                                       | 3  |  |  |  |  |
|          |                     |                                                                                                      |    |  |  |  |  |
|          |                     | IARY                                                                                                 |    |  |  |  |  |
|          |                     | RENCES AND MAP DATA SOURCES                                                                          |    |  |  |  |  |
|          | 7.1                 | References                                                                                           |    |  |  |  |  |
|          | 7.2                 | Map Data Sources                                                                                     |    |  |  |  |  |
| Figures  | <b>;</b>            |                                                                                                      |    |  |  |  |  |
| Figure 1 | .0-1                | Location of Area G in TA-54 with respect to Laboratory technical areas and surrounding land holdings | 9  |  |  |  |  |
| Figure 2 | 2.0-1               | SEAMIST membrane liner system for vadose zone pore-gas sampling                                      | 10 |  |  |  |  |
| Figure 2 | 2.0-2               | Construction details of instrumented boreholes for vadose zone pore-gas sampling                     | 10 |  |  |  |  |
| Figure 2 | 2.0-3               | Locations of MDA G boreholes for pore-gas sampling                                                   | 11 |  |  |  |  |
| Figure 2 | 2.0-4               | Packer system for vadose zone pore-gas sampling                                                      | 12 |  |  |  |  |
| Figure 5 | 5.0-1               | Tritium (pCi/L) detected in subsurface pore gas at MDA G during second quarter FY2007                | 13 |  |  |  |  |
| Figure 5 | 5.0-2               | Tritium (pCi/L) detected in subsurface pore gas at MDA G during fourth quarter FY2007                | 14 |  |  |  |  |
| Figure 5 | 5.0-3               | Trends in concentration of Freon 11 at MDA G from SUMMA analyses                                     | 15 |  |  |  |  |
| Figure 5 | 5.0-4               | Trends in concentration of TCE at MDA G from SUMMA analyses                                          | 15 |  |  |  |  |
| Figure 5 | 5.0-5               | Trends in concentration of PCE at MDA G from SUMMA analyses                                          | 16 |  |  |  |  |
| Figure 5 | 5.0-6               | Trends in concentration of TCA at MDA G from SUMMA analyses                                          | 16 |  |  |  |  |
| Figure 5 | 5.0-7               | Trends in concentration of dichloroethene[1,1-] at MDA G from SUMMA analyses                         | 17 |  |  |  |  |
| Figure 5 | 5.0-8               | Trends in concentration of dichloroethane[1,1-] at MDA G from SUMMA analyses                         | 17 |  |  |  |  |
| Tables   |                     |                                                                                                      |    |  |  |  |  |
| Table 2. | .0-1                | MDA G Subsurface Vapor-Monitoring Locations                                                          | 19 |  |  |  |  |
| Table 4. | .0-1                | CO <sub>2</sub> Screening Results Using a Landtec GEM-500 PID                                        | 20 |  |  |  |  |
| Table 4. | .0-2                | O <sub>2</sub> Screening Results Using a Landtec GEM-500 PID                                         | 23 |  |  |  |  |
| Table 4. | .0-3                | TCA Screening Results Using a B&K Multigas Instrument                                                | 26 |  |  |  |  |
| Table 4. | .0-4                | PCE Screening Results Using a B&K Multigas Instrument                                                | 29 |  |  |  |  |
| Table 4. | .0-5                | TCE Screening Results Using a B&K Multigas Instrument                                                | 32 |  |  |  |  |
| Table 4. | .0-6                | Freon 11 Screening Results Using a B&K Multigas Instrument                                           | 35 |  |  |  |  |

| Table 4.0-7 | CO <sub>2</sub> Screening Results Using a B&K Multigas Instrument                             | 38 |
|-------------|-----------------------------------------------------------------------------------------------|----|
| Table 4.0-8 | Moisture (H <sub>2</sub> O) Screening Results Using a B&K Multigas Instrument                 | 41 |
| Table 5.0-1 | Detected Pore Gas VOC Results for Samples Collected During Monitoring Activities at MDA G     | 44 |
| Table 5.0-2 | Detected Pore Gas Tritium Results for Samples Collected During Monitoring Activities at MDA G | 56 |
| Table 5.0-3 | Screening of VOCs Detected in Pore Gas at MDA G                                               | 57 |
| Table 5.0-4 | Screening of Volatile Organic Compounds Detected at 54-25105 (485–700 ft)                     | 58 |
| Appendixe   | es s                                                                                          |    |
| Appendix A  | Quality Assurance/Quality Control Program                                                     |    |
| Appendix B  | Data Packages and Chain-of-Custody Forms (on CD included with this document)                  |    |
| Appendix C  | Moisture Monitoring Investigation at Technical Area 54, Area G                                |    |
| Plates      |                                                                                               |    |
| Plate 1     | Organic chemicals (µg/m³) detected in subsurface pore gas at MDA G during 2QFY07              |    |
| Plate 2     | Organic chemicals (µg/m³) detected in subsurface pore gas at MDA G during 4QFY07              |    |

### 1.0 INTRODUCTION

This report discusses quarterly subsurface pore-gas monitoring and sampling activities at Los Alamos National Laboratory (LANL or the Laboratory), Material Disposal Area (MDA) G at Technical Area (TA) 54. MDA G is located in the east-central portion of the Laboratory at TA-54, Area G, on Mesita del Buey (Figure 1.0-1). MDA G consists of inactive subsurface units that include 32 pits, 194 shafts, and 4 trenches with depths ranging from 10 to 65 ft below the original ground surface. The pits, trenches, and shafts are constructed in unit 2 (caprock) and unit 1 (subsurface) of the Tshirege Member of the Bandelier Tuff (consolidated tuff units). The regional aquifer is estimated to be at an average depth of approximately 930 ft below ground surface at MDA G, based on data from wells near the area and the predictions of the hydrogeologic conceptual model for the Pajarito Plateau (LANL 1998, 059599). Area G is relatively flat. Portions of the disposal units at MDA G are covered with concrete and asphalt to house ongoing wastemanagement activities conducted at Area G. Surface runoff from the site is controlled and discharges into drainages to the north (toward Cañada del Buey) and the south (toward Pajarito Canyon). Stormwater and sediment monitoring stations are distributed throughout the surface of Area G and in drainages leading to the canyons.

During the 1950s, the Laboratory, with approval of the U.S. Atomic Energy Commission and upon the recommendation of the U.S. Geological Survey, selected Mesita del Buey within TA-54 for underground disposal of Laboratory-derived waste (Rogers 1977, 005707; Rogers 1977, 005708, p. G-1). Since then, the main waste storage and disposal facilities for the Laboratory have been located at TA-54. MDA G is one of four MDAs on Mesita del Buey between Pajarito Canyon (south) and Cañada del Buey (north). MDA G is a decommissioned (i.e., removed from service) subsurface site for disposition of low-level waste, certain radioactively contaminated infectious waste, asbestos-contaminated material, and polychlorinated biphenyls. It was also used for the retrievable storage of transuranic waste. MDA G began operations in 1957. Information on radioactive materials and radionuclides, including the results of sampling and analysis of radioactive constituents, is voluntarily provided to the New Mexico Environment Department (NMED) in accordance with U.S. Department of Energy policy.

Pore-gas monitoring at MDA G has been required since 1985. A summary of pore-gas monitoring at MDA G follows.

- In 1985, the Laboratory received a compliance order from NMED that required, among other things, characterization of pore gas at Areas G and L. The Laboratory installed seven vapormonitoring wells to characterize pore gas.
- From 1986 to 1990, the Laboratory voluntarily installed 22 additional vapor-monitoring wells to characterize the volatile organic compound (VOC) plume at Areas G and L.
- In 1990, the U.S. Environmental Protection Agency (EPA) issued Module VIII of the Laboratory's Hazardous Waste Facility Permit. Module VIII included requirements for quarterly pore-gas sampling at MDAs G and L as input into the Resource Conservation and Recovery Act (RCRA) facility investigation (RFI).
- In 2005, the Compliance Order on Consent (hereafter, the Consent Order) required pore-gas monitoring during the site investigations for all MDAs and submittal of a long-term pore-gas monitoring plan for each MDA. The Consent Order stated that drilling must continue to at least 25 ft below the deepest detected contamination based on headspace field screening for VOCs.
- In September 2005, the Laboratory submitted a long-term monitoring plan for pore gas in the MDA G investigation report (LANL 2005, 090513).

• In October 2007, the Laboratory submitted a revised long-term monitoring plan for pore gas in the MDA G corrective measures evaluation plan (LANL 2007, 098608).

Subsurface vapor monitoring and sampling are being performed by the Laboratory's Environmental Programs—Corrective Actions Project to characterize trends of VOCs and tritium in subsurface vapor. Field-screening data, analytical laboratory results, and monitoring data for fiscal year (FY) 2007 are presented in this report.

# 2.0 SCOPE OF ACTIVITIES

During FY2007, the following sampling activities were completed at MDA G.

- During the second quarter FY2007, pore-gas screening at MDA G was performed, and pore-gas samples were collected from sampling ports in 17 vapor monitoring boreholes and from the 485to 700-ft interval using an inflatable packer sampling system at one borehole.
- Each sampling interval was purged to ensure that formation air was sampled in accordance with Environmental—Programs Directorate's Standard Operating Procedure (SOP) 06.31, Rev. 2, Sampling of Subatmospheric Air. Table 2.0-1 describes whether each borehole sampled is open or instrumented. Vapor monitoring wells at MDA G are instrumented with SEAMIST flexible liners, as shown in Figure 2.0-1, or with constructed ports as described in Figure 2.0-2.
- Samples from each interval as listed in Table 2.0-1 received field-screening analyses using a
  Landtec GEM-500 photoionization detector (PID) equipped with an 11.7-eV lamp for percent
  carbon dioxide (CO<sub>2</sub>) and oxygen (O<sub>2</sub>). Figure 2.0-3 presents locations of each borehole at
  MDA G producing vapor samples for field screening or laboratory analyses in the past year.
- The vapor from each interval was then screened for VOCs using a Brüel and Kræjer (B&K) multigas instrument, Type 1302, which measures four VOCs: (1) trichloroethane[1,1,1-] (TCA);
   (2) trichloroethene (TCE); (3) tetrachloroethene (PCE); and (4) trichlorofluoromethane (Freon 11). The B&K instrument also measures CO<sub>2</sub> and water vapor (H<sub>2</sub>O).
- During the second quarter of FY2007, vapor samples were collected from selected screened ports in 10 vapor-monitoring boreholes (listed in Table 2.0-1) in SUMMA canisters for laboratory analysis of VOCs using EPA Method TO-15 and in silica gel cartridges for analysis of tritium using EPA Method 114 (National Emissions Standards for Hazardous Air Pollutants [NESHAP] Part 61, Appendix B).
- During the second quarter of FY2007, vapor samples were collected using a packer sampling system from location 54-25105 in SUMMA canisters for laboratory analysis of VOCs using EPA Method TO-15. A packer system for vapor sampling is shown in Figure 2.0-4.
- During the fourth quarter of FY2007, vapor samples were collected from selected screened ports in five vapor monitoring boreholes as listed in Table 2.0-1 in SUMMA canisters for laboratory analysis of VOCs using EPA Method TO-15 and in silica gel cartridges for analysis of tritium using EPA Method 114 (NESHAP, Part 61, Appendix B).
- During the first and second quarter of FY2007 moisture monitoring was conducted at Area G as described in Appendix C.

No investigation-derived waste was generated during FY2007 monitoring.

#### 3.0 REGULATORY CRITERIA

The March 1, 2005, Consent Order does not identify any cleanup standards, risk-based screening levels, risk-based cleanup goals, or other regulatory criteria for pore gas at MDA H. Therefore, an analysis was conducted to evaluate the potential for contamination of groundwater by VOCs in pore gas using screening levels (SLs) based on groundwater cleanup levels contained in the Consent Order. The analysis evaluated the water concentration that will be in equilibrium with the maximum concentrations of VOCs detected at MDA H during the most recent round of monitoring.

**Equation 3-1** 

If the concentration of the VOC in water is less than the SL, then no potential exists for exceedances of groundwater cleanup levels. The analysis for MDA H data is presented in section 5.0.

#### 4.0 MONITORING RESULTS

Monitoring activities were performed at MDA G from February 14 to March 26, 2007 (second quarter FY2007) and from July 31 to August 1, 2007 (fourth quarter FY2007). Monitoring at MDA G included field screening of subsurface vapor for VOCs, H<sub>2</sub>O, percent CO<sub>2</sub>, and O<sub>2</sub>. Moisture monitoring was conducted from December 14, 2006, to January 10, 2007. Moisture monitoring included camera logging of neutron access ports and determining moisture content through the length of each access port.

FY2007 subsurface vapor monitoring was conducted at the locations and depths described in section 2 of this report. Each monitoring depth was first purged to ensure that formation air was being collected. During the purge, the subsurface vapor was monitored for percent CO<sub>2</sub> and O<sub>2</sub> using a Landtec GEM-500 PID. The stabilized values from FY2007 monitoring events at each sampling location are listed in Tables 4.0-1 and 4.0-2. Percent CO<sub>2</sub> and O<sub>2</sub> measured during the FY2007 ranged from 0.0% to 12.9% and 4.9% to 20.9%, respectively. Low O<sub>2</sub> and high CO<sub>2</sub> concentrations are correlated in samples and are indicative of anaerobic degradation of chlorinated compounds. After purge and stabilization, VOC field-screening results were collected in the field using the B&K multigas instrument. Stabilized values from FY2007 monitoring events at each sampling location are listed separately for each organic chemical measured in Tables 4.0-3 through 4.0-6 for TCA, PCE, TCE, and Freon 11, respectively.

Not all sampling ports were able to produce adequate airflow to allow Landtec or B&K field-screening measurements. Location 54-01128 at the 30-ft sampling port could not be sampled by the B&K instrument on February 16, 2007. Location 54-02009 at the 79-ft sampling port could not be sampled by the B&K instrument on February 16, 2007. Location 54-02010 at the 53-ft sampling port could not be sampled by the B&K instrument on February 16, 2007. The Landtec was not available to make  $CO_2$  or  $O_2$  measurements on February 27, February 28, or March 2, 2007, affecting locations 54-01126, 54-27436, and 54-24394. Because the solar-powered air pumping systems failed, the flexible SEAMIST liner deflated, and the location 54-22116 could not be sampled.

#### 5.0 ANALYTICAL DATA RESULTS

Subsurface vapor samples were collected from MDA G from February 15 to March 27, 2007 (second quarter FY2007) and from July 31 to August 2, 2007 (fourth quarter FY2007) in SUMMA canisters for laboratory analysis of VOCs using EPA Method TO-15 and in silica gel cartridges for analysis of tritium using EPA Method 114 (NESHAP Part 61, Appendix B). Analytical data from these sampling events are presented in Tables 5.0-1 and 5.0-2. The quality assurance/quality control program used to review the

data is presented in Appendix A, and the data packages and chain-of-custody forms resulting from FY2007 sampling and analyses are included in Appendix B (on CD included with this document).

Twenty-one different VOCs were detected in vapor samples collected in SUMMA canisters from MDA G during FY2007. Plates 1 and 2 present borehole locations and analytical data for pore-gas VOC analyses in second and fourth quarters of FY2007, respectively. TCA was the most frequently detected analyte and was the analyte detected with the greatest concentrations. TCA was detected in 61 of 61 samples collected; it reached a maximum of 790,000 µg/m³ in borehole 54-24386 at the 37.5-ft sampling port.

Maximum tritium concentrations were detected from borehole 54-24397 at the 45-55 ft interval. Figures 5.0-1 and 5.0-2 presents the location and analytical data for pore-gas tritium analyses conducted during the second and fourth quarter of FY2007. Results for tritium concentrations ranged from 8,550,000 pCi/L to not detected above 1750 pCi/L.

Four instrumented boreholes at MDA G have been sampled for VOCs more than five times since 1997. Location 54-02009 at the 62-ft sampling port has been sampled 20 times since 1997. Location 54-02010 at the 95-ft sampling port has been sampled seven times since 1997. Location 54-02032 at the 156-ft sampling port has been sampled 11 times since 1997. Location 54-02033 at the 100-ft sampling port has been sampled nine times since 1997. Six organic chemicals—TCA, Freon 11, TCE, PCE, 1,1-dichloroethane (DCA), and 1,1-dichloroethene (DCE)—have been detected in more than half the samples collected at MDA G since 1997. Figures 5.0-3 through 5.0-8 illustrate concentrations over time for these six organic chemicals at the four locations with periodic monitoring since 1997. The sample with the largest VOC concentrations at MDA G, 54-24386 at the 40-ft sampling depth, has been sampled twice since the borehole was instrumented, so no trend analysis can be conducted.

The VOC results from the most recent round of monitoring were screened to evaluate whether the concentrations of VOCs in the plume would be of concern as a potential source of groundwater contamination. Because there are no SLs for pore gas that address the potential for groundwater contamination, the screening evaluation was based on groundwater cleanup levels contained in the Consent Order and Henry's Law constants that describe the equilibrium relationship between vapor and water concentrations. The source of the Henry's Law constants was the NMED soil screening level technical background document (NMED 2006, 092513). The following dimensionless form of Henry's Law constant was used

$$H' = \frac{C_{air}}{C_{water}}$$
 Equation 5-1

where  $C_{air}$  is the volumetric concentration of contaminant in air and  $C_{water}$  is the volumetric concentration of contaminant in water. Equation 5-1 can be used to calculate the following screening value (SV):

$$SV = \frac{C_{air}}{1,000 \times H' \times SL}$$
 Equation 5-2

where  $C_{air}$  is the concentration of VOC in the pore-gas sample ( $\mu g/m^3$ ), H' is the dimensionless Henry's Law constant, SL is the screening level ( $\mu g/L$ ), and 1000 is a conversion factor from L to  $m^3$ . The SLs are groundwater cleanup levels specified in the Consent Order. These levels are the EPA maximum contaminant level (MCL) or New Mexico Water Quality Control Commission (NMWQCC) groundwater standard, whichever is lower. As specified in the Consent Order, if there is no MCL or NMWQCC standard, the EPA Region 6 human health medium-specific screening level for tap water is used adjusted to  $10^{-5}$  risk for carcinogens. The numerator in Equation 5-2 is the actual concentration of VOC in pore gas, and the denominator represents the concentration in pore gas needed to exceed the SL. Therefore,

if SV is less than 1, the concentration of VOC in pore gas would not be sufficiently high to cause the water-screening level to be exceeded, even if the VOC plume were in contact with groundwater.

Equation 5-2 was used to screen the maximum concentrations of VOCs detected in pore-gas samples at MDA G during FY2007 sampling. The evaluation considered the 21 VOCs detected for which there are MCLs, NMWQCC standards, or human health screening levels. As shown in Table 5.0-3 the maximum concentrations of nine VOCs resulted in SVs greater than 1. These VOCs are acetone, 2-butanone, 1,1-DCA, 1,1-DCE, methanol, methylene chloride, PCE, TCA, and TCE, with TCE having the highest SV (90). Because some SVs exceeded 1, further screening was performed using the data from the deepest pore-gas samples (i.e., the samples collected closest to the regional aquifer). The deepest sample was collected from borehole location 54-25105 at a depth interval of 485 to 700 ft and had 11 detected VOCs. The results of this screening are presented in Table 5.0-4 and show that all maximum concentrations from the deep sample resulted in SVs below 1; the maximum SV was 0.0341 for TCE. Based on this evaluation, the concentrations of VOCs in pore gas at MDA G do not pose an immediate threat of groundwater contamination. Because SVs for maximum concentrations from samples collected near potential VOC source areas exceeded 1, additional sampling in these areas may be required.

#### 6.0 SUMMARY

The purpose of monitoring and sampling activities at MDA G is to identify changes in contaminant concentrations at the perimeter of the relatively well-characterized plume at MDA G as an indicator of outward plume expansion (i.e., extent); to monitor for changes in contaminant concentration distributions within the plume at MDA G as an indicator of changes warranting further attention (i.e., nature); and to monitor boreholes for data-gap needs for future modeling and trend analyses.

All analytes shown in Figures 5.0-3 through 5.0-8 show concentrations that decrease over time. At all locations and depths sampled periodically since 1997, analytes show slightly decreasing or stable trends in concentration.

In summary,

- VOCs are present at variable concentrations in subsurface vapor at levels similar to or below concentrations observed during 1997,
- concentrations of VOCs in pore gas in the boreholes sampled are not high enough to pose an immediate threat of groundwater contamination by the VOC plume,
- pore-gas monitoring proposed in the long-term monitoring plan should be suspended until the need for additional sampling near potential VOC source areas has been determined, and
- tritium is present in subsurface vapor at concentrations decreases as sampling depth below the ground surface increases. The concentration of tritium in the deepest sample is approximately 10% of the MCL.

# 7.0 REFERENCES AND MAP DATA SOURCES

#### 7.1 References

The following list includes all documents cited in this report. Parenthetical information following each reference provides the author(s), publication date, and ER ID number. This information is also included in text citations. ER ID numbers are assigned by the Environmental Programs Directorate's Records

Processing Facility (RPF) and are used to locate the document at the RPF and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau; the U.S. Department of Energy—Los Alamos Site Office; the U.S. Environmental Protection Agency, Region 6; and the Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- LANL (Los Alamos National Laboratory), May 22, 1998. "Hydrogeologic Workplan," Los Alamos National Laboratory document LA-UR-01-6511, Los Alamos, New Mexico. (LANL 1998, 059599)
- LANL (Los Alamos National Laboratory), September 2005. "Investigation Report for Material Disposal Area G, Consolidated Unit 54-013(b)-99, at Technical Area 54," Los Alamos National Laboratory document LA-UR-05-6398, Los Alamos, New Mexico. (LANL 2005, 090513)
- LANL (Los Alamos National Laboratory), October 2007. "Corrective Measures Evaluation Plan for Material Disposal Area G at Technical Area 54, Revision 2," Los Alamos National Laboratory document LA-UR-07-6882, Los Alamos, New Mexico. (LANL 2007, 098608)
- NMED (New Mexico Environment Department), June 2006. "Technical Background Document for Development of Soil Screening Levels, Revision 4.0, Volume 1, Tier 1: Soil Screening Guidance Technical Background Document," New Mexico Environment Department, Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, Santa Fe, New Mexico. (NMED 2006, 092513)
- Rogers, M.A., June 1977. "History and Environmental Setting of LASL Near-Surface Land Disposal Facilities for Radioactive Wastes (Areas A, B, C, D, E, F, G, and T)," Vol. I, Los Alamos Scientific Laboratory report LA-6848-MS, Los Alamos, New Mexico. (Rogers 1977, 005707)
- Rogers, M.A., June 1977. "History and Environmental Setting of LASL Near-Surface Land Disposal Facilities for Radioactive Wastes (Areas A, B, C, D, E, F, G, and T)," Vol. II, Los Alamos Scientific Laboratory report LA-6848-MS, Los Alamos, New Mexico. (Rogers 1977, 005708)

# 7.2 Map Data Sources

Data sources used in original figures created for this report are described below and identified by legend title.

| Legend Item       | Data Source                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disposal pit      | Waste Storage Features; Los Alamos National Laboratory, Environment and Remediation Support Services Division, GIS/Geotechnical Services Group, EP2007-0032; 1:2,500 Scale Data; 13 April 2007. |
| Disposal shaft    | Waste Storage Features; Los Alamos National Laboratory, Environment and Remediation Support Services Division, GIS/Geotechnical Services Group, EP2007-0032; 1:2,500 Scale Data; 13 April 2007. |
| Elevation contour | Hypsography, 10, 20, & 100 Foot Contour Intervals; Los Alamos National Laboratory, ENV Environmental Remediation and Surveillance Program; 1991.                                                |

| Legend Item            | Data Source                                                                                                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fence                  | Security and Industrial Fences and Gates; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 10 September 2007.    |
| LANL boundary          | LANL Areas Used and Occupied; Los Alamos National Laboratory, Site Planning & Project Initiation Group, Infrastructure Planning Division; 19 September 2007.                                     |
| Material disposal area | Materials Disposal Areas; Los Alamos National Laboratory, ENV Environmental Remediation and Surveillance Program; ER2004-0221; 1:2,500 Scale Data; 23 April 2004.                                |
| Paved road             | Paved Road Arcs; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 10 September 2007.                             |
| Structure              | Structures; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 10 September 2007.                                  |
| TA boundary            | Technical Area Boundaries; Los Alamos National Laboratory, Site Planning & Project Initiation Group, Infrastructure Planning Division; 19 September 2007.                                        |
| Unpaved road           | Dirt Road Arcs; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 10 September 2007.                              |
| Vapor monitoring well  | Point Feature Locations of the Environmental Restoration Project Database; Los Alamos National Laboratory, Environment and Remediation Support Services Division, EP2007-0754; 30 November 2007. |

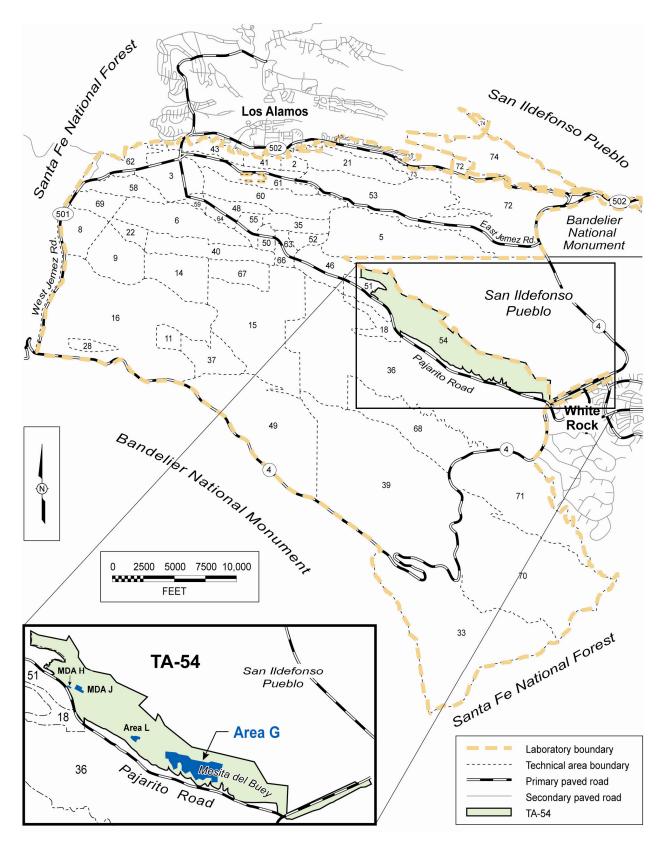



Figure 1.0-1 Location of Area G in TA-54 with respect to Laboratory technical areas and surrounding land holdings

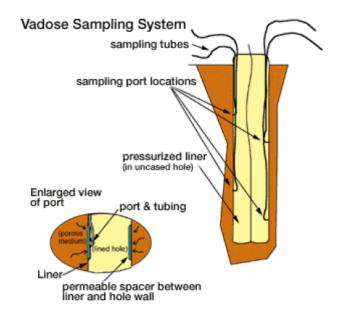



Figure 2.0-1 SEAMIST membrane liner system for vadose zone pore-gas sampling

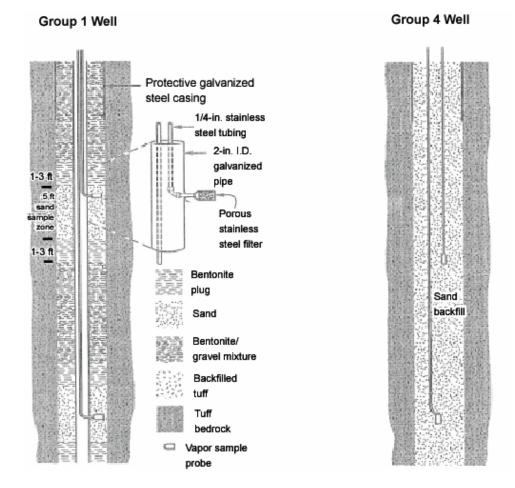



Figure 2.0-2 Construction details of instrumented boreholes for vadose zone pore-gas sampling

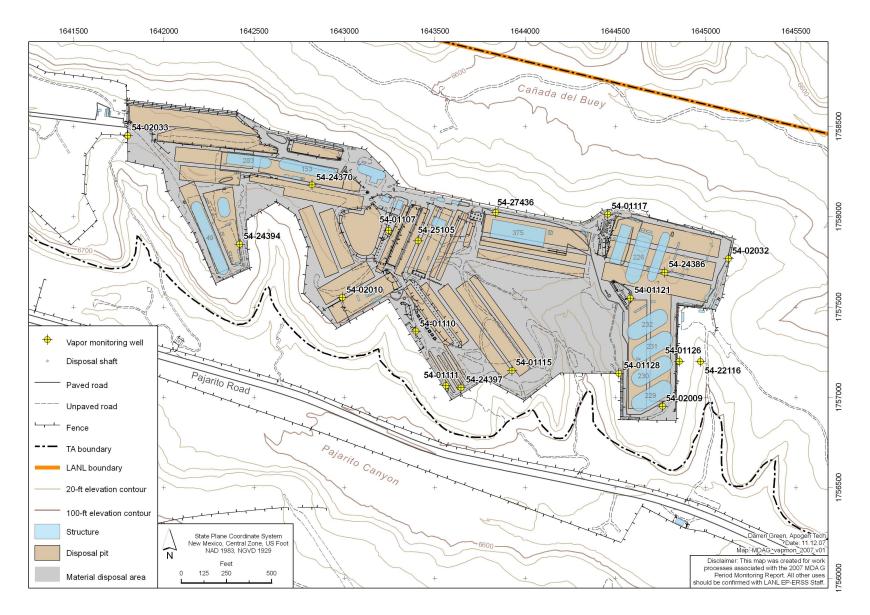



Figure 2.0-3 Locations of MDA G boreholes for pore-gas sampling

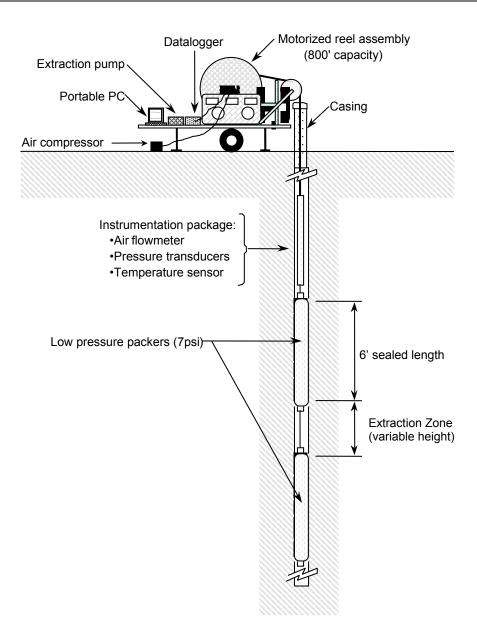



Figure 2.0-4 Packer system for vadose zone pore-gas sampling

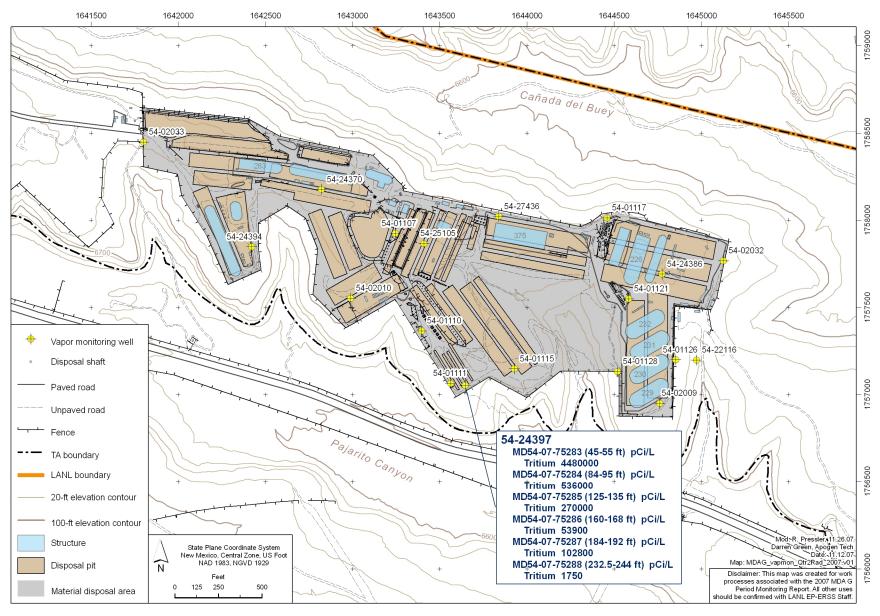



Figure 5.0-1 Tritium (pCi/L) detected in subsurface pore gas at MDA G during second quarter FY2007

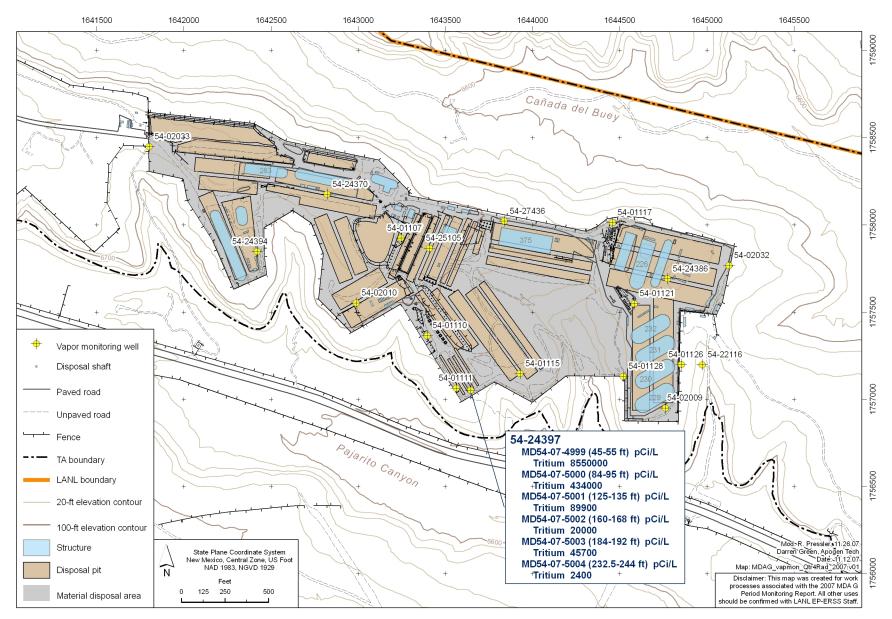



Figure 5.0-2 Tritium (pCi/L) detected in subsurface pore gas at MDA G during fourth quarter FY2007

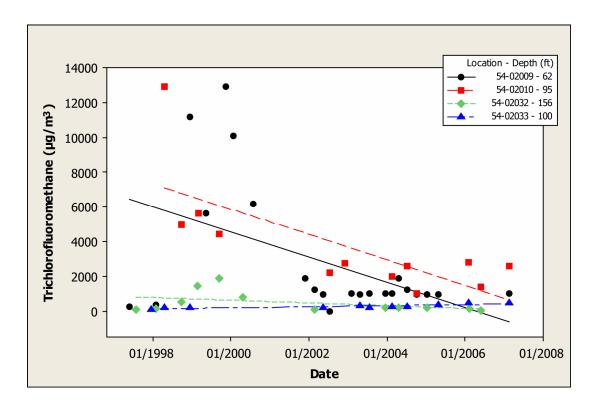



Figure 5.0-3 Trends in concentration of Freon 11 at MDA G from SUMMA analyses

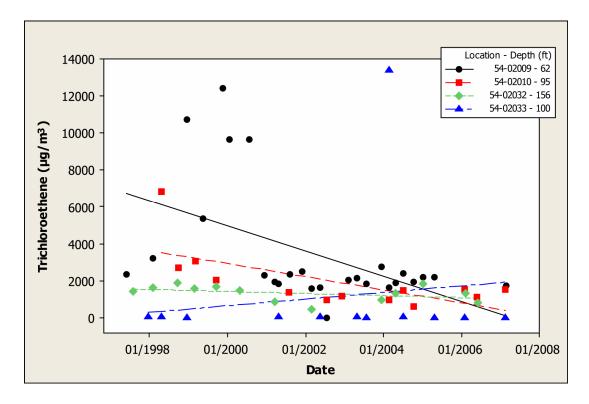



Figure 5.0-4 Trends in concentration of TCE at MDA G from SUMMA analyses

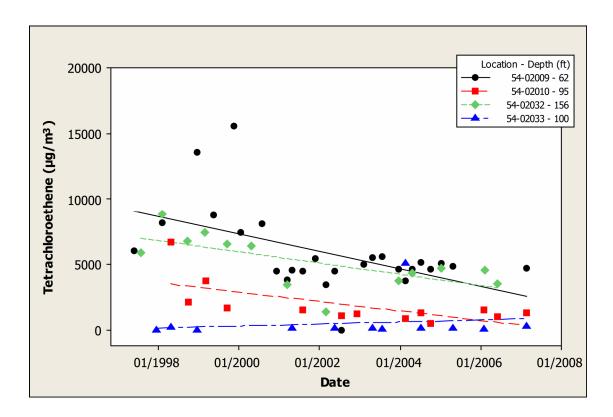



Figure 5.0-5 Trends in concentration of PCE at MDA G from SUMMA analyses

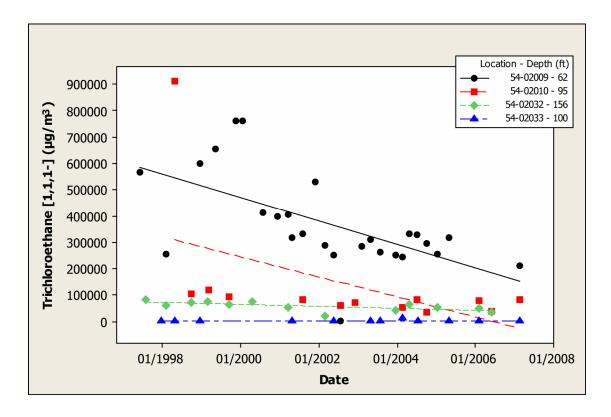



Figure 5.0-6 Trends in concentration of TCA at MDA G from SUMMA analyses

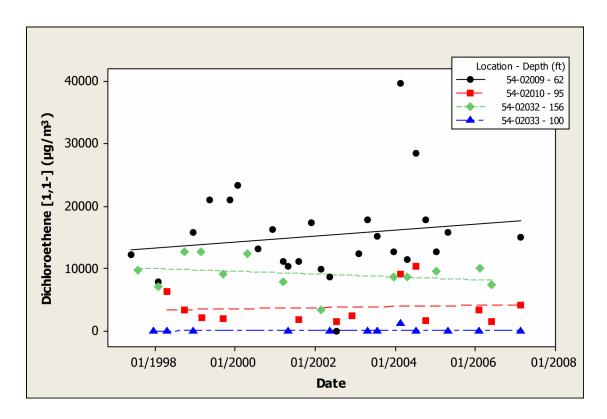



Figure 5.0-7 Trends in concentration of dichloroethene[1,1-] at MDA G from SUMMA analyses

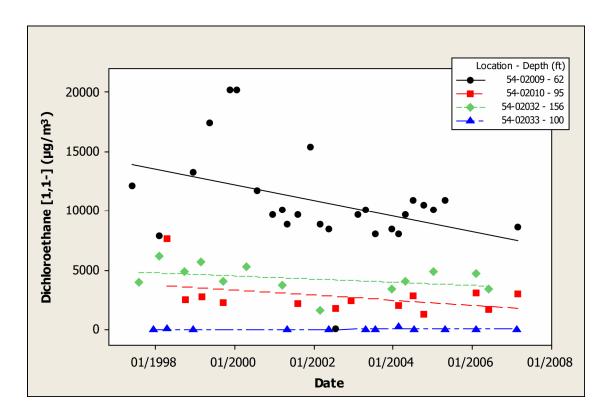



Figure 5.0-8 Trends in concentration of dichloroethane[1,1-] at MDA G from SUMMA analyses

Table 2.0-1
MDA G Subsurface Vapor-Monitoring Locations

| Location<br>ID        | Borehole<br>Construction<br>Type | SUMMA/Tritium<br>Sampling<br>Period | Screening<br>Sampling<br>Period | Depth Below Surface (Borehole Length) of<br>Instrumented Sampling Ports (ft) |
|-----------------------|----------------------------------|-------------------------------------|---------------------------------|------------------------------------------------------------------------------|
| 54-01107              | SEAMIST                          | a                                   | 2Q07                            | 20, 44.5, 56.5, 74, 91, 100                                                  |
| 54-01110              | SEAMIST                          | _                                   | 2Q07                            | 20, 48, 60, 70, 85, 90                                                       |
| 54-01111              | SEAMIST                          | _                                   | 2Q07                            | 20, 39.5, 50, 70, 78, 100, 139                                               |
| 54-01115 <sup>b</sup> | SEAMIST                          | _                                   | 2Q07                            | 7.9 (15), 26.5 (50), 40.8 (77), 53 (100), 63.6 (120), 68.9 (130)             |
| 54-01117              | SEAMIST                          | _                                   | 2Q07                            | 20, 31.5, 55, 73, 82, 85                                                     |
| 54-01121              | SEAMIST                          | _                                   | 2Q07                            | 20, 26, 61.5, 70, 76, 98, 121                                                |
| 54-01126 <sup>b</sup> | SEAMIST                          | _                                   | 2Q07                            | 7.5 (15), 17.5 (35), 28.5 (57), 35 (70), 42.5 (85), 49.5 (99)                |
| 54-01128 <sup>b</sup> | SEAMIST                          | _                                   | 2Q07                            | 7.5 (15), 15 (30), 20 (40), 30 (60), 39 (78)                                 |
| 54-02009              | Group 1                          | 2Q07                                | 2Q07                            | 37, <b>62</b> , 92                                                           |
| 54-02010              | Group 1                          | 2Q07                                | 2Q07                            | 30, 53, <b>95</b>                                                            |
| 54-02032              | Group 4                          | 2Q07                                | 2Q07                            | 20, 60, 100, <b>130</b> , 156                                                |
| 54-02033              | Group 4                          | 2Q07                                | 2Q07                            | 20, 60, <b>100</b> , 160, 200, 220, 260, 277                                 |
| 54-22116              | SEAMIST                          | _                                   | _                               | 28, 46, 64, 82, 100, 118, 136, 154, 172, 190, 208, 226, 244, 262, 280        |
| 54-27436              | Group 1                          | 2Q07/4Q07                           | 2Q07/4Q07                       | 40, 80, 120, 160, 168, 178                                                   |
| 54-24370              | Group 1                          | 2Q07/4Q07                           | 2Q07/4Q07                       | 40, 80, 120, 173, 200, 233                                                   |
| 54-24386              | Group 1                          | 2Q07/4Q07                           | 2Q07/4Q07                       | 40, 83, 117, 135, 195                                                        |
| 54-24394              | Group 1                          | 2Q07/4Q07                           | 2Q07/4Q07                       | 50, 100, 150, 192, 245, 300                                                  |
| 54-24397              | Group 1                          | 2Q07/4Q07                           | 2Q07/4Q07                       | 50, 90, 130, 165, 188, 239                                                   |
| 54-25105 <sup>c</sup> | Open                             | 2Q07                                | 2Q07                            | 485–701                                                                      |

Note: Bolded depths denote locations of SUMMA sample collection in FY2007.

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

<sup>&</sup>lt;sup>b</sup> Angled borehole: depth below surface borehole length (in parentheses).

<sup>&</sup>lt;sup>c</sup> Open borehole.

Table 4.0-1 CO<sub>2</sub> Screening Results Using a Landtec GEM-500 PID

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 2.7                         | a                          |
| 54-01107    | 44.5                            | 3                           | _                          |
| 54-01107    | 56.5                            | 2.9                         | _                          |
| 54-01107    | 74                              | 2.8                         | _                          |
| 54-01107    | 91                              | 2                           | _                          |
| 54-01107    | 100                             | 2.4                         | _                          |
| 54-01110    | 20                              | 0.4                         | _                          |
| 54-01110    | 48                              | 0.6                         | _                          |
| 54-01110    | 60                              | 0.6                         | _                          |
| 54-01110    | 70                              | 0.7                         | _                          |
| 54-01110    | 85                              | 0.7                         | _                          |
| 54-01110    | 90                              | 0.7                         | _                          |
| 54-01111    | 20                              | 0.3                         | _                          |
| 54-01111    | 39.5                            | 0.4                         | _                          |
| 54-01111    | 50                              | 0.4                         | _                          |
| 54-01111    | 70                              | 0.4                         | _                          |
| 54-01111    | 78                              | 0.4                         | _                          |
| 54-01111    | 100                             | 0.5                         | _                          |
| 54-01111    | 139                             | 0.5                         | _                          |
| 54-01115    | 7.9 [15]                        | 1                           | _                          |
| 54-01115    | 26.5 [50]                       | 2.5                         | _                          |
| 54-01115    | 40.8 [77]                       | 3.2                         | _                          |
| 54-01115    | 53 [100]                        | 3.5                         | _                          |
| 54-01115    | 63.6 [120]                      | 3.6                         | _                          |
| 54-01115    | 68.9 [130]                      | 3.6                         | _                          |
| 54-01117    | 20                              | 0.5                         | _                          |
| 54-01117    | 31.5                            | 0.6                         | _                          |
| 54-01117    | 55                              | 0.8                         | _                          |
| 54-01117    | 73                              | 0.9                         | _                          |
| 54-01117    | 82                              | 0.9                         | _                          |
| 54-01117    | 85                              | 0.9                         | _                          |
| 54-01121    | 20                              | 2                           | _                          |
| 54-01121    | 26                              | 2.1                         | _                          |
| 54-01121    | 61.5                            | 2.6                         |                            |
| 54-01121    | 70                              | 2.6                         | _                          |
| 54-01121    | 76                              | 2.6                         | _                          |
| 54-01121    | 98                              | 2.8                         | _                          |

Table 4.0-1 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 121                             | 2.9                         | _                          |
| 54-01126    | 7.5 [15]                        | ba                          | _                          |
| 54-01126    | 17.5 [35]                       | b                           | _                          |
| 54-01126    | 28.5 [57]                       | b                           | _                          |
| 54-01126    | 35 [70]                         | b                           | _                          |
| 54-01126    | 42.5 [85]                       | b                           | _                          |
| 54-01126    | 49.5 [99]                       | b                           | _                          |
| 54-01128    | 7.5 [15]                        | 1                           | _                          |
| 54-01128    | 15 [30]                         | 1.8                         | _                          |
| 54-01128    | 20 [40]                         | 2.5                         | _                          |
| 54-01128    | 30 [60]                         | 3.1                         | _                          |
| 54-01128    | 39 [78]                         | 3.4                         | _                          |
| 54-02009    | 37                              | 1.4                         | _                          |
| 54-02009    | 62                              | 1.4                         | _                          |
| 54-02009    | 79                              | 1.3                         | _                          |
| 54-02009    | 92                              | 1.2                         | _                          |
| 54-02010    | 30                              | 2.9                         | _                          |
| 54-02010    | 53                              | 3.7                         | _                          |
| 54-02010    | 95                              | 3.3                         | _                          |
| 54-02032    | 20                              | 0.8                         | _                          |
| 54-02032    | 60                              | 1                           | _                          |
| 54-02032    | 100                             | 1.2                         | _                          |
| 54-02032    | 130                             | 1                           | _                          |
| 54-02032    | 156                             | 0.8                         | _                          |
| 54-02033    | 20                              | 0.5                         | _                          |
| 54-02033    | 60                              | 0.7                         | _                          |
| 54-02033    | 100                             | 0.8                         | _                          |
| 54-02033    | 160                             | 0.6                         | _                          |
| 54-02033    | 200                             | 0.2                         | _                          |
| 54-02033    | 220                             | 0.2                         | _                          |
| 54-02033    | 260                             | 0                           | _                          |
| 54-02033    | 277                             | 0                           | _                          |
| 54-24370    | 40                              | 11.8                        | 12.9                       |
| 54-24370    | 80                              | 11.6                        | 12.8                       |
| 54-24370    | 120                             | 8.1                         | 9.1                        |
| 54-24370    | 173                             | 4.5                         | 6.8                        |
| 54-24370    | 200                             | 3.8                         | 6.3                        |
| 54-24370    | 233                             | 0.3                         | 0.7                        |

Table 4.0-1 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 6.9                         | 8                          |
| 54-24386    | 83                              | 4.3                         | 5                          |
| 54-24386    | 117                             | 2.4                         | 4                          |
| 54-24386    | 135                             | 2.9                         | 3.6                        |
| 54-24386    | 195                             | 0.2                         | 0.2                        |
| 54-24394    | 50                              | b                           | 3                          |
| 54-24394    | 100                             | b                           | 2.9                        |
| 54-24394    | 150                             | b                           | 2.6                        |
| 54-24394    | 192                             | b                           | 1.9                        |
| 54-24394    | 245                             | b                           | 1.7                        |
| 54-24394    | 300                             | b                           | 0.2                        |
| 54-25105    | 485                             | 0                           | _                          |
| 54-27436    | 45                              | b                           | 1.4                        |
| 54-27436    | 70                              | b                           | 1.3                        |
| 54-27436    | 115                             | b                           | 1.1                        |
| 54-27436    | 163                             | b                           | 0.8                        |
| 54-27436    | 185                             | b                           | 0.3                        |

Note: For angled boreholes, the depth below surface borehole length is given in brackets.

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

b Landtec not available for field measurements or instrumented borehole not functioning for pore-gas sample collection.

 $\label{eq:continuity} \textbf{Table 4.0-2} \\ \textbf{O}_2 \ \textbf{Screening Results Using a Landtec GEM-500 PID}$ 

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 18                          | a                          |
| 54-01107    | 44.5                            | 17.6                        | _                          |
| 54-01107    | 56.5                            | 17.8                        | _                          |
| 54-01107    | 74                              | 17.9                        | _                          |
| 54-01107    | 91                              | 18.6                        | _                          |
| 54-01107    | 100                             | 18.3                        | _                          |
| 54-01110    | 20                              | 20.3                        | _                          |
| 54-01110    | 48                              | 20.2                        | _                          |
| 54-01110    | 60                              | 20.1                        | _                          |
| 54-01110    | 70                              | 20.1                        | _                          |
| 54-01110    | 85                              | 20.1                        | _                          |
| 54-01110    | 90                              | 20.1                        | _                          |
| 54-01111    | 20                              | 20                          | _                          |
| 54-01111    | 39.5                            | 20                          | _                          |
| 54-01111    | 50                              | 20                          | _                          |
| 54-01111    | 70                              | 20                          | _                          |
| 54-01111    | 78                              | 20                          | _                          |
| 54-01111    | 100                             | 20                          | _                          |
| 54-01111    | 139                             | 20                          | _                          |
| 54-01115    | 7.9 [15]                        | 20.1                        | _                          |
| 54-01115    | 26.5 [50]                       | 18.9                        | _                          |
| 54-01115    | 40.8 [77]                       | 18.2                        | _                          |
| 54-01115    | 53 [100]                        | 17.8                        | _                          |
| 54-01115    | 63.6 [120]                      | 17.5                        | _                          |
| 54-01115    | 68.9 [130]                      | 17.9                        | _                          |
| 54-01117    | 20                              | 20.2                        | _                          |
| 54-01117    | 31.5                            | 20                          | _                          |
| 54-01117    | 55                              | 19.8                        | _                          |
| 54-01117    | 73                              | 18.8                        | _                          |
| 54-01117    | 82                              | 19.8                        | _                          |
| 54-01117    | 85                              | 19.8                        |                            |
| 54-01121    | 20                              | 18.4                        | _                          |
| 54-01121    | 26                              | 18.1                        | _                          |
| 54-01121    | 61.5                            | 17.4                        | _                          |
| 54-01121    | 70                              | 17.2                        | _                          |
| 54-01121    | 76                              | 17.3                        | _                          |
| 54-01121    | 98                              | 17.1                        | _                          |

Table 4.0-2 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 121                             | 17                          | _                          |
| 54-01126    | 7.5 [15]                        | b                           | _                          |
| 54-01126    | 17.5 [35]                       | b                           | _                          |
| 54-01126    | 28.5 [57]                       | b                           | _                          |
| 54-01126    | 35 [70]                         | b                           | _                          |
| 54-01126    | 42.5 [85]                       | b                           | _                          |
| 54-01126    | 49.5 [99]                       | b                           | _                          |
| 54-01128    | 7.5 [15]                        | 19.2                        | _                          |
| 54-01128    | 15 [30]                         | 18.5                        | _                          |
| 54-01128    | 20 [40]                         | 17.3                        | _                          |
| 54-01128    | 30 [60]                         | 16.6                        | _                          |
| 54-01128    | 39 [78]                         | 16.3                        | _                          |
| 54-02009    | 37                              | 18.9                        | _                          |
| 54-02009    | 62                              | 18.8                        | _                          |
| 54-02009    | 79                              | 18.9                        | _                          |
| 54-02009    | 92                              | 18.8                        | _                          |
| 54-02010    | 30                              | 17.3                        | _                          |
| 54-02010    | 53                              | 16.1                        | _                          |
| 54-02010    | 95                              | 16.9                        | _                          |
| 54-02032    | 20                              | 20.3                        | _                          |
| 54-02032    | 60                              | 20.1                        | _                          |
| 54-02032    | 100                             | 19.9                        | _                          |
| 54-02032    | 130                             | 20.2                        | _                          |
| 54-02032    | 156                             | 20.4                        | _                          |
| 54-02033    | 20                              | 20.5                        | _                          |
| 54-02033    | 60                              | 20.1                        | _                          |
| 54-02033    | 100                             | 20                          | _                          |
| 54-02033    | 160                             | 20.1                        | _                          |
| 54-02033    | 200                             | 20.5                        | _                          |
| 54-02033    | 220                             | 20.6                        | _                          |
| 54-02033    | 260                             | 20.9                        | _                          |
| 54-02033    | 277                             | 20.9                        | _                          |
| 54-24370    | 40                              | 7.7                         | 4.9                        |
| 54-24370    | 80                              | 7.5                         | 4.9                        |
| 54-24370    | 120                             | 11.4                        | 7.7                        |
| 54-24370    | 173                             | 14.8                        | 12.8                       |
| 54-24370    | 200                             | 8.4                         | 13.4                       |
| 54-24370    | 233                             | 20.4                        | 19.6                       |

Table 4.0-2 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 10.4                        | 7.2                        |
| 54-24386    | 83                              | 14.4                        | 13.3                       |
| 54-24386    | 117                             | 16.8                        | 15                         |
| 54-24386    | 135                             | 16.8                        | 15.6                       |
| 54-24386    | 195                             | 20.2                        | 20.1                       |
| 54-24394    | 50                              | b                           | 17.5                       |
| 54-24394    | 100                             | b                           | 17.6                       |
| 54-24394    | 150                             | b                           | 17.6                       |
| 54-24394    | 192                             | b                           | 18.5                       |
| 54-24394    | 245                             | b                           | 18.8                       |
| 54-24394    | 300                             | b                           | 20.1                       |
| 54-25105    | 485                             | 20.6                        | _                          |
| 54-27436    | 45                              | b                           | 19.1                       |
| 54-27436    | 70                              | b                           | 19.2                       |
| 54-27436    | 115                             | b                           | 19.5                       |
| 54-27436    | 163                             | b                           | 19.7                       |
| 54-27436    | 185                             | b                           | 20.1                       |

Note: For angled boreholes, the depth below surface borehole length is given in brackets.

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

<sup>&</sup>lt;sup>b</sup> Landtec not available for field measurements or instrumented borehole not functioning for pore-gas sample collection.

Table 4.0-3
TCA Screening Results Using a B&K Multigas Instrument

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | -19100 <sup>a</sup>         | b                          |
| 54-01107    | 44.5                            | 15800                       | _                          |
| 54-01107    | 56.5                            | 12100                       | _                          |
| 54-01107    | 74                              | 10900                       | _                          |
| 54-01107    | 91                              | 4250                        | _                          |
| 54-01107    | 100                             | 1030                        | _                          |
| 54-01110    | 20                              | 18300                       | _                          |
| 54-01110    | 48                              | 33100                       | _                          |
| 54-01110    | 60                              | 39900                       | _                          |
| 54-01110    | 70                              | 41200                       | _                          |
| 54-01110    | 85                              | 41700                       | _                          |
| 54-01110    | 90                              | 41800                       | _                          |
| 54-01111    | 20                              | 26600                       | _                          |
| 54-01111    | 39.5                            | 42800                       | _                          |
| 54-01111    | 50                              | 48600                       | _                          |
| 54-01111    | 70                              | 50800                       | _                          |
| 54-01111    | 78                              | 44000                       | _                          |
| 54-01111    | 100                             | 36400                       | _                          |
| 54-01111    | 139                             | 30300                       | _                          |
| 54-01115    | 7.9 [15]                        | 16600                       | _                          |
| 54-01115    | 26.5 [50]                       | 30300                       | _                          |
| 54-01115    | 40.8 [77]                       | 30900                       | _                          |
| 54-01115    | 53 [100]                        | 29400                       | _                          |
| 54-01115    | 63.6 [120]                      | 34800                       | _                          |
| 54-01115    | 68.9 [130]                      | 37400                       | _                          |
| 54-01117    | 20                              | 130000                      | _                          |
| 54-01117    | 31.5                            | 237000                      | _                          |
| 54-01117    | 55                              | 376000                      | _                          |
| 54-01117    | 73                              | 429000                      | _                          |
| 54-01117    | 82                              | 451000                      | _                          |
| 54-01117    | 85                              | 472000                      | _                          |
| 54-01121    | 20                              | 217000                      | _                          |
| 54-01121    | 26                              | 258000                      | _                          |
| 54-01121    | 61.5                            | 264000                      | _                          |
| 54-01121    | 70                              | 333000                      | _                          |
| 54-01121    | 76                              | 350000                      | <del>_</del>               |
| 54-01121    | 98                              | 378000                      |                            |

Table 4.0-3 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 121                             | 396000                      | _                          |
| 54-01126    | 7.5 [15]                        | 105000                      | _                          |
| 54-01126    | 17.5 [35]                       | 198000                      | _                          |
| 54-01126    | 28.5 [57]                       | 376000                      | _                          |
| 54-01126    | 35 [70]                         | 436000                      | _                          |
| 54-01126    | 42.5 [85]                       | 448000                      | _                          |
| 54-01126    | 49.5 [99]                       | 531000                      | _                          |
| 54-01128    | 7.5 [15]                        | 105000                      | _                          |
| 54-01128    | 15 [30]                         | 168000                      | _                          |
| 54-01128    | 20 [40]                         | 231000                      | _                          |
| 54-01128    | 30 [60]                         | С                           | _                          |
| 54-01128    | 39 [78]                         | 368000                      | _                          |
| 54-02009    | 37                              | 260000                      | _                          |
| 54-02009    | 62                              | 292000                      | _                          |
| 54-02009    | 79                              | С                           | _                          |
| 54-02009    | 92                              | 300000                      | _                          |
| 54-02010    | 30                              | 107000                      | _                          |
| 54-02010    | 53                              | С                           | _                          |
| 54-02010    | 95                              | 131000                      | _                          |
| 54-02032    | 20                              | 38900                       | _                          |
| 54-02032    | 60                              | 57800                       | _                          |
| 54-02032    | 100                             | 47200                       | _                          |
| 54-02032    | 130                             | 77400                       | _                          |
| 54-02032    | 156                             | 58300                       | _                          |
| 54-02033    | 20                              | 3580                        | _                          |
| 54-02033    | 60                              | 6650                        | _                          |
| 54-02033    | 100                             | 9870                        | _                          |
| 54-02033    | 160                             | 5780                        | _                          |
| 54-02033    | 200                             | 7740                        | _                          |
| 54-02033    | 220                             | 4700                        | _                          |
| 54-02033    | 260                             | 3090                        | _                          |
| 54-02033    | 277                             | 2100                        | _                          |
| 54-24370    | 40                              | -633000 <sup>a</sup>        | 155000                     |
| 54-24370    | 80                              | -409000 <sup>a</sup>        | 91100                      |
| 54-24370    | 120                             | -191000 <sup>a</sup>        | -98200 <sup>a</sup>        |
| 54-24370    | 173                             | -27300 <sup>a</sup>         | -180000 <sup>a</sup>       |
| 54-24370    | 200                             | -33800 <sup>a</sup>         | -229000 <sup>a</sup>       |
| 54-24370    | 233                             | 25500                       | -49600 <sup>a</sup>        |

Table 4.0-3 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 470000                      | 693000                     |
| 54-24386    | 83                              | 578000                      | 310000                     |
| 54-24386    | 117                             | 267000                      | 397000                     |
| 54-24386    | 135                             | 430000                      | 393000                     |
| 54-24386    | 195                             | 26700                       | 28900                      |
| 54-24394    | 50                              | -21300 <sup>a</sup>         | -174000 <sup>a</sup>       |
| 54-24394    | 100                             | 32200                       | -131000 <sup>a</sup>       |
| 54-24394    | 150                             | 24400                       | -98200 <sup>a</sup>        |
| 54-24394    | 192                             | 18300                       | -17400 <sup>a</sup>        |
| 54-24394    | 245                             | 11800                       | -19600 <sup>a</sup>        |
| 54-24394    | 300                             | -3230                       | -14700 <sup>a</sup>        |
| 54-25105    | 485                             | 1510                        | _                          |
| 54-27436    | 45                              | 25200                       | -76300 <sup>a</sup>        |
| 54-27436    | 70                              | 29000                       | -60000 <sup>a</sup>        |
| 54-27436    | 115                             | 23400                       | -53400 <sup>a</sup>        |
| 54-27436    | 163                             | 18100                       | -37600 <sup>a</sup>        |
| 54-27436    | 185                             | 4040                        | -20700 <sup>a</sup>        |

<sup>&</sup>lt;sup>a</sup> Interference observed in field measurement.

b — = Monitoring not requested.

<sup>&</sup>lt;sup>c</sup> Instrumented borehole not functioning for pore-gas sample collection.

Table 4.0-4
PCE Screening Results Using a B&K Multigas Instrument

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(μg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 12600                       | a                          |
| 54-01107    | 44.5                            | 10300                       | _                          |
| 54-01107    | 56.5                            | 11800                       | _                          |
| 54-01107    | 74                              | 12500                       | _                          |
| 54-01107    | 91                              | 6710                        | _                          |
| 54-01107    | 100                             | 12700                       | _                          |
| 54-01110    | 20                              | 1080                        | _                          |
| 54-01110    | 48                              | 4010                        | _                          |
| 54-01110    | 60                              | 4480                        | _                          |
| 54-01110    | 70                              | 4750                        | _                          |
| 54-01110    | 85                              | 4940                        | _                          |
| 54-01110    | 90                              | 4920                        | _                          |
| 54-01111    | 20                              | 7660                        | _                          |
| 54-01111    | 39.5                            | 10800                       | _                          |
| 54-01111    | 50                              | 11200                       | _                          |
| 54-01111    | 70                              | 9490                        | _                          |
| 54-01111    | 78                              | 8540                        | _                          |
| 54-01111    | 100                             | 6280                        | _                          |
| 54-01111    | 139                             | 6780                        | _                          |
| 54-01115    | 7.9 [15]                        | 1950                        | _                          |
| 54-01115    | 26.5 [50]                       | 7660                        | _                          |
| 54-01115    | 40.8 [77]                       | 16800                       | _                          |
| 54-01115    | 53 [100]                        | 18500                       | _                          |
| 54-01115    | 63.6 [120]                      | 19900                       | _                          |
| 54-01115    | 68.9 [130]                      | 21800                       | _                          |
| 54-01117    | 20                              | 6430                        | _                          |
| 54-01117    | 31.5                            | 11600                       | _                          |
| 54-01117    | 55                              | 12900                       | _                          |
| 54-01117    | 73                              | 16700                       | _                          |
| 54-01117    | 82                              | 17600                       | _                          |
| 54-01117    | 85                              | 18200                       | _                          |
| 54-01121    | 20                              | 8270                        | _                          |
| 54-01121    | 26                              | 12300                       | _                          |
| 54-01121    | 61.5                            | 14400                       | _                          |
| 54-01121    | 70                              | 19300                       | _                          |
| 54-01121    | 76                              | 21600                       | _                          |
| 54-01121    | 98                              | 25700                       | _                          |

Table 4.0-4 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(μg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 121                             | 27200                       | <del>_</del>               |
| 54-01126    | 7.5 [15]                        | 4170                        | _                          |
| 54-01126    | 17.5 [35]                       | 8470                        | _                          |
| 54-01126    | 28.5 [57]                       | 18000                       | _                          |
| 54-01126    | 35 [70]                         | 23600                       | _                          |
| 54-01126    | 42.5 [85]                       | 27700                       | _                          |
| 54-01126    | 49.5 [99]                       | 33100                       | _                          |
| 54-01128    | 7.5 [15]                        | 2700                        | _                          |
| 54-01128    | 15 [30]                         | 3330                        | _                          |
| 54-01128    | 20 [40]                         | 5610                        | _                          |
| 54-01128    | 30 [60]                         | b                           | _                          |
| 54-01128    | 39 [78]                         | 11300                       | _                          |
| 54-02009    | 37                              | 6250                        | _                          |
| 54-02009    | 62                              | 7320                        | _                          |
| 54-02009    | 79                              | b                           | _                          |
| 54-02009    | 92                              | 10100                       | _                          |
| 54-02010    | 30                              | 6780                        | _                          |
| 54-02010    | 53                              | b                           | _                          |
| 54-02010    | 95                              | 15900                       | _                          |
| 54-02032    | 20                              | 3360                        | _                          |
| 54-02032    | 60                              | 2550                        | _                          |
| 54-02032    | 100                             | 4450                        | _                          |
| 54-02032    | 130                             | 8610                        | _                          |
| 54-02032    | 156                             | 3970                        | _                          |
| 54-02033    | 20                              | 1060                        | _                          |
| 54-02033    | 60                              | 1310                        | _                          |
| 54-02033    | 100                             | 840                         | _                          |
| 54-02033    | 160                             | 1540                        | _                          |
| 54-02033    | 200                             | 299                         | _                          |
| 54-02033    | 220                             | 500                         | _                          |
| 54-02033    | 260                             | 350                         | _                          |
| 54-02033    | 277                             | 415                         | _                          |
| 54-24370    | 40                              | 99600                       | 82000                      |
| 54-24370    | 80                              | 83400                       | 102000                     |
| 54-24370    | 120                             | 80000                       | 99600                      |
| 54-24370    | 173                             | 57200                       | 90100                      |
| 54-24370    | 200                             | 71800                       | 86100                      |
| 54-24370    | 233                             | 13400                       | 9560                       |

Table 4.0-4 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 22400                       | 30900                      |
| 54-24386    | 83                              | 24100                       | 22600                      |
| 54-24386    | 117                             | 15900                       | 33900                      |
| 54-24386    | 135                             | 26400                       | 35800                      |
| 54-24386    | 195                             | 613                         | 3200                       |
| 54-24394    | 50                              | 107000                      | 125000                     |
| 54-24394    | 100                             | 43800                       | 61700                      |
| 54-24394    | 150                             | 24400                       | 28900                      |
| 54-24394    | 192                             | 18800                       | 17500                      |
| 54-24394    | 245                             | 14000                       | 9290                       |
| 54-24394    | 300                             | 1650                        | 2110                       |
| 54-25105    | 485                             | 346                         | _                          |
| 54-27436    | 45                              | 18200                       | 14600                      |
| 54-27436    | 70                              | 14500                       | 12700                      |
| 54-27436    | 115                             | 8400                        | 7590                       |
| 54-27436    | 163                             | 3480                        | 4130                       |
| 54-27436    | 185                             | 315                         | 2620                       |

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

<sup>&</sup>lt;sup>b</sup> Instrumented borehole not functioning for pore-gas sample collection.

Table 4.0-5
TCE Screening Results Using a B&K Multigas Instrument

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 2060                        | a                          |
| 54-01107    | 44.5                            | 1500                        | _                          |
| 54-01107    | 56.5                            | 585                         | _                          |
| 54-01107    | 74                              | 2290                        | _                          |
| 54-01107    | 91                              | 1830                        | _                          |
| 54-01107    | 100                             | 3090                        | _                          |
| 54-01110    | 20                              | 2960                        | _                          |
| 54-01110    | 48                              | 2500                        | _                          |
| 54-01110    | 60                              | 2320                        | _                          |
| 54-01110    | 70                              | 2860                        | _                          |
| 54-01110    | 85                              | 3180                        | _                          |
| 54-01110    | 90                              | 2840                        | _                          |
| 54-01111    | 20                              | -166                        | _                          |
| 54-01111    | 39.5                            | 1570                        | _                          |
| 54-01111    | 50                              | 779                         | _                          |
| 54-01111    | 70                              | 2290                        | _                          |
| 54-01111    | 78                              | 1610                        | _                          |
| 54-01111    | 100                             | 1790                        | _                          |
| 54-01111    | 139                             | 2400                        | _                          |
| 54-01115    | 7.9 [15]                        | 2880                        | _                          |
| 54-01115    | 26.5 [50]                       | 3890                        | _                          |
| 54-01115    | 40.8 [77]                       | 2920                        | _                          |
| 54-01115    | 53 [100]                        | 5590                        | _                          |
| 54-01115    | 63.6 [120]                      | 4890                        | _                          |
| 54-01115    | 68.9 [130]                      | 3370                        | _                          |
| 54-01117    | 20                              | 7410                        | _                          |
| 54-01117    | 31.5                            | 9080                        | _                          |
| 54-01117    | 55                              | 13300                       | _                          |
| 54-01117    | 73                              | 11500                       | _                          |
| 54-01117    | 82                              | 11800                       | _                          |
| 54-01117    | 85                              | 11200                       | _                          |
| 54-01121    | 20                              | 6870                        | _                          |
| 54-01121    | 26                              | 9080                        | _                          |
| 54-01121    | 61.5                            | 8110                        | _                          |
| 54-01121    | 70                              | 11200                       | _                          |
| 54-01121    | 76                              | 11600                       | _                          |
| 54-01121    | 98                              | 12000                       | _                          |

Table 4.0-5 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 121                             | 14000                       | <del>_</del>               |
| 54-01126    | 7.5 [15]                        | 5640                        | _                          |
| 54-01126    | 17.5 [35]                       | 8380                        | _                          |
| 54-01126    | 28.5 [57]                       | 13500                       | _                          |
| 54-01126    | 35 [70]                         | 16500                       | _                          |
| 54-01126    | 42.5 [85]                       | 15400                       | _                          |
| 54-01126    | 49.5 [99]                       | 17600                       | _                          |
| 54-01128    | 7.5 [15]                        | 2500                        | _                          |
| 54-01128    | 15 [30]                         | 3700                        | _                          |
| 54-01128    | 20 [40]                         | 4100                        | _                          |
| 54-01128    | 30 [60]                         | b                           | _                          |
| 54-01128    | 39 [78]                         | 4500                        | _                          |
| 54-02009    | 37                              | 4380                        | _                          |
| 54-02009    | 62                              | 4950                        | _                          |
| 54-02009    | 79                              | b                           |                            |
| 54-02009    | 92                              | 5340                        |                            |
| 54-02010    | 30                              | 5530                        | _                          |
| 54-02010    | 53                              | b                           | _                          |
| 54-02010    | 95                              | 4070                        | _                          |
| 54-02032    | 20                              | 3250                        | _                          |
| 54-02032    | 60                              | 4610                        | _                          |
| 54-02032    | 100                             | 2450                        |                            |
| 54-02032    | 130                             | 4090                        | _                          |
| 54-02032    | 156                             | 2580                        |                            |
| 54-02033    | 20                              | 2080                        | _                          |
| 54-02033    | 60                              | 2620                        | _                          |
| 54-02033    | 100                             | 3150                        |                            |
| 54-02033    | 160                             | 2050                        |                            |
| 54-02033    | 200                             | 2980                        | _                          |
| 54-02033    | 220                             | 2590                        | _                          |
| 54-02033    | 260                             | 1740                        | _                          |
| 54-02033    | 277                             | 2790                        | _                          |
| 54-24370    | 40                              | 22300                       | 35800                      |
| 54-24370    | 80                              | 19900                       | 38100                      |
| 54-24370    | 120                             | 16500                       | 29100                      |
| 54-24370    | 173                             | 11900                       | 21000                      |
| 54-24370    | 200                             | 11900                       | 16800                      |
| 54-24370    | 233                             | 7200                        | 3540                       |

Table 4.0-5 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 8380                        | 15800                      |
| 54-24386    | 83                              | 9130                        | 7630                       |
| 54-24386    | 117                             | 7090                        | 11100                      |
| 54-24386    | 135                             | 9990                        | 10800                      |
| 54-24386    | 195                             | 2580                        | 838                        |
| 54-24394    | 50                              | 75700                       | 84900                      |
| 54-24394    | 100                             | 30100                       | 41700                      |
| 54-24394    | 150                             | 18900                       | 22800                      |
| 54-24394    | 192                             | 14200                       | 15100                      |
| 54-24394    | 245                             | 9830                        | 8750                       |
| 54-24394    | 300                             | 2060                        | 3670                       |
| 54-25105    | 485                             | 3110                        | _                          |
| 54-27436    | 45                              | 197000                      | 158000                     |
| 54-27436    | 70                              | 142000                      | 132000                     |
| 54-27436    | 115                             | 70400                       | 67100                      |
| 54-27436    | 163                             | 27200                       | 28000                      |
| 54-27436    | 185                             | 3710                        | 4170                       |

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

<sup>&</sup>lt;sup>b</sup> Instrumented borehole not functioning for pore-gas sample collection.

Table 4.0-6 Freon 11 Screening Results Using a B&K Multigas Instrument

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 1370                        | a                          |
| 54-01107    | 44.5                            | 971                         | _                          |
| 54-01107    | 56.5                            | 1500                        | _                          |
| 54-01107    | 74                              | 1360                        | _                          |
| 54-01107    | 91                              | 977                         | _                          |
| 54-01107    | 100                             | 1170                        | _                          |
| 54-01110    | 20                              | 10.7                        | _                          |
| 54-01110    | 48                              | 136                         | _                          |
| 54-01110    | 60                              | 335                         | _                          |
| 54-01110    | 70                              | 421                         | _                          |
| 54-01110    | 85                              | 494                         | _                          |
| 54-01110    | 90                              | 454                         | _                          |
| 54-01111    | 20                              | 668                         | _                          |
| 54-01111    | 39.5                            | 769                         | _                          |
| 54-01111    | 50                              | 842                         | _                          |
| 54-01111    | 70                              | 561                         | _                          |
| 54-01111    | 78                              | 468                         | _                          |
| 54-01111    | 100                             | 491                         | _                          |
| 54-01111    | 139                             | 377                         | _                          |
| 54-01115    | 7.9 [15]                        | 163                         | _                          |
| 54-01115    | 26.5 [50]                       | 707                         | _                          |
| 54-01115    | 40.8 [77]                       | 1330                        | _                          |
| 54-01115    | 53 [100]                        | 1360                        | _                          |
| 54-01115    | 63.6 [120]                      | 1750                        | _                          |
| 54-01115    | 68.9 [130]                      | 1840                        | _                          |
| 54-01117    | 20                              | 640                         | _                          |
| 54-01117    | 31.5                            | 1140                        | _                          |
| 54-01117    | 55                              | 1770                        | _                          |
| 54-01117    | 73                              | 2120                        | _                          |
| 54-01117    | 82                              | 2290                        | _                          |
| 54-01117    | 85                              | 2490                        |                            |
| 54-01121    | 20                              | 1480                        | _                          |
| 54-01121    | 26                              | 2160                        | _                          |
| 54-01121    | 61.5                            | 2490                        | _                          |
| 54-01121    | 70                              | 3350                        | _                          |
| 54-01121    | 76                              | 3770                        |                            |

Table 4.0-6 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(μg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 98                              | 5140                        | _                          |
| 54-01121    | 121                             | 5780                        | _                          |
| 54-01126    | 7.5 [15]                        | 180                         | _                          |
| 54-01126    | 17.5 [35]                       | 5460                        | _                          |
| 54-01126    | 28.5 [57]                       | 1940                        | _                          |
| 54-01126    | 35 [70]                         | 2360                        | _                          |
| 54-01126    | 42.5 [85]                       | 3060                        | _                          |
| 54-01126    | 49.5 [99]                       | 3610                        | _                          |
| 54-01128    | 7.5 [15]                        | 194                         | _                          |
| 54-01128    | 15 [30]                         | 294                         | _                          |
| 54-01128    | 20 [40]                         | 668                         | <u> </u>                   |
| 54-01128    | 30 [60]                         | b                           | <u> </u>                   |
| 54-01128    | 39 [78]                         | 1380                        | _                          |
| 54-02009    | 37                              | 893                         | _                          |
| 54-02009    | 62                              | 1220                        | _                          |
| 54-02009    | 79                              | b                           | _                          |
| 54-02009    | 92                              | 1740                        | _                          |
| 54-02010    | 30                              | 983                         | _                          |
| 54-02010    | 53                              | b                           | _                          |
| 54-02010    | 95                              | 2390                        | _                          |
| 54-02032    | 20                              | -73                         | _                          |
| 54-02032    | 60                              | 182                         | _                          |
| 54-02032    | 100                             | 369                         | _                          |
| 54-02032    | 130                             | 741                         | _                          |
| 54-02032    | 156                             | 730                         | _                          |
| 54-02033    | 20                              | -61.8                       | _                          |
| 54-02033    | 60                              | 125                         | _                          |
| 54-02033    | 100                             | 155                         | _                          |
| 54-02033    | 160                             | 94.3                        | _                          |
| 54-02033    | 200                             | 138                         | _                          |
| 54-02033    | 220                             | -6.74                       | _                          |
| 54-02033    | 260                             | 8.98                        | _                          |
| 54-02033    | 277                             | -213                        | _                          |
| 54-24370    | 40                              | 13900                       | 19300                      |
| 54-24370    | 80                              | 10600                       | 20000                      |
| 54-24370    | 120                             | 9150                        | 17200                      |
| 54-24370    | 173                             | 6120                        | 14900                      |
| 54-24370    | 200                             | 8200                        | 14500                      |

Table 4.0-6 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24370    | 233                             | 1210                        | 1370                       |
| 54-24386    | 40                              | 3810                        | 5120                       |
| 54-24386    | 83                              | 4410                        | 5010                       |
| 54-24386    | 117                             | 3500                        | 7970                       |
| 54-24386    | 135                             | 5900                        | 8480                       |
| 54-24386    | 195                             | 245                         | 758                        |
| 54-24394    | 50                              | 10300                       | 21300                      |
| 54-24394    | 100                             | 4560                        | 11200                      |
| 54-24394    | 150                             | 3020                        | 5840                       |
| 54-24394    | 192                             | 2590                        | 3570                       |
| 54-24394    | 245                             | 2090                        | 2360                       |
| 54-24394    | 300                             | 28.3                        | -230                       |
| 54-25105    | 485                             | 29.4                        | _                          |
| 54-27436    | 45                              | -56.1                       | 977                        |
| 54-27436    | 70                              | 95.5                        | 5460                       |
| 54-27436    | 115                             | 63.4                        | 5400                       |
| 54-27436    | 163                             | -112                        | 1540                       |
| 54-27436    | 185                             | -2130                       | 43.2                       |

a — = Monitoring not requested.

b Instrumented borehole not functioning for pore-gas sample collection.

 $\label{eq:co2} \textbf{Table 4.0-7} \\ \textbf{CO}_2 \ \textbf{Screening Results Using a B\&K Multigas Instrument} \\$ 

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(μg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 22200                       | a                          |
| 54-01107    | 44.5                            | 21900                       | _                          |
| 54-01107    | 56.5                            | 24700                       | _                          |
| 54-01107    | 74                              | 23400                       | _                          |
| 54-01107    | 91                              | 18700                       | _                          |
| 54-01107    | 100                             | 20300                       | _                          |
| 54-01110    | 20                              | 4140                        | _                          |
| 54-01110    | 48                              | 5910                        | _                          |
| 54-01110    | 60                              | 6490                        | _                          |
| 54-01110    | 70                              | 6940                        | _                          |
| 54-01110    | 85                              | 7340                        | _                          |
| 54-01110    | 90                              | 7490                        | _                          |
| 54-01111    | 20                              | 3740                        | _                          |
| 54-01111    | 39.5                            | 4470                        | _                          |
| 54-01111    | 50                              | 4720                        | _                          |
| 54-01111    | 70                              | 5190                        | _                          |
| 54-01111    | 78                              | 5160                        | _                          |
| 54-01111    | 100                             | 5590                        | _                          |
| 54-01111    | 139                             | 6120                        | _                          |
| 54-01115    | 7.9 [15]                        | 9340                        | _                          |
| 54-01115    | 26.5 [50]                       | 23700                       | _                          |
| 54-01115    | 40.8 [77]                       | 29600                       | _                          |
| 54-01115    | 53 [100]                        | 32800                       | _                          |
| 54-01115    | 63.6 [120]                      | 33500                       | _                          |
| 54-01115    | 68.9 [130]                      | 33900                       | _                          |
| 54-01117    | 20                              | 4980                        | _                          |
| 54-01117    | 31.5                            | 6830                        | _                          |
| 54-01117    | 55                              | 8630                        | _                          |
| 54-01117    | 73                              | 8920                        | _                          |
| 54-01117    | 82                              | 8920                        | _                          |
| 54-01117    | 85                              | 9210                        | _                          |
| 54-01121    | 20                              | 20400                       | _                          |
| 54-01121    | 26                              | 20700                       | _                          |
| 54-01121    | 61.5                            | 21500                       | _                          |
| 54-01121    | 70                              | 28000                       | _                          |
| 54-01121    | 76                              | 28500                       | _                          |
| 54-01121    | 98                              | 29800                       | _                          |

Table 4.0-7 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01121    | 121                             | 30200                       | _                          |
| 54-01126    | 7.5 [15]                        | 6350                        | _                          |
| 54-01126    | 17.5 [35]                       | 11200                       | _                          |
| 54-01126    | 28.5 [57]                       | 23900                       | _                          |
| 54-01126    | 35 [70]                         | 28100                       | _                          |
| 54-01126    | 42.5 [85]                       | 28900                       | _                          |
| 54-01126    | 49.5 [99]                       | 34500                       | _                          |
| 54-01128    | 7.5 [15]                        | 11100                       | _                          |
| 54-01128    | 15 [30]                         | 19400                       | _                          |
| 54-01128    | 20 [40]                         | 26600                       | _                          |
| 54-01128    | 30 [60]                         | b                           | _                          |
| 54-01128    | 39 [78]                         | 36400                       | _                          |
| 54-02009    | 37                              | 15900                       | _                          |
| 54-02009    | 62                              | 15700                       | _                          |
| 54-02009    | 79                              | b                           | _                          |
| 54-02009    | 92                              | 14100                       | _                          |
| 54-02010    | 30                              | 31300                       | _                          |
| 54-02010    | 53                              | b                           | _                          |
| 54-02010    | 95                              | 35600                       | _                          |
| 54-02032    | 20                              | 7680                        | _                          |
| 54-02032    | 60                              | 9420                        | _                          |
| 54-02032    | 100                             | 5810                        | _                          |
| 54-02032    | 130                             | 9350                        | _                          |
| 54-02032    | 156                             | 7410                        | _                          |
| 54-02033    | 20                              | 5200                        | _                          |
| 54-02033    | 60                              | 7380                        | _                          |
| 54-02033    | 100                             | 7550                        | _                          |
| 54-02033    | 160                             | 6310                        | _                          |
| 54-02033    | 200                             | 5450                        | _                          |
| 54-02033    | 220                             | 5130                        | _                          |
| 54-02033    | 260                             | 3070                        | _                          |
| 54-02033    | 277                             | 2500                        | _                          |
| 54-24370    | 40                              | 123000                      | 78000                      |
| 54-24370    | 80                              | 85700                       | 74700                      |
| 54-24370    | 120                             | 64600                       | 60200                      |
| 54-24370    | 173                             | 41300                       | 48300                      |
| 54-24370    | 200                             | 43500                       | 44300                      |
| 54-24370    | 233                             | 8980                        | 5080                       |

Table 4.0-7 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 73500                       | 61300                      |
| 54-24386    | 83                              | 45200                       | 31500                      |
| 54-24386    | 117                             | 24700                       | 35100                      |
| 54-24386    | 135                             | 29700                       | 32700                      |
| 54-24386    | 195                             | 3850                        | 4650                       |
| 54-24394    | 50                              | 22100                       | 22400                      |
| 54-24394    | 100                             | 19100                       | 20000                      |
| 54-24394    | 150                             | 18500                       | 18200                      |
| 54-24394    | 192                             | 17000                       | 15100                      |
| 54-24394    | 245                             | 15200                       | 12000                      |
| 54-24394    | 300                             | 2480                        | 2510                       |
| 54-25105    | 485                             | 695                         | _                          |
| 54-27436    | 45                              | 11900                       | 11500                      |
| 54-27436    | 70                              | 11700                       | 11000                      |
| 54-27436    | 115                             | 11400                       | 10500                      |
| 54-27436    | 163                             | 8320                        | 8910                       |
| 54-27436    | 185                             | 2610                        | 3370                       |

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

<sup>&</sup>lt;sup>b</sup> Instrumented borehole not functioning for pore-gas sample collection.

 $\label{eq:table 4.0-8} \mbox{Moisture ($H_2O$) Screening Results Using a B&K Multigas Instrument}$ 

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-01107    | 20                              | 11700                       | _a                         |
| 54-01107    | 44.5                            | 10900                       | _                          |
| 54-01107    | 56.5                            | 11700                       | _                          |
| 54-01107    | 74                              | 11600                       | _                          |
| 54-01107    | 91                              | 11800                       | _                          |
| 54-01107    | 100                             | 11900                       | _                          |
| 54-01110    | 20                              | 7030                        | _                          |
| 54-01110    | 48                              | 7140                        | _                          |
| 54-01110    | 60                              | 7030                        | _                          |
| 54-01110    | 70                              | 7070                        | _                          |
| 54-01110    | 85                              | 7210                        | _                          |
| 54-01110    | 90                              | 7350                        | _                          |
| 54-01111    | 20                              | 10200                       | _                          |
| 54-01111    | 39.5                            | 10700                       | _                          |
| 54-01111    | 50                              | 10300                       | _                          |
| 54-01111    | 70                              | 11300                       | _                          |
| 54-01111    | 78                              | 11200                       | _                          |
| 54-01111    | 100                             | 10400                       | _                          |
| 54-01111    | 139                             | 11200                       | _                          |
| 54-01115    | 7.9 [15]                        | 10700                       | _                          |
| 54-01115    | 26.5 [50]                       | 8690                        | _                          |
| 54-01115    | 40.8 [77]                       | 8990                        | _                          |
| 54-01115    | 53 [100]                        | 8.02                        | _                          |
| 54-01115    | 63.6 [120]                      | 7550                        | _                          |
| 54-01115    | 68.9 [130]                      | 7530                        | _                          |
| 54-01117    | 20                              | 7990                        | _                          |
| 54-01117    | 31.5                            | 8030                        | _                          |
| 54-01117    | 55                              | 8390                        | _                          |
| 54-01117    | 73                              | 8200                        | _                          |
| 54-01117    | 82                              | 8330                        | _                          |
| 54-01117    | 85                              | 8240                        | _                          |
| 54-01121    | 20                              | 8380                        | _                          |
| 54-01121    | 26                              | 8950                        | _                          |
| 54-01121    | 61.5                            | 8690                        | _                          |
| 54-01121    | 70                              | 8910                        | _                          |
| 54-01121    | 76                              | 8920                        | _                          |
| 54-01121    | 98                              | 9160                        | _                          |

Table 4.0-8 (continued)

|             | Depth (ft bgs) | Q2 FY2007 Result | Q4FY2007 Result |
|-------------|----------------|------------------|-----------------|
| Location ID | [Length (ft)]  | (μg/m³)          | (μg/m³)         |
| 54-01121    | 121            | 9330             | _               |
| 54-01126    | 7.5 [15]       | 11700            | _               |
| 54-01126    | 17.5 [35]      | 11800            | _               |
| 54-01126    | 28.5 [57]      | 12200            | _               |
| 54-01126    | 35 [70]        | 11300            | _               |
| 54-01126    | 42.5 [85]      | 10900            | _               |
| 54-01126    | 49.5 [99]      | 11400            | _               |
| 54-01128    | 7.5 [15]       | 12600            | _               |
| 54-01128    | 15 [30]        | 8360             | _               |
| 54-01128    | 20 [40]        | 8400             | _               |
| 54-01128    | 30 [60]        | b                | _               |
| 54-01128    | 39 [78]        | 8820             | _               |
| 54-02009    | 37             | 16800            | _               |
| 54-02009    | 62             | 16600            | _               |
| 54-02009    | 79             | b                |                 |
| 54-02009    | 92             | 12700            | _               |
| 54-02010    | 30             | 11300            | _               |
| 54-02010    | 53             | b                |                 |
| 54-02010    | 95             | 12300            | _               |
| 54-02032    | 20             | 5850             | _               |
| 54-02032    | 60             | 5580             | _               |
| 54-02032    | 100            | 5620             | _               |
| 54-02032    | 130            | 5140             | _               |
| 54-02032    | 156            | 5060             | _               |
| 54-02033    | 20             | 8140             | _               |
| 54-02033    | 60             | 8450             | _               |
| 54-02033    | 100            | 8020             | _               |
| 54-02033    | 160            | 7890             | _               |
| 54-02033    | 200            | 7970             | _               |
| 54-02033    | 220            | 7720             | _               |
| 54-02033    | 260            | 7240             | _               |
| 54-02033    | 277            | 7140             | _               |
| 54-24370    | 40             | 12200            | 25900           |
| 54-24370    | 80             | 9080             | 29800           |
| 54-24370    | 120            | 9030             | 28500           |
| 54-24370    | 173            | 8610             | 26500           |
| 54-24370    | 200            | 8360             | 27000           |
| 54-24370    | 233            | 12400            | 27800           |

Table 4.0-8 (continued)

| Location ID | Depth (ft bgs)<br>[Length (ft)] | Q2 FY2007 Result<br>(µg/m³) | Q4FY2007 Result<br>(µg/m³) |
|-------------|---------------------------------|-----------------------------|----------------------------|
| 54-24386    | 40                              | 10200                       | 29400                      |
| 54-24386    | 83                              | 10600                       | 26200                      |
| 54-24386    | 117                             | 11000                       | 29200                      |
| 54-24386    | 135                             | 10700                       | 29300                      |
| 54-24386    | 195                             | 10500                       | 28500                      |
| 54-24394    | 50                              | 12000                       | 26100                      |
| 54-24394    | 100                             | 12000                       | 28400                      |
| 54-24394    | 150                             | 11800                       | 29000                      |
| 54-24394    | 192                             | 11900                       | 27800                      |
| 54-24394    | 245                             | 12000                       | 24600                      |
| 54-24394    | 300                             | 11700                       | 28500                      |
| 54-25105    | 485                             | 12700                       | _                          |
| 54-27436    | 45                              | 11600                       | 22100                      |
| 54-27436    | 70                              | 11200                       | 20800                      |
| 54-27436    | 115                             | 7.56                        | 22400                      |
| 54-27436    | 163                             | 8810                        | 25900                      |
| 54-27436    | 185                             | 8400                        | 29600                      |

<sup>&</sup>lt;sup>a</sup> — = Monitoring not requested.

<sup>&</sup>lt;sup>b</sup> Instrumented borehole not functioning for pore-gas sample collection.

Table 5.0-1

Detected Pore Gas VOC Results for Samples Collected During Monitoring Activities at MDA G

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-02009    | 62                          | Dichloroethane[1,1-]                    | 8600              | 2/21/2007       |
| 54-02009    | 62                          | Dichloroethene[1,1-]                    | 15000             | 2/21/2007       |
| 54-02009    | 62                          | Tetrachloroethene                       | 4700              | 2/21/2007       |
| 54-02009    | 62                          | Trichloroethane[1,1,1-]                 | 210000            | 2/21/2007       |
| 54-02009    | 62                          | Trichloroethene                         | 1700              | 2/21/2007       |
| 54-02010    | 95                          | Dichlorodifluoromethane                 | 990               | 2/20/2007       |
| 54-02010    | 95                          | Dichloroethane[1,1-]                    | 3000              | 2/20/2007       |
| 54-02010    | 95                          | Dichloroethene[1,1-]                    | 4100              | 2/20/2007       |
| 54-02010    | 95                          | Tetrachloroethene                       | 1300              | 2/20/2007       |
| 54-02010    | 95                          | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 8800              | 2/20/2007       |
| 54-02010    | 95                          | Trichloroethane[1,1,1-]                 | 81000             | 2/20/2007       |
| 54-02010    | 95                          | Trichloroethene                         | 1500              | 2/20/2007       |
| 54-02010    | 95                          | Trichlorofluoromethane                  | 2600              | 2/20/2007       |
| 54-02032    | 130                         | Chloroform                              | 61                | 2/21/2007       |
| 54-02032    | 130                         | Dichlorodifluoromethane                 | 110               | 2/21/2007       |
| 54-02032    | 130                         | Dichloroethane[1,1-]                    | 2300              | 2/21/2007       |
| 54-02032    | 130                         | Dichloroethene[1,1-]                    | 6100              | 2/21/2007       |
| 54-02032    | 130                         | Tetrachloroethene                       | 1000              | 2/21/2007       |
| 54-02032    | 130                         | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 230               | 2/21/2007       |
| 54-02032    | 130                         | Trichloroethane[1,1,1-]                 | 25000             | 2/21/2007       |
| 54-02032    | 130                         | Trichloroethene                         | 500               | 2/21/2007       |
| 54-02033    | 100                         | Chlorodifluoromethane                   | 51                | 2/15/2007       |
| 54-02033    | 100                         | Chloroform                              | 6.8               | 2/15/2007       |
| 54-02033    | 100                         | Dichlorodifluoromethane                 | 250               | 2/15/2007       |
| 54-02033    | 100                         | Dichloroethene[1,1-]                    | 11                | 2/15/2007       |
| 54-02033    | 100                         | Methylene Chloride                      | 7.4               | 2/15/2007       |
| 54-02033    | 100                         | Tetrachloroethene                       | 280               | 2/15/2007       |
| 54-02033    | 100                         | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 300               | 2/15/2007       |
| 54-02033    | 100                         | Trichloroethane[1,1,1-]                 | 280               | 2/15/2007       |
| 54-02033    | 100                         | Trichlorofluoromethane                  | 470               | 2/15/2007       |
| 54-24370    | 35–45                       | Chloroform                              | 660               | 2/22/2007       |
| 54-24370    | 35–45                       | Dichlorodifluoromethane                 | 13000             | 2/22/2007       |
| 54-24370    | 35–45                       | Dichloroethane[1,1-]                    | 15000             | 2/22/2007       |
| 54-24370    | 35–45                       | Dichloroethene[1,1-]                    | 5100              | 2/22/2007       |
| 54-24370    | 35–45                       | Dichloroethene[cis-1,2-]                | 470               | 2/22/2007       |
| 54-24370    | 35–45                       | Tetrachloroethene                       | 1900              | 2/22/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-24370    | 35–45                       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 44000             | 2/22/2007       |
| 54-24370    | 35–45                       | Trichloroethane[1,1,1-]                 | 170000            | 2/22/2007       |
| 54-24370    | 35–45                       | Trichloroethene                         | 21000             | 2/22/2007       |
| 54-24370    | 35–45                       | Trichlorofluoromethane                  | 14000             | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Chloroform                              | 740               | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Dichlorodifluoromethane                 | 17000             | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Dichloroethane[1,1-]                    | 18000             | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Dichloroethene[1,1-]                    | 7000              | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Dichloroethene[cis-1,2-]                | 700               | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Tetrachloroethene                       | 2100              | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 50000             | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Trichloroethane[1,1,1-]                 | 190000            | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Trichloroethene                         | 26000             | 2/22/2007       |
| 54-24370    | 67.5–77.5                   | Trichlorofluoromethane                  | 15000             | 2/22/2007       |
| 54-24370    | 115–125                     | Chloroform                              | 510               | 2/22/2007       |
| 54-24370    | 115–125                     | Dichlorodifluoromethane                 | 19000             | 2/22/2007       |
| 54-24370    | 115–125                     | Dichloroethane[1,1-]                    | 12000             | 2/22/2007       |
| 54-24370    | 115–125                     | Dichloroethene[1,1-]                    | 6400              | 2/22/2007       |
| 54-24370    | 115–125                     | Dichloroethene[cis-1,2-]                | 620               | 2/22/2007       |
| 54-24370    | 115–125                     | Methylene Chloride                      | 420               | 2/22/2007       |
| 54-24370    | 115–125                     | Tetrachloroethene                       | 1500              | 2/22/2007       |
| 54-24370    | 115–125                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 39000             | 2/22/2007       |
| 54-24370    | 115–125                     | Trichloroethane[1,1,1-]                 | 120000            | 2/22/2007       |
| 54-24370    | 115–125                     | Trichloroethene                         | 16000             | 2/22/2007       |
| 54-24370    | 115–125                     | Trichlorofluoromethane                  | 12000             | 2/22/2007       |
| 54-24370    | 169.5–180                   | Carbon Disulfide                        | 120               | 2/22/2007       |
| 54-24370    | 169.5–180                   | Chloroethane                            | 93                | 2/22/2007       |
| 54-24370    | 169.5–180                   | Chloroform                              | 160               | 2/22/2007       |
| 54-24370    | 169.5–180                   | Dichlorodifluoromethane                 | 13000             | 2/22/2007       |
| 54-24370    | 169.5–180                   | Dichloroethane[1,1-]                    | 4000              | 2/22/2007       |
| 54-24370    | 169.5–180                   | Dichloroethene[1,1-]                    | 4300              | 2/22/2007       |
| 54-24370    | 169.5–180                   | Dichloroethene[cis-1,2-]                | 270               | 2/22/2007       |
| 54-24370    | 169.5–180                   | Methylene Chloride                      | 430               | 2/22/2007       |
| 54-24370    | 169.5–180                   | Tetrachloroethene                       | 690               | 2/22/2007       |
| 54-24370    | 169.5–180                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 22000             | 2/22/2007       |
| 54-24370    | 169.5–180                   | Trichloroethane[1,1,1-]                 | 53000             | 2/22/2007       |
| 54-24370    | 169.5–180                   | Trichloroethene                         | 6000              | 2/22/2007       |
| 54-24370    | 169.5–180                   | Trichlorofluoromethane                  | 7100              | 2/22/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-24370    | 195–205                     | Dichlorodifluoromethane                 | 15000             | 2/22/2007       |
| 54-24370    | 195–205                     | Dichloroethane[1,1-]                    | 3400              | 2/22/2007       |
| 54-24370    | 195–205                     | Dichloroethene[1,1-]                    | 4900              | 2/22/2007       |
| 54-24370    | 195–205                     | Dichloroethene[cis-1,2-]                | 280               | 2/22/2007       |
| 54-24370    | 195–205                     | Methylene Chloride                      | 460               | 2/22/2007       |
| 54-24370    | 195–205                     | Tetrachloroethene                       | 740               | 2/22/2007       |
| 54-24370    | 195–205                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 23000             | 2/22/2007       |
| 54-24370    | 195–205                     | Trichloroethane[1,1,1-]                 | 54000             | 2/22/2007       |
| 54-24370    | 195–205                     | Trichloroethene                         | 6300              | 2/22/2007       |
| 54-24370    | 195–205                     | Trichlorofluoromethane                  | 7900              | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Dichlorodifluoromethane                 | 1500              | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Dichloroethane[1,1-]                    | 240               | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Dichloroethene[1,1-]                    | 630               | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Dichloroethene[cis-1,2-]                | 15                | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Methylene Chloride                      | 37                | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Tetrachloroethene                       | 120               | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Toluene                                 | 170               | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 2400              | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Trichloroethane[1,1,1-]                 | 4900              | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Trichloroethene                         | 560               | 2/22/2007       |
| 54-24370    | 237.5–249.5                 | Trichlorofluoromethane                  | 800               | 2/22/2007       |
| 54-24386    | 37.5–42.5                   | Carbon Disulfide                        | 2100              | 2/15/2007       |
| 54-24386    | 37.5–42.5                   | Dichloroethane[1,1-]                    | 36000             | 2/15/2007       |
| 54-24386    | 37.5–42.5                   | Dichloroethene[1,1-]                    | 41000             | 2/15/2007       |
| 54-24386    | 37.5–42.5                   | Tetrachloroethene                       | 6500              | 2/15/2007       |
| 54-24386    | 37.5–42.5                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 4700              | 2/15/2007       |
| 54-24386    | 37.5–42.5                   | Trichloroethane[1,1,1-]                 | 790000            | 2/15/2007       |
| 54-24386    | 37.5–42.5                   | Trichloroethene                         | 6400              | 2/15/2007       |
| 54-24386    | 80.5–86                     | Carbon Disulfide                        | 1200              | 2/15/2007       |
| 54-24386    | 80.5–86                     | Dichloroethane[1,1-]                    | 32000             | 2/15/2007       |
| 54-24386    | 80.5–86                     | Dichloroethene[1,1-]                    | 46000             | 2/15/2007       |
| 54-24386    | 80.5–86                     | Tetrachloroethene                       | 6100              | 2/15/2007       |
| 54-24386    | 80.5–86                     | Toluene                                 | 1200 (J)*         | 2/15/2007       |
| 54-24386    | 80.5–86                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 4000              | 2/15/2007       |
| 54-24386    | 80.5–86                     | Trichloroethane[1,1,1-]                 | 640000            | 2/15/2007       |
| 54-24386    | 80.5–86                     | Trichloroethene                         | 7900              | 2/15/2007       |
| 54-24386    | 115–120                     | Acetone                                 | 2600              | 2/15/2007       |
| 54-24386    | 115–120                     | Carbon Disulfide                        | 1300              | 2/15/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-24386    | 115–120                     | Dichloroethane[1,1-]                    | 32000             | 2/15/2007       |
| 54-24386    | 115–120                     | Dichloroethene[1,1-]                    | 56000             | 2/15/2007       |
| 54-24386    | 115–120                     | Tetrachloroethene                       | 5900              | 2/15/2007       |
| 54-24386    | 115–120                     | Toluene                                 | 4700              | 2/15/2007       |
| 54-24386    | 115–120                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 2800              | 2/15/2007       |
| 54-24386    | 115–120                     | Trichloroethane[1,1,1-]                 | 400000            | 2/15/2007       |
| 54-24386    | 115–120                     | Trichloroethene                         | 8300              | 2/15/2007       |
| 54-24386    | 130–136                     | Carbon Disulfide                        | 620               | 2/15/2007       |
| 54-24386    | 130–136                     | Dichloroethane[1,1-]                    | 17000             | 2/15/2007       |
| 54-24386    | 130–136                     | Dichloroethene[1,1-]                    | 33000             | 2/15/2007       |
| 54-24386    | 130–136                     | Tetrachloroethene                       | 3400              | 2/15/2007       |
| 54-24386    | 130–136                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 1600              | 2/15/2007       |
| 54-24386    | 130–136                     | Trichloroethane[1,1,1-]                 | 240000            | 2/15/2007       |
| 54-24386    | 130–136                     | Trichloroethene                         | 4800              | 2/15/2007       |
| 54-24386    | 191–201                     | Dichloroethane[1,1-]                    | 1900              | 2/15/2007       |
| 54-24386    | 191–201                     | Dichloroethene[1,1-]                    | 3400              | 2/15/2007       |
| 54-24386    | 191–201                     | Tetrachloroethene                       | 440               | 2/15/2007       |
| 54-24386    | 191–201                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 200               | 2/15/2007       |
| 54-24386    | 191–201                     | Trichloroethane[1,1,1-]                 | 23000             | 2/15/2007       |
| 54-24386    | 191–201                     | Trichloroethene                         | 600               | 2/15/2007       |
| 54-24394    | 45–55                       | Carbon Disulfide                        | 190               | 2/27/2007       |
| 54-24394    | 45–55                       | Dichlorodifluoromethane                 | 1400              | 2/27/2007       |
| 54-24394    | 45–55                       | Dichloroethane[1,1-]                    | 2300              | 2/27/2007       |
| 54-24394    | 45–55                       | Dichloroethene[1,1-]                    | 1100              | 2/27/2007       |
| 54-24394    | 45–55                       | Methylene Chloride                      | 280               | 2/27/2007       |
| 54-24394    | 45–55                       | Tetrachloroethene                       | 540               | 2/27/2007       |
| 54-24394    | 45–55                       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 73000             | 2/27/2007       |
| 54-24394    | 45–55                       | Trichloroethane[1,1,1-]                 | 32000             | 2/27/2007       |
| 54-24394    | 45–55                       | Trichloroethene                         | 83000             | 2/27/2007       |
| 54-24394    | 45–55                       | Trichlorofluoromethane                  | 3300              | 2/27/2007       |
| 54-24394    | 95–105                      | Chloroform                              | 140               | 2/27/2007       |
| 54-24394    | 95–105                      | Cyclohexane                             | 340               | 2/27/2007       |
| 54-24394    | 95–105                      | Dichlorodifluoromethane                 | 1500              | 2/27/2007       |
| 54-24394    | 95–105                      | Dichloroethane[1,1-]                    | 1700              | 2/27/2007       |
| 54-24394    | 95–105                      | Dichloroethene[1,1-]                    | 1100              | 2/27/2007       |
| 54-24394    | 95–105                      | Tetrachloroethene                       | 450               | 2/27/2007       |
| 54-24394    | 95–105                      | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 28000             | 2/27/2007       |
| 54-24394    | 95–105                      | Trichloroethane[1,1,1-]                 | 22000             | 2/27/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-24394    | 95–105                      | Trichloroethene                         | 30000             | 2/27/2007       |
| 54-24394    | 95–105                      | Trichlorofluoromethane                  | 2600              | 2/27/2007       |
| 54-24394    | 145–154.8                   | Chloroform                              | 130               | 2/27/2007       |
| 54-24394    | 145–154.8                   | Cyclohexane                             | 270               | 2/27/2007       |
| 54-24394    | 145–154.8                   | Dichlorodifluoromethane                 | 1900              | 2/27/2007       |
| 54-24394    | 145–154.8                   | Dichloroethane[1,1-]                    | 1200              | 2/27/2007       |
| 54-24394    | 145–154.8                   | Dichloroethene[1,1-]                    | 1100              | 2/27/2007       |
| 54-24394    | 145–154.8                   | Methylene Chloride                      | 74                | 2/27/2007       |
| 54-24394    | 145–154.8                   | Tetrachloroethene                       | 470               | 2/27/2007       |
| 54-24394    | 145–154.8                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 13000             | 2/27/2007       |
| 54-24394    | 145–154.8                   | Trichloroethane[1,1,1-]                 | 16000             | 2/27/2007       |
| 54-24394    | 145–154.8                   | Trichloroethene                         | 17000             | 2/27/2007       |
| 54-24394    | 145–154.8                   | Trichlorofluoromethane                  | 2800              | 2/27/2007       |
| 54-24394    | 190–195                     | Chlorodifluoromethane                   | 130               | 2/27/2007       |
| 54-24394    | 190–195                     | Chloroform                              | 110               | 2/27/2007       |
| 54-24394    | 190–195                     | Cyclohexane                             | 210               | 2/27/2007       |
| 54-24394    | 190–195                     | Dichlorodifluoromethane                 | 2200              | 2/27/2007       |
| 54-24394    | 190–195                     | Dichloroethane[1,1-]                    | 760               | 2/27/2007       |
| 54-24394    | 190–195                     | Dichloroethene[1,1-]                    | 990               | 2/27/2007       |
| 54-24394    | 190–195                     | Methylene Chloride                      | 60                | 2/27/2007       |
| 54-24394    | 190–195                     | Tetrachloroethene                       | 480               | 2/27/2007       |
| 54-24394    | 190–195                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 9000              | 2/27/2007       |
| 54-24394    | 190–195                     | Trichloroethane[1,1,1-]                 | 13000             | 2/27/2007       |
| 54-24394    | 190–195                     | Trichloroethene                         | 9400              | 2/27/2007       |
| 54-24394    | 190–195                     | Trichlorofluoromethane                  | 3100              | 2/27/2007       |
| 54-24394    | 240–250                     | Chlorodifluoromethane                   | 140               | 2/27/2007       |
| 54-24394    | 240–250                     | Chloroform                              | 71                | 2/27/2007       |
| 54-24394    | 240–250                     | Cyclohexane                             | 150               | 2/27/2007       |
| 54-24394    | 240–250                     | Dichlorodifluoromethane                 | 2200              | 2/27/2007       |
| 54-24394    | 240–250                     | Dichloroethane[1,1-]                    | 390               | 2/27/2007       |
| 54-24394    | 240–250                     | Dichloroethene[1,1-]                    | 980               | 2/27/2007       |
| 54-24394    | 240–250                     | Methylene Chloride                      | 58                | 2/27/2007       |
| 54-24394    | 240–250                     | Tetrachloroethene                       | 380               | 2/27/2007       |
| 54-24394    | 240–250                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 6000              | 2/27/2007       |
| 54-24394    | 240–250                     | Trichloroethane[1,1,1-]                 | 9100              | 2/27/2007       |
| 54-24394    | 240–250                     | Trichloroethene                         | 4200              | 2/27/2007       |
| 54-24394    | 240–250                     | Trichlorofluoromethane                  | 3000              | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Carbon Disulfide                        | 3.9               | 2/27/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-24394    | 296.5–306.5                 | Chlorodifluoromethane                   | 14                | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Chloroform                              | 4.5               | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Cyclohexane                             | 15                | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Dichlorodifluoromethane                 | 220               | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Dichloroethane[1,1-]                    | 39                | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Dichloroethene[1,1-]                    | 180               | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Tetrachloroethene                       | 45                | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 470               | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Trichloroethane[1,1,1-]                 | 880               | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Trichloroethene                         | 290               | 2/27/2007       |
| 54-24394    | 296.5–306.5                 | Trichlorofluoromethane                  | 250               | 2/27/2007       |
| 54-25105    | 485–700                     | Acetone                                 | 170               | 3/26/2007       |
| 54-25105    | 485–700                     | Dichlorodifluoromethane                 | 8                 | 3/26/2007       |
| 54-25105    | 485–700                     | Dichloroethane[1,1-]                    | 9.7               | 3/26/2007       |
| 54-25105    | 485–700                     | Dichloroethene[1,1-]                    | 39                | 3/26/2007       |
| 54-25105    | 485–700                     | Methylene Chloride                      | 3.3               | 3/26/2007       |
| 54-25105    | 485–700                     | Tetrachloroethene                       | 25                | 3/26/2007       |
| 54-25105    | 485–700                     | Toluene                                 | 6.7               | 3/26/2007       |
| 54-25105    | 485–700                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 18                | 3/26/2007       |
| 54-25105    | 485–700                     | Trichloroethane[1,1,1-]                 | 180               | 3/26/2007       |
| 54-25105    | 485–700                     | Trichloroethene                         | 72                | 3/26/2007       |
| 54-25105    | 485–700                     | Trichlorofluoromethane                  | 5.7               | 3/26/2007       |
| 54-27436    | 40–50                       | Dichloroethane[1,1-]                    | 1100              | 2/28/2007       |
| 54-27436    | 40–50                       | Dichloroethene[1,1-]                    | 860               | 2/28/2007       |
| 54-27436    | 40–50                       | Tetrachloroethene                       | 10000             | 2/28/2007       |
| 54-27436    | 40–50                       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 1500              | 2/28/2007       |
| 54-27436    | 40–50                       | Trichloroethane[1,1,1-]                 | 21000             | 2/28/2007       |
| 54-27436    | 40–50                       | Trichloroethene                         | 190000            | 2/28/2007       |
| 54-27436    | 65–75                       | Dichloroethane[1,1-]                    | 1100              | 2/28/2007       |
| 54-27436    | 65–75                       | Dichloroethene[1,1-]                    | 910               | 2/28/2007       |
| 54-27436    | 65–75                       | Tetrachloroethene                       | 7300              | 2/28/2007       |
| 54-27436    | 65–75                       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 1400              | 2/28/2007       |
| 54-27436    | 65–75                       | Trichloroethane[1,1,1-]                 | 20000             | 2/28/2007       |
| 54-27436    | 65–75                       | Trichloroethene                         | 130000            | 2/28/2007       |
| 54-27436    | 110–120                     | Chloroform                              | 360               | 2/28/2007       |
| 54-27436    | 110–120                     | Dichlorodifluoromethane                 | 400               | 2/28/2007       |
| 54-27436    | 110–120                     | Dichloroethane[1,1-]                    | 1200              | 2/28/2007       |
| 54-27436    | 110–120                     | Dichloroethene[1,1-]                    | 730               | 2/28/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-27436    | 110–120                     | Methylene Chloride                      | 230               | 2/28/2007       |
| 54-27436    | 110–120                     | Tetrachloroethene                       | 3900              | 2/28/2007       |
| 54-27436    | 110–120                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 910               | 2/28/2007       |
| 54-27436    | 110–120                     | Trichloroethane[1,1,1-]                 | 16000             | 2/28/2007       |
| 54-27436    | 110–120                     | Trichloroethene                         | 56000             | 2/28/2007       |
| 54-27436    | 160–166                     | Chloroform                              | 330               | 3/1/2007        |
| 54-27436    | 160–166                     | Dichlorodifluoromethane                 | 290               | 3/1/2007        |
| 54-27436    | 160–166                     | Dichloroethane[1,1-]                    | 940               | 3/1/2007        |
| 54-27436    | 160–166                     | Dichloroethene[1,1-]                    | 680               | 3/1/2007        |
| 54-27436    | 160–166                     | Methylene Chloride                      | 100               | 3/1/2007        |
| 54-27436    | 160–166                     | Tetrachloroethene                       | 1300              | 3/1/2007        |
| 54-27436    | 160–166                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 440               | 3/1/2007        |
| 54-27436    | 160–166                     | Trichloroethane[1,1,1-]                 | 10000             | 3/1/2007        |
| 54-27436    | 160–166                     | Trichloroethene                         | 21000             | 3/1/2007        |
| 54-27436    | 180–191.5                   | Acetone                                 | 20                | 3/1/2007        |
| 54-27436    | 180–191.5                   | Butanone[2-]                            | 4.6               | 3/1/2007        |
| 54-27436    | 180–191.5                   | Chloroform                              | 34                | 3/1/2007        |
| 54-27436    | 180–191.5                   | Cyclohexane                             | 27                | 3/1/2007        |
| 54-27436    | 180–191.5                   | Dichlorodifluoromethane                 | 64                | 3/1/2007        |
| 54-27436    | 180–191.5                   | Dichloroethane[1,1-]                    | 130               | 3/1/2007        |
| 54-27436    | 180–191.5                   | Dichloroethene[1,1-]                    | 230               | 3/1/2007        |
| 54-27436    | 180–191.5                   | Methylene Chloride                      | 10                | 3/1/2007        |
| 54-27436    | 180–191.5                   | Tetrachloroethene                       | 160               | 3/1/2007        |
| 54-27436    | 180–191.5                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 120               | 3/1/2007        |
| 54-27436    | 180–191.5                   | Trichloroethane[1,1,1-]                 | 1700              | 3/1/2007        |
| 54-27436    | 180–191.5                   | Trichloroethene                         | 1800              | 3/1/2007        |
| 54-27436    | 180–191.5                   | Trichlorofluoromethane                  | 31                | 3/1/2007        |
| 54-24370    | 35–45                       | Chloroform                              | 760               | 7/31/2007       |
| 54-24370    | 35–45                       | Dichlorodifluoromethane                 | 9200              | 7/31/2007       |
| 54-24370    | 35–45                       | Dichloroethane[1,1-]                    | 16000             | 7/31/2007       |
| 54-24370    | 35–45                       | Dichloroethene[1,1-]                    | 8300 (J+)         | 7/31/2007       |
| 54-24370    | 35–45                       | Tetrachloroethene                       | 1800              | 7/31/2007       |
| 54-24370    | 35–45                       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 49000             | 7/31/2007       |
| 54-24370    | 35–45                       | Trichloroethane[1,1,1-]                 | 180000            | 7/31/2007       |
| 54-24370    | 35–45                       | Trichloroethene                         | 19000             | 7/31/2007       |
| 54-24370    | 35–45                       | Trichlorofluoromethane                  | 16000             | 7/31/2007       |
| 54-24370    | 67.5–77.5                   | Chloroform                              | 700               | 7/31/2007       |
| 54-24370    | 67.5–77.5                   | Dichlorodifluoromethane                 | 13000             | 7/31/2007       |

Table 5.0-1 (continued)

| Location ID Depth Interval (ft bgs ) |           | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|--------------------------------------|-----------|-----------------------------------------|-------------------|-----------------|
| 54-24370                             | 67.5–77.5 | Dichloroethane[1,1-]                    | 17000             | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Dichloroethene[1,1-]                    | 6800              | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Dichloroethene[cis-1,2-]                | 600               | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Tetrachloroethene                       | 1900              | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 59000             | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Trichloroethane[1,1,1-]                 | 190000            | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Trichloroethene                         | 22000             | 7/31/2007       |
| 54-24370                             | 67.5–77.5 | Trichlorofluoromethane                  | 15000             | 7/31/2007       |
| 54-24370                             | 115–125   | Chloroform                              | 500               | 7/31/2007       |
| 54-24370                             | 115–125   | Dichlorodifluoromethane                 | 23000             | 7/31/2007       |
| 54-24370                             | 115–125   | Dichloroethane[1,1-]                    | 11000             | 7/31/2007       |
| 54-24370                             | 115–125   | Dichloroethene[1,1-]                    | 8400 (J+)         | 7/31/2007       |
| 54-24370                             | 115–125   | Dichloroethene[cis-1,2-]                | 630               | 7/31/2007       |
| 54-24370                             | 115–125   | Methylene Chloride                      | 550               | 7/31/2007       |
| 54-24370                             | 115–125   | Tetrachloroethene                       | 1800              | 7/31/2007       |
| 54-24370                             | 115–125   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 52000             | 7/31/2007       |
| 54-24370                             | 115–125   | Trichloroethane[1,1,1-]                 | 140000            | 7/31/2007       |
| 54-24370                             | 115–125   | Trichloroethene                         | 15000             | 7/31/2007       |
| 54-24370                             | 115–125   | Trichlorofluoromethane                  | 15000             | 7/31/2007       |
| 54-24370                             | 169.5–180 | Dichlorodifluoromethane                 | 18000             | 7/31/2007       |
| 54-24370                             | 169.5–180 | Dichloroethane[1,1-]                    | 6400              | 7/31/2007       |
| 54-24370                             | 169.5–180 | Dichloroethene[1,1-]                    | 7800 (J+)         | 7/31/2007       |
| 54-24370                             | 169.5–180 | Dichloroethene[cis-1,2-]                | 380               | 7/31/2007       |
| 54-24370                             | 169.5–180 | Methylene Chloride                      | 360               | 7/31/2007       |
| 54-24370                             | 169.5–180 | Tetrachloroethene                       | 1200              | 7/31/2007       |
| 54-24370                             | 169.5–180 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 41000             | 7/31/2007       |
| 54-24370                             | 169.5–180 | Trichloroethane[1,1,1-]                 | 85000             | 7/31/2007       |
| 54-24370                             | 169.5–180 | Trichloroethene                         | 9000              | 7/31/2007       |
| 54-24370                             | 169.5–180 | Trichlorofluoromethane                  | 12000             | 7/31/2007       |
| 54-24370                             | 195–205   | Chloroform                              | 190               | 7/31/2007       |
| 54-24370                             | 195–205   | Dichlorodifluoromethane                 | 18000             | 7/31/2007       |
| 54-24370                             | 195–205   | Dichloroethane[1,1-]                    | 4400              | 7/31/2007       |
| 54-24370                             | 195–205   | Dichloroethene[1,1-]                    | 7300 (J+)         | 7/31/2007       |
| 54-24370                             | 195–205   | Dichloroethene[cis-1,2-]                | 300               | 7/31/2007       |
| 54-24370                             | 195–205   | Methylene Chloride                      | 600               | 7/31/2007       |
| 54-24370                             | 195–205   | Tetrachloroethene                       | 1200              | 7/31/2007       |
| 54-24370                             | 195–205   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 36000             | 7/31/2007       |
| 54-24370                             | 195–205   | Trichloroethane[1,1,1-]                 | 71000             | 7/31/2007       |

Table 5.0-1 (continued)

| Location ID Depth Interval (ft bgs ) |             | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|--------------------------------------|-------------|-----------------------------------------|-------------------|-----------------|
| 54-24370                             | 195–205     | Trichloroethene                         | 7600              | 7/31/2007       |
| 54-24370                             | 195–205     | Trichlorofluoromethane                  | 11000             | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Chlorodifluoromethane                   | 60                | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Dichlorodifluoromethane                 | 1600              | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Dichloroethane[1,1-]                    | 310               | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Dichloroethene[1,1-]                    | 790               | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Dichloroethene[cis-1,2-]                | 20                | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Methylene Chloride                      | 47                | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Tetrachloroethene                       | 140               | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Toluene                                 | 20                | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 3700              | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Trichloroethane[1,1,1-]                 | 6400              | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Trichloroethene                         | 660               | 7/31/2007       |
| 54-24370                             | 237.5–249.5 | Trichlorofluoromethane                  | 1000              | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Acetone                                 | 140000            | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Butanone[2-]                            | 8000              | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Carbon Disulfide                        | 3700              | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Dichloroethane[1,1-]                    | 34000             | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Dichloroethene[1,1-]                    | 38000 (J+)        | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Hexane                                  | 6000              | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Methylene Chloride                      | 9300              | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Trichloroethane[1,1,1-]                 | 770000            | 7/31/2007       |
| 54-24386                             | 37.5–42.5   | Trichloroethene                         | 4400              | 7/31/2007       |
| 54-24386                             | 80.5–86     | Acetone                                 | 64000             | 7/31/2007       |
| 54-24386                             | 80.5–86     | Butanone[2-]                            | 4600              | 7/31/2007       |
| 54-24386                             | 80.5–86     | Carbon Disulfide                        | 1700              | 7/31/2007       |
| 54-24386                             | 80.5–86     | Dichloroethane[1,1-]                    | 25000             | 7/31/2007       |
| 54-24386                             | 80.5–86     | Dichloroethene[1,1-]                    | 38000             | 7/31/2007       |
| 54-24386                             | 80.5–86     | Methylene Chloride                      | 1800              | 7/31/2007       |
| 54-24386                             | 80.5–86     | Tetrachloroethene                       | 2900              | 7/31/2007       |
| 54-24386                             | 80.5–86     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 3200              | 7/31/2007       |
| 54-24386                             | 80.5–86     | Trichloroethane[1,1,1-]                 | 380000            | 7/31/2007       |
| 54-24386                             | 80.5–86     | Trichloroethene                         | 4200              | 7/31/2007       |
| 54-24386                             | 115–120     | Acetone                                 | 69000             | 7/31/2007       |
| 54-24386                             | 115–120     | Butanone[2-]                            | 3500              | 7/31/2007       |
| 54-24386                             | 115–120     | Carbon Disulfide                        | 1900              | 7/31/2007       |
| 54-24386                             | 115–120     | Dichloroethane[1,1-]                    | 32000             | 7/31/2007       |
| 54-24386                             | 115–120     | Dichloroethene[1,1-]                    | 66000 (J+)        | 7/31/2007       |

Table 5.0-1 (continued)

| Location ID Depth Inter |         | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------------------|---------|-----------------------------------------|-------------------|-----------------|
| 54-24386                | 115–120 | Methanol                                | 71000             | 7/31/2007       |
| 54-24386                | 115–120 | Methylene Chloride                      | 3200              | 7/31/2007       |
| 54-24386                | 115–120 | Tetrachloroethene                       | 3000              | 7/31/2007       |
| 54-24386                | 115–120 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 4100              | 7/31/2007       |
| 54-24386                | 115–120 | Trichloroethane[1,1,1-]                 | 420000            | 7/31/2007       |
| 54-24386                | 115–120 | Trichloroethene                         | 5600              | 7/31/2007       |
| 54-24386                | 130–136 | Acetone                                 | 120               | 7/31/2007       |
| 54-24386                | 130–136 | Carbon Disulfide                        | 12                | 7/31/2007       |
| 54-24386                | 130–136 | Dichloroethane[1,1-]                    | 330               | 7/31/2007       |
| 54-24386                | 130–136 | Dichloroethene[1,1-]                    | 650 (J+)          | 7/31/2007       |
| 54-24386                | 130–136 | Tetrachloroethene                       | 34                | 7/31/2007       |
| 54-24386                | 130–136 | Toluene                                 | 16                | 7/31/2007       |
| 54-24386                | 130–136 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 38                | 7/31/2007       |
| 54-24386                | 130–136 | Trichloroethane[1,1,1-]                 | 4400              | 7/31/2007       |
| 54-24386                | 130–136 | Trichloroethene                         | 62                | 7/31/2007       |
| 54-24386                | 191–201 | Dichloroethane[1,1-]                    | 3600              | 7/31/2007       |
| 54-24386                | 191–201 | Dichloroethene[1,1-]                    | 7000              | 7/31/2007       |
| 54-24386                | 191–201 | Tetrachloroethene                       | 990               | 7/31/2007       |
| 54-24386                | 191–201 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 460               | 7/31/2007       |
| 54-24386                | 191–201 | Trichloroethane[1,1,1-]                 | 45000             | 7/31/2007       |
| 54-24386                | 191–201 | Trichloroethene                         | 1000              | 7/31/2007       |
| 54-24394                | 45–55   | Dichlorodifluoromethane                 | 1400              | 7/30/2007       |
| 54-24394                | 45–55   | Dichloroethane[1,1-]                    | 3000              | 7/30/2007       |
| 54-24394                | 45–55   | Dichloroethene[1,1-]                    | 1600              | 7/30/2007       |
| 54-24394                | 45–55   | Tetrachloroethene                       | 840               | 7/30/2007       |
| 54-24394                | 45–55   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 120000            | 7/30/2007       |
| 54-24394                | 45–55   | Trichloroethane[1,1,1-]                 | 41000             | 7/30/2007       |
| 54-24394                | 45–55   | Trichloroethene                         | 110000            | 7/30/2007       |
| 54-24394                | 45–55   | Trichlorofluoromethane                  | 4400              | 7/30/2007       |
| 54-24394                | 95–105  | Chloroform                              | 220               | 7/30/2007       |
| 54-24394                | 95–105  | Dichlorodifluoromethane                 | 1700              | 7/30/2007       |
| 54-24394                | 95–105  | Dichloroethane[1,1-]                    | 2700              | 7/30/2007       |
| 54-24394                | 95–105  | Dichloroethene[1,1-]                    | 1500 (J+)         | 7/30/2007       |
| 54-24394                | 95–105  | Tetrachloroethene                       | 730               | 7/30/2007       |
| 54-24394                | 95–105  | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 54000             | 7/30/2007       |
| 54-24394                | 95–105  | Trichloroethane[1,1,1-]                 | 32000             | 7/30/2007       |
| 54-24394                | 95–105  | Trichloroethene                         | 51000             | 7/30/2007       |
| 54-24394                | 95–105  | Trichlorofluoromethane                  | 3800              | 7/30/2007       |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |  |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|--|
| 54-24394    | 145–154.8                   | Chloroform                              | 180               | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Dichlorodifluoromethane                 | 2300              | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Dichloroethane[1,1-]                    | 1700              | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Dichloroethene[1,1-]                    | 1600              | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Methylene Chloride                      | 80                | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Tetrachloroethene                       | 710               | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 25000             | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Trichloroethane[1,1,1-]                 | 24000             | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Trichloroethene                         | 22000             | 7/30/2007       |  |
| 54-24394    | 145–154.8                   | Trichlorofluoromethane                  | 4300              | 7/30/2007       |  |
| 54-24394    | 190–195                     | Chloroform                              | 130               | 7/30/2007       |  |
| 54-24394    | 190–195                     | Dichlorodifluoromethane                 | 2300              | 7/30/2007       |  |
| 54-24394    | 190–195                     | Dichloroethane[1,1-]                    | 1000              | 7/30/2007       |  |
| 54-24394    | 190–195                     | Dichloroethene[1,1-]                    | 1400 (J+)         | 7/30/2007       |  |
| 54-24394    | 190–195                     | Methylene Chloride                      | 73                | 7/30/2007       |  |
| 54-24394    | 190–195                     | Tetrachloroethene                       | 590               | 7/30/2007       |  |
| 54-24394    | 190–195                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 14000             | 7/30/2007       |  |
| 54-24394    | 190–195                     | Trichloroethane[1,1,1-]                 | 17000             | 7/30/2007       |  |
| 54-24394    | 190–195                     | Trichloroethene                         | 12000             | 7/30/2007       |  |
| 54-24394    | 190–195                     | Trichlorofluoromethane                  | 4000              | 7/30/2007       |  |
| 54-24394    | 240–250                     | Carbon Disulfide                        | 61                | 7/30/2007       |  |
| 54-24394    | 240–250                     | Chloroform                              | 73                | 7/30/2007       |  |
| 54-24394    | 240–250                     | Dichlorodifluoromethane                 | 1900              | 7/30/2007       |  |
| 54-24394    | 240–250                     | Dichloroethane[1,1-]                    | 440               | 7/30/2007       |  |
| 54-24394    | 240–250                     | Dichloroethene[1,1-]                    | 1200 (J+)         | 7/30/2007       |  |
| 54-24394    | 240–250                     | Methylene Chloride                      | 57                | 7/30/2007       |  |
| 54-24394    | 240–250                     | Tetrachloroethene                       | 440               | 7/30/2007       |  |
| 54-24394    | 240–250                     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 7500              | 7/30/2007       |  |
| 54-24394    | 240–250                     | Trichloroethane[1,1,1-]                 | 9900              | 7/30/2007       |  |
| 54-24394    | 240–250                     | Trichloroethene                         | 4600              | 7/30/2007       |  |
| 54-24394    | 240–250                     | Trichlorofluoromethane                  | 3200              | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Acetone                                 | 19                | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Chloroform                              | 4.9               | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Dichlorodifluoromethane                 | 210               | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Dichloroethane[1,1-]                    | 49                | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Dichloroethene[1,1-]                    | 260 (J+)          | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Methylene Chloride                      | 4.3               | 7/30/2007       |  |
| 54-24394    | 296.5–306.5                 | Tetrachloroethene                       | 51                | 7/30/2007       |  |

Table 5.0-1 (continued)

| Location ID Depth Interval (ft bgs ) |             | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|--------------------------------------|-------------|-----------------------------------------|-------------------|-----------------|
| 54-24394                             | 296.5–306.5 | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 600               | 7/30/2007       |
| 54-24394                             | 296.5–306.5 | Trichloroethane[1,1,1-]                 | 1000              | 7/30/2007       |
| 54-24394                             | 296.5–306.5 | Trichloroethene                         | 230               | 7/30/2007       |
| 54-24394                             | 296.5–306.5 | Trichlorofluoromethane                  | 300               | 7/30/2007       |
| 54-27436                             | 40–50       | Dichloroethane[1,1-]                    | 1200              | 8/2/2007        |
| 54-27436                             | 40–50       | Dichloroethene[1,1-]                    | 830 (J+)          | 8/2/2007        |
| 54-27436                             | 40–50       | Tetrachloroethene                       | 11000             | 8/2/2007        |
| 54-27436                             | 40–50       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 2700              | 8/2/2007        |
| 54-27436                             | 40–50       | Trichloroethane[1,1,1-]                 | 19000             | 8/2/2007        |
| 54-27436                             | 40–50       | Trichloroethene                         | 160000            | 8/2/2007        |
| 54-27436                             | 65–75       | Dichloroethane[1,1-]                    | 1300              | 8/2/2007        |
| 54-27436                             | 65–75       | Dichloroethene[1,1-]                    | 880 (J+)          | 8/2/2007        |
| 54-27436                             | 65–75       | Tetrachloroethene                       | 9500              | 8/2/2007        |
| 54-27436                             | 65–75       | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 2000              | 8/2/2007        |
| 54-27436                             | 65–75       | Trichloroethane[1,1,1-]                 | 22000             | 8/2/2007        |
| 54-27436                             | 65–75       | Trichloroethene                         | 150000            | 8/2/2007        |
| 54-27436                             | 110–120     | Chloroform                              | 450               | 8/2/2007        |
| 54-27436                             | 110–120     | Dichlorodifluoromethane                 | 380               | 8/2/2007        |
| 54-27436                             | 110–120     | Dichloroethane[1,1-]                    | 1300              | 8/2/2007        |
| 54-27436                             | 110–120     | Dichloroethene[1,1-]                    | 970               | 8/2/2007        |
| 54-27436                             | 110–120     | Tetrachloroethene                       | 4600              | 8/2/2007        |
| 54-27436                             | 110–120     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 1200              | 8/2/2007        |
| 54-27436                             | 110–120     | Trichloroethane[1,1,1-]                 | 18000             | 8/2/2007        |
| 54-27436                             | 110–120     | Trichloroethene                         | 66000             | 8/2/2007        |
| 54-27436                             | 160–166     | Chloroform                              | 440               | 8/2/2007        |
| 54-27436                             | 160–166     | Dichlorodifluoromethane                 | 360               | 8/2/2007        |
| 54-27436                             | 160–166     | Dichloroethane[1,1-]                    | 1300              | 8/2/2007        |
| 54-27436                             | 160–166     | Dichloroethene[1,1-]                    | 910               | 8/2/2007        |
| 54-27436                             | 160–166     | Methylene Chloride                      | 120               | 8/2/2007        |
| 54-27436                             | 160–166     | Tetrachloroethene                       | 2100              | 8/2/2007        |
| 54-27436                             | 160–166     | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 810               | 8/2/2007        |
| 54-27436                             | 160–166     | Trichloroethane[1,1,1-]                 | 15000             | 8/2/2007        |
| 54-27436                             | 160–166     | Trichloroethene                         | 30000             | 8/2/2007        |
| 54-27436                             | 160–166     | Trichlorofluoromethane                  | 120               | 8/2/2007        |
| 54-27436                             | 180–191.5   | Chloroform                              | 77                | 8/2/2007        |
| 54-27436                             | 180–191.5   | Dichlorodifluoromethane                 | 80                | 8/2/2007        |
| 54-27436                             | 180–191.5   | Dichloroethane[1,1-]                    | 250               | 8/2/2007        |
| 54-27436                             | 180–191.5   | Dichloroethene[1,1-]                    | 340 (J+)          | 8/2/2007        |

Table 5.0-1 (continued)

| Location ID | Depth Interval<br>(ft bgs ) | Analyte                                 | Result<br>(µg/m³) | Collection Date |
|-------------|-----------------------------|-----------------------------------------|-------------------|-----------------|
| 54-27436    | 180–191.5                   | Methylene Chloride                      | 22                | 8/2/2007        |
| 54-27436    | 180–191.5                   | Tetrachloroethene                       | 320               | 8/2/2007        |
| 54-27436    | 180–191.5                   | Trichloro-1,2,2-trifluoroethane[1,1,2-] | 170               | 8/2/2007        |
| 54-27436    | 180–191.5                   | Trichloroethane[1,1,1-]                 | 3000              | 8/2/2007        |
| 54-27436    | 180–191.5                   | Trichloroethene                         | 4000              | 8/2/2007        |
| 54-27436    | 180–191.5                   | Trichlorofluoromethane                  | 39                | 8/2/2007        |

 $<sup>^{\</sup>ast}$  (J) and other data qualifiers are defined in Table A-1.0-2.

Table 5.0-2

Detected Pore Gas Tritium Results for
Samples Collected During Monitoring Activities at MDA G

| Location ID | Depth Interval<br>(ft bgs) | Result<br>(pCi/L) | Collection Date |
|-------------|----------------------------|-------------------|-----------------|
| 54-24397    | 45–55                      | 4480000           | 2/21/2007       |
| 54-24397    | 84–95                      | 536000            | 2/23/2007       |
| 54-24397    | 125–135                    | 270000            | 2/21/2007       |
| 54-24397    | 160–168                    | 53900             | 2/21/2007       |
| 54-24397    | 184–192                    | 103000            | 2/23/2007       |
| 54-24397    | 232.5–244                  | 1750              | 2/21/2007       |
| 54-24397    | 45–55                      | 8550000           | 7/31/2007       |
| 54-24397    | 84–95                      | 434000            | 7/31/2007       |
| 54-24397    | 125–135                    | 89900             | 7/31/2007       |
| 54-24397    | 160–168                    | 20000             | 7/31/2007       |
| 54-24397    | 184–192                    | 45700             | 7/31/2007       |
| 54-24397    | 232.5–244                  | 2400              | 7/31/2007       |

Table 5.0-3
Screening of VOCs Detected in Pore Gas at MDA G

| Chemical                                | Maximum Pore-Gas<br>Concentration,<br>(μg/m³) | Dimensionless<br>Henry's<br>Constant (H') | Screening<br>Level<br>(µg/L) | Screen Value<br>Max. Concentration/<br>(1000 × H' × SL) |
|-----------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------|---------------------------------------------------------|
| Acetone                                 | 140000                                        | 0.0016                                    | 5500 <sup>a</sup>            | 16                                                      |
| Butanone[2-]                            | 8000                                          | 0.0011                                    | 7100 <sup>a</sup>            | 1.0                                                     |
| Carbon Disulfide                        | 3700                                          | 1.2                                       | 1040 <sup>a</sup>            | 0.0031                                                  |
| Chlorodifluoromethane                   | 140                                           | 4.1                                       | 85000 <sup>a</sup>           | 0.0000040                                               |
| Chloroethane                            | 93                                            | 0.45                                      | 1 <sup>b</sup>               | 0.21                                                    |
| Chloroform                              | 760                                           | 0.15                                      | 100 <sup>b</sup>             | 0.051                                                   |
| Cyclohexane                             | 340                                           | na <sup>c</sup>                           | na                           | na                                                      |
| Dichlorodifluoromethane                 | 23000                                         | 4.1                                       | 390 <sup>a</sup>             | 0.014                                                   |
| Dichloroethane[1,1-]                    | 36000                                         | 0.23                                      | 25 <sup>b</sup>              | 6.3                                                     |
| Dichloroethene[1,1-]                    | 66000                                         | 1.1                                       | 5 <sup>b</sup>               | 12                                                      |
| Dichloroethene[cis-1,2-]                | 700                                           | 1.67                                      | 70 <sup>b</sup>              | 0.0060                                                  |
| Hexane                                  | 6000                                          | 5                                         | 416 <sup>a</sup>             | 0.0029                                                  |
| Methanol                                | 7100                                          | 0.00011                                   | 18000 <sup>a</sup>           | 3.6                                                     |
| Methylene Chloride                      | 9300                                          | 0.09                                      | 5 <sup>d</sup>               | 21                                                      |
| Tetrachloroethene                       | 11000                                         | 0.754                                     | 5 <sup>d</sup>               | 2.9                                                     |
| Toluene                                 | 4700                                          | 0.272                                     | 750 <sup>b</sup>             | 0.023                                                   |
| Trichloro-1,2,2-trifluoroethane[1,1,2-] | 120000                                        | 21.4                                      | 59000 <sup>a</sup>           | 0.000095                                                |
| Trichloroethane[1,1,1-]                 | 790000                                        | 0.705                                     | 60 <sup>b</sup>              | 19                                                      |
| Trichloroethene                         | 190000                                        | 0.422                                     | 5 <sup>d</sup>               | 90                                                      |
| Trichlorofluoromethane                  | 16000                                         | 4                                         | 1300 <sup>a</sup>            | 0.0031                                                  |

<sup>&</sup>lt;sup>a</sup> EPA Region 6 human health media-specific screening level for tap water.

<sup>&</sup>lt;sup>b</sup> NMWQCC groundwater standard (20.6.2.3103 New Mexico Administrative Code).

<sup>&</sup>lt;sup>c</sup> na = Not available.

<sup>&</sup>lt;sup>d</sup> EPA MCL (40 CFR 141.61).

Table 5.0-4
Screening of Volatile Organic Compounds Detected at 54-25105 (485-700 ft)

| Chemical                                | Pore-Gas<br>Concentration<br>(µg/m³) | Dimensionless<br>Henry's Constant<br>(H') | Screening<br>Level<br>(µg/L) | Screen Value<br>Conc/<br>(1000 × H' × SL) |
|-----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------|-------------------------------------------|
| Acetone                                 | 170                                  | 0.0016                                    | 5500 <sup>a</sup>            | 0.0193                                    |
| Dichlorodifluoromethane                 | 8                                    | 4.1                                       | 390 <sup>a</sup>             | 0.000005                                  |
| Dichloroethane[1,1-]                    | 9.7                                  | 0.23                                      | 25 <sup>b</sup>              | 0.000169                                  |
| Dichloroethene[1,1-]                    | 39                                   | 1.1                                       | 5 <sup>b</sup>               | 0.00709                                   |
| Methylene Chloride                      | 3.8                                  | 0.09                                      | 5 <sup>c</sup>               | 0.00844                                   |
| Tetrachloroethene                       | 27                                   | 0.754                                     | 5 <sup>c</sup>               | 0.00716                                   |
| Toluene                                 | 6.7                                  | 0.272                                     | 750 <sup>b</sup>             | 0.0000328                                 |
| Trichloro-1,2,2-trifluoroethane[1,1,2-] | 18                                   | 21.4                                      | 59000 <sup>a</sup>           | 0.000000143                               |
| Trichloroethane[1,1,1-]                 | 180                                  | 0.705                                     | 60 <sup>b</sup>              | 0.00426                                   |
| Trichloroethene                         | 72                                   | 0.422                                     | 5 <sup>c</sup>               | 0.0341                                    |
| Trichlorofluoromethane                  | 5.7                                  | 4                                         | 1300 <sup>a</sup>            | 0.00000110                                |

<sup>&</sup>lt;sup>a</sup> EPA Region 6 human health media-specific screening level for tap water.

<sup>&</sup>lt;sup>b</sup> New Mexico WQCC groundwater standard (20.6.2.3103 NMAC).

<sup>&</sup>lt;sup>c</sup> EPA MCL (40 CFR 141.61).



Quality Assurance/Quality Control Program

#### A-1.0 INTRODUCTION

In accordance with Section XI.D.13.b of the Compliance Order on Consent, this appendix discusses analytical methods, data quality objectives, and data quality review. Additionally, this appendix summarizes the effects of data quality exceptions on the acceptability of the field and laboratory analytical data as they impact the investigation and site status.

Quality assurance (QA), quality control (QC), and data validation procedures were implemented in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) "Quality Assurance Project Plan Requirements for Sampling and Analysis" (LANL 1996, 054609) and the Laboratory's statement of work for analytical services (LANL 2000, 071233). The results of the QA/QC activities were used to estimate the accuracy, bias, and precision of the analytical measurements. QC samples, including method blanks, blank spikes, matrix spikes, laboratory control samples (LCSs), internal standards, initial and continuing calibrations, surrogates, and tracers, were used to assess laboratory accuracy and bias.

The type and frequency of QC analyses are described in the analytical services contract. Other QC factors, such as sample preservation and holding times, were also assessed. The requirements for sample preservation and holding times are given in the Environmental Programs Directorate Standard Operating Procedure (SOP) 01.02 (Rev. 1, ICN 1), Sample Containers and Preservation. Evaluating these QC indicators allows estimates to be made of the accuracy, bias, and precision of the analytical suites. A focused data validation was also performed for all the data packages (identified by request number). The procedures used for data validation are given in Table A-1.0-1. The focused validation followed the same procedure discussed above and included a more detailed review of the raw data results generated by the analytical laboratory. Copies of the raw analytical data, laboratory logbooks, and instrument printouts used during focused validation are provided in data packages as part of Appendix B (on CD included with this document).

Analytical data were reviewed and evaluated based on U.S. Environmental Protection Agency (EPA) National Functional Guidelines for inorganic and organic chemical data review, where applicable (EPA 1994, 048639; EPA 1999, 066649). Data have also been assessed using guidelines established in EPA Method SW-846 (EPA 1997, 057589). As a result of the data validation and assessment efforts, qualifiers have been assigned to each analytical record. Definitions for the data qualifiers used in data validation are given in Table A-1.0-2. Data validators and reviewers made judgments about the following industry-accepted QA/QC analytical quality functions.

### **Maintenance of Chain of Custody**

To maintain chain of custody (COC) is to document or demonstrate the possession of an item by only authorized individuals. The COC process provides confidence in, and documentation of, analytical data integrity by establishing the traceability of the sample from the time of collection through processing to final maintenance as a record.

# **Sample Documentation**

Establishing sample documentation acceptability is the first step toward verifying that an analytical system has produced data of known quality. Documentation is dependent upon the accessibility of review items that accurately and completely describe the work performed. In the absence of adequate sample documentation, data quality cannot be independently verified.

### **Sample Preservation**

Sample preservation is the use of specific types of sample containers and preservation techniques. Sample preservation is mandatory for hazardous site investigations because the integrity of any sample decreases over time. Physical factors (light, pressure, temperature, etc.), chemical factors (changes in pH, volatilization, etc.), and biological factors may alter the original quality of a sample. Because the various target parameters are uniquely altered at varying rates, distinct sample containers, preservation techniques, and holding times have been established to maintain sample integrity for a reasonable and acceptable period of time.

### **Holding Time**

Holding time is the maximum amount of time a sample can be stored without unacceptable changes in analyte concentrations. Holding times apply under prescribed conditions; deviations from these conditions may affect the holding time. Extraction holding time refers to the time that lapses between sample collection and sample preparation; analytical holding time refers to the time that lapses between sample preparation and analysis.

# Initial and Continuing Calibration Verification (including interference-check standards)

Calibration verification is the establishment of a quantitative relationship between the response of the analytical procedure and the concentration of the target analyte. There are two aspects of calibration verification: initial and continuing. The initial calibration verifies the accuracy of the calibration curve as well as the individual calibration standards being used to perform the calibration. The continuing calibration ensures that the initial calibration is still holding and correct as the instrument is used to process samples. Interference-check samples are used to determine if a high concentration of a single analyte in a sample interferes with the accurate quantitation of other analytes.

#### Analyte Identification (including spectra review and thermal ionization cavity review)

Analyte identification is the process of associating an instrument signal with a compound or analyte of interest. Evaluation of signal retention times, spectral overlap, multipeak pattern matching, and mass spectral library searches are tools for making analyte identification determinations.

## **Analyte Quantitation**

Analyte quantitation is the association of an instrument signal with a concentration, and the determination that a recorded signal is detected or not detected. Detection limits, instrument calibration linear ranges, internal standards, and carrier recoveries are tools for making analyte quantitation evaluations.

Organic and inorganic chemical results are considered to be not detected if the reported results are less than or equal to the method detection limit adjusted by sample-specific dilution or concentration factors.

Radiochemical results reported with values less than the minimum detectable activity are considered to be not detected (U). Each radiochemical result is also compared to the corresponding 1-sigma total propagated uncertainty (TPU). If the result is not greater than 3 times the TPU, it is also qualified as not detected.

#### **Method Blank**

A method blank is an analyte-free matrix to which all reagents are added in the same volumes or proportions as those used in the environmental sample processing and which is extracted and analyzed in the same manner as the corresponding environmental samples. Method blanks are used to assess the potential for sample contamination during extraction and analysis. All target analytes should be below the contract-required detection limit in the method blank (LANL 2000, 071233).

#### **Matrix Spike Recoveries**

A matrix spike is an aliquot of sample spiked with a known concentration of the target analyte(s). Matrix spike samples are used to measure the ability to recover prescribed analytes from a native sample matrix. Spiking typically occurs before sample preparation and analysis. Acceptable percentage recoveries for matrix spikes vary by method but should generally be greater than 10% for an analytical result to be usable (LANL 2000, 071233).

#### **Surrogate and Tracer Recoveries**

A surrogate (an organic chemical compound) and a tracer (a radiochemical isotope) are similar in composition and behavior to target analytes but are not typically found in environmental samples. Surrogates and tracers are added to every blank, sample, and spike to evaluate the efficiency with which target analytes are recovered during extraction and analysis. The recovery percentages of the surrogates and tracers vary by method but should generally be greater than 10% for an analytical result to be usable (LANL 2000, 071233).

#### Internal standard responses and carrier recoveries

Internal standards and carriers are chemical compounds that are added to blank, sample, and standard extracts at known concentrations. They are used to compensate for (1) analyte concentration changes that might occur during storage of the extract, and (2) quantitation variations that can occur during analysis. Internal standard responses and carrier recoveries are used to adjust the reported concentrations for the quantitation of target analytes. The response factors for internal standards vary by method but should generally be within the range of  $\geq$ 50% to  $\leq$ 200%. The recoveries for carriers vary by method but should generally be greater than 10% for an analytical result to be usable (LANL 2000, 071233).

#### **LCS** Recoveries

An LCS is a known matrix that has been spiked with compound(s) which are representative of the target analytes. The LCS is used to document laboratory performance. The acceptance criteria for LCSs are method-specific but should generally be greater than 10% for an analytical result to be usable (LANL 2000, 071233).

#### Laboratory and Field Duplicates (including serial dilutions)

Laboratory duplicates are two portions of a sample taken from the same sample container (prepared for analysis and analyzed independently but under identical conditions) that are used to assess or demonstrate acceptable laboratory-method precision at the time of analysis. Each duplicate sample is equally representative of the original material. Duplicate analyses are also performed to generate data and to determine the long-term precision of an analytical method on various matrices. All relative percent

differences (RPDs) between samples and field duplicates should be  $\pm 35\%$  (LANL 2000, 071233). RPD is defined by the equation RPD = [|D1 – D2| / (D1 + D2)] × 100%, where *D1* and *D2* represent analytical measurements on duplicate samples.

For radionuclides, the duplicate error ratio (DER) may also be used to quantify precision. DER is defined by the equation DER = |S-D| /  $sqrt(2\sigma S^2 + 2\sigma D^2)$ , where S represents the original sample value, D represents the duplicate value, and  $2\sigma S$  and  $2\sigma D$  represent the 2-sigma uncertainties surrounding the original and duplicate samples, respectively. A DER below 3 indicates sample-to-field-duplicate precision that is in control.

Field duplicates are independent samples that are collected as closely as possible to the same point in space and time. They are two separate samples taken from the same source, stored in separate containers, and analyzed independently.

Serial dilution checks are performed for certain inorganic analyses to determine if dilutions have been prepared correctly, and to identify any effects that may arise from characteristics of the sample matrix.

#### Trip Blanks, Field Blanks, and Rinsate Blanks

Trip blanks, field blanks, and rinsate blanks are all collected and analyzed to establish whether concentration values assigned to an analyte or compound are attributable to contamination of the analytical system or to the presence of the analyte in the samples collected.

*Trip blank*—a sample of analyte-free medium that is taken to the sampling site and returned unopened to an analytical laboratory. Trip blanks are used to identify contamination attributable to shipping or field handling procedures. Trip blanks are required for all field events that include the collection of volatile samples.

*Field blank*—a sample of analyte-free medium that is taken to the sampling site and exposed to the atmosphere during sample-collection activities. Field blanks are used to measure contamination introduced during sample collection.

Equipment rinsate blank—a sample of analyte-free medium that has been used to rinse the sampling equipment. It is collected after completion of decontamination and before sampling. Equipment rinsate blanks are used to assess the cleanliness of sampling equipment.

#### A-2.0 LABORATORY ANALYSIS SUMMARY

During the FY2007, 61 pore-gas samples, seven field blank samples, and 11 field duplicate samples were collected at Material Disposal Area (MDA) G. Analysis of pore gas was conducted for volatile organic compounds (VOCs) using EPA Method TO-15 or for tritium using EPA Method 906.0. All QC procedures were followed as required by the analytical services contract. Table A-2.0-1 lists the analytical method used for inorganic and organic chemical analyses.

Sampling locations, sampling ports, and validated analytical results are given in Appendix B of the monitoring report. The data, including the qualified data, are usable for evaluation and interpretive purposes. The entire data set meets the standards set for use in this report.

The analytical methods used for radionuclides and organic chemicals are summarized in the following sections. The required estimated detection limit (EDL) or estimated quantitation limit (EQL) for each analyte is defined in the analytical services contract.

#### A-3.0 ORGANIC CHEMICAL ANALYSES

The summaries for these analyses are presented in the sections below. All QC procedures were followed as required by the analytical services contract.

#### **Maintenance of COC**

COC was properly maintained for all samples.

#### **Sample Documentation and Dilutions**

Samples were properly documented in the field.

#### **Sample Preservation**

Preservation criteria were met for all samples.

#### **Holding Time**

Holding times were met for all samples.

#### **Initial and Continuing Calibration Verification**

Initial calibration acceptance criteria were met for all sample analyses. Continuing calibration percent differences (%D) were greater than 25% affecting EPA Method TO-15 analyses of 91 organic chemical records. Affected records were qualified as being an estimate of their sample-specific quantitation limit or detection limit.

### Analyte Identification (including internal standards, spectra review, and thermal ionization cavity review)

Analyte identification criteria were met for all but eight sample analyses. The mass spectrum did not meet method specifications and associated records were qualified as not detected.

#### **Analyte Quantitation**

Analyte quantitation criteria were met for all sample analyses.

#### **Method Blank**

Method blank results for organic chemical analyses were within acceptable limits for all sample analyses.

#### **Matrix Spike Recoveries**

All matrix spike recoveries for organic chemical analyses were within acceptable limits.

#### **Surrogate Recoveries**

All surrogate recoveries for organic chemical analyses were within acceptable limits.

#### **Internal Standard Responses**

All internal standard responses for organic chemical analyses were within acceptable limits.

#### **LCS** Recoveries

LCS recoveries were within acceptable limits for all but 30 EPA Method TO-15 analytical records. LCS recoveries were greater than the upper acceptance limit, affecting 16 detected analytical records. Affected records were qualified as estimated and biased high. LCS recoveries were less than the lower acceptance limit but greater than 10%, affecting 14 detected analytical records. Each of the affected detected records was qualified being an estimate of their sample-specific quantitation limit or detection limit.

#### **Laboratory and Field Duplicates**

Laboratory duplicate analyses indicate acceptable precision for all organic chemicals.

Most field duplicates collected for organic chemical analyses indicate acceptable precision. During fiscal year (FY) 2007, field duplicate precision was greater than 35% for eight analyses conducted from pore-gas samples. The sample records potentially affected by larger-than-expected field duplicate RPDs are listed in Table A-3.0-1. Sample results are not qualified based on field duplicate precision.

#### Trip Blanks, Field Blanks, and Rinsate Blanks

Trip blank and rinsate blank samples are not collected during VOC SUMMA sampling.

The field blank collected on February 15, 2007, for EPA Method TO-15 analysis was contaminated with  $4.5~\mu g/m^3$  of 1,1-dichloroethene. This concentration of 1,1-dichloroethene is within 5 times the concentration of one sample analyzed to contain detected concentrations of 1,1-dichloroethene, indicating that 1,1-dichloroethene detected in this sample may be the result of field contamination. Detected field blank results do not impact the investigation or site status. This second quarter FY2007 sample record potentially affected by field blank contamination is listed in Table A-3.0-2. The sampling results are not qualified based on field blank contamination.

#### A-4.0 RADIONUCLIDE ANALYSES

#### **Maintenance of Chain of Custody**

Chain of custody was properly maintained for all samples.

#### Sample Documentation and Dilutions

Samples were properly documented in the field.

#### **Sample Preservation**

Preservation criteria were met for all samples.

#### **Holding Times**

Holding times were met for all inorganic chemical digestions and analyses.

#### **Initial and Continuing Calibration Verification**

Initial and continuing calibrations are acceptable for all radionuclide analyses.

#### **Analyte Identification**

Analyte identification criteria were met for all radionuclide analyses.

#### **Analyte Quantitation**

Analyte quantitation criteria were met for all radionuclide analyses.

#### **Method Blanks**

The method blank results for radionuclide analyses were within acceptable limits all sample results.

#### **Matrix Spike Recoveries**

The matrix spike recoveries for radionuclide analyses were within acceptable limits for all the analyses.

#### **Carrier and Tracer Recoveries**

Tracer and carrier recoveries for radionuclide analyses were within acceptable limits for all core and air analyses.

#### **LCS** Recoveries

The LCS recoveries for radionuclide analyses were within acceptable limits for all core and air analyses.

#### **Laboratory and Field Duplicates**

Laboratory duplicate analyses indicate acceptable precision for all radionuclides.

Field duplicates collected for radionuclide analyses indicate acceptable precision for all but two sample results. Detected tritium and associated field duplicate results had RPDs greater than 35%. The sample records potentially affected by larger than expected field duplicate RPDs are listed in Table A-3.0-1. Sample results are not qualified based on field duplicate precision.

#### Trip, Field, and Rinsate Blanks

Trip blank and rinsate blank samples are not collected during tritium pore gas sampling.

The field blank collected on July 31, 2007, for EPA Method 906.0 analysis, was contaminated with detectable amounts of tritium. This fourth quarter FY2007 tritium field blank activity of 226,000 pCi/L is within 5 times the concentration of each of the samples collected for tritium analyses on this date.

Sampling records potentially affected by field blank contamination are listed in Table A-3.0-2. Sampling results are not qualified based on field blank contamination.

#### A-5.0 FIELD-MONITORING SUMMARY

Field-monitoring data are less costly to generate than laboratory data and are immediately available to guide field decisions. Field-monitoring results are generated by rapid methods of analysis that provide less precision than laboratory analyses. Field-monitoring data provide analyte (or at least chemical class) identification and quantification, although the quantification may be relatively imprecise.

Field monitoring of subsurface vapor monitoring at MDA G is conducted using guidance provided in SOP-06.31, Rev. 2, Sampling of Subatmospheric Air. This procedure covers the use of the Brüel and Kjær (B&K) Type 1302 multigas analyzer and Landtec GEM-500 photoionization detector (PID).

The B&K is calibrated annually by a certified calibration laboratory. The B&K is adjusted before each day's use to compensate for ambient pressure and temperature. Calibration is confirmed before each day's use by analyzing triplicate readings of ambient air and duplicate readings of known quantities of mixed organic analytes in nitrogen. These calibration verification check analyses confirm analytical stability, confirm that the instrument zero point for each analyte is correctly set, and confirm that the stored calibration curve remains applicable to current instrument response to the presence of organic analytes. Concentrations of calibration standards analyzed prior to each day's use are expected be within ±20% of their known values. Additionally, during each sample analyses a low sample flow condition triggers an alarm on the B&K and VOC measurement is then not completed.

The presence of nontarget organic chemicals bias B&K target analyte results if they have an acoustic response to infrared light that is similar to the target analyte. Trichlorofluoromethane (Freon 11) generates a measurable acoustic signal in response to light with a wavelength of 11.6 μm that is proportional to its concentration. Other VOCs generating an acoustic signal to light at this wavelength include Freon 114 (CAS 76-14-2; 1,2-dichloro-1,1,2,2-tetrafluoroethane) and Freon 21 (CAS 75-43-4), which is not reported by EPA Method TO-15. Tetrachloroethene (PCE) generates an acoustic signal in response to light with a wavelength of 11.1 μm. Other VOCs responding to light at this wavelength include styrene (CAS 100-42-5); Freon 113 (CAS 76-13-1), which is not reported by EPA Method TO-15; Freon 12 (CAS 75-71-8, dichlorodifluoromethane); ethanol (CAS 64-17-5); and 1,1-dichloroethene (CAS 75-35-4). EPA Method TO-15 analytical results indicate that 1,1-dichloroethene and Freon 113 are present in most samples at MDA L at detectable concentrations which would be included in the signal interpreted as PCE. Table A-4.0-1 presents VOCs that interfere with each of the four B&K target analytes.

Analytical data generated using the B&K Type 1302 are supported by annual calibration records that bracket the periods of analyses. Calibration information is reported below for each of the two B&K photoacoustic analyzers used to generate results presented in this periodic monitoring report.

- The B&K with serial number 1692083 was calibrated on July 3, 2007. The zero point was set for 1,1,1-trichloroethane (TCA), trichloroethene (TCE), Freon 11, PCE, carbon dioxide (CO<sub>2</sub>), and water (H<sub>2</sub>O). Span concentrations of TCA at 61.4 ppm, TCE at 8.1 ppm, Freon 11 at 53 ppm, PCE at 19.24 ppm, and CO<sub>2</sub> at 1265 ppm were used to generate calibration response curves.
- The B&K with serial number 1692083 was calibrated on May 17, 2006. The zero point was set for TCA, TCE, Freon 11, PCE, CO<sub>2</sub>, and H<sub>2</sub>O. Span concentrations of TCA at 61.4 ppm, TCE at 61.6 ppm, Freon 11 at 110 ppm, PCE at 63 ppm, and CO<sub>2</sub> at 4.99% were used to generate calibration response curves.

• The B&K with serial number 1732805 was calibrated on May 17, 2006. The zero point was set for TCA, TCE, Freon 11, PCE, CO<sub>2</sub>, and H<sub>2</sub>O. Span concentrations of TCA at 61.4 ppm, TCE at 61.6 ppm, Freon 11 at 110 ppm, PCE at 63 ppm, and CO<sub>2</sub> at 4.99% were used to generate calibration response curves.

The Landtec GEM 500 PID is calibrated annually by a certified calibration laboratory. During calibration, methane (CH<sub>4</sub>), oxygen (O<sub>2</sub>), and CO<sub>2</sub> zero points are set, and each analyte's calibration response curves is developed. The CH<sub>4</sub> reading is filtered to an infrared absorption frequency of 3.41 mm (nominal), the frequency specific to hydrocarbon bonds. Landtec instruments are calibrated using certified CH<sub>4</sub> mixtures and will give correct readings provided there are no other hydrocarbon gasses present within the sample (e.g., ethane, propane, butane, etc.). If there are other hydrocarbons present, the CH<sub>4</sub> reading will be higher (never lower) than the actual CH<sub>4</sub> concentration being monitored. The extent to which the CH<sub>4</sub> reading is affected depends upon the concentration of the CH<sub>4</sub> in the sample and the concentration of the other hydrocarbons. The effect of other hydrocarbons is nonlinear and difficult to predict. The CO<sub>2</sub> reading is filtered to an infrared absorption frequency of 4.29  $\mu$ m (nominal), the frequency specific to CO<sub>2</sub>. Therefore, any other gases usually found on landfill sites will not affect the CO<sub>2</sub> reading. The O<sub>2</sub> sensor is a galvanic cell type and is not affected by CO<sub>2</sub>, CO<sub>2</sub>, hydrogen sulfide, nitrate, sulfide, or hydrogen.

Calibration is confirmed prior to each day's use by analyzing multiple readings of ambient air. Zero readings of  $CH_4$  and  $CO_2$  are expected. Oxygen is expected to read 20.9%. Oxygen readings within  $\pm$  25% of 20.9% are considered acceptable.

Analytical data generated using the Landtec GEM-500 PID is supported by annual calibration records that bracket the periods of analyses. Calibration is performed by Geotech's Colorado Service Center in Denver, Colorado. Calibration information is reported below for the four Landtec PIDs used to generate results presented in this periodic monitoring report.

- Unit 1503 was calibrated on December 4, 2006. The zero point was set for CH<sub>4</sub>, CO<sub>2</sub>, and O<sub>2</sub>.
   Calibration was performed so that CH<sub>4</sub> and CO<sub>2</sub> reached ±15% of a known concentration, and O<sub>2</sub> was set to read ambient air at 20.9%. Pump flow was confirmed to be 525 cc per min.
- Unit 279 was calibrated on January 26, 2007. The zero point was set for CH<sub>4</sub>, CO<sub>2</sub>, and O<sub>2</sub>.
   Calibration was performed so that CH<sub>4</sub> and CO<sub>2</sub> reached ±15% of a known concentration, and O<sub>2</sub> was set to read ambient air at 20.9%. Pump flow was confirmed to be 500 cc per min.
- Unit 916 was calibrated on March 2, 2007. The zero point was set for CH<sub>4</sub>, CO<sub>2</sub>, and O<sub>2</sub>.
   Calibration was performed so that CH<sub>4</sub> and CO2<sub>2</sub> reached ±15% of a known concentration, and O<sub>2</sub> was set to read ambient air at 20.9%. Pump flow was confirmed to be 550 cc per min.
- Unit 916 was calibrated on May 1, 2007. The zero point was set for CH<sub>4</sub>, CO<sub>2</sub>, and O<sub>2</sub>. Calibration was performed so that CH<sub>4</sub> and CO<sub>2</sub> reached ±15% of a known concentration, and O<sub>2</sub> was set to read ambient air at 20.9%. Pump flow was confirmed to be 525 cc per min.
- Unit 913 was calibrated on May 23, 2007. The zero point was set for CH<sub>4</sub>, CO<sub>2</sub>, and O<sub>2</sub>.
   Calibration was performed so that CH<sub>4</sub> and CO<sub>2</sub> reached ±15% of a known concentration, and O<sub>2</sub> was set to read ambient air at 20.9%. Pump flow was confirmed to be 350 cc per min.
- Unit 913 was calibrated on July 19, 2007. The zero point was set for CH<sub>4</sub>, CO<sub>2</sub>, and O<sub>2</sub>.
   Calibration was performed so that CH<sub>4</sub> and CO<sub>2</sub> reached ±15% of a known concentration, and O<sub>2</sub> was set to read ambient air at 20.9%. Pump flow was confirmed to be 375 cc per min.

#### A-6.0 REFERENCES

The following list includes all documents cited in this appendix. Parenthetical information following each reference provides the author(s), publication date, and ER ID number. This information is also included in text citations. ER ID numbers are assigned by the Environmental Programs Directorate's Records Processing Facility (RPF) and are used to locate the document at the RPF and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau; the U.S. Department of Energy—Los Alamos Site Office; the U.S. Environmental Protection Agency, Region 6; and the Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- EPA (U.S. Environmental Protection Agency), February 1994. "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," EPA-540/R-94/013, Office of Emergency and Remedial Response, Washington, D.C. (EPA 1994, 048639)
- EPA (U.S. Environmental Protection Agency), 1997. "Test Methods for Evaluating Solid Waste, Laboratory Manual, Physical/Chemical Methods," SW-846, 3rd ed., Update III, Office of Solid Waste and Emergency Response, Washington, D.C. (EPA 1997, 057589)
- EPA (U.S. Environmental Protection Agency), October 1999. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," EPA540/R-99/008, Office of Emergency and Remedial Response, Washington, D.C. (EPA 1999, 066649)
- LANL (Los Alamos National Laboratory), March 1996. "Quality Assurance Project Plan Requirements for Sampling and Analysis," Los Alamos National Laboratory document LA-UR-96-441, Los Alamos, New Mexico. (LANL 1996, 054609)
- LANL (Los Alamos National Laboratory), December 2000. "University of California, Los Alamos National Laboratory (LANL), I8980SOW0-8S, Statement of Work for Analytical Laboratories," Rev. 1, Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2000, 071233)

Table A-1.0-1
Data Analysis and Assessment Procedures

| Procedure         | Title                                                                                                                  | Effective Date |
|-------------------|------------------------------------------------------------------------------------------------------------------------|----------------|
| SOP-15.01, Rev. 1 | Routine Validation of Volatile Organic Data                                                                            | 4/20/2004      |
| SOP-15.07, Rev. 1 | Routine Validation of Chemical Separation Alpha Spectrometry, Gas Proportional Counting, and Liquid Scintillation Data | 4/20/2004      |

Table A-1.0-2
Definition of Data Qualifiers Used in Data Validation

| Data Qualifier | Definition                                                                                                                                                     |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U              | The analyte was analyzed for but not detected.                                                                                                                 |
| J              | The analyte was positively identified, and the associated numerical value is estimated to be more uncertain than would normally be expected for that analysis. |
| J+             | The analyte was positively identified, and the result is likely to be biased high.                                                                             |
| J-             | The analyte was positively identified, and the result is likely to be biased low.                                                                              |
| UJ             | The analyte was not positively identified in the sample, and the associated value is an estimate of the sample-specific detection or quantitation limit.       |
| R              | The data are rejected as a result of major problems with quality assurance/quality control (QA/QC) parameters.                                                 |

Table A-2.0-1
Analytical Method Used for Organic Chemical Analyses

| Analytical Method                          | Analytical<br>Description | Target Compound List                                          |
|--------------------------------------------|---------------------------|---------------------------------------------------------------|
| EPA Method TO-15—<br>Sampling and Analysis | VOCs in air               | See analytical services statement of work (LANL 2000, 071233) |
| EPA Method 906.0                           | Tritium analysis          | See analytical services statement of work (LANL 2000, 071233) |

Table A-3.0-1
Sample Records with Large Duplicate RPDs

| Location<br>ID | Depth<br>(ft) | Analyte Name                                | Units             | FD <sup>a</sup><br>Quantitation<br>Limit | FD<br>Result<br>(qualifier) | Sample<br>Quantitation<br>Limit | Sample<br>Result | RPD<br>(%) |
|----------------|---------------|---------------------------------------------|-------------------|------------------------------------------|-----------------------------|---------------------------------|------------------|------------|
| 54-24397       | 239           | Tritium                                     | pCi/L             | 300                                      | 4470                        | 160                             | 1750             | 43.7       |
| 54-24397       | 239           | Tritium                                     | pCi/L             | 2320                                     | 44200                       | 149                             | 2400             | 89.7       |
| 54-24386       | 195           | Trichloro-1,2,2-<br>trifluoroethane[1,1,2-] | μg/m <sup>3</sup> | 210                                      | 430                         | 95                              | 200              | 36.5       |
| 54-27436       | 185           | Dichloroethane[1,1-]                        | μg/m <sup>3</sup> | 11                                       | 280                         | 4.6                             | 130              | 36.6       |
| 54-27436       | 185           | Trichloroethene                             | μg/m <sup>3</sup> | 14                                       | 4000                        | 6.1                             | 1800             | 37.9       |
| 54-27436       | 185           | Chloroform                                  | μg/m <sup>3</sup> | 13                                       | 78                          | 5.6                             | 34               | 39.3       |
| 54-27436       | 185           | Methylene Chloride                          | μg/m <sup>3</sup> | 9.1                                      | 25                          | 4                               | 10               | 42.9       |
| 54-25105       | 485–700       | Acetone                                     | μg/m <sup>3</sup> | 8.3                                      | 59                          | 8.3                             | 170              | 48.5       |
| 54-27436       | 185           | Cyclohexane                                 | μg/m <sup>3</sup> | 9                                        | 9 (U) <sup>b</sup>          | 3.9                             | 27               | 50.0       |
| 54-24394       | 300           | Cyclohexane                                 | μg/m³             | 3.1                                      | 3.1 (U)                     | 3.1                             | 15               | 65.7       |

<sup>&</sup>lt;sup>a</sup> FD = Field duplicate.

Table A-3.0-2
Sample Records Potentially Affected by Field Blank Contamination

| Analyte Name         | Location ID | Sample ID     | Depth<br>(ft) | Sample<br>Value | Reporting<br>Units | Collection<br>Date |
|----------------------|-------------|---------------|---------------|-----------------|--------------------|--------------------|
| Dichloroethene[1,1-] | 54-02033    | MD54-07-76262 | 100           | 11              | μg/m³              | 2/15/2007          |
| Tritium              | 54-24397    | MD54-07-5000  | 84            | 433617          | pCi/L              | 7/31/2007          |
| Tritium              | 54-24397    | MD54-07-5001  | 125           | 89900           | pCi/L              | 7/31/2007          |
| Tritium              | 54-24397    | MD54-07-5002  | 160           | 20000           | pCi/L              | 7/31/2007          |
| Tritium              | 54-24397    | MD54-07-5003  | 184           | 45700           | pCi/L              | 7/31/2007          |
| Tritium              | 54-24397    | MD54-07-5004  | 232.5         | 2400            | pCi/L              | 7/31/2007          |

<sup>&</sup>lt;sup>b</sup> See Table A-1.0-2 for definitions of data qualifiers.

# Table A-4.0-1 B&K Target Analytes and Potential Interfering Analytes

| Target   | Potential Interfering Analyte |  |
|----------|-------------------------------|--|
| PCE      | Styrene                       |  |
| PCE      | Freon 113                     |  |
| PCE      | Freon 12                      |  |
| PCE      | 1,1-Dichloroethene            |  |
| PCE      | Ethylene oxide                |  |
| PCE      | Ethanol                       |  |
| PCE      | Dipropylnitrosamine           |  |
| PCE      | 1,1-Dimethylhydrazine         |  |
| PCE      | 1,4-Diethylene dioxide        |  |
| PCE      | Cyclohexene                   |  |
| PCE      | tert-Butyl alcohol            |  |
| PCE      | m-Vinyltoluene                |  |
| PCE      | Vinyl chloride                |  |
| PCE      | Tetrahydrofurane              |  |
| PCE      | Silicium tetrafluoride        |  |
| PCE      | Nitromethane                  |  |
| PCE      | Nitrogen trifluoride          |  |
| PCE      | α-Methylstyrene               |  |
| PCE      | Monomethyl hydrazine          |  |
| PCE      | Methyl iodide                 |  |
| PCE      | n-Hexane                      |  |
| PCE      | Acetic anhydride              |  |
| PCE      | 1,3-Butadiene                 |  |
| Freon 11 | Freon 114                     |  |
| Freon 11 | Freon 21                      |  |
| Freon 11 | Carbonyl sulphide             |  |
| Freon 11 | Methyl acetate                |  |
| Freon 11 | Chloropicrine                 |  |
| Freon 11 | Cyclohexane                   |  |
| Freon 11 | Dimethylnitrosamine           |  |
| Freon 11 | Epichlorohydrine              |  |
| Freon 11 | Ethane                        |  |
| Freon 11 | Ethylene oxide                |  |
| Freon 11 | Ethyl formate                 |  |
| Freon 11 | 2-Nitropropane                |  |
| Freon 11 | Phosgene                      |  |

Table A-4.0-1 (continued)

| Target   | Potential Interfering Analyte |  |  |  |
|----------|-------------------------------|--|--|--|
| Freon 11 | Vinyl acetate                 |  |  |  |
| TCA      | Fluorobenzene                 |  |  |  |
| TCA      | Ethyl benzene                 |  |  |  |
| TCA      | Dimethyl formamide            |  |  |  |
| TCA      | Dichloromethane               |  |  |  |
| TCA      | 1,2-Dichloroethane            |  |  |  |
| TCA      | o-Dichlorobenzene             |  |  |  |
| TCA      | Dibutyl phthalate             |  |  |  |
| TCA      | Chloromethane                 |  |  |  |
| TCA      | m-Xylene                      |  |  |  |
| TCA      | 1,1,2-Trichloroethane         |  |  |  |
| TCA      | o-Toluidine                   |  |  |  |
| TCA      | Toluene                       |  |  |  |
| TCA      | Phenol                        |  |  |  |
| TCA      | Chlorobenzene                 |  |  |  |
| TCA      | Carbon dioxide                |  |  |  |
| TCA      | Boron trifluoride             |  |  |  |
| TCA      | Aniline                       |  |  |  |
| TCA      | Acetophenone                  |  |  |  |
| TCA      | Hydrogen cyanide              |  |  |  |
| TCA      | n-Heptane                     |  |  |  |
| TCE      | Arsine                        |  |  |  |
| TCE      | Butanone                      |  |  |  |
| TCE      | Freon 152                     |  |  |  |
| TCE      | Diethyl ketone                |  |  |  |
| TCE      | Dinitrogendifluoride          |  |  |  |
| TCE      | 2-Pentanone                   |  |  |  |
| TCE      | 2-Propanol                    |  |  |  |
| TCE      | Sulfur hexafluoride           |  |  |  |
| TCE      | Vinyl chloride                |  |  |  |

## Appendix B

Data Packages and Chain-of-Custody Forms (on CD included with this document)

### **Appendix C**

Moisture Monitoring Investigation at Technical Area 54, Area G

#### C-1.0 INTRODUCTION

This report presents the data from the moisture monitoring event conducted during the first half of fiscal year (FY) 2007 at Area G, located within Technical Area (TA) 54 at the Los Alamos National Laboratory (the Laboratory). Previous moisture monitoring events are also discussed for comparison purposes.

Moisture monitoring has been performed at Area G since the 1980s to monitor subsurface moisture in and around operational and nonoperational waste disposal units, including subsurface moisture beneath permeable and impermeable surfaces, and to monitor the movement of moisture in both disturbed near-surface soils/crushed tuff and deeper undisturbed rock. Figure C-1.0-1 presents all of the available moisture monitoring locations at Area G.

During FY2007, a neutron access port construction assessment, neutron logging, and geodetic survey were performed in several solid waste disposal pits of TA-54 at Area G. The investigation was performed on preexisting neutron ports emplaced in the pits at the time of waste fill or abandonment. Neutron ports investigated were located in Pits 30, 31, 37, and 39 as well as two horizontal ports beneath the asphalt pad at Dome 375 (Figure C-1.0-1). Each port was initially camera logged to ensure a clear passage throughout the extent of the port. Each port was then neutron logged to obtain a neutron count for the surrounding waste/fill. The neutron counts were used to calculate the volumetric moisture content for the surrounding waste/fill. In total, 28 ports were camera logged. Twenty-four ports were determined to be clear, while 18 ports were neutron logged. Neutron logging was performed with a CPN 503DR Hydroprobe moisture gauge.

#### C-2.0 PURPOSE

Soil moisture is the primary constituent monitored within the vadose (unsaturated) zone and is the primary parameter used for monitoring the performance of disposal units within Area G. Soil moisture data are ultimately incorporated into the associated transport modeling for the Area G Performance Assessment (Hollis et al. 1997, 063131). Vertical probe access tubes are installed in many Area G disposal pits to monitor moisture behavior within waste or fill. In the newer disposal pits, access tubes are installed horizontally at the base of the pit before disposal operations are conducted, allowing for moisture logging below the waste.

There are two objectives for continued monitoring of soil moisture content at Area G: (1) to quantify the moisture content within the different geological units of the vadose zone to incorporate these data into the performance assessment transport modeling, and (2) to identify any trends in moisture content over time. Trend analysis is used to identify the presence or absence of increasing or decreasing moisture content trends that could be the result of natural processes or impacts from disposal operations. Significant trends in moisture behavior may warrant additional modeling and possibly sampling as well as possible best management practices such as water diversion.

#### C-3.0 SITE CONDITIONS

Area G is a 65-acre fenced area consisting of asphalt-paved roads and storage areas, graded roads, buildings, utilities, storm-water drainages, shaft caps, and vegetated pit and trench covers. Material Disposal Area (MDA) G is located within Area G. Historically, MDA G was used for the disposal of low-level and transuranic (TRU) radioactive waste and certain radioactively contaminated infectious waste, asbestos-contaminated material, and polychlorinated biphenyls (PCBs) and for temporary placement of

TRU waste. TRU Waste disposal no longer occurs at MDA G. However, disposal of low-level radioactive waste continues at Area G. The pits, trenches, and shafts in MDA G are constructed in unit 2 (caprock) and unit 1 (subsurface) of the Tshirege Member of the Bandelier Tuff, a consolidated tuff unit. The regional aquifer is estimated to be at an average depth of approximately 900 ft below ground surface (bgs) at Area G, based on data from wells at the Laboratory and the predictions of the hydrogeologic conceptual model for the Pajarito Plateau (LANL 1998, 059599).

The source of moisture in the vadose zone beneath TA-54 is infiltrating precipitation, but most of the precipitation is removed as runoff or evaporation and transpiration in the upper region of the vadose zone (Hollis et al. 1997, 063131). Subsurface movement of the remaining water is predominantly vertical and is influenced by the physical properties and conditions of the vadose zone.

Two geologic properties of the Bandelier Tuff that influence fluid flow in the vadose zone are the degree of welding and devitrification, both of which were determined by the presence of residual gases and high temperatures when the rock was deposited. Because different tuff units were deposited at different temperatures and because individual units were laid out in variable thicknesses over different landscapes, cooling was nonuniform. Consequently, welding varies spatially both between and within separate depositional layers. Welded tuffs tend to be more fractured than nonwelded tuffs. A more detailed description of the stratigraphy below MDA G is presented in the investigation report for MDA G (LANL 2005, 090513).

Several competing effects determine moisture content and fluid flux in welded, devitrified tuff. While water moves slowly through the unsaturated tuff matrix, it can move relatively rapidly through fractures if nearly saturated conditions exist (Hollis et al. 1997, 063131). Generally, field moisture content in the upper 100 ft of tuff at MDA G is less than 2% by volume in areas undisturbed by disposal pits, trenches, and shafts and, most notably, the asphalt cover. Around some disturbed settings caused by disposal activities, near-surface moisture content increases up to 25% because of the absence of plant evapotranspiration and suppression of atmospheric venting by installation of large asphalt surfaces (International Technology Corporation 1987, 008998). Even at these saturation levels, most of the deeper fractures beneath MDA G are completely dry, and the water can be found only in the tuff matrix. Only in situations when substantial infiltration occurs from the ground surface do the fractures become wet and conduct water. However, modeling studies at MDA G predict that when fractures disappear at contacts between stratigraphic subunits such as the Cerro Toledo interval, fracture moisture is absorbed into the tuff matrix if fracture fills are encountered and when the water source stops (Hollis et al. 1997, 063131).

In summary, the pore-water flow and contaminant transport in the vadose zone is difficult to characterize. The flow rates and transport velocities/directions are variable in both time and space. Between the ground surface and regional aquifer, the flow is predominantly vertical. Nevertheless, the pore-water transport velocities through the vadose zone in the region of TA-54 are slow, probably less than 1 cm/yr (Birdsell et al. 1995, 070012; Birdsell et al. 1999, 069792).

#### C-4.0 PREVIOUS MOISTURE MONITORING

Since 1987, moisture-monitoring assessments have been performed at MDA G. Moisture data have been collected from 55 boreholes and from within 4 waste disposal pits. In situ volumetric moisture monitoring was conducted between 1996 and 2001 and in 2005. Core samples for gravimetric moisture content were collected in 1987, 1995, and 2005. The types of moisture data collected at MDA G include the following.

#### Volumetric moisture content:

- determines volume of liquid water per volume of soil,
- is determined from in-situ field monitoring using gamma-ray attenuation, neutron-ray attenuation, or time-domain reflectometry (TDR), and
- provides for repeated measurements and trend evaluation

#### Gravimetric moisture content:

- determines mass of water per mass of dry soil,
- is determined by laboratory measurements (weighing) and by estimating mass and volume, and
- provides analytical laboratory benchmark for validation and calibration of field-screening methods.

#### C-4.1 Hydrologic Assessment

In 1986, a hydrologic assessment was performed using five boreholes at TA-54, two located at MDA G and three at MDA L. Volumetric moisture content ranged from 2% to 4% with isolated intervals ranging from 10% to 28%. Gravimetric analysis results from 20 core samples collected from the subsurface tuff reported moisture contents ranging between 2% and 10% and occasionally up to 28% (Kearl et al. 1986, 008414).

#### C-4.2 Volumetric Moisture Monitoring

From June 1996 to August 2001, 22 individual boreholes and neutron access ports located within four pits were neutron-logged monthly at 1-ft intervals providing 5 yr of volumetric moisture-content data for MDA G. Moisture levels observed ranged from 0.13% to 25% for all pits and boreholes. Table C-4.2-1 presents the minimum, maximum, and mean volumetric moisture results for each waste disposal pit collected during the 5 yr of monitoring.

A challenge associated with this previously collected neutron logging data is that the surface elevation was not recorded for each monitoring event, and total depths measured sometimes vary per monitoring event. As waste disposal operations progressed, lengths were added to neutron access pipes and occasionally pipe lengths were decreased. Further, pipes could be damaged or filled with soil or waste, causing a change in the total available length for neutron logging. For future neutron logging events, surveying and recording the base-surface elevation before each monitoring event within the pits would ensure that depth measurements can be compared to future data sets.

#### C-4.3 Performance Assessment Moisture Studies

As reported by Newman et al. (2005, 099163), two studies were undertaken in 1999 and 2002 as part of the Laboratory Performance Assessment Maintenance Program. One objective of the 1999 study was to examine the hydrologic effects of asphalt paving at MDA G. Since the initial performance assessment was completed, substantial areas of the mesa top have been paved with asphalt. To determine how the paving affects near-surface hydrologic behavior, an effort was made to compare gravimetric moisture content data from core samples taken in the unpaved areas to core samples from three paved locations. Four additional cores from paved areas were collected in 2002 to supplement the 1999 data.

Volumetric moisture content profiles for pit cover boreholes collected in 1999 ranged from approximately 2% to 14%. Profiles from Pits 17 and 24 were consistently below 10%, with Pit 2 having average values in

the low teens (Newman et al. 2005, 099163). Volumetric moisture content profiles for unexcavated areas adjacent to pits collected in 1999 ranged from 2% to 24%. Volumetric moisture content data collected from locations below asphalt indicates a lower range in moisture values compared with the unpaved locations. Because plants do not grow through the asphalt, transpiration in paved areas is minimal, except perhaps along the margins of the pads. Additionally, precipitation events will not have the same effects on subsurface moisture levels of paved areas when compared with unpaved areas because the asphalt appears to prevent the infiltration of moisture into the soil as well as the evaporation of moisture from the soil. The substantially lower level of evaporation and transpiration at the paved locations is an important hydrological difference that appears to be reflected in the water content data (Newman 1996, 059118).

#### C-4.4 2005 Investigation Work Plan Activities

In 2005, 39 boreholes were drilled within MDA G as part of the 2005 investigation work plan activities for MDA G (LANL 2005, 090513). All boreholes were neutron logged for volumetric moisture content data. Sixty-two core samples were collected for laboratory analyses of gravimetric moisture content and matric potential at approximately 5-ft intervals to a depth of 595 ft from borehole 54-25423. Three moisture and matric potential samples were collected at 5-ft intervals from depths of 595.5 ft to 699.5 ft in borehole 54-25105. Gravimetric moisture content results for each borehole ranged from 0.2% to 10.8% in the tuff units and 27.2% in the Guaje Pumice Bed. One sample, collected from the basalt at a depth of 545.0 ft to 545.3 ft in borehole 54-25423, had a moisture content of 11.3%. Matric potential measurements ranged from -0.6 bars to -335.0 bars, indicating that none of the samples submitted were saturated (negative matric potential readings are indicative of unsaturated conditions).

#### C-4.5 Summary of Previous Moisture Monitoring

Previous moisture data collected from Area G indicate that moisture content around and within disposal units behaves as expected for a semiarid climate with the seasonal precipitation being removed from the shallow subsurface depths by evapotranspiration. Generally, on the tops of mesas at Los Alamos, moisture from rainfall and snowmelt infiltrates a few meters into undisturbed tuff. Moisture content of undisturbed tuff deeper than a few meters is largely unaffected by surface moisture; however, seasonal variability of moisture content has been observed at depths of 100 ft. Soil moisture content is affected by asphalt and other impermeable surfaces, which reduce evapotranspiration and significantly increase moisture content in the vadose zone. A preliminary review of the volumetric moisture data collected from pits in MDA G indicate that moisture levels have remained consistent during the monitoring periods, and may possibly be decreasing over time. For example, neutron logging performed at Pit 37 C from November 1996 to June 2001 showed an overall decrease in maximum volumetric moisture levels as seen in Table C-4.2-1. Because of the data collection issues described in section 4.2, a detailed review of the historical volumetric moisture data provides limited information but does indicate a general stability of soil moisture below Area G. A summary of average moisture measurements collected during previous moisture monitoring events is summarized in Table C-4.5-1.

#### C-5.0 CAMERA LOGGING

Camera logging of neutron access ports was conducted to assess their condition and to determine whether there was clear access throughout the extent of each port. Neutron ports investigated were located in Pits 30, 31, 37, and 39 (Figure C-1.0-1). In total, 28 access ports were camera logged in FY2007. Twenty-four ports were determined to be clear. Table C-5.0-1 summarizes the locations of the camera logging activities, and status of each port.

#### C-6.0 NEUTRON LOGGING

A total of 18 neutron access ports were logged from December 14, 2006, to January 10, 2007, according to Standard Operating Procedure 07.05, Subsurface Moisture Measurements Using a Neutron Probe. Neutron logging was performed with a site-dedicated CPN 503DR Hydroprobe moisture gauge. The neutron counts from each of the neutron access locations were recorded into a spreadsheet, and the corresponding volumetric moisture content was calculated. Neutron probe calibration is dependent on borehole construction and is specific to the media being measured. Standard calculations for Bandelier Tuff used in this report were drawn from a report entitled "Subsurface Measurements Using Neutron Probes" (LANL 1999, 090803). Neutron logging was not performed at Pit 15 because waste disposal operations continue at the site. Borehole 54-22116 was also not neutron logged. Plots of volumetric moisture content for each neutron access location are shown in Figures C-6.0-1 through C-6.0-5.

#### C-7.0 NEUTRON LOGGING RESULTS

Neutron logging was performed beneath the Dome 375 asphalt pad on December 18 and 19, 2006, and in Pits 30, 31, 37, and 39 from December 14, 2006, through January 10, 2007.

#### C-7.1 Dome 375 Asphalt Pad

Two locations at the Dome 375 asphalt pad, Asphalt Pad West (W) and Asphalt Pad Central (C), were neutron logged along trenches that allow for horizontal measurement beneath the pad surface. Beginning at the south end of each trench, Asphalt Pad W extends 144 ft to the north, while Asphalt Pad C extends 138 ft to the north (Figure C-1.0-1). Moisture levels beneath each pad location were generally elevated (greater than 6%) from approximately 20 ft to 40 ft from the south. The highest moisture contents for Asphalt Pad W (9% and 9.1%) were observed at 36 ft and 126 ft, respectively, from the south. Moisture levels for Asphalt Pad W were generally observed to be between 5% and 7% beneath the majority of the pad.

Asphalt Pad C demonstrated similar moisture conditions with a peak moisture content of 10.3% at 19 ft from the south. Moisture levels were generally observed to be above 8% through 44 ft, where they then dropped to 6%. The last 3 ft of the trench had an increase in moisture content to above 7%.

The minimum, maximum and average moisture values for each asphalt pad neutron access location are summarized in Table C-7.1-1. Figure C-7.1-1 presents the minimum and maximum concentrations observed at location Asphalt Pad C over five monitoring events between March 1999 and September 2000. Figure C-7.1-2 presents the minimum and maximum concentrations observed at location Asphalt Pad W over five monitoring events between April 1999 and September 2000. Figure C-6.0-1 presents the moisture measurements at both pad locations for the FY2007 monitoring event.

In general, moisture values recorded for both pad locations during the 1999 and 2000 monitoring events demonstrated slightly higher values than the 2006 monitoring event. The average moisture content for the pad locations during 1999 and 2000 was 7.4% (Table C-4.2-1), while the average moisture content for Asphalt Pad C and Asphalt Pad W during 2006 was 6.8% and 6.9%, respectively (Table C-7.1-1).

#### C-7.2 Waste Disposal Pits

Sixteen neutron access ports were logged within waste Pits 30, 31, 37, and 39. The average volumetric soil-moisture values observed for all disposal pits ranged from 4.5% to 9.9% (see Table C-5.0-1), which

were significantly less than half the value considered necessary for saturation of tuff soils. The minimum, maximum, and average moisture values for each pit location are summarized in Table C-7.1-1.

Elevated moisture values of 25% and 24% were observed at the bottom of the logging ports for Pit 37 W2 and Pit 39 C2, respectively (Figures C-6.0-4 and C-6.0-5). Both values were likely the result of condensate build-up at the bottom of the ports.

#### Pit 30

Five neutron access ports were monitored in Pit 30. Four of the access ports are installed at depths ranging from 20 ft to 25 ft, while the fifth port is installed at a depth of 65 ft. Moisture values for Pit 30 were the most varied of the four pits (Figure C-6.0-2 and Table C-7.1-1). Moisture levels in the shallower neutron access ports (ports 1–4) were generally more elevated than the deeper access port ranging from 1.9% to 14.1% with an average value of approximately 7%. The 65-ft port had moisture levels ranging from 2.8% (48 ft) to 10.3% (2 ft) with an average value of 4.5%.

#### **Pit 31**

Two locations were neutron logged at Pit 31. Moisture levels ranged from 0.7% (4 ft) to 10.7% (5 ft) and averaged approximately 7% (Table C-7.1-1). Moisture levels for Pit 39 were greater in the near surface at depths between 5 ft and 17 ft. Figure C-6.0-3 presents a summary of all moisture measurements collected for Pit 31 in FY2007.

#### **Pit 37**

Six locations were neutron logged at Pit 37. Moisture levels ranged from 2.5% to 10.2%, with an average value of approximately 6% (Table C-7.1-1). Pit 37 W2 had an elevated moisture reading of 25.4% at 63 ft, probably the result of condensate build-up at the bottom of the access port. Figure C-6.0-4presents a summary of all moisture measurements collected for Pit 37 in FY2007.

#### **Pit 39**

Three locations were neutron logged at Pit 39. Moisture levels ranged from 1% to 9.3% with an average value of approximately 8%. The deepest measurement from Pit 39 C2 at a depth of 53 ft had an elevated moisture reading of 24%, probably the result of condensate build-up at the bottom of the access port. Figure C-6.0-5 presents a summary of all moisture measurements collected for Pit 39 in FY2007.

#### C-8.0 CONCLUSIONS

Moisture data collected from Area G during previous (March 1999 to September 2000) and current (December 2006 and January 2007) monitoring events indicate that soil moisture content appears to be stable in soil/tuff and fill material within and adjacent to several Area G waste disposal units. The average moisture content in these materials has generally ranged from 6% to 8%, well below saturation levels. Within waste disposal Pits 30, 31, 37, and 39, moisture content was only slightly variable with increasing depth, indicating that the moisture content of undisturbed tuff deeper than a few meters is generally unaffected by surface moisture. As observed in the boreholes drilled during 2005, elevated moisture levels are sometimes seen at the interfaces of geologic units (LANL 2005, 090513).

A comparison of historical moisture values beneath the Dome 375 asphalt pad with values measured in December 2006 demonstrate a similar trend in that moisture content appears elevated in the 20- to 40-ft interval (as measured from the south-end of each monitoring location). The reasons for the increase in soil moisture at these horizontal distances from the pad margins are unclear at this time. Compared to other locations at the Laboratory where saturated soil moisture conditions developed beneath asphalt, the soil moisture beneath the asphalt at Area G is relatively dry (Newman et al. 2005, 099163). If the asphalt were to become cracked or perforated, the potential for increasing soil moisture conditions could develop.

Moisture data collected during the FY2007 monitoring event are suitable for the Area G performance assessment transport modeling. However, additional moisture monitoring data are needed to identify and evaluate soil moisture trends within and adjacent to Area G waste disposal units that are not reflected in the limited data set presented in this report.

#### C-9.0 REFERENCES

The following list includes all documents cited in this appendix. Parenthetical information following each reference provides the author(s), publication date, and ER ID number. This information is also included in text citations. ER ID numbers are assigned by the Environmental Programs Directorate's Records Processing Facility (RPF) and are used to locate the document at the RPF and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau; the U.S. Department of Energy—Los Alamos Site Office; the U.S. Environmental Protection Agency, Region 6; and the Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- Birdsell, K.H., K.M. Bower, A.V. Wolfsberg, W.E. Soll, T.A. Cherry, and T.W. Orr, July 1999. "Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones Beneath Area G, Los Alamos National Laboratory," Los Alamos National Laboratory report LA-13299-MS, Los Alamos, New Mexico. (Birdsell et al. 1999, 069792)
- Birdsell, K.H., W.E. Soll, N.D. Rosenberg, and B.A. Collins, September 1995. "Numerical Modeling of Unsaturated Groundwater Flow and Radionuclide Transport at MDA-G," Los Alamos National Laboratory document LA-UR-95-2735, Los Alamos, New Mexico. (Birdsell et al. 1995, 070012)
- Hollis, D., E. Vold, R. Shuman, K.H. Birdsell, K. Bower, W.R. Hansen, D. Krier, P.A. Longmire, B. Newman, D.B. Rogers, and E.P. Springer, March 27, 1997. "Performance Assessment and Composite Analysis for Los Alamos National Laboratory Material Disposal Area G," Rev. 2.1, Los Alamos National Laboratory document LA-UR-97-85, Los Alamos, New Mexico. (Hollis et al. 1997, 063131)
- International Technology Corporation, March 1987. "Hydrogeologic Assessment of Technical Area 54, Areas G and L, Los Alamos National Laboratory," Los Alamos, New Mexico. (International Technology Corporation 1987, 008998)
- Kearl, P.M., J.J. Dexter, and M. Kautsky, March 1986. "Vadose Zone Characterization of Technical Area 54, Waste Disposal Areas G and L, Los Alamos National Laboratory, New Mexico, Report 3: Preliminary Assessment of the Hydrogeologic System," Report No. GJ-44, Bendix Field Engineering Corporation, Grand Junction, Colorado. (Kearl et al. 1986, 008414)

- LANL (Los Alamos National Laboratory), May 22, 1998. "Hydrogeologic Workplan," Los Alamos National Laboratory document LA-UR-01-6511, Los Alamos, New Mexico. (LANL 1998, 059599)
- LANL (Los Alamos National Laboratory), November 1999. "Subsurface Moisture Measurements Using Neutron Probes," Facilities and Waste Operations—Waste Facility Management document DOP-FMU64-023, Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 1999, 090803)
- LANL (Los Alamos National Laboratory), September 2005. "Investigation Report for Material Disposal Area G, Consolidated Unit 54-013(b)-99, at Technical Area 54," Los Alamos National Laboratory document LA-UR-05-6398, Los Alamos, New Mexico. (LANL 2005, 090513)
- Newman, B., M. Grad, D. Counce, E. Kluk, L. Martinez, D. Newell, and J. Salazar, September 2005. "Spatial Variation in Near-Surface Hydrologic Behavior at Los Alamos National Laboratory Technical Area 54, Material Disposal Area G," Los Alamos National Laboratory, Los Alamos, New Mexico. (Newman et al. 2005, 099163)
- Newman, B.D., December 9, 1996. "Vadose Zone Water Movement at Area G, Los Alamos National Laboratory, TA-54: Interpretations Based on Chloride and Stable Isotope Profiles," Los Alamos National Laboratory document LA-UR-96-4682, Environmental Science Group, EES-15, Los Alamos, New Mexico. (Newman 1996, 059118)

December 2007



Figure C-1.0-1 Moisture monitoring locations at Area G

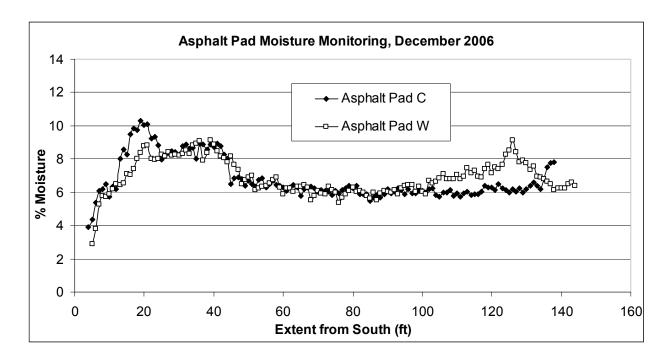



Figure C-6.0-1 Asphalt pad moisture measurements for FY2007

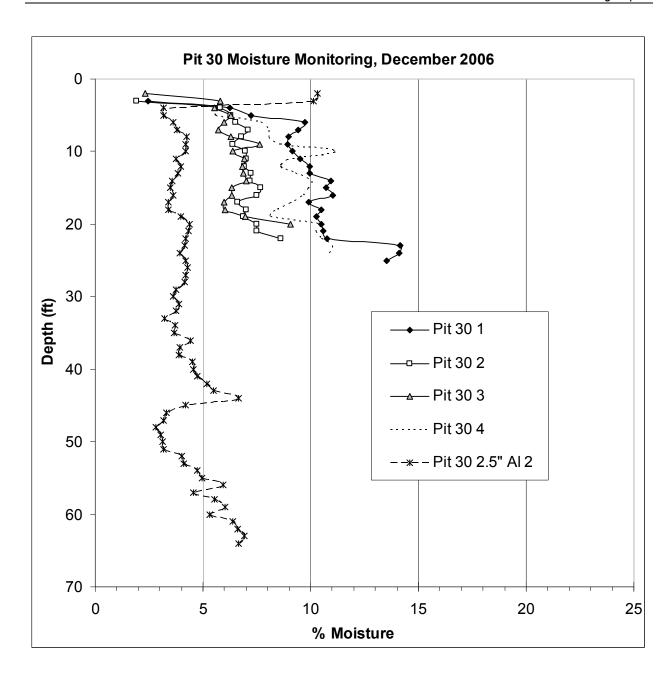



Figure C-6.0-2 Moisture measurements at Pit 30 for FY2007

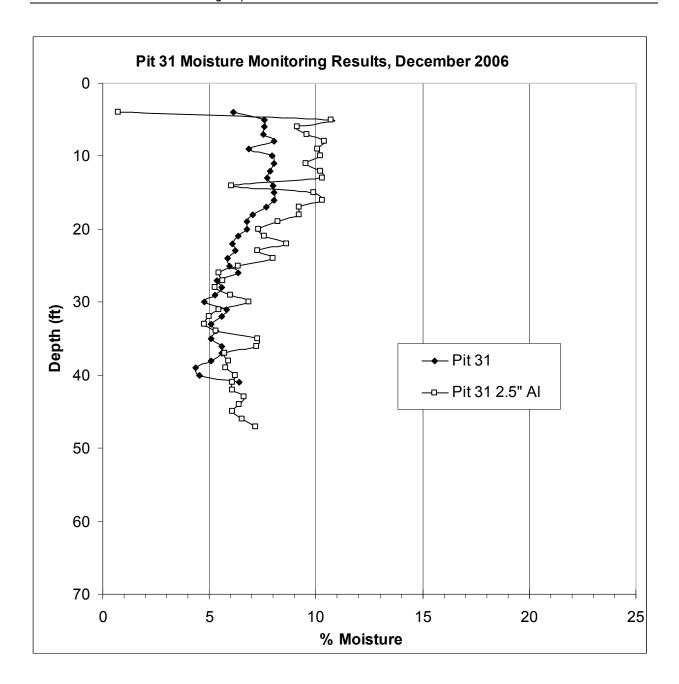
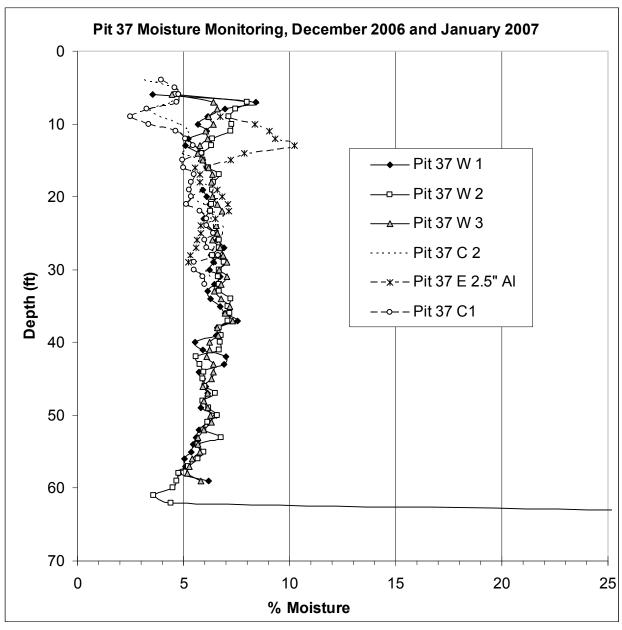
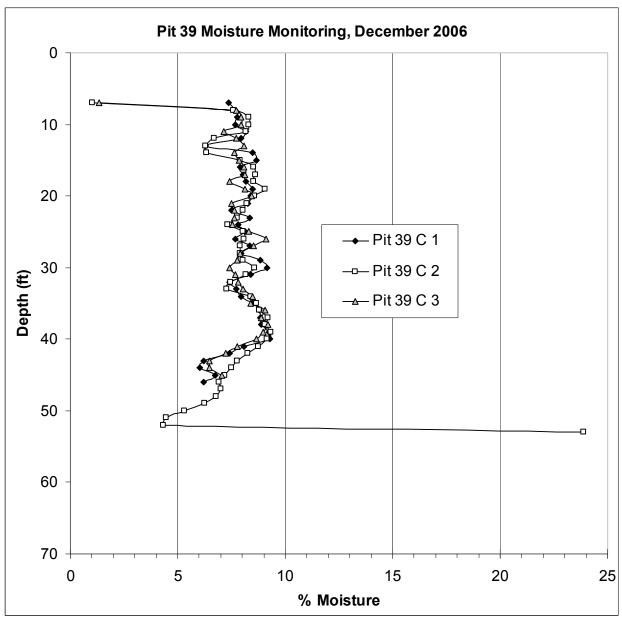





Figure C-6.0-3 Moisture measurements at Pit 31 for FY2007



Note: A moisture value of 25.4% was recorded at the greatest depth (63 ft) in Pit 37 W 2, likely due to the presence of condensate at the bottom of the monitoring port.

Figure C-6.0-4 Moisture measurements at Pit 37 for FY2007



Note: A moisture value of 23.9% was recorded at the greatest depth (53 ft) in Pit 39 C 2, probably from the presence of condensate at the bottom of the monitoring port.

Figure C-6.0-5 Moisture measurements at Pit 39 for FY2007

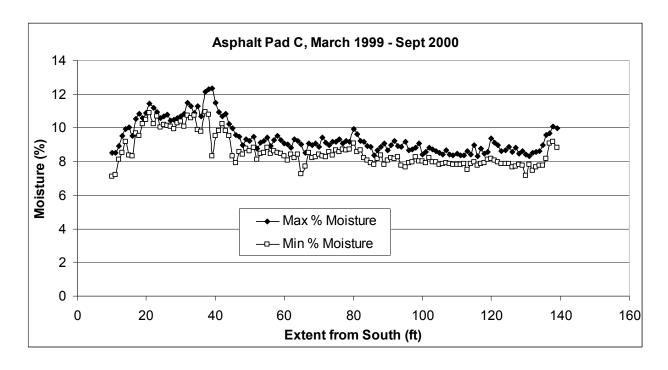



Figure C-7.1-1 Minimum and maximum moisture measurements at Asphalt Pad C 1999–2000

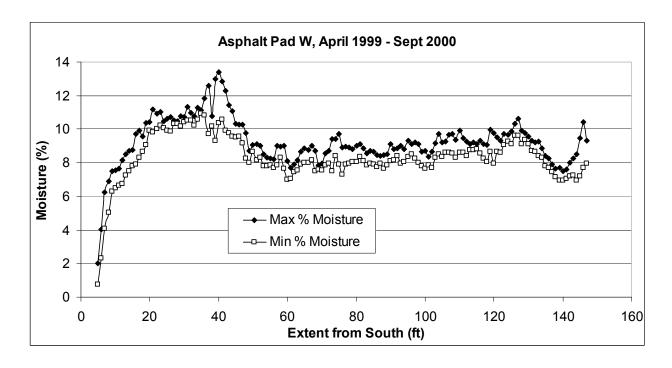



Figure C-7.1-2 Minimum and maximum moisture measurements at Asphalt Pad W 1999–2000

Table C-4.2-1
Minimum, Maximum, and Mean Results for Previously Collected Pit Moisture

| Location | Date       | Minimum<br>Volumetric Soil<br>Moisture<br>(%) | Maximum<br>Volumetric<br>Soil Moisture<br>(%) | Mean<br>Volumetric Soil<br>Moisture<br>(%) | Depth of<br>Minimum<br>Result<br>(ft) | Depth of<br>Maximum<br>Result<br>(ft) | Total Depth<br>Measured<br>During Event<br>(ft) |
|----------|------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|
| Pit 15 S | 4/18/1999  | 4.65                                          | 11.7                                          | 7.12                                       | 1                                     | 12                                    | 12                                              |
| Pit 15 S | 6/4/1999   | 6.81                                          | 11.74                                         | 8.38                                       | 7                                     | 12                                    | 12                                              |
| Pit 15 C | 6/4/1999   | 5.51                                          | 7.97                                          | 6.72                                       | 12                                    | 10                                    | 12                                              |
| Pit 15 C | 8/18/1999  | 6.93                                          | 11.28                                         | 8.44                                       | 8                                     | 12                                    | 12                                              |
| Pit 30   | 6/15/1999  | 1.48                                          | 14.75                                         | 3.18                                       | 34                                    | 2                                     | 68                                              |
| Pit 37 C | 11/7/1996  | 5.33                                          | 12.82                                         | 9.13                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 11/19/1996 | 5.34                                          | 12.82                                         | 9.26                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 12/23/1996 | 5.34                                          | 12.94                                         | 9.26                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 1/24/1997  | 5.45                                          | 12.78                                         | 9.16                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 2/21/1997  | 5.41                                          | 12.75                                         | 9.12                                       | 46                                    | 26                                    | 47                                              |
| Pit 37 C | 3/20/1997  | 5.31                                          | 12.58                                         | 9.23                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 5/5/1997   | 5.56                                          | 13.18                                         | 9.22                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 7/2/1997   | 5.57                                          | 13.61                                         | 9.33                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 8/5/1997   | 5.44                                          | 13.3                                          | 9.28                                       | 47                                    | 8                                     | 47                                              |
| Pit 37 C | 9/12/1997  | 0.45                                          | 13.6                                          | 9.19                                       | 1                                     | 8                                     | 12                                              |
| Pit 37 C | 10/17/1997 | 0.13                                          | 13.55                                         | 9.20                                       | 1                                     | 8                                     | 29                                              |
| Pit 37 C | 11/20/1997 | 0.61                                          | 13.09                                         | 9.13                                       | 1                                     | 8                                     | 29                                              |
| Pit 37 C | 12/23/1997 | 6.76                                          | 9.09                                          | 7.93                                       | 12                                    | 24                                    | 29                                              |
| Pit 37 C | 2/26/1998  | 4.19                                          | 9.23                                          | 7.88                                       | 1                                     | 25                                    | 29                                              |
| Pit 37 C | 4/23/1998  | 4.33                                          | 9.23                                          | 7.88                                       | 1                                     | 25                                    | 29                                              |
| Pit 37 C | 6/23/1998  | 2.59                                          | 9.28                                          | 7.84                                       | 1                                     | 24                                    | 29                                              |
| Pit 37 C | 9/3/1998   | 3.51                                          | 9.48                                          | 7.75                                       | 1                                     | 9                                     | 29                                              |
| Pit 37 C | 11/23/1998 | 6.95                                          | 9.17                                          | 8.04                                       | 11                                    | 24                                    | 29                                              |
| Pit 37 C | 2/1/1999   | 5.87                                          | 9.4                                           | 8.05                                       | 1                                     | 29                                    | 29                                              |
| Pit 37 C | 5/21/1999  | 5.92                                          | 9.43                                          | 8.05                                       | 1                                     | 8                                     | 29                                              |
| Pit 37 C | 8/19/1999  | 6.7                                           | 9.6                                           | 8.19                                       | 11                                    | 28                                    | 28                                              |
| Pit 37 C | 1/28/2000  | 5.26                                          | 9.18                                          | 7.79                                       | 1                                     | 22                                    | 27                                              |
| Pit 37 C | 4/18/2000  | 5.54                                          | 8.78                                          | 7.63                                       | 1                                     | 23                                    | 28                                              |
| Pit 37 C | 7/18/2000  | 1.92                                          | 8.95                                          | 6.96                                       | 1                                     | 29                                    | 29                                              |
| Pit 37 C | 9/27/2000  | 2.71                                          | 8.72                                          | 6.71                                       | 2                                     | 23                                    | 28                                              |
| Pit 37 C | 12/19/2000 | 3.23                                          | 8.73                                          | 7.16                                       | 5                                     | 23                                    | 29                                              |
| Pit 37 C | 5/15/2001  | 5.23                                          | 8.42                                          | 7.30                                       | 6                                     | 27                                    | 29                                              |
| Pit 37 C | 6/21/2001  | 3.24                                          | 8.64                                          | 7.28                                       | 2                                     | 23                                    | 29                                              |
| Pit 37 C | 8/21/2001  | 1.92                                          | 8.76                                          | 6.78                                       | 2                                     | 29                                    | 29                                              |
| Pit 37 W | 1/24/1997  | 7.98                                          | 11.63                                         | 9.97                                       | 33                                    | 27                                    | 39                                              |
| Pit 37 W | 2/21/1997  | 8.16                                          | 16.41                                         | 10.77                                      | 33                                    | 9                                     | 39                                              |

Table C-4.2-1 (continued)

| Location | Date       | Minimum<br>Volumetric Soil<br>Moisture<br>(%) | Maximum<br>Volumetric<br>Soil Moisture<br>(%) | Mean<br>Volumetric Soil<br>Moisture<br>(%) | Depth of<br>Minimum<br>Result<br>(ft) | Depth of<br>Maximum<br>Result<br>(ft) | Total Depth<br>Measured<br>During Event<br>(ft) |
|----------|------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|
| Pit 37 W | 3/20/1997  | 8.29                                          | 14.81                                         | 11.44                                      | 33                                    | 9                                     | 39                                              |
| Pit 37 W | 5/5/1997   | 8.62                                          | 13.82                                         | 11.37                                      | 33                                    | 15                                    | 39                                              |
| Pit 37 W | 7/2/1997   | 4.82                                          | 13.74                                         | 10.86                                      | 4                                     | 15                                    | 39                                              |
| Pit 37 W | 8/1/1997   | 6.49                                          | 13.42                                         | 10.75                                      | 4                                     | 15                                    | 39                                              |
| Pit 37 W | 9/12/1997  | 2.68                                          | 13.5                                          | 10.74                                      | 1                                     | 16                                    | 35                                              |
| Pit 37 W | 10/17/1997 | 2.8                                           | 13.41                                         | 10.58                                      | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 11/20/1997 | 6.44                                          | 13.1                                          | 10.64                                      | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 12/22/1997 | 7.76                                          | 13.27                                         | 10.63                                      | 4                                     | 27                                    | 35                                              |
| Pit 37 W | 2/26/1998  | 7.16                                          | 13.17                                         | 10.50                                      | 4                                     | 27                                    | 35                                              |
| Pit 37 W | 4/23/1998  | 3.24                                          | 13.03                                         | 10.31                                      | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 6/23/1998  | 0.69                                          | 13.51                                         | 10.10                                      | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 9/3/1998   | 1.43                                          | 12.49                                         | 9.41                                       | 1                                     | 26                                    | 35                                              |
| Pit 37 W | 11/23/1998 | 4.71                                          | 13.12                                         | 9.92                                       | 4                                     | 26                                    | 36                                              |
| Pit 37 W | 2/1/1999   | 5.62                                          | 13.23                                         | 9.93                                       | 3                                     | 26                                    | 36                                              |
| Pit 37 W | 5/21/1999  | 7.3                                           | 13.05                                         | 9.94                                       | 4                                     | 27                                    | 35                                              |
| Pit 37 W | 8/19/1999  | 7.93                                          | 13.13                                         | 9.96                                       | 7                                     | 26                                    | 31                                              |
| Pit 37 W | 1/28/2000  | 6.09                                          | 11.72                                         | 9.67                                       | 1                                     | 27                                    | 36                                              |
| Pit 37 W | 4/18/2000  | 7.71                                          | 13.25                                         | 9.82                                       | 3                                     | 27                                    | 35                                              |
| Pit 37 W | 7/18/2000  | 3.63                                          | 13.31                                         | 9.62                                       | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 9/27/2000  | 1.18                                          | 13.2                                          | 9.42                                       | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 12/19/2000 | 1.6                                           | 13.93                                         | 9.34                                       | 1                                     | 27                                    | 35                                              |
| Pit 37 W | 5/14/2001  | 7.38                                          | 26                                            | 10.24                                      | 2                                     | 26                                    | 27                                              |
| Pit 37 W | 6/21/2001  | 7.23                                          | 13.63                                         | 9.95                                       | 1                                     | 26                                    | 28                                              |
| Pit 37 W | 8/21/2001  | 5.19                                          | 13.67                                         | 9.91                                       | 1                                     | 26                                    | 28                                              |
| Pit 39   | 6/15/1999  | 5.45                                          | 12.11                                         | 6.01                                       | 23                                    | 9                                     | 34                                              |
| Pit 39   | 8/19/1999  | 5.7                                           | 16.44                                         | 7.09                                       | 23                                    | 20                                    | 32                                              |
| Pit 39   | 4/18/2000  | 1.34                                          | 15.39                                         | 6.22                                       | 1                                     | 20                                    | 27                                              |
| Pit 39   | 7/20/2000  | 4.44                                          | 15.58                                         | 6.56                                       | 1                                     | 20                                    | 29                                              |

Table C-4.5-1
Average Historical Moisture Measurements Collected at Area G

| Location        | Average Minimum<br>Moisture Content<br>(%) | Average Maximum Moisture Content (%) | Average<br>Moisture Content<br>(%) |
|-----------------|--------------------------------------------|--------------------------------------|------------------------------------|
| Boreholes       | 0.083                                      | 37                                   | 8.7                                |
| Pits            | 0.13                                       | 25.4                                 | 7.3                                |
| Beneath Asphalt | 0.75                                       | 13.41                                | 7.4                                |

Table C-5.0-1
Neutron Port Access Status at Area G for FY2007

| Location             | Total<br>Depth<br>(ft) | Construction            | Status of Neutron Access Port<br>Based on Results of Camera Logging | Date Neutron<br>Logged |
|----------------------|------------------------|-------------------------|---------------------------------------------------------------------|------------------------|
| Pit 15 NW            | ND <sup>a</sup>        | 8-in. PVC <sup>b</sup>  | Not determined, waste disposal in progress                          | Not Logged             |
| Pit 15 NE            | ND                     | 8-in. PVC               | Not determined, waste disposal in progress                          | Not Logged             |
| Pit 15 N, 1          | ND                     | 4-in. PVC               | Not determined, waste disposal in progress                          | Not Logged             |
| Pit 15 N, 2          | ND                     | 4-in. PVC               | Not determined, waste disposal in progress                          | Not Logged             |
| Pit 15 S, 1          | ND                     | 4-in. PVC               | Not determined, waste disposal in progress                          | Not Logged             |
| Pit 15 S, 2          | ND                     | 4-in. PVC               | Not determined, waste disposal in progress                          | Not Logged             |
| Pit 30 1             | 25.0                   | 4-in. PVC               | Slight curve east, clear                                            | 12/14/2006             |
| Pit 30 2             | 23.0                   | 4-in. PVC               | Clear to TD <sup>c</sup>                                            | 12/14/2006             |
| Pit 30 3             | 20.0                   | 4-in. PVC               | Clear to TD                                                         | 12/14/2006             |
| Pit 30 4             | 25.0                   | 4-in. PVC               | Slight casing damage just below ground surface/clear                | 12/14/2006             |
| Pit 30 2.5-in. Al, 1 | 6.0                    | 2.5-in. Al <sup>d</sup> | Clear to TD                                                         | Not Logged             |
| Pit 30 2.5-in. Al, 2 | 65.0                   | 2.5-in. Al              | Clear to TD                                                         | 12/18/2006             |
| Pit 31               | 42.0                   | 4-in. PVC               | Clear to TD                                                         | 12/14/2006             |
| Pit 31 2.5-in. Al    | 47.0                   | 2.5-in. Al              | Clear to TD                                                         | 12/18/2006             |
| Pit 37 W, 1          | 59.0                   | 4-in. PVC               | Clear to TD                                                         | 12/14/2006             |
| Pit 37 W, 2          | 63.5                   | 4-in. PVC               | Clear to TD                                                         | 12/14/2006             |
| Pit 37 W, 3          | 59.0                   | 4-in. PVC               | Clear to TD                                                         | 12/14/2006             |
| Pit 37 W, 2.5-in. Al | 9.8                    | 2.5-in. Al              | Clear to TD                                                         | Not Logged             |
| Pit 37 C, 1          | 33.0                   | 4-in. PVC               | Clear to TD                                                         | 1/10/2007              |
| Pit 37 C, 2          | 31.5                   | 4-in. PVC               | Clear to TD                                                         | 12/14/2006             |
| Pit 37 C, 2.5-in. Al | 8.8                    | 2.5-in. Al              | Clear to TD                                                         | Not Logged             |
| Pit 37 E, 1          | 9.0                    | 4-in. PVC               | Clear to TD                                                         | Not Logged             |
| Pit 37 E, 2          | 6.0                    | 4-in. PVC               | Clear to TD                                                         | Not Logged             |
| Pit 37 E, 2.5-in. Al | 30.0                   | 2.5-in. Al              | Clear to TD                                                         | 12/18/2006             |
| Pit 39 NW, 1         | 85.0                   | 4-in. PVC               | Turn horizontal at 85 ft                                            | Not Logged             |
| Pit 39 NW, 2         | 41.5                   | 4-in. PVC               | Turn horizontal at 41.5 ft                                          | Not Logged             |

Table C-5.0-1 (continued)

| Location             | TD<br>(ft) | Construction | Status of Neutron Access Port<br>Based on Results of Camera Logging | Date Neutron<br>Logged |
|----------------------|------------|--------------|---------------------------------------------------------------------|------------------------|
| Pit 39, Gate W       | 9.0        | 8-in. PVC    | Turn horizontal at 9 ft                                             | Not Logged             |
| Pit 39, Gate E       | 6.0        | 8-in. PVC    | Major obstruction at 9 ft                                           | Not Logged             |
| Pit 39 C, 1          | 46.0       | 8-in. PVC    | Clear to TD                                                         | 12/14/2006             |
| Pit 39 C, 2          | 53.5       | 8-in. PVC    | Clear to TD                                                         | 12/15/2006             |
| Pit 39 C, 3          | 46.0       | 8-in. PVC    | Clear to TD                                                         | 12/14/2006             |
| Pit 39 C, 2.5-in. Al | 30.2       | 2.5-in. Al   | Clear to TD                                                         | Not Logged             |
| Asphalt Pad, W       | 144.0      | 4-in. PVC    | Horizontal, clear to total length                                   | 12/18/2006             |
| Asphalt Pad, C       | 138.0      | 4-in. PVC    | Horizontal, clear to total length                                   | 12/19/2006             |
| Asphalt Pad, E       | ND         | 4-in. PVC    | Horizontal, confined space not logged                               | Not Logged             |

<sup>&</sup>lt;sup>a</sup> ND = Not determined.

Table C-7.1-1
Moisture Measurements Collected at Area G for FY2007

| Location            | Minimum<br>Moisture<br>(%) | Corresponding<br>Minimum Depth<br>(ft) | Maximum<br>Moisture<br>(%) | Corresponding<br>Maximum Depth<br>(ft) | Average Moisture<br>Content<br>(%) |
|---------------------|----------------------------|----------------------------------------|----------------------------|----------------------------------------|------------------------------------|
| Pit 30 1            | 2.5                        | 3                                      | 14.1                       | 23                                     | 9.9                                |
| Pit 30 2            | 1.9                        | 3                                      | 8.6                        | 22                                     | 6.8                                |
| Pit 30 3            | 2.3                        | 2                                      | 9.1                        | 20                                     | 6.3                                |
| Pit 30 4            | 5.6                        | 5                                      | 11.1                       | 10                                     | 9.0                                |
| Pit 30 2.5-in. Al 2 | 2.8                        | 48                                     | 10.3                       | 2                                      | 4.5                                |
| Pit 31              | 4.4                        | 39                                     | 8.0                        | 11                                     | 6.4                                |
| Pit 31 2.5-in. Al   | 0.7                        | 4                                      | 10.7                       | 5                                      | 7.3                                |
| Pit 37 W 1          | 3.5                        | 6                                      | 8.4                        | 7                                      | 6.1                                |
| Pit 37 W 2          | 3.6                        | 61                                     | 25.4                       | 63                                     | 6.6                                |
| Pit 37 W 3          | 4.4                        | 6                                      | 7.3                        | 37                                     | 6.3                                |
| Pit 37 C 1          | 2.5                        | 9                                      | 6.6                        | 28                                     | 5.2                                |
| Pit 37 C 2          | 3.1                        | 4                                      | 6.8                        | 25                                     | 5.5                                |
| Pit 37 E 2.5-in. Al | 5.2                        | 29                                     | 10.2                       | 13                                     | 6.8                                |
| Pit 39 C 1          | 6.0                        | 44                                     | 9.3                        | 40                                     | 8.0                                |
| Pit 39 C 2          | 1.0                        | 7                                      | 23.9                       | 53                                     | 8.0                                |
| Pit 39 C 3          | 1.3                        | 7                                      | 9.2                        | 38                                     | 7.8                                |
| Asphalt Pad C*      | 3.9                        | 4                                      | 10.3                       | 19                                     | 6.8                                |
| Asphalt Pad W*      | 2.9                        | 5                                      | 9.1                        | 126                                    | 6.9                                |

<sup>\*</sup>Depths for locations Asphalt Pad C and W reflect horizontal distances measured from the south end of the monitoring locations.

b PVC = Polyvinyl chloride (pipe).

<sup>&</sup>lt;sup>c</sup> TD = Total depth.

<sup>&</sup>lt;sup>d</sup> Al = Aluminum (pipe).