Name	Role	Contact Information
USACE – Portland District	Project Manager	333 SW First Avenue
Mark Dasso		Portland, OR 97024-3495
		Phone: (503) 808-4728
		Fax: (503) 808-4905
USACE – Portland District	Technical Lead and COR for URS	333 SW First Avenue
	Contract	Portland, OR 97024-3495
Michael Gross	Environmental Engineer	Phone: (503) 808-4913
		Fax: (503) 808-4905
USACE – Portland District	Technical Support	333 SW First Avenue
Kitia Howard	Environmental Engineer	Portland, OR 97024-3495
		Phone: (503) 808-4953
		Fax: (503) 808-4905
USACE – Portland District	Public Affairs Office	333 SW First Avenue
Amy Echols	Public Affairs Specialist	Portland, OR 97024-3495
		Phone: (503) 808-4510
		Fax: (503) 808-4515
USACE – Seattle District	Risk Assessment Lead	4735 E. Marginal Way S
John Wakeman	Biologist	Seattle, WA 98134
		Phone: (206) 764-3430
		Fax: (206) 764-3706
USACE – Portland District	Tribal Liaison	1125 NW Couch Street
Barbara Creel		Portland, Oregon, 97208-2870
		Phone: (503) 808-3715
		Cell: (503) 467-9181
USACE - ERDC	Independent Technical Review	ERDC
	Team	3909 Halls Ferry Road
Todd Bridges	Risk Assessor	Vicksburg, MS 39180
		Phone: (601) 634-3626
		Fax: (601) 634-3120
USACE – Omaha	Independent Technical Review	12565 West Center Rd
	Team	Omaha, NE 68144
Chuck Coyle	Environmental Engineer	Phone: (402) 697-2578
Anita Meyer	Risk Assessor	Fax: (402) 697-2595
Sandy Frye	Regulatory Specialist	
Thomas Georgian	Chemist	
Sam Bass	Geologist	
USACE - Bonneville Dam Project	Site Contacts	Bonneville Lock and Dam Project
Carlton Morris,		Cascade Locks, OR 9/014-0150
Frank Salber		Phone: (541) 3/4-7986,
		541-374-4571
EDA	Conserve ID 1 4 M	
EPA	Superfund Project Manager	1200 Sixth Ave (ECL-112)
Ken Marcy		Seattle, WA 98101
	Endered Three (Phone: (200) 555-2782
	Federal Trustee	2600 SE 98th Ave, Suite 100
Jeremy Buck	Environmental Contaminant Specialist	Portland, Oregon 9/266
		Phone: (503) 231-6179
NOTA		Fax: (503) 231-6195
	Federal Trustee	Phone: (503) 231-2349
Jeff Lockwood	Fisheries Specialist	Fax: (503) 231-6893

Table 2-1. Project Personnel Contact Information

Name	Role	Contact Information
DEQ	DEQ Project Manager	400 East Scenic Drive, #307
Bob Schwarz		The Dalles, OR 97058
		Phone: (541) 298-7255 (ext.30)
ODFW	State Trustee	17330 SE Evelyn Street
Rose Owens		Clackamas, OR 97015
		Phone: (503) 947-6085
Ecology	State Trustee	Washington State
Russ McMillan	Sediment Management Specialist	Department of Ecology -
		Toxics Cleanup Program,
		SW Region, P.O. Box
		47027, Olympia, WA
		98504-7027
		Phone: (360)407-6254
WDOH	State Trustee	
David McBride	Toxicologist	877.485.7316 ext 3176
Yakama Tribe	Tribal Representative	PO Box 151, Fort Road
Rose Longoria	Superfund Project Manager	Toppenish, WA 98948
		Phone: (509) 865-5121 (ext 6365)
Umatilla Tribe	Tribal Representative	PO Box 638
Kathleen Feehan	Water Quality Policy Specialist	Pendleton, OR 97801
		Phone: (541) 276-3165
		Fax: (541) 276-3035
Warm Springs Tribe	Tribal Representative	Fisheries Program Manager
Brad Houslet		Confederated Tribes of the Warm
		Springs Reservation of Oregon
		Natural Resources Department
		P.O. Box C
		Warm Springs, OR 97761
		541-553-2039 / fax 541-553-1994
		bhouslet@wstribes.org
Columbia River Intertribal Fish	Tribal Representative	729 NE Oregon St., Ste. 200
Commission		Portland, Oregon 97232
Patti Howard		(503) 238-0667
		fax (503) 235-4228
URS	A/E Services Contractor	111 SW Columbia, Suite 1500
Jeffrey Wallace	Project Manager and Point of Contact	Portland, Oregon 97201
Chris Moody	Assistant Project Manager	Phone: (503) 948-7242
		Fax: (503) 222-4292

			Status			
Common and Scientific Name	Federal	State	ONHP List	TNC	ODFW	Probability of Occurrence
Plants	•	•		•	•	· · ·
Golden indian-paintbrush	LT	LE	1	G1, SH		Very unlikely, no suitable habitat, not seen in Oregon for 40
(Castilleja levisecta)						years, not observed.
Howellia (Howellia aquatilus)	LT		1	G2, SH		Very unlikely, no suitable habitat, not observed.
Howellis daisy	SoC	ODA	1	G2, S2		Very unlikely, known from higher elevations in the Gorge,
(Erigeron howellii)		Candi-				potentially suitable habitat on Bradford Island in forested areas,
		date				not project site, not observed.
Oregon daisy	SoC	ODA	1	G3, S3		Very unlikely, last seen in early 1900s in Bonneville Dam area,
(Erigeron oreganus)		Candi-				unlikely to occur, not observed.
		date				
Tall bugbane	SoC	ODA	1	G2, S2		Very unlikely, not observed, no suitable habitat.
(Cimicifuga elata)		Candi-				
		date				
Barrett's penstemon	SoC	ODA	1	G2, S2		Very unlikely, not observed in potentially suitable habitat, and
(Penstemon barrettiae)		Candi-				would be identifiable if it had been present.
		date				
Howell's bentgrass	SoC	ODA	1	G2, S2		Very unlikely, not observed, should have been identifiable if
(Agrostis howellii)		Candi-				present.
		date				
Cold-water corydalis	SoC	ODA	1	G3, S2		Very unlikely, not observed, no habitat present.
(Corydalis aquae-gelidae)		Candi-				
		date				
Liverwort			2	G4, S1		Very unlikely, not observed, potentially suitable habitat present
(Scapania gymnostomophila)						on side of island north of project area.
Strickland's tauschia			2	G4, S1		Very unlikely, no suitable habitat, not observed.
(Tauschia stricklandii)						
Long-bearded hawkweed			4	G4, S3		Very unlikely, not observed, potential cliff habitat not within
(Hieracium longiberbe)						project area.
Sicklepod rockcress			2	G5T3,		Very unlikely, not observed, probably no suitable habitat
(Arabis sparsiflora var.				S2		present.
atrorubens)						

			Status			
Common and Scientific Name	Federal	State	ONHP List	TNC	ODFW	Probability of Occurrence
Columbia lewisia			2	G4T4,		Very unlikely, not observed, rocky slope habitat present outside
(Lewisia columbiana var.				S2		of project area.
columbiana)						
Oregon bolandra		Critical	4	G3, S3		Very unlikely, not observed, no wet cliff/talus habitat present on
(Bolandra oregana)						Bradford Island.
Invertebrates						
Pristine springsnail			3			Very unlikely, no suitable habitat (springs) present in project
(Pristinicola hempilli)						area.
Fish				•		
Sockeye salmon	LE		1	G5, S4		Any surviving fish of this extremely rare species would pass
(Oncorhynchus nerka)						through Bonneville Dam and may move past Bradford Island on
Salmon River tributary to Snake						upstream and downstream migration. No spawning or rearing.
River, Idaho ESU						
Chum salmon	LT	Critical	2	G5, S2		Unlikely, current range restricted to below Bonneville Dam. No
(Oncorhynchus keta)						spawning or rearing.
Lower Columbia River ESU						
Steelhead	LT	Critical	1	G5T3Q,		Adults and smolt pass through Bonneville Dam and may move
(Oncorhynchus mykiss)				S3		past Bradford Island on upstream and downstream migrations.
Lower Columbia ESU						No spawning or rearing.
Steelhead	LT	Vulnera	1	G5T3Q,		Adults and smolt pass through Bonneville Dam and may move
(Oncorhynchus mykiss)		ble		S3		past Bradford Island on upstream and downstream migrations.
Snake River Basin ESU						No spawning or rearing.
Steelhead	LT	Vulnera	3	G5T3Q,		Adults and smolt pass through Bonneville Dam and may move
(Oncorhynchus mykiss)		ble		S3		past Bradford Island on upstream and downstream migrations.
Middle Columbia ESU						No spawning or rearing.
Chinook salmon	LT	LT	1	G5T3O,		Adults and smolt pass through Bonneville Dam and may move
(Oncorhynchus tsawytscha)				S3		past Bradford Island on upstream and downstream migrations.
Snake River ESU						No spawning or rearing.
Chinook salmon	LT					Adults and smolt pass through Bonneville Dam and may move
(Oncorhynchus tsawytscha)						past Bradford Island on upstream and downstream migrations.
Lower Columbia ESU						No spawning or rearing.
Coastal cutthroat trout	С	Critical	3	G4TQ,		Adults and juveniles pass through Bonneville Dam and may
(Oncorhynchus clarki clarki)				S4		move past Bradford Island on upstream and downstream
						migrations. No spawning or rearing.

			Status			
Common and Scientific Name	Federal	State	ONHP List	TNC	ODFW	Probability of Occurrence
Coho salmon	С	Critical	1	G4T3Q,		Adults and juveniles pass through Bonneville Dam and may
(Oncorhynchus kisutch)				S3		move past Bradford Island on upstream and downstream
Lower Columbia ESU						migrations. No spawning or rearing.
Pacific lamprey	SoC	Vulnera	3	G5, S3		Adults and juveniles pass through Bonneville Dam and may
(Lampropelta tridentata)		ble				move past Bradford Island on upstream and downstream
						migrations. No spawning or rearing.
Amphibians	-					
Larch mountain salamander	SoC	Vulnera	2	G2, S2		Very unlikely, suitable small-sized talus slope habitat not
(Plethodon larselli)		ble				present.
Oregon spotted frog	С	Critical	1	G2G3,		Very unlikely, no suitable warm, shallow marsh habitat present.
(Rana pretiosa)				S2		
Reptiles						
Western painted turtle		Critical	2	G5, S2		Very unlikely, observed in ponds near Cascade Locks, no
(Chrysemys picta)						suitable habitat in project area.
Birds						
Northern spotted owl	LT	LT	1	G3T3,		Very unlikely to occur, only as transients passing through, area
(Strix occidentalis caurina)				S3		too small and disturbed to provide habitat.
Bald eagle	LT (soon	LT	1	G4,S3B,		Summer breeding and wintering resident of the vicinity.
(Haliaeetus leucocephalus)	to be			S4N		
	delisted)					
Mammals						
Columbia white-tailed deer	LE	Vulnera	1	G5T2Q,		Very unlikely, no suitable habitat, current range below RM 50.
(Odocoileus virginianus lecurus)		ble		S2		
Northern (Stellar) Sea Lion	LT	Vulnera	2	G3, S2		Sea lions have been observed foraging in the Bonneville pool,
(Eumetopias jubatus)		ble				but they are not known to occur in the Bonneville forebay
						(above the dam).

State and Federal Status Definitions

LE – Listed Endangered. Taxa listed by the U.S. Fish and Wildlife Service or National Marine Fisheries Service as Endangered under the Endangered Species Act, or by the Oregon Departments of Agriculture (ODA) and Fish and Wildlife (ODFW) under the Oregon Endangered Species Act of 1987. Endangered taxa are those that are in danger of becoming extinct within the foreseeable future throughout all or a significant portion of their range.

LT – Listed Threatened. Taxa listed by the above agencies as Threatened; defined as those taxa likely to become endangered within the foreseeable future.

PE – Proposed Endangered. Taxa proposed by the above agencies to be listed as endangered.

PT – Proposed Threatened. Taxa proposed by the above agencies to be listed as threatened.

C – Candidate. Candidate taxa for which National Marine Fisheries Service or U.S. Fish and Wildlife Service have sufficient information to support a proposal to list under the Endangered Species Act, or which is a candidate for listing by the ODA under the Oregon Endangered Species Act.

SoC – Species of Concern. Former Category 2 candidates for which additional information is needed to propose as threatened or endangered under the Endangered Species Act; these species are under review for consideration as Candidates for listing under the Endangered Species Act. Oregon Natural Heritage Program (ONHP) Definitions

List 1 - taxa that are threatened with extinction or presumed to be extinct throughout their entire range.

List 2 – taxa threatened with extirpation or presumed extirpated from Oregon; often peripheral or disjunct species that are of concern considering species diversity within Oregon; can be very significant in protecting the genetic diversity of the taxon; ONHP regards extreme rarity as a significant threat and has included species that are very rare in Oregon on this list.

List 3 - taxa for which more information is needed before status can be determined, but which may be threatened or endangered in Oregon or throughout their range.

List 4 – taxa that are of conservation concern but not currently threatened or endangered, including taxa that are very rare but considered secure as well as those declining in numbers or habitat but still too common to be proposed as threatened or endangered; these taxa require continued monitoring.

The Nature Conservancy's (TNC) Natural Heritage Network Ranks

The Natural Heritage Network ranks are part of a national system of ranking species throughout the world and is used throughout the U.S., Canada, and 13 Latin American countries. Both global and state ranks are provided in ONHP (1998), abbreviated as "G" and "S."

- 1 Critically imperiled because of extreme rarity or because it is somehow especially vulnerable to extinction or extirpation, typically with 5 or fewer occurrences.
- 2 Imperiled because of rarity or because other factors demonstrably make it very vulnerable to extinction (extirpation), typically with 6-20 occurrences.
- 3 Rare, uncommon, or threatened, but not immediately imperiled, typically with 21-100 occurrences.
- 4 Not rare and apparently secure, but wth cause for long-term concern, usually with more than 100 occurrences.
- 5 Demonstrably widespread, abundant, and secure.
- H Historical occurrence, formerly part of native biota with the implied expectation that it may be rediscovered.
- **X** Presumed extirpated or extinct.
- U Unknown rank.

ODFW Ranks

SC – State Critical. Species for which listing as threatened or endangered is pending; or those for which listing as threatened or endangered may be appropriate if immediate conservation activities are not taken. Also considered critical are some peripheral species that are at risk throughout their range, and some disjunct populations.

SV – **State Vulnerable**. Species for which listing as threatened or endangered is not believed to be imminent and can be avoided through continued or expanded use of adequate protective measures and monitoring. In some cases the population is sustainable and protective measures are being implemented; in others, the population may be declining and improved protective measures are needed to maintain sustainable populations over time.

SP – **Peripheral or Naturally Rare**. Peripheral species refer to those whose Oregon populations are on the edge of their range. Naturally rare species are those that had low population numbers historically in Oregon because of natural limiting factors. Maintaining the status quo for the habitats and populations of these species is a minimum requirement. Disjunct populations of several species that occur in Oregon should not be confused with peripheral.

SU – Undetermined Status. Animals in this category are species whose status is unclear. They may be susceptible to population decline of sufficient magnitude that they could qualify for endangered, threatened, critical, or vulnerable status, but scientific study will be required before a judgment can be made.

Beneficial Uses	Columbia River Mouth to RM 86	Columbia River RM 86 to 309
Public Domestic Water Supply ¹	Х	Х
Private Domestic Water Supply ¹	Х	Х
Industrial Water Supply	Х	Х
Irrigation	Х	Х
Livestock Watering	Х	Х
Fish & Aquatic Life ²	Х	Х
Wildlife & Hunting	Х	Х
Fishing	Х	Х
Boating	Х	Х
Water Contact Recreation	Х	Х
Aesthetic Quality	Х	Х
Hydro Power		Х
Commercial Navigation & Transportation	Х	Х

 Table 3-2

 Designated Beneficial Uses – Mainstem Columbia River

Source: OAR 340-41-0101, November 2003

¹With adequate pretreatment and natural quality that meets drinking water standards. ²See also Table 3-3 for fish use designations for this river.

Table 3-3	
Beneficial Use Designations – Fish Uses, Mainstem Columbia	River

Geographic Extent of Use	Salmon and Steelhead Migration Corridors (20°C)	Salmon and Steelhead Spawning through Fry Emergence	Shad and Sturgeon Spawning and Rearing
Mainstem Columbia River			
Beacon Rock to Upstream of Ives Island (RM 141.5 to RM 143.5)		October 15 March 31	
Columbia River, mouth to Washington border (RM309)	Х		
Columbia River (RM 147 to RM 203)			X

Source: OAR 340-41-0101, November 2003 RM = River mile

Table 5-1. List of COIs in Soil from Landfill: Upland In-Place, Bradford Island

	Summary Statistics Selection of CC			Selection of COIs			
		Detection	Min	Max	WDOE Clark	Mar Cana	
Analyte (1)	No. Usable	Detection	Detected	Detected	County	Max Conc.	Retain as
	Data Points	Frequency	Conc.	Conc.	Background	Exceeds	COI?
		(%)	(mg/kg)	(mg/kg)	Conc. (mg/kg) (2)	Background?	
INORGANICS				<u> </u>			
Aluminum	21	100%	2380	23100	52300	No	No
Antimony	31	65%	0.309	8 19	NA	na	Ves
Arsenic	32	100%	15	16.6	6	Yes	Ves
Barium	32	100%	34	243	ΝΔ	na	Ves
Bervllium	32	66%	0.186	0.576	2	No	No
Cadmium	32	81%	0.343	3 54	1	Yes	Ves
Chromium	32	100%	11	2300	27	Yes	Ves
Cobalt	21	100%	3 99	42.3	NA	na	Yes
Copper	32	100%	17.9	378	34	Yes	Ves
Lead	38	100%	5 34	1660	17	Yes	Ves
Manganese	32	100%	146	1713	1500	Yes	Yes
Mercury	32	84%	0.015	55	0.04	Yes	Ves
Nickel	32	100%	7.85	1760	21	Ves	Ves
Selenium	32	41%	0.106	0.848	NΔ	na	Ves
Silver	32	69%	0.101	1.52	NA	na	Ves
Thallium	32	69%	0.0361	0.254	NA	na	Ves
Vanadium	21	100%	15.9	93.4	NA	na	Ves
Zinc	32	100%	41.6	1140	96	Ves	Ves
RUTVL TINS	32	10070	41.0	1140	70	103	105
Dibutyltin	16	6%	0.0202	0.0202	NΔ	na	Ves
Monobutyltin	16	6%	0.0202	0.0202	NA	na	Ves
Tributyltin	16	13%	0.00900	0.00901	NA	na	Ves
HERBICIDES	10	1370	0.00041	0.00901	1011	iia	103
2.4.5-T	25	8%	0.063	0.093	NA	na	Yes
Dichlorprop	25	8%	0.17	0.18	NA	na	Yes
MCPP	25	8%	5.03	14	NA	na	Yes
PESTICIDES	-						
Chlordane (technical)	14	43%	0.0494	1.56	NA	na	Yes
Heptachlor	25	8%	0.0018125	0.00283	NA	na	Yes
alpha-Chlordane	11	9%	0.00303	0.00303	NA	na	Yes
p,p'-Dichlorodiphenyl dichloroethylene	25	8%	0.0005	0.017	NA	na	Yes
PCBs							
Aroclor 1254	36	36%	0.0267	1.1	NA	na	Yes
Aroclor 1260	36	58%	0.00205	0.66	NA	na	Yes
VOCs				•			
Tetrachloroethylene	21	62%	0.000605	0.0330	NA	na	Yes
Toluene	21	33%	0.000225	0.00318	NA	na	Yes
o-Xylene	21	10%	0.000368	0.000735	NA	na	Yes
SVOCs							
2,6-Dinitrotoluene	25	16%	0.0095	0.0104	NA	na	Yes
2-Methylnaphthalene	25	32%	0.000057	0.0434	NA	na	Yes
3- & 4-Methylphenol	14	21%	0.0034	0.064	NA	na	Yes
Acenaphthene	25	60%	0.000042	2.53	NA	na	Yes
Acenaphthylene	25	36%	0.000022	0.111	NA	na	Yes
Anthracene	25	72%	0.000012	8.44	NA	na	Yes

Table 5-1. List of COIs in Soil from Landfill: Upland In-Place, Bradford Island

		Summary	Statistics	Selection of COIs			
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	WDOE Clark County Background Conc. (mg/kg) (2)	Max Conc. Exceeds Background?	Retain as COI?
Benzidine	24	8%	0.015	0.0383	NA	na	Yes
Benzo(a)anthracene	25	88%	0.000029	31.2	NA	na	Yes
Benzo(a)pyrene	25	88%	0.000028	34	NA	na	Yes
Benzo(b)fluoranthene	15	80%	0.000034	0.087	NA	na	Yes
Benzo(g,h,i)perylene	25	88%	0.00002	17	NA	na	Yes
Benzo(k)fluoranthene	15	73%	0.00004	0.065	NA	na	Yes
Benzofluoranthenes	10	100%	0.197	31.3	NA	na	Yes
Benzoic acid	25	32%	0.00002	0.553	NA	na	Yes
Bis(2-ethylhexyl)phthalate	25	80%	0.00015	3.96	NA	na	Yes
Butyl benzyl phthalate	25	16%	0.000022	0.152	NA	na	Yes
Carbazole	25	52%	0.000027	2.84	NA	na	Yes
Chrysene	25	88%	0.000062	35.3	NA	na	Yes
Dibenz(a,h)anthracene	25	60%	0.000018	1.94	NA	na	Yes
Dibenzofuran	25	48%	0.00002	0.419	NA	na	Yes
Diethyl phthalate	25	24%	0.00005	0.0734	NA	na	Yes
Fluoranthene	25	88%	0.000042	48.3	NA	na	Yes
Fluorene	25	60%	0.000047	1.61	NA	na	Yes
Indeno(1,2,3-cd)pyrene	25	84%	0.000018	20	NA	na	Yes
Naphthalene	25	40%	0.0000545	0.176	NA	na	Yes
PCP	25	8%	0.000072	0.201	NA	na	Yes
Phenanthrene	25	84%	0.000013	21.9	NA	na	Yes
Pyrene	25	88%	0.000043	67.1	NA	na	Yes
TPHs							
Diesel Fuel No. 2	17	82%	22.9	9735	NA	na	Yes
Diesel Range Hydrocarbons	15	67%	17.0	1000	NA	na	Yes
Gasoline Range Hydrocarbons	20	15%	2.10	3.28	NA	na	Yes
Residual Range Organics	32	81%	31.1	41900	NA	na	Yes

Notes:

All bolded chemicals were retained as COIs, which are defined as those analytes with a 5% detection frequency or greater and, for inorganics only, with a maximum detected concentration above WDOE background concentrations, or inorganics without a background value.

Represents soil samples collected from 0 to 10 feet bgs.

COI = Chemical of Interest

NA = not available

na = not applicable

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table. The following essential nutrients were excluded as COIs in soil: calcium, iron, magnesium, potassium, and sodium.

Table 5-2. List of COIs in Soil from Sandblast Area: Upland In-Place, Bradford Island

		Summary	Statistics		Selection of COIs		
			Min	Max			
Analyte (1)	No. Usable	Detection	Detected	Detected	WDOE Clark County	Max Conc.	Retain as
	Data Points	Frequency	Conc.	Conc.	Background Conc.	Exceeds	COI?
	Data I onto	(%)	(mg/kg)	(mg/kg)	(mg/kg) (2)	Background?	con.
INORGANICS			(IIIg/Kg)	(IIIg/Kg)			
Aluminum	50	100%	1530	23100	52300	No	No
Antimony	50	8/1%	0.0895	13.7	NA	110	Ves
Arsonic	50	98%	0.613	80.9	6	Vec	Ves
Barium	50	100%	10.7	123	NA	103	Ves
Beryllium	50	50%	0.0587	0.598	2	No	No
Cadmium	50	78%	0.0561	2.61	1	Ves	Ves
Chromium	53	100%	5 27	2650	27	Ves	Ves
Cobalt	50	100%	2.52	2030	NA	103	Ves
Coppor	50	100%	15.8	23.0	24	Vac	Vos
Lond	53	100%	5.24	319	17	Vas	Vos
Manganaga	50	100%	167	919	1500	No	No
Moreury	50	67%	0.0114	0.153	0.04	No	Vos
Niekol	50	100%	5 25	1060	21	Vas	Vos
Solonium	50	560/	0.127	1 17	21 NA	105	Vec
Steenum	50	04%	0.127	0.268	INA NA	lla	Ves
Thellium	50	94% 75%	0.0371	0.208	IN/A NA	na	Ves
I nallium Vonodium	50	100%	6.80	0.255	INA NA	na	Yes
	50	100%	0.89	89.1	NA OC	ha V	Yes
ZINC DEFENSE TENIC	50	100%	31.1	1160	96	res	Yes
Dibutatin	45	100/	0.00252	0.21	NA		V
	45	19%	0.00353	0.21	NA	па	Yes
Monobutyitin	45	24%	0.00328	0.108	NA	na	Yes
Iributyitin	45	23%	0.00165	1.86	NA	na	Yes
A 4 DDE	0	290/	0.000925	0.0017	NA		V
4,4 -DDE	8	38%	0.000835	0.0017	NA	na	Yes
4,4 -DD1	8	50%	0.00339	0.0191	NA	na	Yes
Aldrin	8	13%	0.00098	0.00098	NA	na	Yes
Dieldrin	8	13%	0.00941	0.00941	NA	na	Yes
Endosultan II	8	25%	0.00199	0.0108	NA	na	Yes
Endosultan sultate	8	13%	0.00161	0.00161	NA	na	Yes
Endrin	8	13%	0.00845	0.00845	NA	na	Yes
Heptachlor epoxide	8	13%	0.000634	0.000634	NA	na	Yes
beta-BHC	8	25%	0.000952	0.0125	NA	na	Yes
delta-BHC	8	13%	0.00303	0.00303	NA	na	Yes
gamma-BHC (Lindane)	8	13%	0.00968	0.00968	NA	na	Yes
gamma-Chlordane	8	13%	0.00337	0.00337	NA	na	Yes
PCBs	15	070/	0.000 64	0.000	NY 4		**
Aroclor 1260	45	87%	0.00264	0.282	NA	na	Yes
VOCs	1.4	50/	0.00000.00	0.00000.00	NY 4		X.
1,1,1-1 richloroethane	14	7%	0.0000969	0.0000969	NA	na	Yes
1,2,4-1 rimethylbenzene	14	39%	0.000215	14.3	NA	na	Yes
1,3,5-1 rimethylbenzene	14	43%	0.0000435	6.5	NA	na	Yes
4-Isopropyltoluene	14	61%	0.0000622	0.161	NA	na	Yes
4-Methyl-2-pentanone	14	7%	0.00214	0.00214	NA	na	Yes
Benzene	14	43%	0.000372	0.0006	NA	na	Yes
Carbon disulfide	14	7%	0.000549	0.000549	NA	na	Yes
Dichlorodifluoromethane	14	7%	0.000085	0.000085	NA	na	Yes
Ethylbenzene	14	7%	0.0374	0.0374	NA	na	Yes
Isopropylbenzene	14	7%	0.0473	0.0473	NA	na	Yes
Tetrachloroethene	14	46%	0.000118	420	NA	na	Yes
Toluene	14	29%	0.000786	39	NA	na	Yes
Trichloroethene	14	71%	0.000045	6.08	NA	na	Yes
cis-1,2-Dichloroethene	14	21%	0.00495	0.12	NA	na	Yes

Table 5-2. List of COIs in Soil from Sandblast Area: Upland In-Place, Bradford Island

		Summary S	Statistics		Selection of COIs			
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	WDOE Clark County Background Conc. (mg/kg) (2)	Max Conc. Exceeds Background?	Retain as COI?	
m,p-Xylene	14	14%	0.04	7.4	NA	na	Yes	
n-Propylbenzene	14	14%	0.000409	0.122	NA	na	Yes	
o-Xylene	14	21%	0.000197	3.2	NA	na	Yes	
sec-Butylbenzene	14	14%	0.000435	0.0902	NA	na	Yes	
trans-1,2-dichloroethene	14	7%	0.00228	0.00228	NA	na	Yes	
SVOCs								
2-Methylnaphthalene	15	37%	0.00129	0.124	NA	na	Yes	
3- & 4-Methylphenol	14	7%	0.00246	0.00246	NA	na	Yes	
4-Chloroaniline	14	7%	0.411	0.411	NA	na	Yes	
Acenaphthene	15	67%	0.00541	3.2	NA	na	Yes	
Acenaphthylene	15	50%	0.00139	0.295	NA	na	Yes	
Anthracene	15	63%	0.00503	2.04	NA	na	Yes	
Benzo(a)anthracene	15	67%	0.0265	12.3	NA	na	Yes	
Benzo(a)pyrene	15	67%	0.0289	11.7	NA	na	Yes	
Benzo(g,h,i)perylene	15	73%	0.00433	3.83	NA	na	Yes	
Benzofluoranthenes	15	73%	0.0077	16.3	NA	na	Yes	
Benzoic acid	14	29%	0.0273	0.377	NA	na	Yes	
Benzyl alcohol	14	7%	0.00781	0.00781	NA	na	Yes	
Benzyl butyl phthalate	14	11%	0.0205	0.0317	NA	na	Yes	
Bis(2-ethylhexyl)phthalate	15	87%	0.00667	43.5	NA	na	Yes	
Carbazole	14	46%	0.00456	0.524	NA	na	Yes	
Chrysene	15	67%	0.0327	12	NA	na	Yes	
Di-n-butylphthalate	14	29%	0.0239	0.251	NA	na	Yes	
Di-n-octylphthalate	14	39%	0.0161	0.425	NA	na	Yes	
Dibenz(a,h)anthracene	15	57%	0.00123	1.43	NA	na	Yes	
Dibenzofuran	15	50%	0.000996	0.485	NA	na	Yes	
Fluoranthene	15	73%	0.00629	28.6	NA	na	Yes	
Fluorene	15	53%	0.00713	0.779	NA	na	Yes	
Indeno(1,2,3-cd)pyrene	15	73%	0.00352	4.17	NA	na	Yes	
Naphthalene	15	37%	0.00204	0.256	NA	na	Yes	
Phenanthrene	15	80%	0.00247	6.55	NA	na	Yes	
Pyrene	15	73%	0.00914	32	NA	na	Yes	
TPHs								
Diesel Range Hydrocarbons	48	81%	6.44	1440	NA	na	Yes	
Gasoline Range Hydrocarbons	12	17%	132	3960	NA	na	Yes	
Motor Oil Range Hydrocarbons	48	83%	29.8	1980	NA	na	Yes	

Notes:

All bolded chemicals were retained as COIs, which are defined as those analytes with a 5% detection frequency or greater and, for inorganics only, with a maximum detected concentration above WDOE background concentrations, or inorganics without a background value.

Represents soil samples collected from 0 to 10 feet bgs.

COI = Chemical of Interest

NA = not available

na = not applicable

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table. The following essential nutrients were excluded as COIs in soil: calcium, iron, magnesium, potassium, and sodium.

Table 5-3. List of COIs in Soil from Pistol Range: Upland In-Place,Bradford Island

		Summary S	tatistics		Select	ion of COIs	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	WDOE Clark County Background Conc. (mg/kg) (2)	Max Conc. Exceeds Background?	Retain as COI?
INORGANICS							
Copper	10	100%	37.6	53.1	34	Yes	Yes
Lead	71	100%	7	1110	17	Yes	Yes
Nickel	10	100%	19	27	21	Yes	Yes
Zinc	10	100%	74	199	96	Yes	Yes

Notes:

All bolded chemicals were retained as COIs, which are defined as those analytes with a 5% detection frequency or greater and, for inorganics only, with a maximum detected concentration above WDOE background concentrations.

Represents soil samples collected from 0 to 10 feet bgs.

COI = Chemical of Interest

NA = not available

na = not applicable

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table.

Table 5-4. List of COIs in Soil from Bulb Slope: Upland In-Place,Bradford Island

		Summary Sta	atistics		Select	ion of COIs	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	WDOE Clark County Background Conc. (mg/kg) (2)	Max Conc. Exceeds Background?	Retain as COI?
INORGANICS							
Lead	9	100%	25	444	17	Yes	Yes
Mercury	9	100%	0.05	0.74	0.04	Yes	Yes
PCBs							
Aroclor 1260	9	67%	0.027	0.16	NA	na	Yes
TPHs							
Diesel Range Hydrocarbons	9	100%	8.3	170	NA	na	Yes
Motor Oil Range Hydrocarbons	9	100%	44	410	NA	na	Yes

Notes:

All bolded chemicals were retained as COIs, which are defined as those analytes with a 5% detection frequency or greater and, for inorganics, with a maximum detected concentration above WDOE background concentrations.

Represents soil samples collected from 0 to 10 feet bgs.

COI = Chemical of Interest

NA = not available

na = not applicable

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table.

Table 5-5. List of COIs in Soil from Landfill: Upland Transport, Bradford Island

r	- ir						Diaui			<u> </u>							
			Sumn	nary Statistic	28		-	Soil Backgrou	nd Comparison			Upland to	River Transp	ort Pathway I	Evaluation	-	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	Statistical Distribution	90% UCL (mg/kg) (2)	Notes	Lowest Background Conc. (mg/kg) (4)	Max Conc. Exceeds Background?	Selected Sediment Screening Level (mg/kg) (5)	Is Max Detected Greater than Selected Sediment Screening Level?	Is Chemical	Detected at U from Shor	pland Shoreli eline (feet)?	ne - Distance	Is Chemical Detected in Forebay Sediment?	Is Further Investigation of Overland Runoff Necessary? (6)
												0 to 50	50 to 100	100 to 150	150 to 200		
INORGANICS		10001			~		1	17000									
Aluminum	21	100%	2380	23100	Gamma	10576		17233	Yes	NA	No SLV	Yes	Yes	Yes	No	Yes	Yes
	31	65%	0.309	8.19	Lognormal	2.23		<0.5	Yes	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Arsenic	32	100%	1.5	16.6	Lognormal	4.84		2.98	Yes	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Barium	32	100%	34	243	Gamma	108		103.83	Yes	NA	NO SLV	Yes Delew	Yes	Yes	Yes	Yes	Yes
Beryllium	32	66%	0.186	0.576	Normal	0.313		1.18	NO	0.6	V	Belov	V Soll Backgro	una Var	Vaa	V	No
	32	81%	0.343	3.54	Non-parametric	2.11		0.58	Yes	0.6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chromium Cabalt	32	100%	11	2300	Non-parametric	919		17.47	Yes	3/ NA	Yes N- SLV	Yes	Yes	Yes	Yes	Yes	Yes
Cobalt	21	100%	3.99	42.3	Gamma	19.6		15.9	Yes	NA 26	NO SLV	Yes	Yes	Yes	NO Var	Yes	Yes
	32	100%	17.9	3/8	Non-parametric	127		12.96	Yes	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	38	100%	5.34	1000	Gamma	495		15.80	Yes	35	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Manganese	32	100%	140	1/13	Non-parametric	543		479.33	Yes	1100	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mercury	32	84%	0.015	5.5	Non-parametric	1.521		0.04	Yes	0.2	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	32	100%	7.85	1760	Non-parametric	0.272		19.9	Yes	18	Yes	Yes	Yes	Yes	Y es	Y es	Yes Oreal
Selenium	32	41%	0.106	0.848	Gamma	0.272		<0.5	Yes	NA 4.5	NO SL V	Yes	Yes	Yes	INO No	No No	Yes - Quai
Silver	32	69%	0.101	1.52	Non-parametric	0.581		<0.5	Y es	4.5	NO	Yes Delew	Yes	Yes	NO	NO	No
	32	69% 100%	0.0361	0.254	Normal Normal	0.134		<0.5	NO	NIA	N ₂ CLV	Belov	V Soli Backgro	una Var	N-	V	NO Var
	21	100%	15.9	93.4	Normai	55.967 208		59	Yes	NA 122	NO SLV	Yes	Yes	Yes	INO Var	Yes	Yes
ZIIIC DUTEVI TENIC	52	100%	41.0	1140	Non-parametric	298		30.03	res	125	Ies	res	res	res	res	Tes	res
DUTILIINS Dibutaltin	16	60/	0.0202	0.0202	Non nonomotrio	0.0122	1	NA		NA	No SLV	Vac	No	No	No	No	Veg Onel
Dibutyitin Manakataltin	16	6% (0/	0.0202	0.0202	Non-parametric	0.0123		NA NA	na	NA NA	NO SLV	Yes	NO No	NO No	INO N-	No No	Yes - Qual
Monobutyitin Taibutyitin	10	0%	0.00908	0.00908	Non-parametric	0.00722		NA NA	na	NA 0.0017	NO SL V	I es	No	No	No	No	res - Quai
	10	13%	0.00841	0.00901	Non-parametric	0.00773		NA	na	0.0017	res	res	NO	NO	NO	NO	NO
DAST	25	Q 0/	0.062	0.002	Non nonomotrio	0.0221		NA		NA	No SLV	No	No	No	Vac	No	No
2,4,5-1 Dieblernnen	25	8% 80/	0.005	0.095	Non-parametric	0.0251		NA NA	na	NA NA		INO No	NO	No	I es	No	NO Vog Oval
	25	8% 80/	5.02	0.18	Non-parametric	6.10		NA NA	na	NA NA		No	I es	NO	Tes Vac	No	res - Quai
MCPP	25	8%	5.03	14	Non-parametric	0.10		NA	na	NA	NOSLV	NO	NO	res	Yes	NO	NO
Chlordone (technicel)	14	/20/	0.0404	1.56	Commo	0.424	r	NA	n 0	0.000046	Vac	Vac	Vac	No	No	No	Vog
Chlordane (technical)	25	43% 80/	0.0494	0.00282	Non peremetrie	0.434		NA NA	lla	0.000040	1 es	Tes Vac	1 es	No	No	No	1 es
alpha Chlordone	23	0%	0.0018123	0.00283	Non-parametric	0.000949	(2)	NA NA	lla	0.01	No	1 es	No	No	No	No	NO
alpha-Chlorodine	25	9% 8%	0.00505	0.00303	Non parametria	0.00303	(5)	NA NA	na	0.000046 NA	I es	No	NO Vas	I es	No	No	Yes Quel
PCRs	23	0%	0.0003	0.017	Non-parametric	0.00397		INA	11a	INA	INU SL V	110	ies	110	NO	INO	1 es - Qual
A roclor 1254	36	360/-	0.0267	11	Lognormal	0.207		ΝΑ	na	0.000046	Ves	Vas	No	No	No	Ves	Vor
Aroclor 1260	36	58%	0.0207	0.66	Lognormal	0.277		NA NA	na	0.000040	Ves	Vac	Vec	Vec	Vec	Ves	Voc
VOCs (7)		5070	0.00203	0.00	Logilorillai	0.140	L		11a	0.000040	105	105	105	105	105	108	103
Tetrachloroethene	21	62%	0.000605	0.0330	Lognormal	0.00882	1	NΔ	na	0.5	No	Ves	Ves	Ves	Ves	not analyzed	Ves
SVOCs	21	0270	0.000005	0.0550	Logilorina	0.00002		1171	IIu	0.5	110	105	105	103	105	not undryzed	105
2 6-Dinitrotoluene	25	16%	0.0095	0.0104	Non-parametric	0.0104	(3)	NA	na	NA	No SLV	No	No	No	No	No	No
2-Methylnanhthalene	25	32%	0.00057	0.0104	Lognormal	0.0104	(3)	NA	na	NA	No SL V	Vec	Vec	No	No	No	Yes - Oual
3- & 4-Methylphenol	14	21%	0.000034	0.0434	Gamma	0.0434	(3)	ΝΔ	na	NA	No SL V	Ves	No	No	No	No	Ves - Qual
Acenandthene	25	60%	0.00042	2 53	Non-parametric	0.0237		NA	na	0.29	Yes	Yes	Yes	Yes	Yes	Yes	Ves
Acenaphthylene	25	36%	0.000022	0.111	Non-parametric	0.0283		NA	na	0.16	No	Yes	Yes	No	No	No	No
Anthracene	25	72%	0.000012	8.44	Non-parametric	1.52		NA	na	0.057	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzidine	23	8%	0.015	0.0383	Non-parametric	0.0383	(3)	NA	na	NA	No SLV	Yes	Yes	Yes	Yes	No	Yes - Oual
Benzo(a)anthracene	25	88%	0.000029	31.2	Non-parametric	7.36	(3)	NA	na	0.032	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzo(a)pyrene	25	88%	0.000028	34	Non-parametric	7.36		NA	na	0.032	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzo(b)fluoranthene	15	80%	0.000034	0.087	Gamma	0.0304		NA	na	NA	No SLV	No	Yes	Yes	Yes	Yes	Ves
Benzo(g.h.i)pervlene	25	88%	0.00002	17	Non-parametric	3.75		NA	na	0.3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzo(k)fluoranthene	15	73%	0.00002	0.065	Lognormal	0.0126		NA	na	0.027	Yes	No	Yes	Yes	Yes	Yes	Ves
()		, 570	0.00001	0.000	205.0000	0.0120	1	II - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		0.027	1.65	110		- •0	- v o	100	

Table 5-5. List of COIs in Soil from Landfill: Upland Transport, Bradford Island

							210010			0							
			Summ	nary Statistic	s			Soil Backgrou	nd Comparison			Upland to	River Transp	ort Pathway I	Evaluation		
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	Statistical Distribution	90% UCL (mg/kg) (2)	Notes	Lowest Background Conc. (mg/kg) (4)	Max Conc. Exceeds Background?	Selected Sediment Screening Level (mg/kg) (5)	Is Max Detected Greater than Selected Sediment Screening Level?	Is Chemical	Detected at U from Shor	pland Shoreli eline (feet)?	ne - Distance	Is Chemical Detected in Forebay Sediment?	Is Further Investigation of Overland Runoff Necessary? (6)
			-									0 to 50	50 to 100	100 to 150	150 to 200		
Benzofluoranthenes	10	100%	0.197	31.3	Normal	14.4		NA	na	NA	No SLV	Yes	Yes	No	No	No	Yes - Qual
Benzoic acid	25	32%	0.00002	0.553	Non-parametric	0.0990		NA	na	NA	No SLV	Yes	Yes	Yes	No	No	Yes - Qual
Bis(2-ethylhexyl)phthalate	25	80%	0.00015	3.96	Non-parametric	0.990		NA	na	0.75	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Butyl benzyl phthalate	25	16%	0.000022	0.152	Lognormal	0.113		NA	na	NA	No SLV	Yes	Yes	No	No	No	Yes - Qual
Carbazole	25	52%	0.000027	2.84	Non-parametric	0.626		NA	na	0.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chrysene	25	88%	0.000062	35.3	Non-parametric	7.40		NA	na	0.057	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Dibenz(a,h)anthracene	25	60%	0.000018	1.94	Non-parametric	0.683		NA	na	0.033	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Dibenzofuran	25	48%	0.00002	0.419	Non-parametric	0.0903		NA	na	5.1	No	Yes	Yes	Yes	No	No	No
Diethyl phthalate	25	24%	0.00005	0.0734	Non-parametric	0.0144		NA	na	NA	No SLV	Yes	Yes	Yes	No	No	Yes - Qual
Fluoranthene	25	88%	0.000042	48.3	Non-parametric	11.3		NA	na	0.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fluorene	25	60%	0.000047	1.61	Non-parametric	0.311		NA	na	0.077	Yes	Yes	Yes	Yes	Yes	No	Yes
Indeno(1,2,3-cd)pyrene	25	84%	0.000018	20	Non-parametric	4.26		NA	na	0.017	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Naphthalene	25	40%	0.0000545	0.176	Non-parametric	0.0396		NA	na	0.176	No	Yes	Yes	Yes	No	No	No
РСР	25	8%	0.000072	0.201	Non-parametric	0.0956		NA	na	NA	No SLV	Yes	Yes	No	No	No	Yes - Qual
Phenanthrene	25	84%	0.000013	21.9	Non-parametric	8.52		NA	na	0.042	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pyrene	25	88%	0.000043	67.1	Non-parametric	15.6		NA	na	0.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TPHs																	
Diesel Fuel No. 2	17	82%	22.9	9735	Lognormal	9019		NA	na	NA	No SLV	Yes	Yes	Yes	No	No	Yes - Qual
Diesel Range Hydrocarbons	15	67%	17.0	1000	Non-parametric	674		NA	na	NA	No SLV	No	Yes	Yes	Yes	Yes	Yes
Gasoline Range Hydrocarbons	20	15%	2.10	3.28	Normal	3.03		NA	na	NA	No SLV	Yes	Yes	No	No	No	Yes - Qual
Residual Range Organics	32	81%	31.1	41900	Lognormal	17575		NA	na	NA	No SLV	Yes	Yes	Yes	Yes	No	Yes - Qual

Notes:

COIs identified for in-place upland soils based on samples collected from 0 to 10 feet bgs were investigated for their potential to be transported to the river. For the "Upland to River Transport Pathway Evaluation," only soils from 0 to 1 foot bgs were evaluated, as soils below this depth are not likely to erode. COI = Chemical of Interest

NA = Not Available

na = not applicable

SLV = Screening Level Value

UCL = upper confidence level on the mean

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table. The following essential nutrients were excluded as COIs in soil: calcium, iron, magnesium, and sodium.

(2) For non-detect samples, the 90% UCL was calculated using values determined by the robust method.

(3) The calculated 90% UCL is above the max detected, hence the max detected value is shown.

(4) Lowest of the three available background concentrations in soil (see "Subtask 2.2.2(a) - Preliminary List of COIs in Soil from Landfill: Upland In-Place List A" table).

(5) Lowest of Freshwater Sediment SLVs (ODEQ, 2001) and Bioaccumulation SLVs for Individual Bird, Individual Mammal, Freshwater Fish, and Subsistence Humans (ODEQ, 2007) are selected as final Sediment Screening Levels (Table entitled "Subtask 2.2.1(a,b) - Preliminary List of COIs in Sediment" provides all SLVs considered during selection process).

(6) Analytes for which two or more of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above soil background conc. (inorganics only), 3) max conc. above the selected sediment screening level, 4) no sediment SLV available, 5) detected in upland shoreline soil (within 100 feet of the river), 6) detected in forebay sediment. All COIs that may require further investigation are shown in bold font. COIs for which no SLVs are available but were detected at the shoreline OR in forebay sediment will be retained for a qualitative analysis in the uncertainties section.

(7) Although other VOCs were detected in soils from the Landfill, only those for which sediment SLVs were presented in the Portland Harbor - Joint Source Control Strategy report (December 2005) were included in this river transport evaluation. No DEQ Level II SLVs protective of a freshwater benthic community are available for the detected VOCs, and the actual potential for these chemicals to erode into the river is expected to be low given their low persistence in surface soil, sediment, and surface water. The sediment SLV for tetrachloroethene is a USEPA Sediment Quality Advisory Level (MacDonald 1999).

Table 5-6. List of COIs in Soil from Sandblast Area: Upland Transport,Bradford Island

			Su	mmary Statis	stics			Soil Backgrour	nd Comparison			Upland to	o River Transpo	ort Pathway Ev	aluation		
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	Statistical Distribution	90% UCL (mg/kg) (2)	Notes	Lowest Background Conc. (mg/kg) (4)	Max Conc. Exceeds Background?	Selected Sediment Screening Level (mg/kg) (5)	Is Max Detected Greater than Selected Sediment Screening Level?	Is Chemical System? - D	Detected Outsid istance to Shore 50 to 100	le of Drainage Eline (feet) (6) 100 to 150	Is Chemical Detected Inside of System (CB#1)? (6)	Is Chemical Detected in Forebay Sediment?	Is Further Investigation of Overland Runoff Necessary? (7)
INORGANICS																	
Aluminum	50	100%	1530	23100	Non-parametric	9015		17233	Yes	NA	No SLV	Yes	Yes	Yes	Yes	Yes	Yes
Antimony	50	84%	0.0895	13.7	Gamma	2.06		< 0.5	Yes	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Arsenic	50	98%	0.613	80.9	Non-parametric	10.7		2.98	Yes	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Barium	50	100%	10.7	123	Gamma	70.8		103.83	Yes	NA	No SLV	Yes	Yes	Yes	Yes	Yes	Yes
Beryllium	50	50%	0.0587	0.598	Normal	0.313		1.18	No			Belov	w Soil Backgrou	nd		-	No
Cadmium	50	78%	0.0561	2.61	Non-parametric	1.01		0.58	Yes	0.6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chromium	53	100%	5.27	2650	Non-parametric	788		17.47	Yes	37	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cobalt	50	100%	2.52	25.0	Normal	14.0		15.9	Yes	NA	No SLV	Yes	Yes	Yes	Yes	Yes	Yes
Copper	50	100%	15.8	319	Gamma	62.7		34	Yes	36	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Lead	53	100%	5.24	3260	Gamma	450		13.86	Yes	35	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Manganese	50	100%	167	818	Normal	453		479.33	Yes	1100	No	Yes	Yes	Yes	Yes	Yes	Yes
Niekol	50	6/%	0.0114	0.153	Lognormal	0.0435		0.04	Yes	0.2	No	No	Yes	Yes	Yes	Yes	Yes
Nickel Solonium	50	100%	5.35	1060	Non-parametric	345		19.9	Yes	18	Yes No SLV	Yes	Yes	Yes	Yes	Yes	Yes Ovel
Selenium	50	30%	0.127	0.268	Gamma	0.525		<0.5	I es	NA	NO SLV	I es Polor	INO	res	res	INO	res - Quar
Thellium	50	94% 75%	0.0371	0.208	Normal	0.139		<0.5	No			Belov	v Soil Backgrou	nd			No
Vanadium	50	100%	6.89	89.1	Normal	0.115		<0.5 59	Ves	ΝA	No SI V	Ves		liu Vec	Ves	Ves	Ves
Vanaulum Zinc	50	100%	31.1	1160	Non-parametric	224		56.63	Ves	123	Ves	Ves	Ves	Ves	Ves	Ves	Ves
BUTYLTINS	50	10070	51.1	1100	Non-parametric	224	1	50.05	103	125	103	103	103	103	103	103	103
Dibutyltin	45	19%	0.00353	0.21	Lognormal	0.128	1	NA	na	NA	No SLV	No	Yes	No	Yes	No	Yes - Qual
Monobutyltin	45	24%	0.00328	0.108	Lognormal	0.0143		NA	na	NA	No SLV	No	No	No	Yes	No	Yes - Qual
Tributyltin	45	23%	0.00165	1.86	Non-parametric	0.435		NA	na	0.0017	Yes	No	No	No	Yes	No	Yes
PESTICIDES																	
4,4'-DDE	8	38%	0.000835	0.0017	Gamma	0.0017	(3)	NA	na	0.0015	Yes	No	No	No	Yes	No	Yes
4,4'-DDT	8	50%	0.00339	0.0191	Gamma	0.0125		NA	na	0.000035	Yes	Yes	Yes	No	Yes	No	Yes
Aldrin	8	13%	0.00098	0.00098	Non-parametric	0.000893		NA	na	0.04	No	No	No	No	Yes	No	No
Dieldrin	8	13%	0.00941	0.00941	Non-parametric	0.00853		NA	na	0.003	Yes	No	No	No	Yes	No	Yes
Endosulfan II	8	25%	0.00199	0.0108	Non-parametric	0.00994		NA	na	NA	No SLV	No	No	No	Yes	No	Yes - Qual
Endosulfan sulfate	8	13%	0.00161	0.00161	Non-parametric	0.000940		NA	na	NA	No SLV	No	No	No	Yes	No	Yes - Qual
Endrin	8	13%	0.00845	0.00845	Non-parametric	0.00766		NA	na	0.003	Yes	No	No	No	Yes	No	Yes
Heptachlor epoxide	8	13%	0.000634	0.000634	Non-parametric	0.000357		NA	na	0.0006	Yes	No	No	No	No	No	No
beta-BHC	8	25%	0.000952	0.0125	Non-parametric	0.0114		NA	na	NA	No SLV	Yes	No	No	Yes	No	Yes - Qual
delta-BHC	8	13%	0.00303	0.00303	Non-parametric	0.00275	<u> </u>	NA	na	NA	No SLV	No	No	No	No	No	No
gamma-BHC (Lindane)	8	13%	0.00968	0.00968	Non-parametric	0.00877		NA	na	0.0009	Yes	No	No	No	No	No	No
gamma-Uniordane	8	13%	0.00337	0.00337	Non-parametric	0.00306	1	NA	na	0.000046	Yes	INO	NO	NO	Yes	No	Y es
PCBS	45	970/	0.00264	0.282	L o on o mu o l	0.0705	1	NIA		0.000046	Vaa	Vaa	Vaa	Ne	Vaa	Vaa	Var
VOCs (8)	43	87%	0.00264	0.282	Lognormai	0.0793		INA	па	0.000046	res	res	res	INO	res	res	res
VUCS (8) Tetrachloroethene	14	46%	0.000118	420	Lognormal	420	(3)	ΝA	na	0.5	Ves	Ves	No	No	No	not analyzed	Ves
Trichloroethene	14	4070 71%	0.000118	6.08	Lognormal	6.08	(3)	NA NA	na	2.1	Vec	Vec	Yes	No	No	not analyzed	I CS Voc
SVOCs	14	/1/0	0.000045	0.08	Logilorinai	0.08	(3)	NA .	lia	2.1	105	105	105	110	110	not analyzed	105
2-Methylnanhthalene	15	37%	0.00129	0.124	Lognormal	0.0648	1	NA	na	NA	No SL V	Yes	Yes	No	No	No	Yes - Oual
3- & 4-Methylphenol	14	7%	0.00125	0.00246	Non-parametric	0.00246	(3)	NA	pa	NA	No SLV	No	Yes	No	No	No	No
4-Chloroaniline	14	7%	0.411	0.411	Non-parametric	0.213	(2)	NA	na	NA	No SLV	No	No	No	Yes	No	Yes - Oual
Acenaphthene	15	67%	0.00541	3.2	Gamma	0.820	1	NA	na	0.29	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Acenaphthylene	15	50%	0.00139	0.295	Gamma	0.0861		NA	na	0.16	Yes	Yes	Yes	No	Yes	No	Yes
Anthracene	15	63%	0.00503	2.04	Gamma	0.778	1	NA	na	0.057	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzo(a)anthracene	15	67%	0.0265	12.3	Gamma	4.59	İ	NA	na	0.032	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzo(a)pyrene	15	67%	0.0289	11.7	Gamma	4.32		NA	na	0.032	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Table 5-6. List of COIs in Soil from Sandblast Area: Upland Transport, Bradford Island

			Su	mmary Statis	stics			Soil Backgrou	nd Comparison			Upland to	River Transpo	ort Pathway Ev	aluation		
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	Statistical Distribution	90% UCL (mg/kg) (2)	Notes	Lowest Background Conc. (mg/kg) (4)	Max Conc. Exceeds Background?	Selected Sediment Screening Level (mg/kg) (5)	Is Max Detected Greater than Selected Sediment Screening Level?	Is Chemical l System? - Di	Detected Outsid istance to Shore	le of Drainage lline (feet) (6)	Is Chemical Detected Inside of System (CB#1)? (6)	Is Chemical Detected in Forebay Sediment?	Is Further Investigation of Overland Runoff Necessary? (7)
										(iiig/kg) (5)		0 to 50	50 to 100	100 to 150	(CD#1): (0)		recessury: (7)
Benzo(g,h,i)perylene	15	73%	0.00433	3.83	Gamma	1.68		NA	na	0.3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Benzofluoranthenes	15	73%	0.0077	16.3	Gamma	6.76		NA	na	NA	No SLV	Yes	Yes	Yes	Yes	No	Yes - Qual
Benzoic acid	14	29%	0.0273	0.377	Non-parametric	0.108		NA	na	NA	No SLV	Yes	No	Yes	Yes	No	Yes - Qual
Benzyl alcohol	14	7%	0.00781	0.00781	Non-parametric	0.00781	(3)	NA	na	NA	No SLV	No	Yes	No	No	No	No
Benzyl butyl phthalate	14	11%	0.0205	0.0317	Non-parametric	0.0240		NA	na	NA	No SLV	Yes	No	No	No	No	Yes - Qual
Bis(2-ethylhexyl)phthalate	15	87%	0.00667	43.5	Gamma	19.5		NA	na	0.75	Yes	Yes	Yes	Yes	No	Yes	Yes
Carbazole	14	46%	0.00456	0.524	Non-parametric	0.135		NA	na	0.14	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chrysene	15	67%	0.0327	12	Gamma	4.95		NA	na	0.057	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Di-n-butyl phthalate	14	29%	0.0239	0.251	Non-parametric	0.103		NA	na	0.11	Yes	Yes	No	No	Yes	Yes	Yes
Di-n-octyl phthalate	14	39%	0.0161	0.425	Lognormal	0.224		NA	na	NA	No SLV	Yes	Yes	Yes	Yes	No	Yes - Qual
Dibenz(a,h)anthracene	15	57%	0.00123	1.43	Gamma	0.636		NA	na	0.033	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Dibenzofuran	15	50%	0.000996	0.485	Gamma	0.165		NA	na	5.1	No	Yes	Yes	No	Yes	No	No
Fluoranthene	15	73%	0.00629	28.6	Gamma	12.7		NA	na	0.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fluorene	15	53%	0.00713	0.779	Gamma	0.266		NA	na	0.077	Yes	Yes	No	Yes	Yes	No	Yes
Indeno(1,2,3-cd)pyrene	15	73%	0.00352	4.17	Gamma	1.86		NA	na	0.017	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Naphthalene	15	37%	0.00204	0.256	Gamma	0.165		NA	na	0.176	Yes	Yes	Yes	Yes	No	No	Yes
Phenanthrene	15	80%	0.00247	6.55	Gamma	2.77		NA	na	0.042	Yes	Yes	Yes	No	Yes	Yes	Yes
Pyrene	15	73%	0.00914	32	Gamma	14.26		NA	na	0.01	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TPHs				_					- -								
Diesel Range Hydrocarbons	48	81%	6.44	1440	Non-parametric	457		NA	na	NA	No SLV	Yes	Yes	No	Yes	Yes	Yes
Gasoline Range Hydrocarbons	12	17%	132	3960	Non-parametric	3960	(3)	NA	na	NA	No SLV	No	Yes	No	No	No	No
Motor Oil Range Hydrocarbons	48	83%	29.8	1980	Gamma	450		NA	na	NA	No SLV	Yes	Yes	No	Yes	Yes	Yes

Notes:

COIs identified for in-place upland

CB = Catch Basin

COI = Chemical of Interest

NA = Not Available

na = not applicable

SLV = Screening Level Value

UCL = upper confidence level on the mean

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table. The following essential nutrients were excluded as COIs in soil: calcium, iron, magnesium, and sodium.

(2) For non-detect samples, the 90% UCL was calculated using values determined by the robust method.

(3) The calculated 90% UCL is above the max detected, hence the max detected value is shown.

(4) Lowest of the three available background concentrations in soil (see "Subtask 2.2.2(a) - Preliminary List of COIs in Soil from Sandblast Area: Upland In-Place List A" table).

(5) Lowest of Freshwater Sediment SLVs (ODEQ, 2001) and Bioaccumulation SLVs for Individual Bird, Individual Mammal, Freshwater Fish, and Subsistence Humans (ODEQ, 2007) are selected as final Sediment Screening Levels (Table entitled "Subtask 2.2.1(a,b) - Preliminary List of COIs in Sediment" provides all SLVs considered during selection process).

(6) Locations outside of the drainage system include: HA1, HA2, HA3, HA9, HA10, and HA11. These locations were evaluated in terms of their proximity to the river. Within the drainage system, location CB #1 is the catch basin closest to the river, and all draining ditches from the site flow into to this basin. (No data are available for CB #2.) For conservative purposes, COIs detected within the CB #1 soils were considered a potential source to the river. However, if the soil COI was detected below the SLV and was not detected in forebay sediment, further investigation of the transport pathway was not recommended.

(7) Analytes for which two or more of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above soil background conc. (inorganics only), 3) max conc. above the selected sediment screening level, 4) no sediment SLV available, 5) detected in upla shoreline soil (within 100 feet of the river), 6) detected in forebay sediment. All COIs that may require further investigation are shown in bold font. COIs for which no SLVs are available but were detected at the shoreline OR in forebay sediment will be retained for a qualitative analysis in the uncertainties section.

(8) Although other VOCs were detected in soils from the Sandblast Area, only those for which sediment SLVs were presented in the Portland Harbor - Joint Source Control Strategy report (December 2005) were included in this river transport evaluation. No DEQ Level II SLVs protective of a freshwater benthic community are available for the detected VOCs, and the actual potential for these chemicals to erode into the river is expected to be low given their low persistence in surface soil, sediment, and surface water. The sediment SLVs for these two VOCs are USEPA Sediment Quality Advisory Levels (MacDonald 1999).

the river, and all draining ditches from the site flow into to this basin. (No further investigation of the transport pathway was not recommended. ediment screening level, 4) no sediment SLV available, 5) detected in uplai iment will be retained for a qualitative analysis in the uncertainties section.

Table 5-7. List of COIs in Soil from Pistol Range: Upland Transport, **Bradford Island**

			Summa	ry Statistics			Soil Background	l Comparison		Up	land to River	Transport Pa	thway Evalua	tion	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	Statistical Distribution	90% UCL (mg/kg) (2)	Lowest Background Conc. (mg/kg) (3)	Max Conc. Exceeds Background?	Selected Sediment Screening Level (4)	Is Max Detected Greater than Selected Sediment Screening Level?	Is Chem Shoreline? -	ical Detected Distance to S	at Upland horeline (feet)	Is Chemical Detected in Forebay Sediment?	Is Further Investigation of Overland Runoff Necessary? (5)
										Leven	0 to 50	50 to 100	100 to 150		
INORGANICS															
Copper	10	100%	37.6	53.1	Normal	48.1	34	Yes	36	Yes	No	Yes	No	Yes	Yes
Lead	71	100%	7	1110	Non-parametric	332	13.86	Yes	35	Yes	Yes	Yes	Yes	Yes	Yes
Nickel	10	100%	19	27	Normal	24.4	19.9	Yes	18	Yes	No	Yes	No	Yes	Yes
Zinc	10	100%	74	199	Normal	142	56.63	Yes	123	Yes	No	Yes	No	Yes	Yes

Notes:

COIs identified for in-place upland soils based on samples collected from 0 to 10 feet bgs were investigated for their potential to be transported to the river. For the "Upland to River Transport Pathway Evaluation," only soils from 0 to 1 feet bgs were evaluated, as soils below this depth are not likely to erode.

COI = Chemical of Interest

NA = Not Available

na = not applicable

SLV = Screening Level Value

UCL = upper confidence level on the mean

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table.

(2) For non-detect samples, the 90% UCL was calculated using values determined by the robust method.

(3) Lowest of the three available background concentrations in soil (see "Subtask 2.2.2(a) - Preliminary List of COIs in Soil from Pistol Range: Upland In-Place List A" table).

(4) Lowest of Freshwater Sediment SLVs (ODEQ, 2001) and Bioaccumulation SLVs for Individual Bird, Individual Mammal, Freshwater Fish, and Subsistence Humans (ODEQ, 2007) are selected as final Sediment Screening Levels (Table entitled "Subtask 2.2.1(a,b) -Preliminary List of COIs in Sediment" provides all SLVs considered during selection process).

(5) Analytes for which two or more of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above soil background conc. (inorganics only), 3) max conc. above the selected sediment screening level, 4) no sediment SLV available, 5) detected in upland shoreline soil (within 100 feet of the river), 6) detected in forebay sediment. All COIs that may require further investigation are shown in bold font. COIs for which no SLVs are available but were detected at the shoreline OR in forebay sediment will be retained for a qualitative analysis in the uncertainties section.

Table 5-8. List of COIs in Soil from Bulb Slope: Upland Transport, **Bradford Island**

		Summary Sta	atistics		Soil Backgroun	d Comparison		Upland to River Tra	ansport Pathv	vay Evaluatio	n
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	WDOE Clark County Background Conc. (mg/kg) (2)	Max Conc. Exceeds Background?	Selected Sediment Screening Level (mg/kg) (3)	Is Max Detected Greater than Selected Sediment Screening Level?	Is Chemical Detected at Upland Shoreline?	Is Chemical Detected in Forebay Sediment (4)?	Is Further Investigation of Overland Runoff Necessary? (5)
INORGANICS											
Lead	9	100%	25	444	17	Yes	35	Yes	Yes	Yes	Yes
Mercury	9	100%	0.05	0.74	0.04	Yes	0.2	Yes	Yes	Yes	Yes
PCBs											
Aroclor 1260	9	67%	0.027	0.16	NA	na	0.000046	Yes	Yes	Yes	Yes
TPHs											
Diesel Range Hydrocarbons	9	100%	8.3	170	NA	na	NA	No SLV	Yes	Yes	Yes
Motor Oil Range Hydrocarbons	9	100%	44	410	NA	na	NA	No SLV	Yes	Yes	Yes

Notes:

COIs identified for in-place upland soils based on samples collected from 0 to 10 feet bgs were investigated for their potential to be transported to the river. For the "Upland to River Transport Pathway Evaluation," only soils from 0 to 1 foot bgs were evaluated, as soils below this depth are not likely to erode.

COI = Chemical of Interest

NA = Not Available

na = not applicable

SLV = Screening Level Value

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table.

(2) Natural Background Soil Metals Concentrations in Washington State, October 1994 (Regional 90th percentile values for Clark County selected).

(3) Lowest of Freshwater Sediment SLVs (ODEQ, 2001) and Bioaccumulation SLVs for Individual Bird, Individual Mammal, Freshwater Fish, and Subsistence Humans (ODEQ, 2007) are selected as final Sediment Screening Levels.

(4) All chemicals detected in soil at the bulb slope have the potential to erode into the in-water environment because the entire site resides on a steep incline less than 50 feet from the river. (5) Analytes for which two or more of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above soil background conc. (inorganics only), 3) max conc. above the selected sediment screening level, 4) no sediment SLV available, 5) detected in upland shoreline soil (within 100 feet of the river), 6) detected in forebay sediment. All COIs that may require further investigation are shown in bold font. COIs for which no SLVs are available but were detected at the shoreline OR in forebay sediment will be retained for a qualitative analysis in the uncertainties section.

Table 5-9. List of COIs for Groundwater in Landfill: Discharge to Potable Surface Water, Bradford Island

		Summary	Statistics		Water Benchman	rk Comparison	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/L)	Max Detected Conc. (mg/L)	USEPA Region 9 Tap Water PRGs (mg/L) (2)	Is Max Detected Greater than Tap Water PRGs?	Retain as COI (3)?
INORGANICS (TOTAL)							
Antimony	9	100%	0.000294	0.00389	0.015	No	No
Arsenic	9	100%	0.000728	0.0189	0.000045	Yes	Yes
Barium	9	100%	0.0508	0.304	2.55	No	No
Beryllium	9	89%	0.000222	0.000435	0.073	No	No
Cadmium	9	44%	0.000026	0.00468	0.018	No	No
Chromium	9	89%	0.00336	0.0185	55	No	No
Copper	9	100%	0.00233	0.201	1.46	No	No
Iron	9	100%	0.929	42.9	10.9	Yes	Yes
Lead	9	89%	0.00105	0.0782	0.05	Yes	Yes
Manganese	9	100%	0.0717	2.56	0.88	Yes	Yes
Nickel	9	100%	0.00211	0.117	0.73	No	No
Selenium	9	56%	0.00053	0.00823	0.18	No	No
Silver	9	56%	0.000081	0.000658	0.18	No	No
Thallium	9	100%	0.000115	0.000323	0.0024	No	No
Zinc	9	100%	0.0112	1.75	10.95	No	No
BUTYLTINS							
Dibutyltin	8	75%	0.00000501	0.000447	NA	No PRG	Yes
Monobutyltin	8	75%	0.00000449	0.00024	NA	No PRG	Yes
Tributyltin	8	75%	0.0000171	0.0000601	0.0109	No	No
HERBICIDES							
РСР	8	13%	0.000112	0.000112	0.00056	No	No
p-Nitrophenol	8	13%	0.00084	0.00084	NA	No PRG	Yes
VOCs							
Acetone	9	44%	0.00839	0.0154	5.48	No	No
Carbon disulfide	9	11%	0.00395	0.00395	1.04	No	No
Chloroform	9	22%	0.000609	0.001775	0.00017	Yes	Yes
Methyl isobutyl ketone (MIBK)	9	11%	0.00304	0.00304	2.00	No	No
Tetrachloroethylene	9	11%	0.00195	0.00195	0.00010	Yes	Yes
Vinyl chloride	9	22%	0.000507	0.000531	0.000020	Yes	Yes
cis-1,2-Dichloroethylene	9	11%	0.000791	0.000791	0.061	No	No
SVOCs							
2-Methylnaphthalene	9	44%	0.0000385	0.00036	0.0062	No	No
Acenaphthene	9	22%	0.000111	0.000239	0.37	No	No

Table 5-9. List of COIs for Groundwater in Landfill: Discharge to Potable Surface Water, Bradford Island

		Summary	Statistics		Water Benchman	rk Comparison	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/L)	Max Detected Conc. (mg/L)	USEPA Region 9 Tap Water PRGs (mg/L) (2)	Is Max Detected Greater than Tap Water PRGs?	Retain as COI (3)?
Anthracene	9	11%	0.0000589	0.0000589	1.83	No	No
Bis(2-ethylhexyl)phthalate	9	11%	0.00092	0.00092	0.0048	No	No
Carbolic acid	9	11%	0.000382	0.000382	NA	No PRG	Yes
Di-n-octyl phthalate	9	33%	0.00145	0.00708	1.50	No	No
Diethyl phthalate	9	33%	0.000356	0.0019	29	No	No
Dimethyl phthalate	9	11%	0.000235	0.000235	360	No	No
Isophorone	9	33%	0.000116	0.000282	0.071	No	No
Naphthalene	9	33%	0.000046	0.000157	0.0062	No	No
Phenanthrene	9	22%	0.00008	0.000108	NA	No PRG	Yes
Pyrene	9	11%	0.000031	0.000031	0.18	No	No
p-Dichlorobenzene	9	11%	0.0000258	0.0000258	NA	No PRG	Yes
TPHs							
Diesel Fuel No. 2	9	100%	0.122	1.1	NA	No PRG	Yes
Residual Range Organics	9	100%	0.275	1.27	NA	No PRG	Yes
Gasoline Range Hydrocarbons	9	22%	0.0631	0.281	NA	No PRG	Yes

Notes:

Statistics are provided for total concentrations of inorganic analytes and total concentrations of organic analytes.

COI = Chemical of Interest

NA = not available

na = not applicable

PRG = Preliminary Remediation Goal

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table.

(2) USEPA 2004 used with exception of Lead for which the ODEQ Water Quality Criterion - Drinking Water MCL was used.

(3) Analytes for which both of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above the Region 9 Tap Water PRG. (No background dataset available for groundwater.) Also, analytes lacking a Tap Water PRG were retained as COIs.

All COIs are shown in bold font.

Table 5-10. List of COIs for Groundwater in Sandblast Area: Discharge to Potable Surface Water, Bradford Island

		Summar	v Statistics		Water Benchmark	Comparison	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/L)	Max Detected Conc. (mg/L)	USEPA Region 9 Tap Water PRGs (mg/L) (2)	Is Max Detected Greater than Tap Water	Retain as COI (3)?
			(ing/L)	(ing/L)		PRGs?	
INORGANICS (TOTAL)			-				
Aluminum	10	100%	0.0742	17.9	36.5	No	No
Antimony	10	90%	0.000233	0.00157	0.015	No	No
Arsenic	10	75%	0.0000825	0.0077	0.000045	Yes	Yes
Barium	10	100%	0.003755	0.0978	2.55	No	No
Beryllium	10	40%	0.000157	0.000785	0.073	No	No
Chromium	10	100%	0.00261	0.0318	55	No	No
Cobalt	10	60%	0.00168	0.0131	0.73	No	No
Copper	10	100%	0.00138	0.204	1.46	No	No
Iron	10	90%	0.0844	25.9	10.9	Yes	Yes
Lead	10	70%	0.000058	0.0137	0.05	No	No
Manganese	10	100%	0.00210	0.70850	0.88	No	No
Mercury	10	20%	0.000076	0.0001	0.011	No	No
Nickel	10	90%	0.00102	0.0214	0.73	No	No
Selenium	10	100%	0.000815	0.00206	0.18	No	No
Silver	10	90%	0.0000195	0.000376	0.18	No	No
	10	/0%	0.000043	0.000146	0.0024	No	NO
Vanadium	10	100%	0.00182	0.0776	0.036	Yes	Yes
	10	100%	0.00288	0.0444	10.95	No	No
INORGANICS (DISSOLVED)	10	6501	0.00441	1.07	26.5	N	N
Aluminum	10	65%	0.00441	1.37	36.5	No	No
Antimony	10	100%	0.000149	0.00167	0.015	No	NO
Arsenic	10	100%	0.000262	0.00136	0.000045	Yes	Yes
Barium	10	100%	0.00339	0.02065	2.55	No	NO
Cadmium	10	10%	0.00003	0.00003	0.018	No	NO
Coholt	10	100%	0.000838	0.00429	0.72	No	N0 No
Connor	10	75%	0.000958	0.00508	0.73	No	No No
Lion	10	10%	0.000732	0.00438	1.40	No	No
Lood	10	40%	0.0373	0.470	10.9	No	No
Managanaga	10	100%	0.00019	0.000378	0.03	No	No
Manganese	10	100%	0.00171	0.587	0.88	No	No
Niekol	10	20%	0.000408	0.0000	0.011	No	No
Salanium	10	100%	0.000403	0.0021	0.73	No	No
Silver	10	80%	0.000233	0.00079	0.18	No	No
Thallium	10	30%	0.000024	0.000079	0.0024	No	No
Vanadium	10	60%	0.000582	0.00261	0.036	No	No
Zinc	10	35%	0.001047	0.00201	10.95	No	No
BUTYLTINS	10	5570	0.001017	0.00510	10.75	110	110
Monobutyltin	4	50%	0.0000052	0.00000671	NA	No PRG	Yes
Tributyltin	4	38%	0.00000154	0.00000435	0.0109	No	No
PESTICIDES		5070	0.00000154	0.00000435	0.010)	110	110
Methoxychlor	3	50%	0.000000621	0.00000521	0.18	No	No
gamma-BHC (Lindane)	3	100%	0.00000093	0.00000249	0.000052	No	No
VOCs	-						
1.1.1-Trichloroethane	10	70%	0.0000701	0.00223	3.17	No	No
1,1-Dichloroethane	10	50%	0.0000555	0.002515	0.81	No	No
1,1-Dichloroethene	10	20%	0.0000624	0.001165	0.34	No	No
1.2.4-Trimethylbenzene	10	30%	0.0000317	0.0000485	0.012	No	No
1.3.5-Trimethylbenzene	10	10%	0.0000297	0.0000297	0.012	No	No
2.2-Dichloropropane	10	30%	0.000117	0.000179	NA	No PRG	Yes
Acetone	10	25%	0.00091	0.00388	5.48	No	No
Benzene	10	60%	0.0000545	0.000137	0.00035	No	No
Bromoform	10	10%	0.000151	0.000151	0.0085	No	No
Carbon disulfide	10	10%	0.0000619	0.0000619	1.04	No	No

Table 5-10. List of COIs for Groundwater in Sandblast Area: Discharge to Potable Surface Water, Bradford Island

		Summar	y Statistics		Water Benchmark	Comparison	
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/L)	Max Detected Conc. (mg/L)	USEPA Region 9 Tap Water PRGs (mg/L) (2)	Is Max Detected Greater than Tap Water PRGs?	Retain as COI (3)?
Chloroform	10	20%	0.0000907	0.000174	0.00017	Yes	Yes
Ethylbenzene	10	40%	0.0000357	0.0000447	1.34	No	No
Isopropylbenzene	10	10%	0.0000197	0.0000197	0.66	No	No
Naphthalene	10	35%	0.0000206	0.001	0.0062	No	No
Tetrachloroethene	10	100%	0.000336	0.0545	0.00010	Yes	Yes
Toluene	10	60%	0.0000917	0.000299	0.72	No	No
Trichloroethene	10	90%	0.0000904	0.0437	0.000028	Yes	Yes
Vinyl chloride	10	15%	0.000132	0.000321	0.000020	Yes	Yes
cis-1,2-Dichloroethene	10	90%	0.0000948	0.341	0.061	Yes	Yes
m,p-Xylene	10	40%	0.0000823	0.000132	0.21	No	No
o-Xylene	10	40%	0.0000304	0.0000735	0.21	No	No
trans-1,2-dichloroethene	10	30%	0.0000955	0.0018	0.12	No	No
SVOCs							
2-Methylnaphthalene	9	61%	0.0000166	0.000153	0.0062	No	No
Acenaphthene	9	44%	0.00000361	0.000023	0.37	No	No
Anthracene	9	11%	0.0000126	0.0000126	1.83	No	No
Benzo(a)pyrene	9	11%	0.00000895	0.00000895	0.0000092	No	No
Benzofluoranthenes	9	11%	0.0000173	0.0000173	NA	No PRG	Yes
Benzyl alcohol	7	29%	0.00005	0.0000523	10.95	No	No
Benzyl butyl phthalate	9	67%	0.00012	0.000228	7.30	No	No
Bis(2-ethylhexyl)phthalate	9	11%	0.000408	0.000408	0.0048	No	No
Di-n-butylphthalate	9	67%	0.0001	0.000239	3.65	No	No
Dibenz(a,h)anthracene	9	11%	0.00000671	0.00000671	0.0000092	No	No
Dibenzofuran	9	22%	0.0000237	0.0000421	0.012	No	No
Fluoranthene	9	11%	0.0000311	0.0000311	1.46	No	No
Fluorene	9	56%	0.00000461	0.0000351	0.24	No	No
Indeno(1,2,3-cd)pyrene	9	11%	0.00000797	0.00000797	0.000092	No	No
Isophorone	9	22%	0.0000486	0.0000842	0.071	No	No
Naphthalene	9	50%	0.0000173	0.001	0.0062	No	No
Phenanthrene	9	89%	0.00000759	0.000144	NA	No	Yes
Phenol	8	63%	0.0000111	0.0000291	10.95	No	No
Pyrene	9	28%	0.00000239	0.0000261	0.18	No	No
TPHs							
Gasoline Range Hydrocarbons	6	33%	0.0147	0.0209	NA	No PRG	Yes
Motor Oil Range Hydrocarbons	4	25%	0.113	0.113	NA	No PRG	Yes

Notes:

Statistics are provided for total and dissolved concentrations of inorganic analytes and total concentrations of organic analytes.

COI = Chemical of Interest

NA = not available

na = not applicable

PRG = Preliminary Remediation Goal

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table.

(2) USEPA 2004 used with exception of Lead for which the ODEQ Water Quality Criterion - Drinking Water MCL was used.

(3) Analytes for which both of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above the Region 9 Tap Water PRG. (No background dataset available for groundwater.) Also, analytes lacking a Tap Water PRG were retained as COIs. All COIs are shown in bold font.

Table 5-11. List of COIs in Sediment from Bonneville Dam Forebay, Bradford Island

	Sediment Data Summary Statistics Reference Area Data Summary Statistics						Selection of COIs						
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	No. Usable Data Points	Detection Frequency (%)	Min	Max	Statistical Distribution	95% Confidence 95% Coverage UTL (mg/kg) (2)	Notes	Max Conc. Exceeds Background?	Retain as COI?
INORGANICS		-		-				-					
Aluminum	96	100%	5360	26500	20	100%	9320	23100	Normal	24448		Yes	Yes
Antimony	4	100%	0.3	0.9	1	100%	0.4	0.4	na	0.4	(3)	Yes	Yes
Arsenic	24	100%	0.7	32	20	100%	2.1	8.8	Lognormal	8.57		Yes	Yes
Barium	96	100%	25.8	283	20	100%	64.2	177	Normal	203		Yes	Yes
Beryllium	96	82%	0.1	0.6	20	90%	< 0.1	0.5	Normal	0.495		Yes	Yes
Cadmium	82	39%	0.2	4.1	20	70%	< 0.3	0.9	Normal	1.06		Yes	Yes
Chromium	96	100%	11.7	620	20	100%	14.6	27	Normal	27.2		Yes	Yes
Cobalt	24	100%	6.7	23.6	20	100%	7.3	15.1	Normal	16.1		Yes	Yes
Copper	96	100%	17.2	6577	20	100%	12.1	51.4	Lognormal	57.1		Yes	Yes
Lead	96	100%	2.9	121	20	100%	4.7	16	Normal	18.4		Yes	Yes
Manganese	24	100%	202	773	20	100%	317	815	Normal	814		No	No
Mercury	38	68%	0.03	1.1	20	60%	< 0.03	0.21	Normal	0.227		Yes	Yes
Nickel	96	100%	12	520	20	100%	14	39	Lognormal	38.2		Yes	Yes
Thallium	96	60%	0.1	0.9	20	63%	< 0.1	0.4	Lognormal	0.444		Yes	Yes
Vanadium	24	100%	19.3	93.7	20	100%	54.9	88.2	Normal	89.3		Yes	Yes
Zinc	96	100%	50.6	787	20	100%	72	154	Normal	175		Yes	Yes
PCBs													
Aroclor 1254	96	86%	0.0009	605	na	na	na	na	na	na		na	Yes
Aroclor 1260	96	5%	0.0058	0.195	na	na	na	na	na	na		na	Yes
SVOCs													
Acenaphthene	96	5%	0.00973	0.036	na	na	na	na	na	na		na	Yes
Anthracene	96	5%	0.0105	0.14	na	na	na	na	na	na		na	Yes
Benzo(a)anthracene	96	30%	0.0095	0.89	na	na	na	na	na	na		na	Yes
Benzo(a)pyrene	96	30%	0.0095	0.655	na	na	na	na	na	na		na	Yes
Benzo(b)fluoranthene	96	31%	0.0089	0.75	na	na	na	na	na	na		na	Yes
Benzo(g,h,i)perylene	96	22%	0.012	0.441	na	na	na	na	na	na		na	Yes
Benzo(k)fluoranthene	96	30%	0.0108	0.715	na	na	na	na	na	na		na	Yes
Bis(2-ethylhexyl)phthalate	53	75%	0.01	3.8	na	na	na	na	na	na		na	Yes
Carbazole	24	13%	0.018	0.12	na	na	na	na	na	na		na	Yes
Chrysene	96	34%	0.011	1.2	na	na	na	na	na	na		na	Yes
Dibenz(a,h)anthracene	96	7%	0.0107	0.167	na	na	na	na	na	na		na	Yes
Di-n-Butyl Phthalate	24	17%	0.015	0.087	na	na	na	na	na	na		na	Yes
Fluoranthene	96	33%	0.00803	1.7	na	na	na	na	na	na		na	Yes
Indeno(1,2,3-cd)pyrene	96	22%	0.01	0.487	na	na	na	na	na	na		na	Yes
p-Cresol	24	13%	0.018	0.18	na	na	na	na	na	na		na	Yes
Phenanthrene	96	27%	0.00548	0.51	na	na	na	na	na	na		na	Yes
Pyrene	96	34%	0.007	2	na	na	na	na	na	na		na	Yes
TPHs		•							•	•			
Diesel Range Hydrocarbons	24	54%	3.2	515	na	na	na	na	na	na		na	Yes
Motor Oil Range Hydrocarbons	24	79%	11	175	na	na	na	na	na	na		na	Yes

Notes:

All bolded chemicals were retained as COIs, which are defined as those analytes with a 5% detection frequency or greater and, for inorganics only, with a maximum detected concentration above the reference area UTL.

COI = Chemical of Interest

NA = not available

na = not applicable

UTL = upper threashold limit

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table. The following essential nutrients were excluded as COIs in sediment: calcium, iron, magnesium, potassium, and sodium.

(2) For non-detect samples, the 95% UTL was calculated using values determined by the robust regression on order statistics (Helsel 2005).

(3) Sample size was too small to calculate the 95% UTL, hence the max detected value is shown.

Table 5-12. List of COIs in Sediment from Bonneville Dam Forebay with Potential to Migrate Downstream **Bradford Island**

	Sedin	nent Data Sur	mmary Stati	istics	Reference Area Data Summary Statistics						Sedime	nt Benchmarl	k Compariso	n			Identification of Foreba	ay to Downstream C	OIs						
	Sculi	iciit Data Bui	innary Stati	istics				.iei enee n	irta Data Sum	indi y Statistics			Oregon DEO	Oregon DI	EQ Sediment	Bioaccumulat	tion SLV (5)	Felested							
Analyte (1)	No. Usable Data Points	Detection Frequency (%)	Min Detected Conc. (mg/kg)	Max Detected Conc. (mg/kg)	No. Usable Data Points	Detection Frequency (%)	Min	Max	Statistical Distribution	Reference (95% Confidence 95% Coverage UTL) (mg/kg) (2)	Notes	Max Conc. Exceeds Reference?	Level II SLV for Freshwater Sediment (mg/kg) (4)	Birds - Individual (mg/kg dry wt)	Mammals - Individual (mg/kg dry wt)	Fish - Freshwater (mg/kg dry wt)	Humans - Subsistence (mg/kg dr wt)	Selected Sediment Screening y Level (mg/kg) (6)	Is Max Detected Greater than Selected Sediment Screening Level?	Extent Defined Near Bradford Island?	Extent Defined in Rest of Forebay?	Point Sources Identified?	Decreasing Trend Away from Source?	SLVs available?	Retain as COI (7)?
INORGANICS						•											•						•		
Aluminum	96	100%	5360	26500	20	100%	9320	23100	Normal	24448		Yes	NA	NA	NA	NA	NA	NA	No SLV	Yes	No			No	No (a)
Antimony	4	100%	0.3	0.9	1	100%	0.4	0.4	na	0.4	(3)	Yes	3	NA	NA	NA	NA	3	No					Yes	No
Arsenic	24	100%	0.7	32	20	100%	2.1	8.8	Lognormal	8.57		Yes	6	Sci	reening levels	below backgro	ound	6	Yes	Yes	No	No	No	Yes	Yes
Barium	96	100%	25.8	283	20	100%	64.2	177	Normal	203		Yes	NA	NA	NA	NA	NA	NA	No SLV	Yes	No			No	No (a)
Beryllium	96	82%	0.1	0.6	20	90%	< 0.1	0.5	Normal	0.495		Yes	NA	NA	NA	NA	NA	NA	No SLV	Yes	No			No	Yes
Cadmium	82	39%	0.2	4.1	20	70%	< 0.3	0.9	Normal	1.06		Yes	0.6	Sci	reening levels	below backgro	ound	0.6	Yes	Yes	Yes	Yes		Yes	Yes
Chromium	96	100%	11.7	620	20	100%	14.6	27	Normal	27.2		Yes	37	NA	NA	NA	NA	37	Yes	Yes	Yes	Yes	Yes	Yes	No
Cobalt	24	100%	6.7	23.6	20	100%	7.3	15.1	Normal	16.1		Yes	NA	NA	NA	NA	NA	NA	No SLV					No	Yes
Copper	96	100%	17.2	6577	20	100%	12.1	51.4	Lognormal	57.1		Yes	36	NA	NA	NA	NA	36	Yes	Yes	Yes	Yes		Yes	Yes
Lead	96	100%	2.9	121	20	100%	4.7	16	Normal	18.4		Yes	35	Sci	reening levels	below backgro	ound	35	Yes	Yes	Yes	Yes	Yes	Yes	No
Manganese	24	100%	202	773	20	100%	317	815	Normal	814		No	na	na	na	na	na	na	na					NA	No (b)
Mercury	38	68%	0.03	1.1	20	60%	< 0.03	0.21	Normal	0.227		Yes	0.2	Sci	reening levels	below backgro	ound	0.2	Yes	Yes	Yes	No	No	Yes	Yes
Nickel	96	100%	12	520	20	100%	14	39	Lognormal	38.2		Yes	18	NA	NA	NA	NA	18	Yes	Yes	Yes	Yes	Yes	Yes	No
Thallium	96	60%	0.1	0.9	20	63%	< 0.1	0.4	Lognormal	0.444		Yes	NA	NA	NA	NA	NA	NA	No SLV	Yes	No			No	Yes
Vanadium	24	100%	19.3	93.7	20	100%	54.9	88.2	Normal	89.3		Yes	NA	NA	NA	NA	NA	NA	No SLV	Yes	No			No	Yes
Zinc	96	100%	50.6	787	20	100%	72	154	Normal	175		Yes	123	NA	NA	NA	NA	123	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PCBs							-	1	1					1	Т	-		-							4
Aroclor 1254	96	86%	0.0009	605	na	na	na	na	na	na		na	0.007	0.057	0.044	0.022	0.000046	0.000046	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Aroclor 1260	96	5%	0.0058	0.195	na	na	na	na	na	na		na	0.007	0.057	0.044	0.022	0.000046	0.000046	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SVOCs				0.004		T	-	-	T				0.00		1		1	0.00		**					1
Acenaphthene	96	5%	0.00973	0.036	na	na	na	na	na	na		na	0.29	NA	NA	NA	NA	0.29	No	Yes	Yes	No	Yes	Yes	No
Anthracene	96	5%	0.0105	0.14	na	na	na	na	na	na		na	0.057	NA	NA	NA	NA	0.057	Yes	Yes	Yes	No	Yes	Yes	No
Benzo(a)anthracene	96	30%	0.0095	0.89	na	na	na	na	na	na		na	0.032	NA	NA	NA	NA	0.032	Yes	Yes	Yes	No	Yes	Yes	No
Benzo(a)pyrene	96	30%	0.0095	0.655	na	na	na	na	na	na		na	0.032	NA	NA	NA	NA	0.032	Yes	Yes	Yes	No	Yes	Yes	No
Benzo(b)fluoranthene	96	31%	0.0089	0.75	na	na	na	na	na	na	+	na	NA 0.2	NA	NA	NA	NA	NA 0.2	NO SLV	Yes	Yes	NO	Yes	NO	NO
Benzo(g,h,1)perylene	96	22%	0.012	0.441	na	na	na	na	na	na	+ -	na	0.3	NA	NA	NA	NA	0.3	Yes	Yes	Yes	No	Yes	Yes	NO
Denzo(K)Huorantnene	90	30%	0.0108	0./15	na	na	na	na	na	na	+	na	0.027	INA NA	NA NA	NA NA	NA NA	0.027	res	Yes	res	INO No	res	r es Vac	INO No
Dis(2-einyinexyi)phthalate	24	/3%	0.01	3.8	na	na	na	na	na	na	+	na	0.75	INA NA	NA NA	NA NA	NA NA	0.75	res	res	res	1N0	res	r es Vac	INO No
Chrysono	24	2404	0.018	0.12	na	na	na	na	na	na	+	na	0.14	INA NA	INA NA	INA NA	INA NA	0.14	INU	Var	Vac	No	Var	I es Vac	No
Dibanz(a b)anthracana	96	54% 70/	0.0117	0.167	na	na	na	na	na	na		na	0.037	INA NA	NA	NA	NA	0.037	Tes	Tes Vac	Tes	No	T es Vac	Vas	No
Dibeliz(a,ii)alitiliacelle	90	170/	0.0107	0.107	na	na	na	na	na	na		na	0.055	NA	NA	NA	NA	0.033	No	105	105	NO	105	Vac	No
Di-ii-Butyi pitnaiate	24	2204	0.013	0.087	na	na	na	na	na	na		na	0.11	INA NA	1NA 260	NA 27	62	0.111	INO Voc	Vac	Vac	No	Vac	Vas	No
Indeno(1.2.3.cd)pyrapa	96	22%	0.00805	0.487	na	na	na	na	na	na	+ +	na	0.017	NA NA	300 NA	57 NA	NA	0.111	Vec	Vas	Vac	No	Vas	Vec	No
n Crosol	90	120/	0.01	0.48/	na	na	na	na	na	na		ila	0.017	INA NA	NA	NA	NA	0.017	No SLV	Tes Vac	Vac	No	T es Vac	Vac	No
p-Cresor Dhononthrono	24	13%	0.018	0.16	na	na	na	na	na	na	+	na	0.042	INA NA	INA NA	INA NA	INA NA	0.042	NO SL V	I es Vac	I CS Voc	No	I CS Vac	I es Vac	No
Puropo	90	2/70	0.00348	0.51	na	na	na	na	na	na	+	na	0.042	INA NA	18.000	1.0	1NA 47	0.042	I es Voc	I es Vac	I CS Voc	No	I CS Vac	I es Vac	No
TDHe	90	34%	0.007	2	па	па	па	па	па	па		па	0.055	INA	18,000	1.9	47	0.055	res	1 es	1 08	110	1 es	I es	INO
Diesel Pange Hydrocarbons	24	5/1%	3.2	515	P 2		na	na		n	<u> </u>	n 2	NA	NA	NA	NA	NA	NA	No SLV	Vas	Vac	No		No	Vec
Motor Oil Pange Hydrocarbons	24	70%	3.2	175	na	na	na	na	na	na	+ +	na	NA	NA	NA	NA	NA	NA	No SL V	Vac	Vac	No		No	Vec
Motor OII Kange Hydrocardons	24	/9%	11	1/3	na	na	па	па	na	па		па	INA	INA	INA	INA	INA	INA	INO SL V	res	1 05	1NO		1N0	1 es

<u>Notes:</u> COI = Chemical of Interest

NA = Not Available

na = not applicable. No further screening needed for manganese as max concentration was below reference concentration. Comparison to reference concentration was not applicable for organics.

SLV = Screening Level Value

UTL = upper threashold limit

(1) Only chemicals with detection frequency equal to or greater than 5% are shown in the table. The following essential nutrients were excluded as COIs in sediment: calcium, iron, magnesium, potassium, and sodium.

(2) For non-detect samples, the 95% UTL was calculated using values determined by the robust regression on order statistics (Helsel 2005).

(3) Sample size was too small to calculate the 95% UTL, hence the max detected value is shown.

(4) Oregon Department of Environmental Quality, December 2001. SLV for Aroclor 1254 used as a surrogate for Aroclor 1260.

(5) Guidance for Assessing Bioaccumulative Chemicals of Concern in Sediment (Final), Oregon Department of Environmental Quality, January 2007. Risk-based SLVs for sediment calculated in this report were reported below background levels for Arsenic, Cadmium, Lead, and Mercury. ODEQ recommends the use of site-specific reference concentrations for these chemicals. SLVs for Total PCBs (as Aroclors) used as SLVs for individual Aroclors 1254 and 1260.

(6) Lowest of Freshwater Sediment SLVs (ODEQ, 2001) and Bioaccumulation SLVs for Individual Bird, Individual Mammal, Freshwater Fish, and Subsistence Humans (ODEQ, 2007) are selected as final Sediment Screening Levels.

(7) Analytes for which all of the following criteria were met were retained as COIs: 1) detection frequency equal to or greater than 5%, 2) max conc. above reference conc. (inorganics only), 3) max conc. above reference conc. (inorganics only), and conc. above reference conc. (inorganics only), and conc. above reference conc. (inorganics only), because the selected sediment screening level. Also, most analytes lacking any SLVs were retained as COIs. All COIs are shown in bold font. (a) No SLV available. However, this chemical was not retained as a COI based on its low potential for toxicity.

(b) Not retained as COI based on comparison to reference.

-- no information

Table 5-13. List of COIs for Surface Water: Bonneville Lock and Dam, Bradford Island

		Summary St	atistics							Selection of CO	Is				
							Oregon Water (mg	Quality Criteria (L) (3)		National Ar	nbient Water Quali (mg/L) (4)	ty Criteria			
Analyte	No. Usable Data Points (1)	Detection Frequency (%)	Min Detected Conc. (mg/L)	Max Detected Conc. (mg/L)	Oregon DEQ Level II SLV for Aquatic Life (mg/L) (2)	Aquatic Life Freshwater Chronic	Human Health - Water and Fish Ingestion	Human Health - Fish Consumption Only	Drinking Water MCL	Aquatic Life Freshwater CCC	Human Health - Water and Organism	Human Health - Organism Only	Selected Water Quality Criteria (5)	Is Max Detected Greater than Water Quality Criteria?	Retain as COI? (8)
INORGANICS (TOTAL)															
Copper	1	100%	0.0014	0.0014	0.009	0.009	1.3	NA	NA	0.009	1.3	NA	0.009	No	No
INORGANICS (DISSOLVED)		-													
Copper	1	100%	0.0024	0.0024	0.009	0.009	1.3	NA	NA	0.009	1.3	NA	0.009	No	No
PCBs		-													
Total PCBs (as Aroclors) (6)	3	60%	1.98E-08	5.00E-06	0.094	0.000014	6.40E-08	6.40E-08	NA	0.000014	6.40E-08	6.40E-08	6.40E-08	Yes	Yes
Total PCBs (as Congeners) (6)	2	100%	3.06E-08	6.89E-08	0.000014	0.000014	6.40E-08	6.40E-08	NA	0.000014	6.40E-08	6.40E-08	6.40E-08	Yes	Yes
Dioxin-like PCBs (2,3,7,8-TCDDeq for fish) (7)	2	100%	3.50E-14	4.60E-14	NA	3.80E-08	5.00E-12	5.10E-12	NA	NA	5.00E-12	5.10E-12	5.00E-12	No	No
PAHs		1					1		1			•	1		
Benzo(a)anthracene	2	50%	1.10E-08	1.10E-08	2.70E-05	NA	3.80E-06	1.80E-05	NA	NA	3.80E-06	1.80E-05	3.80E-06	No	No
Benzo(a)pyrene	2	50%	6.00E-08	6.00E-08	1.40E-05	NA	3.80E-06	1.80E-05	NA	NA	3.80E-06	1.80E-05	3.80E-06	No	No
Benzo(b/j)fluoranthene	2	50%	8.00E-08	8.00E-08	NA	NA	3.80E-06	1.80E-05	NA	NA	NA	NA	NA	No SLV	Yes
Benzo(g,h,i)perylene	2	50%	6.30E-08	6.30E-08	NA	NA	NA	NA	NA	NA	NA	NA	NA	No SLV	Yes
Benzo(k)fluoranthene	2	100%	5.00E-09	4.90E-08	NA	NA	3.80E-06	1.80E-05	NA	NA	3.80E-06	1.80E-05	3.80E-06	No	No
Chrysene	2	100%	5.50E-08	1.52E-07	NA	NA	3.80E-06	1.80E-05	NA	NA	3.80E-06	1.80E-05	3.80E-06	No	No
Dibenz(a,h)anthracene	2	50%	1.20E-08	1.20E-08	NA	NA	3.80E-06	1.80E-05	NA	NA	3.80E-06	1.80E-05	3.80E-06	No	No
Fluoranthene	2	50%	4.62E-07	4.62E-07	6.16E-03	NA	0.13	0.14	NA	NA	1.30E-01	1.40E-01	6.16E-03	No	No
Indeno(1,2,3-cd)pyrene	2	50%	5.00E-08	5.00E-08	NA	NA	3.80E-06	1.80E-05	NA	NA	3.80E-06	1.80E-05	3.80E-06	No	No
Phenanthrene	2	50%	7.88E-07	7.88E-07	6.30E-03	NA	NA	NA	NA	NA	NA	NA	6.30E-03	No	No
Pyrene	2	50%	1.71E-07	1.71E-07	NA	NA	8.30E-01	4.00E+00	NA	NA	8.30E-01	4.00E+00	8.30E-01	No	No

Notes:

CCC = Criteria Continuous Concentration

COI = Chemical of Interest

MCL = Maximum Contaminant Level

mg/L = milligrams per liter

NA = not available

SLV = Screening Level Value

(1) n=1 (primary and duplicate samples) for Total PCBs (as Aroclors) from 2 high-volume and 1 grab samples, and n=2 (primary samples) for Total PCBs (as Aroclors) from 2 high-volume samples). Only detected chemicals reported.

(2) Oregon DEQ Guidance for Ecological Risk Assessment 2001.

(3) Oregon DEQ Water Quality Criteria Summary (OAR 340-041, Table 33A, 33B, and 33C).

In the absence of site-specific hardness data, a hardness of 100 mg/L was assumed in the development of the freshwater chronic WQC for copper (EPA 2006).

(4) National Recommended Ambient Water Quality Criteria (EPA 2006).

(5) Lowest of DEQ Level II SLV Protective of freshwater Aquatic life, DEQ Water Quality Criteria (for Aquatic Life Freshwater Chronic, Water and Fish Ingestion, Fish Consumption, and Drinking Water MCL), or National Ambient Water Quality Criteria (for Freshwater Chronic, Water and Organism) are the selected Water Quality Criteria.

(6) Total PCBs (as Arcolors) and Total PCBs (as Congeners) were calculated as the sum of the detected concentrations for individual Aroclors or congeners and one half maximum detection limit for the non-detected samples.

(7) 2,3,7,8-TCDD Toxicity Equivalent (TCDDeq) for the 12 dioxin-like PCBs calculated with World Health Organization toxic equivalency factors (TEFs) for fish (Vandenberg et al. 1998). 2,3,7,8-TCDDeqs were calculated as described in previous footnote for Total PCBs (as Aroclors) and Total PCBs (as Congeners). (8) Analytes for which both of the following criteria were met were retained as COIs: 1) detected at least once, 2) max conc. above the Selected Water Quality Criteria. (No background dataset available for surface water.) Also, analytes lacking a Water Quality Criteria were retained as COIs. All COIs are shown in bold font.

OU/AOPC **Risk Assessment Level*** Scoping Level (I) Screening Level (II) **Baseline (III and IV)** Landfill (including gully Complete except for soil-to-river pathway with A Human Health Baseline Risk Assessment (URS Complete respect to bird, mammal SLVs. This screening 2004a) was submitted to DEQ and commented area) may be done preliminarily, but erosive soils upon; both this human health assessment and a need to be identified in the RI. baseline ecological assessment remain to be completed during the RI. This screening may be done preliminarily, but To be accomplished during RI. Sandblast Area (including Complete hazardous waste storage erosive soils need to be identified in the RI. area, former transformer oil release area, and former drum storage area) Complete. See **Pistol Range** Based upon knowledge of site activity, only Limited risk assessment for COPC will be Section 4.3 metals and wood treatment chemicals were accomplished during the RI measured. Screening will be done as part of the RI. COPC screening will be accomplished during Bulb Slope Complete Risk assessment for COPC will be accomplished **RI/FS Work Plan** during the RI. Goose Island sediments Complete, but few Data will be acquired in RI to accomplish Risk assessment will be accomplished during RI. samples screening. Nearly complete. COPC screening will be Additional data collection will occur as part of the Forebay vicinity (including Complete mouth of Eagle Creek and RI, after completion of interim removal action. completed as part of the RI. Screening and baseline risk assessments will be Southern Lagoon) completed as part of the RI. Data may be needed on tissue and relationship to Complete with this Incomplete. Nature and extent delineation and Downstream of Bonneville Work Plan risk screening will be accomplished during the sediment. Risk assessment will be accomplished Dam RI. during RI. Risk assessment will be accomplished during RI. Surface Water Complete with this Incomplete. Additional data will be collected Work Plan for as part of the RI. All data will be screened during the RI. Incomplete. COI are assumed to be the same as Data are needed on tissue and relationship to **Reference** Areas Complete—these are for background in the Forebay. Screening for COPC will occur sediment. Risk assessment will be accomplished comparison in parallel to the sites potentially impacted by during RI. releases from Bradford Island vicinity during the RI.

Table 6-1. Current Status of Risk Evaluation by OU and AOPC

* Scoping and Screening Level Assessments for ERA are equivalent to Problem Formulation phase of HHRA.

Table 8-1. General Data Quality Objectives for Remedial Investigation for River OU

Problem Statement:

Additional data are required to characterize the Bradford Island site OUs for preparation of an RI report and baseline risk assessment, and to permit evaluation of engineering alternatives to address areas requiring remediation.

	Data	Investigation	Decision Criteria/
Decisions to Be Made	Requirements	Strategy	Performance Specifications
Determine the nature and magnitude of sediment contamination in the Forebay	Sediment chemical data	Collect surface sediment from within the forebay. Sample locations will be at 21 randomly selected grid stations. 14 of the 21 stations will be initially analyzed and the remaining 7 stations will be analyzed if necessary to obtain the statistical power for comparison to upstream.	Laboratory reporting limits will be based on screening levels. Laboratory analyses will be based on the chemicals of interest as defined in the Management Plan.
Determine the nature and extent of sediment impacts related to releases from the site downstream of the dam.	Sediment chemical data	Collect surface sediment samples from 5 locations between the tailrace of the dam and Pierce and Ives Islands (River Mile 142).	Locations of the sediment samples will be based on identifying areas of lower relative velocity that correspond to depositional areas in the river. Laboratory analyses will be based on the chemicals of interest as defined in the Management Plan. Laboratory reporting limits will be based on screening levels.

Table 8-1. General Data Quality Objectives for Remedial Investigation for River OU

	Data	Investigation	Decision Criteria/
Decisions to Be Made	Requirements	Strategy	Performance Specifications
Determine the	Tissue chemical data.	Collect 21 benthic tissue (clams)	Laboratory analyses will be based on the
magnitude of PCB		samples that are co-located with	chemicals of interest as defined in the
impacts to selected		sediment locations in the forebay.	Management Plan.
ecological receptors in		Attempt to acquire 21 sculpin and	Laboratory reporting limits will be based
the Forebay		crayfish samples corresponding to	on screening levels.
		sediment/clam collection area.	
		Analyze 17 archived smallmouth	
		bass samples and 5 largescale sucker	
		collected from within forebay.	
Describe the potential	Physical data required for	Use data from other data needs to fill	Laboratory reporting limits will be based
for PCBs to	the food web model. Tissue,	this requirement.	on screening levels.
bioaccumulate in	sediment and surface water		
selected receptors	data.		
Determine the ambient	Sediment chemical data	Collect 21 co-located surface	Laboratory reporting limits will be based
contaminant		sediment and clam samples from	on screening levels.
contribution from		area that is similar in nature to	
upstream sources to		forebay, i.e. grain size and TOC	
site contamination		content. Sample locations will be at	
levels		21 randomly selected grid points.	
		Attempt to acquire 21 sculpin and	
		crayfish samples in the area of the	
		sediment/clam collections. Collect	
		17 smallmouth bass from within	
		reference area. 14 of the 21 stations	
		will be initially analyzed and the	
		remaining / stations will be analyzed	
		it necessary to obtain the statistical	
		power for comparison to upstream.	

Table 8-1. General Data Quality Objectives for Remedial Investigation for River OU

Decisions to Be Made	Data Requirements	Investigation Strategy	Decision Criteria/ Performance Specifications
Determine the clam sediment relationship at higher sediment concentrations	Sediment and clam chemical data	Collect 5 co-located surface sediment and clam samples from within the removal area footprint prior to implementing the removal action	Laboratory reporting limits will be based on screening levels.
Determine a preliminary cleanup goal for sediments that includes PCBs as Aroclors	Sediment chemical data for both Aroclors and congeners	All sediment samples will be analyzed for PCBs as Aroclors and then archived samples will be selected for congeners analysis based on a range of Aroclor results.	Laboratory reporting limits will be based on screening levels.

					Summary of Existing	Data gaps/			
	Exposure			Data Needs for	Data for Exposure	Investigation		Data use and Evaluation	
Source Media	Media	Receptors	Exposure Routes	ERA/HRA	Scenario	Objective	Proposed Data Collection	Strategy ^c	Decision Rules
Objective 1: Determ	ine Potential for CO	<u> OIs in Soil or Ground</u>	lwater of Upland OU to	Impact River OU					
• Soil from upland	• Soil washed off	 Benthic and 	• Ingestion of and	• Determination of	• High density of	• Stability of surface	• Surface soil samples from	• Identify COPCs/CPECs in	• If COPCs/CPECs in soil are
AOPCs	into River OU	Aquatic	contact with	stability of surface	surface soil data	soils within	locations within the	soil and groundwater as	determined to wash off into the
 Groundwater 	 Groundwater 	Communities	sediment (former	soils	for COIs in the	specific areas of	Landfill gully area,	having the potential to be	river at concentrations of potential
Seeps	discharging		soil) and surface	COI concentrations	source areas of	each AOPC	Sandblast Area and Pistol	transported to sediments and	concern, identify means of
	into Surface	• Piscivorous	water	in surface soils at	each AOPC	• Several rounds of	Range to be analyzed for	surface water of the forebay	minimizing this transport pathway
	Water	Wildlife	(groundwater	upland AOPCs	• Limited	seep data from	erodibility potential	(Tables 5-5 to 5-8)	in the FS (localized soil removal,
			seeps)	COI concentrations	measurements of	north shore of	• Survey of surface soils to	• Perform more thorough	erosion control measures)
		• Human	• Dietary uptake	in groundwater seeps	COIs in seeps	Bradford Island "	develop detailed	investigation of soil stability	• If COPCs/CPECs in surface water
		receptors for	through trophic	at the point of	• Groundwater data	• Upgradient	topographical data and	in targeted areas of concern,	are determined to originate from
		River OU	transfer	discharge to the river	from Landfill and	groundwater data	groundcover (assess soll	evaluate spatial trends in soil	upland groundwater, and primary
				• Upgradient	Sandblast Area	for inorganics	mobility)	and sediment concentrations	Source medium is soll of the
				groundwater data for		unaffected by the	• Seep water from 1 to 3	• For mobile COPCS/CPECS in ground water ^b avaluate if	minimizing this transport pathway
				inorganics		L and fill and	availability) adjacent to	impacts to Piver OU recentors	in the FS (e.g. localized soil
				hackground lovels		Sandblast Area	upland landfill Sandblast	are possible using surface	removal groundwater harrier)
				background levels		Sandolast Area	AOPC and Pistol Range	water data (Tables 5-9, 5-10)	Tenioval, groundwater barrier)
							AOPC	• If seens determined to impact	
							Groundwater samples from	surface water evaluate	
							wells closest to seen	groundwater data and data for	
							locations at Landfill.	soils of upland AOPCs to	
							Sandblast AOPC and Pistol	identify source of	
							Range AOPC.	groundwater contamination	
							6		

					Summary of Existing	Data gaps/			
Garrier Marka	Exposure	Descriterer	E D	Data Needs for	Data for Exposure	Investigation	Described Data Calls dar	Data use and Evaluation	Destates Deles
Source Media Objective 2: Deteri	NICOLA mine Baseline Risk to	A Feological Recentors	Exposure Routes	EKA/HKA	Action" Conditions	Objective	Proposed Data Collection	Strategy	Decision Rules
Soil at Upland AOPCs (Landfill, Sand Blast Area, Pistol Range and Bulb Slope)	Surface Soil	Terrestrial Plant and Soil Invertebrate Communities	• Ingestion (invertebrates only) and contact with soil	COI concentrations in surface soils (0-3 ft bgs) at each AOPC	High density of surface soil data in the source areas of each AOPC	No data gaps exist for these receptor groups	• None, existing soil data sufficient to assess risks to these receptor groups at each AOPC of the Upland OU	 Compare soil data to DEQ Level II SLVs protective of plants and invertebrates (2001). When necessary, perform more detailed evaluation of site data and assumptions of risk assessment: Frequency and magnitude of SLV exceedences Spatial trends of data. Habitat conditions present Level of confidence in the SLVs, etc. 	 If site concentrations are lower than SLVs, no further evaluation. If site concentrations are higher than the above measures, additional evaluation may be recommended based on weight-of- evidence.
Soil at Upland AOPCs (Landfill, Sand Blast Area, Pistol Range and Bulb Slope)	• Soil • Water	 Terrestrial Mammals represented by the Vagrant Shrew (Burrowing insectivorous/ invertivorous rodent) 	 Ingestion of soil and surface water of Upland OU Dietary uptake through trophic transfer 	 COI concentrations in surface and subsurface soils COI concentrations in soil invertebrates for the diet of the shrew 	 High density of soil data in the source areas of each AOPC No terrestrial tissue or surface water data available (upland surface water comprised only of drainage ditches in the former Sandblast Area 	 Minor cores in the Landfill gully area to address VOCs in soil Concentrations of lead in surface soil of the Sandblast Area at a size fraction that would be bioavailable No data gaps exist for the Pistol Range No data gaps exist for the Bulb Slope 	 Soil borings from locations in the gully area of the Landfill that will be analyzed for VOCs Surface soil samples from locations in the Sandblast Area containing grit or fine- grained materials 	 Compare soil data to DEQ Level II SLVs protective of mammals (2001) Use soil data and literature- based uptake factors to predict bioaccumulative COI concentrations in soil invertebrates tissues Use measured or predicted water concentrations for COI intake from water in ditches of Sandblast Area Calculate HQs and HIs through a simple foodweb model on an AOPC basis 	 If hazard index (HI) for shrew is less than 1.0, no further evaluation. If HI for shrew is greater than 1.0, additional evaluation or action may be recommended based on weight of evidence. Examples of additional evaluation may include additional data collection to characterize dietary exposure for shrew, such as CPEC concentrations measured in soil invertebrates or adjusting dietary composition, or further evaluation of confidence in TRVs
Soil at Upland AOPCs (Landfill, Sand Blast Area, Pistol Range and Bulb Slope)	• Soil • Water	 Terrestrial Birds represented by the Canada Goose (herbivorous birds), American robin (invertivorous birds), and American Kestrel (predatory birds) (All known to occur at the site.) 	 Ingestion of soil and surface water of Upland OU Dietary uptake through trophic transfer 	 COI concentrations in surface and subsurface soils COI concentrations in terrestrial plants for the diet of the goose COI concentrations in small mammals for the diet of the kestrel 	• Similar to terrestrial mammals	Similar to terrestrial mammals	Provided by the data collection for terrestrial mammals	 Compare soil data to DEQ Level II SLVs protective of birds (2001). Use soil data and literature- based uptake factors to predict bioaccumulative COI concentrations in terrestrial plants and small mammal tissues Use measured or predicted water concentrations for COI intake from water in ditches of Sandblast Area Calculate HQs and HIs through a simple foodweb model on an AOPC basis and a Upland OU- wide basis for birds with adequately large home ranges 	 If hazard index (HI) for avian receptors is less than 1.0, no further evaluation. If HI for avian receptors is greater than 1.0, additional evaluation or action may be recommended based on weight of evidence. Examples of additional evaluation may include additional data collection to characterize dietary exposure for avian receptors, such as CPEC concentrations measured in plants or adjusting dietary composition, or further evaluation of confidence in TRVs

					Summary of Existing	Data gaps/			
	Exposure			Data Needs for	Data for Exposure	Investigation		Data use and Evaluation	
Source Media	Media	Receptors	Exposure Routes	ERA/HRA	Scenario	Objective	Proposed Data Collection	Strategy ^c	Decision Rules
Objective 3: Determ	ine Baseline Risk	to Human Receptors fr	om COIs in Soil and G	roundwater of the Upland	l OU under "No Action" (Conditions			
• Soil at Upland	Surface Soil	Adult Outdoor	• Ingestion of and	COI concentrations in	• High density of	Soil data gaps	• Provided by the data	• Compare soil data against DEQ	• If excess lifetime cancer risk
AOPCs (Landfill,	(0-3 ft bgs)	Maintenance	dermal contact	surface soils	surface soil data in	similar to terrestrial	collection for terrestrial	RBCs or USEPA Region 6	(ELCR) is less than 1E-06 or
Sand Blast Area,	 Subsurface 	Worker	with COIs in soil	COI concentrations in	the source areas of	mammals	mammals and for	RBCs, for occupational and	hazard index (HI) is less than 1.0,
Pistol Range and	soil (0-10 ft	Adult Outdoor	and shallow	shallow groundwater	each AOPC	• Recent shallow	Objective 1	trench workers.	no further evaluation.
Bulb Slope)	bgs, trench	Trench Worker	groundwater		Groundwater data	groundwater data		Retain exceeded chemicals as	• If ELCR is greater than 1E-06 or
 Groundwater 	worker only)				from Landfill and			COPCs.	HI is greater than 1.0, additional
	Shallow				Sandblast Area			• Estimate individual and	evaluation or action may be
	groundwater							cumulative risks and HQs on an	recommended.
	(trench							AOPC-specific basis and OU-	• Examples of additional evaluation
	worker only)							wide basis for direct contact	may include refining estimates of
								pathways, as described in	exposure frequency and duration.
								Appendix B	

	Exposure			Data Needs for	Summary of Existing Data for Exposure	Data gaps/ Investigation		Data use and Evaluation	
Source Media	Media	Receptors	Exposure Routes	ERA/HRA	Scenario	Objective	Proposed Data Collection	Strategy ^c	Decision Rules
Objective 3: Determ	ine Baseline Risk to	Human Receptors fr	om COIs in the Foreb	ay under Post-removal Act	ion Conditions	1		1	1
 Soil at the Sandblast Area Shallow groundwater near the Sandblast area 	• VOCs in indoor air	• Onsite Indoor Worker	• Inhalation of VOCs emanating from subsurface soil and/or groundwater	 COI concentrations in surface and subsurface soil of the Sandblast Area COI concentrations in groundwater and air in the vicinity of the Sandblast Area (i.e., near the hazardous waste storage area) 	 High density of soil data from Sandblast Area Some groundwater data for VOCs from Sandblast Area (grab samples from temporary well points) No soil gas data collected to date 	 Concentrations of VOCs in soil gas and groundwater, primarily TCE and PCE, upto 10 ft away from from the Sandblast Area (hazardous waste storage area) Concentrations of VOCs in groundwater upto 10 ft away from likely enclosed structures Soil properties data for use in VI models 	 Groundwater data from newly installed monitoring well in the Sandblast Area, near the prospective source of TCE Soil gas and sub-slab air samples in the sandblast building and service building Site-specific soil properties data (e.g., moisture content, bulk density, soil type). 	 Compare soil and groundwater data against DEQ RBCs or USEPA Region 6 RBCs, for indoor workers. Retain exceeded chemicals as COPCs. Estimate individual and cumulative risks and HQs on an AOPC-specific basis and OU- wide basis for direct contact pathways Estimate risks and HQs for soil gas data separately, using site- specific application of USEPA's revised Johnson and Ettinger model. 	 If excess lifetime cancer risk (ELCR) is less than 1E-06 or hazard index (HI) is less than 1.0, no further evaluation. If ELCR is greater than 1E-06 or HI is greater than 1.0, additional evaluation or action may be recommended. Examples of additional evaluation may include refining estimates of exposure frequency and duration, and refinement of USEPA's revised Johnson and Ettinger model.
 Soil washoff from upland AOPCs to River OU Groundwater seeps discharging into surface water of River OU 	 Surface water Sediment 	 Anglers Contact recreationists in River OU Ecological receptors in River OU 	 Direct contact with surface water and sediment Consumption of bioaccumulative COIs in fish and shellfish 	• Provided in DQO Table for River OU (Table 8-3)	• Provided in DQO Table for River OU (Table 8-3)	• Provided in DQO Table for River OU (Table 8-3)	• Provided in DQO Table for River OU (Table 8-3)	 Provided in DQO Table for River OU (Table 8-3) Evaluate whether risks to River OU receptors are associated with transportable COPCs/CPECs identified in Objective 1. 	 If COPCs/CPECs in soil are determined to wash off into the river at concentrations of potential concern, identify means of minimizing this transport pathway in the FS (localized soil removal, erosion control measures) If COPCs/CPECs in surface water are determined to originate from upland groundwater, and primary source medium is soil of the Upland OU, identify means of minimizing this transport pathway in the FS (e.g., localized soil removal, groundwater barrier)

					Summary of Existing	Data gaps/			
	Exposure			Data Needs for	Data for Exposure	Investigation		Data use and Evaluation	
Source Media	Media	Receptors	Exposure Routes	ERA/HRA	Scenario	Objective	Proposed Data Collection	Strategy ^c	Decision Rules
Objective 3	(cont'd): Determin	e Baseline Risk to Hu	iman Receptors from C	OIs in the Forebay under	Post-removal Action Con	ditions			
Groundwater seeps discharging into surface water of River OU	Surface Water	Hypothetical adult or child resident downstream from the dam who could use the Columbia River as a water supply, or whose wells could be recharged from the river	• Ingestion and inhalation of and contact with COIs in surface water that originated in groundwater	 COI concentrations in groundwater COI concentrations in seep water 	• Groundwater data from Landfill and Sandblast Area	 COI concentrations in groundwater at seep locations Upgradient groundwater data for inorganics unaffected by the past releases at the Landfill and Sandblast Area Groundwater at Pistol Range Area 	 Groundwater data from newly installed monitoring well in the Sandblast Area, near the prospective source of TCE Two grab groundwater samples from Pistol Range area Groundwater data from one newly installed up-gradient well near the Landfill and one near the Pistol Range Area Surface water data as described in DQO table for River OU 	 Compare groundwater concentrations with DEQ RBCs or DEQ potable water screening levels and identify exceeded chemicals as COPCs Include COPCs in River OU evaluation of surface water as potable water supply Assess if unacceptable risks in surface water are associated with identified COPCs in groundwater 	 If excess lifetime cancer risk (ELCR) is less than 1E-06 or hazard index (HI) is less than 1.0, no further evaluation. If ELCR is greater than 1E-06 or HI is greater than 1.0, additional evaluation or action may be recommended. Examples of additional evaluation may include refining estimates of exposure frequency and duration If COPCs in surface water are determined to originate from upland groundwater, and primary source medium is soil of the Upland OU, identify means of minimizing this transport pathway in the FS (e.g., localized soil removal, groundwater barrier)

^a Identified data gap overlaps with River OU.

^b Chemicals of Potential Concern (COPCs) for human receptors and Chemicals of Potential Ecological Concern (CPECs) in forebay sediment and surface water will be identified through the Evaluation Strategy and Decision Rules presented in the DQO table for the River OU.

^c The Evaluation Strategy may differ for each AOPC depending on the level of risk assessment required to facilitate risk management decisions, in which case only some of the listed steps may be necessary.

					Summary of Existing	Data gaps/		Data Use and Evaluation Strategy	
Source Medie	Evenoguna Madia	Decentors	Euroguno Doutog	Data Needs for	Data for Exposure	Investigation	Proposed Data Collection	(Multiple Lines of Evidence	Decision Dulos
Objective 1: De	termine if COIs in For	hav should be retain	ad as COPCs for the Ba	EKA/IIKA	Scenario	Objective	Proposed Data Conection	Approacii)	Decision Kules
Objective 1. De		Day Should be retain			.T	Dennegentative		For all COIs, compare foreboy	
• Sediment	• Sediment	• Bentnic	• Ingestion of and	• COI concentrations in	•Limited sediment	adiment water and	• Upstream area media and	For an COIs, compare forebay	• For inorganic COIs, il lorebay
• Surface water	• Water	Community	contact with	upstream sediment	and surface water	tissue data from	number of locations:	maximum avagada UTL perform	maximum is less than UTL,
	• Diet	(Clams)	sediment and	and surface water	data	ussue data mon	\sim surface sediment – 14 ,	statistical comparison	exclude as COPC; il maximum
		• Shellfish	surface water	• COI concentrations in	•Sediment and	upstream area and	water above the	statistical comparison.	exceeds UTL but statistical
		(Crayfish)	• Dietary uptake	forebay sediment and	limited surface	Torebay	sediment interface -5		comparison indicates no
		• Fish community	through trophic	surface water	water available for		$rac{1}{2}$ clams – 14 to 21°,		difference from upstream,
		(sculpin,	transfer	• COI concentrations in	forebay		\rightarrow crayfish – 14 to 21°,		exclude as COPC; if maximum
		smallmouth		tissues of selected			sculpin $-1/$ to 21°		exceeds UTL and statistical
		bass)		species (clam,			\rightarrow smallmouth bass – 1 / to		comparison indicates significant
		(The selected		crayfish, sculpin,			21		difference, include as COPC.
		receptors are		smallmouth bass)					• If inorganic COI excluded as
		expected to have					• Use randomly selected		COPC, include in hot spot
		home ranges that					grid stations to provide a		evaluation at conclusion of risk
		are similar to or					more representative		assessment
		smaller than the					estimate of exposure by		• Retain all organic COIs as
		area of the					the receptors		COPCs and include in risk
		Forebay							assessment; consider the relative
		[approximately							contribution of upstream to
		0.7 miles or 22							forebay risks, based on results of
		acres].)							statistical comparisons and actual
		• Humans							magnitude of concentrations.
		• Wildlife							Retain COIs elevated in sediment
									or surface water for direct contact
									exposures
									• Retain COIs elevated in tissues
									for food-web related exposures

Source Media	Exposure Media	Receptors	Exposure Routes	Data Needs for ERA/HRA	Summary of Existing Data for Exposure Scenario	Data gaps/ Investigation Objective	Proposed Data Collection	Data Use and Evaluation Strategy (Multiple Lines of Evidence Approach)	Decision Rules
 Sediment, Groundwater discharging as seeps 	 Sediment (and porewater) Groundwater/ surface water interface (seep zone) Surface Water 	Benthic community	 Ingestion and contact with sediment. Ingestion and contact with water Ingestion of suspended matter (plankton and seston) 	 COI concentrations in forebay sediment representing post-removal conditions COI concentrations at groundwater seeps COI concentrations in forebay surface water COI concentrations in clams and crayfish tissue 	 High density of sediment data in the source area for COI concentrations under pre-removal conditions. Limited measurements of seeps. Groundwater measurements. Sparse measurements of surface water PCB (total and dissolved). Sparse shellfish data collections for PCB 	 Sediment and surface water data throughout the forebay, including removal area, that represent post- removal baseline conditions. Several rounds of seep data from north shore of Bradford Island Clam and crayfish tissue data throughout the forebay 	 Forebay area media and number of locations: > surface sediment – 14 to 21^e > water above the sediment interface – 5 > seep water adjacent to upland landfill – 1 to 3 > clam and crayfish – 14 to 21^e Use randomly selected (stratified) sediment and shellfish grid stations. 	 Compare sediment data to DEQ sediment SLVs protective of a freshwater benthic community (2001). Compare water data to current DEQ WQC protective of freshwater organisms (Criteria Continuous Concentrations, i.e., chronic exposure; OAR 340-041, Tables 33A, 33B, and 33C). Compare predicted and measured clam and crayfish data to tissue residue levels (e.g., ERED database) or estimated tissue residue benchmarks (e.g. DEQ 2007 methodology, Steevens 2005). When necessary, perform more detailed evaluation of site data and assumptions of risk assessment: Frequency and magnitude of SLV exceedences Spatial trends of data. Habitat conditions present Level of confidence in the SLVs, etc. 	 If site concentrations are lower than SLVs or WQC, no further evaluation. If site concentrations are higher than the above measures, additional evaluation may be recommended based on weight-of-evidence. (Examples of additional evaluation may include review of spatial trends in COI concentrations detected in groundwater from the interior of the landfill, the shoreline wells, and groundwater seeps)
 Sediment partitioning to surface water Groundwater discharging to surface water 	Surface Water	Aquatic Organisms (plankton, aquatic plants, pelagic invertebrates, and fish)	 Ingestion and contact with water column Ingestion of suspended matter Diet 	COI concentrations in surface water (filtered for inorganics and unfiltered for organics)	 Sparse data on surface water quality available from project; Water column concentrations at two high-volume samples under pre- removal conditions. 	Water column samples throughout the forebay.	 Forebay area medium and number of locations: water above the sediment interface - 5 Use randomly selected grid stations. 	 Compare to current DEQ WQC protective of freshwater organisms (Criteria Continuous Concentrations, i.e., chronic exposure; OAR 340-041, Tables 33A, 33B, and 33C). Consider other lines of evidence such as spatial trends, frequency, and magnitude of exceedances. 	 If site concentrations are lower than WQCs, no further evaluation. If site concentrations are higher than WQCs, additional evaluation may be recommended based on weight- of-evidence.

				Data Needs for	Summary of Existing Data for Exposure	Data gaps/ Investigation		Data Use and Evaluation Strategy (Multiple Lines of Evidence	
Source Media	Exposure Media	Receptors	Exposure Routes	ERA/HRA	Scenario	Objective	Proposed Data Collection	Approach)	Decision Rules
Source Media Objective 2 (cont.): • Sediment, • Groundwater discharging to surface water	Exposure Media Determine Baseline Ri Sediment, Surface Water, Diet	Receptors sk to Ecological Recept Resident Fish represented by sculpin and smallmouth bass (Anadromous species, like salmonids, and fish with large homeranges, like sturgeon, are expected to be protected by evaluation of resident fish with small home ranges. Sculpin and smallmouth bass are expected to have a higher level of site fidelity and greater exposure to site COIs in sediments.)	Exposure Routes tors from COIs in the Ingestion and contact with sediment Uptake from water Ingestion of food items with trophic uptake of COIs in sediment and water	Data Needs for ERA/HRA Forebay under Post-remo • COI concentrations in forebay sediment representing post- removal conditions • COI concentrations in forebay surface water, clams, sculpins, crayfish and smallmouth bass	Summary of Existing Data for Exposure Scenario val Action Conditions ⁽²⁾ •High density of sediment data for COI concentrations under pre-removal conditions; low density of tissue data •Some SPMD (water column) data available from USGS and Ecology outside of forebay. •Water column concentrations at two high-volume samples under pre- removal conditions. •Archived fin-fish species collected from forebay ^a	 Data gaps/ Investigation Objective Surface sediment samples throughout the forebay. Water column data throughout the forebay Fish tissue data throughout the forebay Target tissue of invertebrate species along the food web (i.e., clams and crayfish) Environmental and biological parameters for AQUAWEB v1.1 trophic model (Arnot and Gobas 2004) 	 Proposed Data Collection Forebay area media and number of locations: > surface sediment – 14 to 21^e > water above the sediment interface – 5 > clams – 14 to 21^e, > crayfish – 14 to 21^e, > crayfish – 14 to 21^e, > crayfish – 14 to 21^e > smallmouth bass – 17 to 21^e > large scale sucker – 17 (at request of DEQ) Measurements of sediment and water quality parameters (particulate and dissolved organic carbon, dissolved oxygen, temp, etc.) needed for modeling bioaccumulative COPCs in AQUAWEB will be obtained from 5 sediment and surface water samples described above 	 Data Use and Evaluation Strategy (Multiple Lines of Evidence Approach) Compare sediment concentrations to DEQ Bioaccumulative SLVs protective of Fish (2007). Compare predicted and measured ^b fish tissue concentrations to tissue residue levels (e.g., ERED database). 	 Decision Rules If site sediment concentrations are lower than SLVs, no further evaluation. If site concentrations are higher than SLVs, additional evaluation may be recommended based on weight-of-evidence (same logic applied for fish tissue concentrations compared to tissue residue levels). Examples of additional evaluation may include use of foodweb model or additional data collection to refine estimates of site-related COI concentrations in fish tissue.
							 Biological parameters for invert and fish species selected for tissue sampling (weight, 		
							moisture content, lipid content, etc.) needed for AQUAWEB will be measured in all tissue samples		
							• Use randomly selected grid stations.		

				Data Needs for	Summary of Existing Data for Exposure	Data gaps/ Investigation		Data Use and Evaluation Strategy (Multiple Lines of Evidence	
Source Media	Exposure Media	Receptors	Exposure Routes	ERA/HRA	Scenario	Objective	Proposed Data Collection	Approach)	Decision Rules
Objective 2 (cont.): Determine Baseline Risk to Ecological Receptors from COIs in the Forebay under Post-removal Action Conditions ⁽²⁾									
 Sediment, Sediment partitioning to surface water, Groundwater discharging to surface water 	 Surface Water Fish in osprey diet ^f (carp, crappie, bullhead, salmonids, peamouth, northern squawfish, yellow perch, large-scale sucker) 	Osprey (Higher trophic level piscivore, known to occur at the site)	 Ingestion of water Ingestion of fish with trophic uptake of COIs in sediment, water, and dietary tissues (e.g., invertebrates, smaller fish) 	Provided by the data collection for resident fish	High density of sediment data for COI concentrations under pre-removal conditions	Similar to resident fish	Provided by the data collection for resident fish	 Use sediment and water data, as well as environmental and biological data, in AQUAWEB to predict bioaccumulative COI concentrations in smallmouth bass, clams and sculpin Use measured or predicted water concentrations for COI intake from water Evaluate model performance against field-collected clam, sculpin and smallmouth bass data. Use predicted or measured smallmouth bass concentrations to characterize dietary exposure for osprey 	 If hazard index (HI) for osprey is less than 1.0, no further evaluation. If HI for osprey is greater than 1.0, additional evaluation or action may be recommended based on weight of evidence. Examples of additional evaluation may include use of foodweb model or additional data collection to characterize dietary exposure for osprey concentrations for other fish species found at the site that osprey may consume (e.g., large-scale sucker, peamouth)
 Sediment, Sediment partitioning to surface water, Groundwater discharging to surface water Soil 	 Surface Water Fish in bald eagle diet ^f (bullhead, suckers, smallmouth bass, peamouth, perch, salmon, trout, Terrestrial small mammals 	Bald Eagle (Higher trophic level carnivorous avian scavenger, known to occur at the site)	 Ingestion of water Ingestion of fish with trophic uptake of COIs in sediment and water Ingestion of small mammals with trophic uptake of COIs from soil 	 Provided by the data collection for resident fish, and Predicted concentrations in small mammals, using soil data (from upland OU) 	 High density of sediment data for COI concentrations under pre-removal conditions Soil data from upland OU 	Similar to resident fish	Provided by the data collection for resident fish	Similar to osprey	 If hazard index (HI) for bald eagle is less than 1.0, no further evaluation. If HI for bald eagle is greater than 1.0, additional evaluation or action may be recommended based on weight of evidence. Examples of additional evaluation may include refinement of upland or inwater food-webs, similar to osprey
 Sediment, Sediment partitioning to surface water, Groundwater discharging to surface water Soil 	 Surface Water Fish in mink diet ^f (trout) Benthic Invertebrates (crayfish, crabs) Upland media: soil and prey (e.g., rodents) ^c 	Mink (higher trophic level piscivorous/ carnivorous mammal, known to occur at the site)	 Ingestion of water Ingestion of fish with trophic uptake of COIs from sediment and water Ingestion of invertebrates with trophic uptake of COIs 	Provided by the data collection for resident fish	 High density of sediment data for COI concentrations under pre-removal conditions Limited data for concentrations in crayfish 	Similar to resident fish	Provided by the data collection for resident fish	Similar to osprey, except measured crayfish tissue data will also be incorporated into exposure estimates through dietary pathway, as well as incidental sediment ingestion	 If hazard index (HI) for mink is less than 1.0, no further evaluation. If HI for mink is greater than 1.0, additional evaluation or action may be recommended based on weight of evidence. Examples of additional evaluation may include refinement of upland or inwater food-webs.
Objective 3: Deteri	mine Baseline Risk to H	uman Receptors from	COIs in the Forebay 1	under Post-removal Action	Conditions ⁽²⁾				
 Sediment Sediment partitioning to surface water 	Fish ⁵ (trout, whitefish, sturgeon, walleye, squawfish, sucker, salmon, lamprey, smelt) Shellfish (crayfish)	Native American anglers, closest known location about 0.5 mi from Bonneville Dam area ^d Although Native American fishers	 Ingestion of fish, and possibly shellfish, with trophic uptake of COIs from sediment and water Contact with COIs in water Contact with COIs 	Provided by the data collection for resident fish	Similar to mink	Similar to resident fish	Provided by the data collection for resident fish	 Use sediment and water data, as well as environmental and biological data, in AQUAWEB to predict COI concentrations in smallmouth bass, clams and sculpin Use sediment data to estimate exposure dose through direct contact 	 If excess lifetime cancer risk (ELCR) is less than 1E-06 or hazard index (HI) is less than 1.0, no further evaluation. If ELCR is greater than 1E-06 or HI is greater than 1.0, additional evaluation or action may be recommended based on weight of evidence.

O:\25692709 USACE\53-F0072173.00 Brdford1\Omaha DT-01\RI-FS Work Plan\FINAL\Tables\Table 8-3 Final REV0_08_29_07.doc

Source Medie	Evnoguno Modio	Bacontons	Exposure Doutes	Data Needs for	Summary of Existing Data for Exposure	Data gaps/ Investigation Objective	Proposed Data Collection	Data Use and Evaluation Strategy (Multiple Lines of Evidence	Decision Pulse
		are known to prefer anadromous and large home- range fish species, the resident, small home-range smallmouth bass was selected to be sufficiently protective of all fishers	in sediments		Scenario	Objective		 Use measured or predicted water concentrations for direct contact dose (dermal contact and incidental ingestion) Evaluate model performance against field-collected clam, sculpin and smallmouth bass data. Use predicted and/or measured smallmouth tissue concentrations to estimate site risks for tribal anglers from finfish consumption Use predicted and/or measured crayfish tissue concentrations to estimate site risks for tribal anglers from shellfish consumption 	 Examples of additional evaluation may include use of foodweb model or additional data collection to characterize concentrations for other fish species found at the site that tribal fishers may consume (e.g., large-scale sucker, peamouth) Preliminary sediment remediation goals may be developed using the food-web and risk models.
 Sediment Sediment partitioning to surface water 	Fish (smallmouth bass, largemouth bass, shad, salmon, steelhead, sturgeon, walleye) Shellfish (crayfish)	Recreational sport anglers, known to utilize Bonneville Dam area Non-tribal high consumption anglers (may be present in vicinity)	 Ingestion of fish, and possibly shellfish, with trophic uptake of COIs from sediment and water Contact with COIs in water Contact with COIs in sediments 	Similar to tribal angler	Similar to tribal angler	Similar to tribal angler	Provided for by data collection for Native American angler	Similar to Native American angler although ingestion rates may be different	Similar to Native American angler
• Sediment	Surface Water	sk to Human Recepte Hypothetical	 Ingestion 	• COIs in Surface	Limited data for	• COIs in Surface	• COIs in Surface Water	Compare measured COI	• If COIs in surface water and seep
• Groundwater Seeps		users of river water as potable water supply source	• Dermal contact	Water COIs in seep water 	COIs in seep water	 Water COIs in other uncharacterized seeps 	COIs in other uncharacterized seeps	concentrations in surface water and seep water against DEQ and/or USEPA screening values for potable water sources	 water are lower than potable water criteria, no further evaluation. If COIs in seep water exceed potable water criteria, additional evaluation of site-related contribution or upland source control may be recommended. If COIs in surface water exceed potable water criteria, additional evaluation of site-related contribution of site-related contribution are evaluated water criteria, additional evaluation of site-related contribution are evaluated contribution.

^a Archived samples for fin-fish species currently available: Smallmouth Bass, Large-scale Sucker, Peamouth and Sculpin.

^b Crayfish are an important dietary component for the smallmouth bass. Measured crayfish data may be used to predict site-related COI concentrations in smallmouth tissue.

^c DQOs and data requirements related to upland exposure media are presented in the Upland DQO table.

^d An additional human receptor who may be present at the site is the non-tribal high-consumption fisher (similar to those at Portland Harbor) who may consume resident and anadromous fish species at higher rates than the recreational fisher. This receptor will be evaluated as follows: first, a literature search will be performed to determine if such populations are present or likely to occur in the vicinity of the Bonneville Dam area. If they are not present or if they are present but their consumption patterns are not substantially different from the recreational fisher or the tribal fisher, then the non-tribal high consumer fisher will be included as a separate receptor in the baseline risk assessment.

^e Sample size was selected to allow statistical comparisons of upstream and forebay areas, with power and confidence levels corresponding to as described in the RI MP. Sample collection for tissue will consist of multi-incremental composites. Multi-incremental sampling is a sampling methodology that provides for the collection of many samples over a broader aerial extent. Several samples are composited from each station into one sample and analyzed. This method provides a more accurate average concentration of contamination across the aerial extent of the station. The method also increases the probability of hitting potential "hot spots" that may have otherwise been missed during conventional discrete sampling since several more samples are being collected. ^f These are prey items prey items known to be consumed by these receptors in other studies from the literature (USEPA 1993). Not all of these species are present at the site. ^g Based on CRITFC 1994.

Notes:

- 1) Baseline conditions for the Risk Assessment are defined as post-removal action conditions in the Forebay.
- 2) A limited amount of sediment and clam data will be collected in the removal area, prior to removal. A few sediment samples will be collected in the downstream area at the same time. After completion of removal action, sediment, water and tissue data will be collected in the removal area as well as in the rest of the Forebay, in upstream reference areas and for any additional downstream data colleciton.
- 3) Exposure point concentrations in sediment to represent baseline conditions in the removal area (i.e., residual post-removal concentrations) will be developed from the post-removal action data. Tissue concentrations and BSAFs for the baseline HHRA and ERA will be estimated and used, as appropriate, on the basis of post-removal tissue, sediment and water data.