

Environmental Programs P.O. Box 1663, MS M991 Los Alamos, New Mexico 87545 (505) 606-2337/FAX (505) 665-1812

National Nuclear Security Administration Los Alamos Site Office, MS A316 Environmental Restoration Program Los Alamos, New Mexico 87544 (505) 667-4255/FAX (505) 606-2132

Date: June 27, 2008 Refer To: EP2008-0300

James P. Bearzi, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303

Subject: Submittal of Well R-14 Rehabilitation and Conversion Summary Report, Revision 1

Reference: Letter, Bearzi to Messrs. Gregory and McInroy, dated April 22, 2008

Dear Mr. Bearzi:

In response to the New Mexico Environment Department's (NMED's) approval with direction of the "Well R-14 Rehabilitation and Conversion Summary Report," enclosed please find two hard copies with electronic files of the revised report that incorporate responses to NMED's three comments. The permanent sampling system was installed; Table B-1 was corrected; and an additional sample was collected, as discussed in section 2.9 of the revised report.

If you have questions, please contact Ardyth Simmons at (505) 665-3935 (asimmons@lanl.gov) or Ed Mignardot at (505) 845-6059 (emignardot@doeal.gov).

Sincerely,

Susan G. Stiger, Associate Director

Environmental Programs

Los Alamos National Laboratory

Sincerely,

David R. Gregory, Project Director

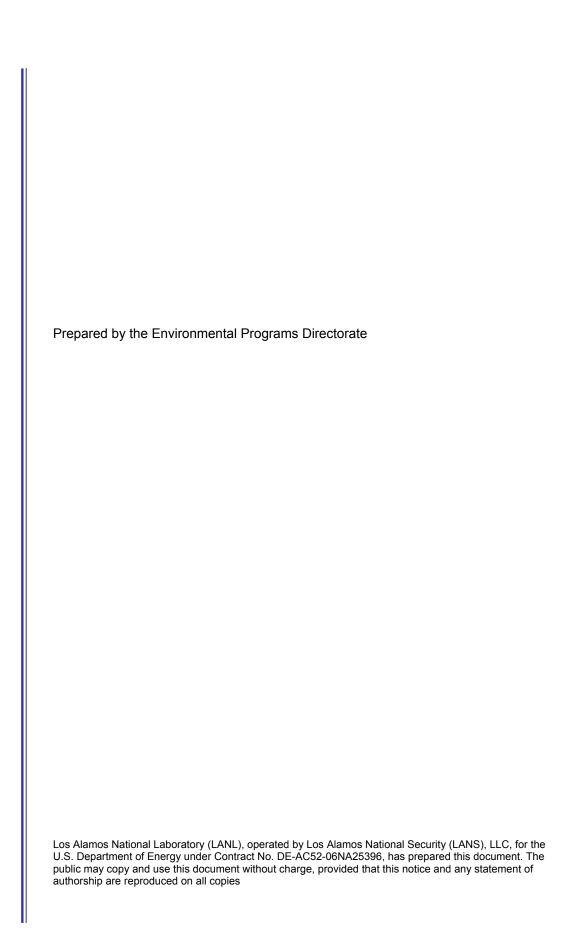
Environmental Operations

Los Alamos Site Office

James Bearzi EP2008-0300

SS/DG/PH/AS:sm

Enclosures: Two hard copies with electronic files - Well R-14 Rehabilitation and Conversion Summary Report, Revision 1 (EP2008-0300)


Cy: (w/enc.)
Neil Weber, San Ildefonso Pueblo
Ardyth Simmons, EP-LWSP, MS M992
RPF, MS M707 (with two CDs)
Public Reading Room, MS M992

Cy: (Letter and CD only)
Laurie King, EPA Region 6, Dallas, TX
Steve Yanicak, NMED-OB, White Rock, NM
Ed Mignardot, DOE-LASO, MS A316
Steve Pearson, WES-RS, MS K497
Mike Alexander, EP-LWSP, MS K497
Matt Riggs, EP-LWSP, MS M992
Kristine Smeltz, EP-WES, MS M992
EP-LWSP File, MS M992

Cy: (w/o enc.)
Tom Skibitski, NMED-OB, Santa Fe, NM
Alison Bennett, DOE-LASO (date-stamped copy emailed)
Susan G. Stiger, ADEP, MS J591
Paul Huber, EP-LWSP, MS M992
Alison M. Dorries, EP-WES, MS M992
IRM-RMMSO, MS A150 (date-stamped copy emailed)

Well R-14 Rehabilitation and Conversion Summary Report, Revision 1

Well R-14 Rehabilitation and Conversion Summary Report, Revision 1

June 2008

Responsible project leader:				
Ardyth Simmons	Ordyth Indi	Program Manager	Environmental Programs	6/23/08
Printed Name	Signature	Title	Organization	Date
Responsible LANS represe	ntative:			
Susan G. Stiger	Cllarges	Associate Director	Environmental Programs	6/26/08
Printed Name	Signature 8	Title	Organization	Date
Responsible DOE represen	tative:			
David R. Gregory	1 Pr	Project Director	DOE-LASO	chelox
Printed Name	Signature Signature	Title	Organization	Date
	- /1			

CONTENTS

1.0	INTRO	ODUCTION	1
2.0	REHA	ABILITATION ACTIVITIES	1
	2.1	Westbay Removal	1
	2.2	Video Logging	1
	2.3	Verification of Hydraulic Parameters—Preabandonment Hydraulic Testing	2
	2.4	Screen 2 Abandonment	2
	2.5	Redevelopment of Screen 1	3
	2.6	Hydraulic Testing—Postdevelopment	4
	2.7	Dedicated Sampling System Installation	4
	2.8	Water-Quality Conditions in February 2008	4
		2.8.1 Sample Collection, Field Preparation, and Analytical Techniques	5
		2.8.2 Field Parameters	5
		2.8.3 Analytical Results	6
		2.8.4 Well Screen Analysis	7
		2.8.5 Geochemical Comparison of Westbay and Pumping Test Samples	8
	2.9	Water-Quality Conditions in May 2008	8
		2.9.1 Sample Collection, Field Preparation, and Analytical Techniques	8
		2.9.2 Field Parameters	9
		2.9.3 Analytical Results	9
3.0	SUMN	MARY AND CONCLUSIONS	10
4.0	REFE	ERENCES	11
Ei au ur	••		
Figur	es		
Figure	e 1.0-1	Well R-14 final rehabilitation and conversion configuration	13
Figure	2.8-1	Field parameters measured at R-14 screen 1 from 2004 to 2007 using the Westba sampling system and measured during the February 29, 2008, pumping test	,
Figure	2.8-2	Sample sequence versus dissolved concentrations of total carbonate alkalinity (mgCaCO ₃ /L), sodium (Na), calcium (Ca), sulfate (SO ₄), and nitrate(N) (NO ₃ –N) a R-14 screen 1 from 2004 to 2007 using the Westbay sampling system and from the February 29, 2008, pumping test	ne
Figure	e 2.8-3	Sample sequence versus dissolved and total concentrations of iron (Fe) and manganese (Mn) during characterization sampling from 2004 to 2007 using the Westbay sampling system and during the February 29, 2008, pumping test	16

Tables		
Table 2.2-1	Video Log Observations	17
Table 2.3-1	R-14 Screen 1 and 2 Pumping Results, February 2008	17
Table 2.8-1	Sample Collection Objectives and Measured Constituents for the R-14 Well Rehabilitation and Conversion Project, February 2008	17
Table 2.8-2	Field Parameters Measured at R-14 Screen 1 from February 2004 to February 2008	19
Table 2.9-1	Data Quality Objectives: Process and Sampling for the R-14 Well Rehabilitation Performance Measures May 2008	2 [^]
Table 2.9-2	Field Parameters Measured at R-14 Screen 1 on May 14, 2008	2
Appendixes		
Appendix A	Analytical Data Results	
Appendix B	Evaluation of Water Quality Using Well Screen Analysis Methodology	
Appendix C	Westbay Retrieval Report	
Appendix D	Video Log (on DVD included with this document)	

1.0 INTRODUCTION

This revision of the "Well R-14 Rehabilitation and Conversion Summary Report" (LANL 2008, 101462) provides a summary of the work performed and the results of rehabilitating and converting well R-14 from a dual-screen to a single-screen well. This revision includes a final as-built diagram showing placement of the submersible pump (Figure 1.0-1) and results of additional sampling requested by the New Mexico Environment Department (NMED) (2008, 101309).

Plans for R-14 conversion were presented in the "Work Plan for R-Well Rehabilitation and Replacement, Revision 2" (LANL 2007, 098119) that was approved on August 20, 2007, by NMED (2007, 098182). The R-14 borehole was drilled as a characterization well potentially suitable for monitoring downgradient of Technical Area 50 (TA-50) and TA-35 in Ten Site Canyon. The borehole was drilled to a total depth (TD) of 1327 ft using fluid-assisted air-rotary and conventional mud-rotary techniques and was completed with two screened intervals in the regional aquifer: screen 1 from 1200.6 to 1233.2 ft and screen 2 from 1286.5 to 1293.1 ft. A dedicated Westbay sampling system was installed in the well after completion.

The results of the well screen analysis for R-14 (LANL 2007, 096330) indicated that the uppermost screen (screen 1) was very good, passing >90% of the assessment tests, and screen 2 passed 71% of the assessment tests. Based on these results, screen 2 was abandoned, screen 1 was subjected to rehabilitation activities, and a single submersible pump was installed for long-term sampling of screen 1.

2.0 REHABILITATION ACTIVITIES

Well rehabilitation and conversion activities at R-14 included removal of the Westbay multiport sampling system, video logging of the well, initial hydraulic testing of screens 1 and 2, abandonment of screen 2, final hydraulic testing to measure the specific capacity of screen 1, and collection of water samples for laboratory analysis in accordance with the work plan approved by NMED. The Threatened and Endangered Species Act area exclusion caused a hiatus in activities from February 29 to April 28, 2008. The permanent submersible pump was installed between May 12 and May 14 after the Threatened and Endangered Species Act exclusion ended.

2.1 Westbay Removal

Retrieval of the Westbay MP55 sampling system was conducted between February 5 and February 10, 2008. A Westbay technical representative was on-site to lead the retrieval operations. All Westbay components were successfully removed from the well. The Westbay retrieval report is presented in Appendix C. The retrieval report describes field operations in detail and documents field measurements recorded in association with the retrieval process.

2.2 Video Logging

After removal of the Westbay system, a downhole video camera was run in the R-14 well on February 11, 2008, to document current screen and casing conditions and to verify screen locations, total working depth of the well, and composite static water level (SWL) before testing and backfilling activities began. Los Alamos National Laboratory's (the Laboratory's) geophysical trailer and camera were used to complete video logging from the surface to the TD of the well. Ground surface was used as the datum for all video depth measurements. SWL in the well at the time of logging was recorded at 1181.4 ft below ground surface (bgs). Observed screen depths, SWL, and total well depth are noted in Table 2.2-1. Overall, water clarity was good to very good and provided good visibility of the screened intervals. A well log DVD is included as Appendix D.

2.3 Verification of Hydraulic Parameters—Preabandonment Hydraulic Testing

Specific capacity testing was performed before screen abandonment and after well development. The purpose of performing hydraulic testing at both screens before abandonment of screen 2 was to ensure that screen 1 could provide a sustained rate of pumping during sampling and to determine design parameters for pump selection. Testing consisted of pumping screens 1 and 2 simultaneously and testing each screen individually. After well rehabilitation and conversion efforts, screen 1 was tested again (section 2.6) to evaluate the effectiveness of the development procedures.

Testing was performed by installing a submersible pump. An inflatable packer was located above the pump to eliminate casing storage effects in the drawdown and recovery data. A pressure transducer was installed between the pump and packer to collect water-level data for specific capacity determination. Initial testing was done with a 3-hp submersible pump that was limited in capacity to less than 4 gal./min. Postdevelopment testing was performed with the larger pump used for jet development. One of the postdevelopment tests was conducted by valving back the discharge rate of the large pump to between 3 and 4 gal./min to provide a valid comparison of the pre- and postdevelopment performance.

A corollary benefit of the data collection effort was to obtain a data set that could support hydraulic analysis of the screen 1 and 2 zones. A detailed hydraulic analysis of the data was beyond the scope of services for the well rehabilitation project. The current discussion is limited to presenting the specific capacity results. However, the data will be archived for the future and will be available for examination if the Laboratory chooses to pursue a rigorous analysis of site hydraulics.

Preabandonment specific capacity testing was performed on February 12 and 13, 2008. On February 12, testing was performed on combined screens 1 and 2 and on screen 1 individually. Screen 2 was tested separately on February 13. Table 2.3-1 summarizes the results of the tests.

The data showed that before development, screen 1 produced 3.36 gal./min with 3.08 ft of drawdown for a specific capacity of 1.09 gal./min/ft of drawdown. Screen 2 produced 3.58 gal./min with 20.7 ft of drawdown for a specific capacity of 0.17 gal./min/ft. The sum of the individual specific capacities was 1.09 + 0.17 = 1.26 gal./min/ft.

The combined zones produced a discharge rate of 3.45 gal./min with a drawdown of 2.62 and a specific capacity of 1.32 gal./min/ft. The combined zone specific capacity was greater than the sum of the specific capacities of the individual zones. This was likely caused by greater turbulent flow in the individual tests in which each zone produced more water than during the combined test. For example, testing of screen 2 individually was performed at a rate roughly fivefold greater than what screen 2 would have contributed during the combined test.

The key statistic from the predevelopment testing was the specific capacity of 1.09 gal./min/ft at screen 1.

2.4 Screen 2 Abandonment

Abandonment of screen 2 at R-14 was conducted between February 13 and 20, 2008. Details of abandonment materials and placement are presented in Figure 1.0-1. Filter-grade 10/20 silica sand was used as the primary backfill material through the lower screen interval. The 10/20 sand was installed from the TD of the well at 1315.6 to 1283.3 ft bgs. Finer 20/40 filter-grade silica sand was installed above the 10/20 sand from 1283.3 to 1278.8 ft bgs. The finer 20/40 sand serves as a transition interval to keep the cement from flowing into the coarser 10/20 sand. All of the backfill sand was installed with a tremie pipe, while a small volume of potable water was run that carried the sand into place. A Portland-cement seal was installed above the fine transition sand from 1278.8 to 1270.1 ft bgs. Cement was emplaced using a

wireline dump bailer. The dump bailer allowed discrete placement of a calculated volume of cement while minimizing impacts to the well screen by fugitive cement. The cement was allowed to cure overnight before bailing of cement-impacted water proceeded.

Before the final interval of sand was placed above the cement seal, purging with a bailer was conducted to remove any cement-impacted waters produced from seal placement. The bailer was run inside a 3-in.-diameter conductor pipe. The conductor pipe was installed in the well to isolate screen 1 from the bailing process and to prevent any fugitive cement-impacted water from contacting the screen. Approximately 100 gal. was removed with the bailer. A final interval of 10/20 sand was installed above the cement from 1270.1 to 1246.3 ft bgs above the cement seal to help isolate the cement plug. The final sand interval was placed on February 20 and 21, 2008. A stainless-steel and viton k-packer was installed above the abandonment materials during final hydraulic testing activities on February 28, 2008. The packer isolates the abandonment materials below from the sampled water column above.

2.5 Redevelopment of Screen 1

Well development of screen 1 consisted of three activities: (1) swabbing, (2) high-velocity jetting with simultaneous pumping, and (3) final purge pumping. All development activities were performed after plugging and abandoning screen 2.

Screen 1 was swabbed using a surge block built by sandwiching a 4-in.-outer diameter nylon disk between two metal plates. The surge block was connected to a heavy weight so that effective swabbing could be accomplished in the downward direction. Swabbing was performed primarily in the downward direction by dropping the tool rapidly through the entire well screen length and then raising it slowly above the screen again to prepare for the next downward swabbing motion. Swabbing was performed continuously in this manner for 40 min. After swabbing, the well was bailed for several hours to remove loosened material from the well.

High-velocity jetting was accomplished by operating a nominal 20-gal./min submersible pump with a jetting tool attached above the pump discharge within the well screen. Because of the deep water level in R-14, it was estimated that the actual production rate of the pump would be approximately 14 gal./min. The pump and jetting tool were raised and lowered continuously throughout the well screen length while being rotated back and forth periodically to cover the entire screen surface. The jetting tool nozzles were designed to direct a portion of the pump output through the nozzles and the balance to the surface. In this way, the jetting effectiveness was enhanced by ensuring net removal of water from the screen zone throughout the development process, namely, simultaneous jetting and pumping.

During the jetting procedures, numerous pump problems were encountered. On the first two jetting attempts, operation of the pump did not bring water to the surface. The pump was pulled and tested at the surface and found to underperform. The pump bowls were replaced; the new bowls were also underperforming significantly. A different electrical controller was substituted, resulting in improved pump performance. During subsequent well testing, however, pump operation produced only 11 gal./min, compared with the estimated 14 gal./min, which indicated slight persistent underperformance of the replacement equipment. The cause of the continued substandard pump operation was not determined, even with new bowls and controller.

Screen 1 was developed using a jetting tool with four nozzles, each 1/16 in. in diameter. Based on the water level in the well, the jetting pressure was estimated to be about 550 psi. At this pressure, the flux rate through the four nozzles was estimated to be about 9 gal./min. A total pumping rate of 14 gal./min would have implied a net discharge to the surface of 14 - 9 = 5 gal./min. During operation, however, flow to the surface averaged between 8 and 9 gal./min. This difference implied a jetting rate of just 5 to 6 gal./min, suggesting that perhaps two of the four jetting nozzles had become plugged or mostly plugged

with sediment and that only two were operating. Jetting of the screen surface was performed continuously for more than 3 h. During jetting and simultaneous pumping, the discharge water brought to the surface was discolored and contained sediment, demonstrating effectiveness of the procedures.

After well development, purging was performed to achieve final cleanup of the well. The pump was set and operated at multiple elevations in the well to ensure that the well screen was cleaned and the stagnant water was removed above screen 1. Initially, the pump was operated with the intake at 1198 ft (a couple of feet above the well screen). Then the pump was raised to about 1187 ft (within 6 ft of the SWL) and operated briefly to evacuate the stagnant water above the screen. Operating the pump at this elevation ensured "starving" the pump and pulling the pumping water level down to the pump intake so that the entire water column above the screen was pumped out of the well. Finally, the pump intake was returned to 1198 ft for further purging and testing.

The pumping events served multiple purposes. In addition to cleaning the well, each pumping episode was used to quantify the specific capacity of the well for comparison to that measured before well development. Also, the final purging/testing event was extended for several hours to obtain an extensive suite of water samples from the well.

2.6 Hydraulic Testing—Postdevelopment

After development of screen 1, specific capacity tests were performed on February 28 and 29, 2008. The pumping results are summarized in Table 2.3-1. On February 28, the discharge rate was adjusted to between 3 and 4 gal./min to obtain data that could be compared with the predevelopment screen 1 test (which was conducted at 3.36 gal./min). The adjusted discharge rate was 3.23 gal./min, resulting in a drawdown of 2.02 ft and a specific capacity of 1.60 gal./min/ft, representing a 47% increase over the specific capacity measured before well development. This increase confirmed that the well development procedures were effective.

On February 29, extensive pumping of screen 1 was performed at a discharge rate of 11.0 gal./min. The resulting drawdown was 7.7 ft, yielding a specific capacity of 1.43 gal./min. The reduction in specific capacity at the greater discharge rate, from 1.60 to 1.43 gal./min/ft, was attributable to increased turbulent flow associated with increased flow velocities at the greater discharge rate.

2.7 Dedicated Sampling System Installation

A single submersible pump sampling system was installed between May 12 and May 14, 2008. The pump system consists of a Grundfos Model 10S50-1125CBM with a 3-phase 5-hp Franklin motor. The Grundfos pump intake was set at 1197.4 ft bgs, approximately 3.2 ft above the top of the screen interval. The discharge pipe for the Grundfos pump consists of custom-fabricated, high-strength 1-in. threaded/coupled Type 304, nonannealed material, which meets the requirements of American Society for Testing and Materials Standard A 554, and has a wall thickness about 15% to 20% greater than Schedule 40 pipe. The threaded ends and couplings conform to 1-in. American Petroleum Institute thread design with 10 threads per inch. A dedicated 1-in. flush-threaded polyvinyl chloride (PVC) transducer tube was installed with the sampling system. The transducer tube terminates with a 6-in. machine-slotted screen with 0.010-in. slots. The transducer tube and pump-motor electrical cable are banded to the 1-in. stainless-pump column at 10-ft intervals with stainless-steel bands.

2.8 Water-Quality Conditions in February 2008

Table 2.8-1 shows the sample collection objectives for R-14 screen 1 during the hydraulic testing and the constituents that were measured in the field and laboratory in February 2008.

2.8.1 Sample Collection, Field Preparation, and Analytical Techniques

A total of 17 primary groundwater samples were collected during the aquifer performance test conducted at R-14 screen 1 on February 29, 2008. Field parameters consisting of pH, turbidity, dissolved oxygen (DO), temperature (T), specific conductance (SC), and oxidation-reduction potential (ORP) were measured using a flow-through cell (Geotech) during pumping and sample collection. Measurements for the different field parameters recorded during the pumping test are provided in Table 2.8-2. Field pH and temperature were measured using a Beckman (Model 255) meter, and DO was measured using a WTW (Model OXI-330I) DO meter. SC and ORP were measured using a HACH Sension-5 meter and a Thermoelectron Corp. (Russell RL 060P Model) instrument, respectively. Two equipment rinseate blanks and one field blank were collected during the pumping test. On February 29, 2008, groundwater samples were generally collected every 5 min during the initial 25 min of the pumping test (Table 2.8-1). The frequency of sample collection decreased to every 10 min from 25 to 75 min during the test and every 30 min from 75 to 285 min (4.75 h). Groundwater pumping continued from 315 to 381 min (6.35 h), and no groundwater samples were collected for laboratory analyses during this time period. Field parameters, however, were measured during this interval. Groundwater samples were collected using a submersible pump consisting of a mild-steel discharge pipe equipped with a standard retrofitted submersible pump. The discharge rate varied from 10.40 to 10.97 gal./min during the aquifer performance test.

Twenty-one water samples (including 17 primary groundwater samples, 2 duplicates, and 2 equipment rinseate blanks) were filtered before analyses for metals, trace elements, and major cations and anions. Aliquots of samples collected from R-14 screen 1 were filtered through 0.45-µmeter (µm) Geotech disposable filters. Twenty-two nonfiltered samples (17 primary groundwater samples, 2 duplicates, 1 field blank, and 2 equipment rinseate blanks) were also analyzed for the same suite in addition to sulfide. Only 13 of the 22 nonfiltered samples were analyzed for total organic carbon (TOC) because of a component failure (broken heating element in the reaction chamber) associated with the TOC analytical instrument. Samples were acidified with analytical-grade nitric acid to a pH of 2.0 or less for metal and major cation analyses. Nonfiltered samples were collected for measurement of anions and total sulfide. Samples collected for total sulfide analyses were preserved with a buffer consisting of sodium hydroxide, ethylenediaminetetraacetic acid (EDTA), and ascorbic acid. Samples collected for TOC analysis were not filtered or acidified.

Chemical analyses of screening-groundwater samples were performed at the Laboratory's Earth and Environmental Sciences Group 6 (EES-6) laboratory. EES-6 analyzed groundwater samples by using techniques specified in the U.S. Environmental Protection Agency (EPA) SW-846 Manual. Total carbonate alkalinity was measured using standard titration techniques. Ion chromatography was the analytical method for bromide, chloride, fluoride, nitrate, nitrite, oxalate, chlorate, phosphate, and sulfate. Total sulfide was determined by ion selective electrode, with a detection limit of 0.010 mg/L. Inductively coupled (argon) plasma optical emission spectroscopy (ICPOES) was used to analyze calcium, magnesium, potassium, silica, and sodium. Inductively coupled (argon) plasma mass spectrometry (ICPMS) was used to analyze aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, cesium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, rubidium, selenium, silver, thallium, thorium, tin, vanadium, uranium, and zinc. The precision limits (analytical error) for major ions and trace elements were generally less than ±10% using ICPOES and ICPMS. TOC was measured using a total carbon—organic carbon analyzer.

2.8.2 Field Parameters

Table 2.8-2 and Figure 2.8-1 provide the field parameters measured during the February 29, 2008, test and previous values measured from February 9, 2004, to February 29, 2008. Field pH varied from 7.53 to 7.71. T varied from 23.6°C to 24.3°C during the 2008 aquifer performance test conducted at R-14

screen 1; prior T values are not reliable because of long residence times in Westbay sampling bottles. SC generally decreased from 131 to 127 microsiemens per centimeter (µS/cm), and DO varied from 3.73 to 6.30 mg/L. All turbidity measurements were less than 2 nephelometric turbidity units (NTUs) (Table 2.8-2, Figure 2.8-1). ORP measurements varied from –26 to +118 millivolts (mV) during the pumping test. The variability in ORP throughout the pumping test suggests that groundwater is weakly poised with respect to reactive reductants and oxidants, implying that ORP values are qualitative. A new platinum-reference electrode was used during part of the pumping test, starting with samples collected at 3:06 p.m. on February 29, 2008, in response to instrument drift resulting in anomalous negative readings. Field ORP is used along with analytical results (DO, nitrate, manganese, iron, sulfide, and sulfate) to evaluate the redox state of groundwater. Concentrations of DO ranged between 3.73 and 4.25 mg/L during this part of the test, which are considered to be more reliable than the questionable negative ORP readings recorded between 10:40 a.m. and 2:50 p.m. on February 29, 2008.

2.8.3 Analytical Results

Analytical results for groundwater samples collected during performance testing at R-14 screen 1 during February 2008 are provided in Appendix A, Table A-1. Charge balance errors for dissolved cations and anions were generally less than $\pm 10\%$. Figure 2.8-2 shows concentration trends of several ions during pumping of the regional aquifer (screen 1) at R-14. Calcium and sodium are the dominant cations present in the regional aquifer at R-14 screen 1 (Table A-1). Dissolved concentrations of calcium and sodium do not exceed maximum background concentrations of 41.70 and 32.90 mg/L, respectively, for regional aquifer groundwater (LANL 2007, 095817). Dissolved concentrations of calcium decreased from 12.0 to 9.88 mg/L, and dissolved concentrations of sodium varied from 9.97 to 11.1 mg/L during pumping. Dissolved concentrations of chloride varied slightly from 2.92 to 3.09 mg/L, not exceeding the maximum background of 5.95 mg/L (LANL 2007, 095817). Concentrations of total carbonate alkalinity varied slightly from 75.7 to 76.9 mg CaCO₃/L and are less than the maximum background of 152 mg CaCO₃/L (LANL 2007, 095817). Dissolved concentrations of sulfate varied from 4.24 to 5.40 mg/L during pumping (Figure 2.8-2, Table A-1). Sulfate concentrations at R-14 screen 1 are less than the maximum background concentration of 8.63 mg/L for this anion (LANL 2007, 095817).

Concentrations of total sulfide were less than detection (0.010 mg/L), suggesting that sulfate reduction was not significant during pumping. ORP and DO measurements and stable sulfate concentrations also indicate that the groundwater is not sufficiently reduced to enhance stability of dissolved sulfide species at R-14 screen 1. Concentrations of TOC generally decreased from 1.13 to 0.42 mgC/L during pumping. Dissolved concentrations of nitrate(N) varied slightly from 0.35 to 0.39 mg/L during pumping (Figure 2.8-2, Table A-1).

Dissolved concentrations of barium ranging from 0.051 to 0.057 mg/L at R-14 screen 1 are within background distributions for regional aquifer groundwater (0.0049 to 0.115 mg/L) (LANL 2007, 095817). Dissolved concentrations of uranium range from 0.0010 to 0.0012 mg/L (Table A-1) and are less than the maximum background of 0.0025 mg/L for this actinide (LANL 2007, 095817). Uranium(VI) for the most part is the stable oxidation state of this actinide at R-14 screen 1, based on similar concentrations of uranium in sample pairs for filtered and nonfiltered aliquots. Uranium(VI) complexes, including $UO_2(CO_3)_2^{2-}$ and $UO_2(CO_3)_3^{4-}$, are mobile in oxidizing groundwater under basic pH conditions (Langmuir 1997, 056037) characteristic of R-14 screen 1.

Figure 2.8-3 shows concentrations of iron and manganese in filtered and nonfiltered samples collected at R-14 screen 1 since February 2004. During the February 2008 test, dissolved concentrations of iron and manganese ranged from 0.17 to 0.22 mg/L and from 0.081 to 0.113 mg/L (Table A-1), respectively. Concentrations of iron and manganese in filtered and nonfiltered samples decreased during characterization sampling conducted from 2004 to 2007. Higher concentrations of iron in both filtered and

nonfiltered samples, however, were measured during the 2008 pumping test than during characterization sampling using the Westbay sampling system (Figure 2.8-3). During the 2008 pumping, concentrations of manganese increased; however, they were within the range of previous measurements (Figure 2.8-3). During this test, dissolved concentrations of iron exceeded the maximum background value of 0.147 mg/L, whereas dissolved concentrations of manganese did not exceed the maximum background value of 0.124 mg/L (LANL 2007, 095817).

During the February 2008 test, iron concentrations in nonfiltered samples were greater than those in filtered samples (Figure 2.8-3, Table A-1), suggesting the presence of iron-bearing particulates. Elevated, above-background concentrations of iron at R-14 screen 1 are hypothesized to result mainly from the presence of particulate hydrous ferric oxide (HFO) smaller than 0.45 µm (filter size) derived from the regional aquifer. Secondary effects of elevated iron may have resulted from corrosion of the discharge pipe (see below) used to collect samples throughout the test. Concentrations of iron in filtered groundwater samples exceeded those measured in the two filtered rinseate blanks, providing evidence for colloidal HFO derived from pumping of R-14 screen 1. Concentrations of DO consistently above 2 mg/L, TOC concentrations consistently less than 1 mgC/L, and detectable nitrate (as N) also support the stability of colloidal HFO in oxidizing groundwater at R-14 screen 1. Reductive dissolution of natural manganese dioxide may have taken place within the regional aquifer, based on very similar concentrations of manganese in filtered and nonfiltered samples (Figure 2.8-2, Table A-1).

Two equipment rinseate blanks (nonfiltered) collected from the pump (hardened steel) and discharge pipe (mild steel) had concentrations of total manganese and iron of 0.004 and 0.042 mg/L and 0.2 and 11.4 mg/L, respectively (Table A-1). Other metals and trace elements detected in the nonfiltered rinseate blanks included aluminum (0.023 and 0.103 mg/L) and zinc (0.024 and 0.052 mg/L) (Table A-1). Total concentrations of lead in the nonfiltered rinseate samples were 0.0031 and 0.0026 mg/L.

2.8.4 Well Screen Analysis

Previous Results

Analytical results obtained from sampling of well R-14 screen 1 were evaluated for representativeness and reliability of the water-quality data obtained from this well, following geochemical protocols established by the Laboratory (2007, 096330) and approved by NMED (2007, 098182). Groundwater samples were collected from this Westbay-equipped well from 2004 to 2007 during 10 sampling events (LANL 2007, 096330). Groundwater samples collected from R-14 screen 1 during that interval have well screen analysis scores that ranged from 86% to 92%, with an average score of 90% (LANL 2007, 096330). The test scores for the 2004–2007 samples varied over time; two to four analytes or general indicators per sampling event failed the geochemical criteria, which consisted of 31 to 36 individual tests. Analytes that did not meet the well screen criteria during one or more of the previous sampling rounds included ORP, manganese, iron, perchlorate, barium, chromium, and/or nitrate (LANL 2007, 096330).

Updated Well Screen Analysis—February 2008

Table B-1 of the Laboratory's February 2008 well screen analysis provides analytical results obtained during the 2008 pumping test. A total of eight primary groundwater samples were selected for this analysis: nonfiltered samples included GW14-08-10725, GW14-08-10731, GW14-08-10737, and GW14-08-10743; filtered samples included GW14-08-10727, GW14-08-10787, GW14-08-10793, and GW14-08-10799. These four nonfiltered/filtered pairs of samples were collected at evenly spaced intervals throughout the pumping test. During the 2008 test, these groundwater samples analyzed from well R-14 screen 1 have scores of 97%, based on 33 and 34 criteria (Table B-1). Two negative ORP measurements were not included as part of the geochemical screening criteria for the selected samples due to electrode malfunction. The average well screen test score for the 2008 test is 97%, which is an

improvement over the previous average score of 90% for the 2004–2007 samples. Dissolved iron (17 samples) above the background concentrations contributed to samples failing one criterion of the well screen analysis (Table B-1).

Well screen tests for four criteria were not applicable in the updated analysis because groundwater samples were not analyzed for perchlorate, acetone, total Kjeldahl nitrogen (TKN), and ammonia.

2.8.5 Geochemical Comparison of Westbay and Pumping Test Samples

A geochemical comparison of selected analytes and pH was performed on the R-14 screen 1 samples to compare groundwaters collected by the 2004–2007 passive Westbay sampling system with those collected in February 2008 using a submersible pump that allowed active purging. This comparison included analytical results for 10 previous sampling events using the Westbay system. Samples that were collected with Westbay equipment generally had lower concentrations of total carbonate alkalinity, TOC, and dissolved chloride, iron, manganese, nitrate(N), sulfate, strontium, uranium, and zinc compared with those samples that were collected with a submersible pump during the 2008 pumping test (Table A-1). Higher total and dissolved concentrations of iron were measured during the 2008 pumping test than concentrations measured during previous characterization sampling. Well rehabilitation involving energetic purging or pumping of screen 1 allowed groundwater outside of the filter pack to be evacuated and sampled, providing more representative groundwater samples.

2.9 Water-Quality Conditions in May 2008

An additional water sample was collected in May 2008 with new sampling equipment to test whether the R-14 screen 1 water quality would improve when new stainless steel was used in place of the previously used mild-steel discharge pipe. Table 2.9-1 shows the sample collection data quality objectives for R-14 screen 1 during postrehabilitation sampling and the constituents that were measured in the field and the laboratory.

2.9.1 Sample Collection, Field Preparation, and Analytical Techniques

Two primary groundwater samples were collected at 9:45 and 10:15 a.m. on May 14, 2008, during postrehabilitation sampling conducted at screen 1. Six duplicate groundwater samples, including one field blank, were collected during this sampling event (Table 2.9-1). Field parameters consisting of pH, turbidity, DO, T, SC, and ORP were measured using a flow-through cell (Geotech) during pumping and sample collection. Measurements of the different field parameters recorded during this postrehabilitation sampling are provided in Table 2.9-2. Field pH and T were measured with a Beckman (Model 255) meter, and DO was measured with a WTW (Model OXI-330I) DO meter. Specific conductance and ORP were measured with a HACH Sension-5 meter and a Thermoelectron Corp. (Russell RL 060P Model) instrument, respectively. The dedicated Grundfos pump was used to collect groundwater samples. The discharge rate varied from 7.0 to 7.3 gal./min during sampling.

Five aliquots of the groundwater samples collected from R-14 screen 1 were filtered through 0.45-µm Geotech disposable filters before metals, trace elements, and major cations and anions were analyzed. Four nonfiltered samples (two primary groundwater samples, one duplicate, and one field blank) were also analyzed for the same suite, in addition to sulfide. Samples were acidified with analytical-grade nitric acid to a pH of 2.0 or less for metal and major cation analyses. Nonfiltered samples were collected for anions and total sulfide. Samples collected for total sulfide analyses were preserved with a buffer consisting of sodium hydroxide, EDTA, and ascorbic acid. Samples collected for TOC analysis were not filtered or acidified.

Chemical analyses of the groundwater samples were performed at the Laboratory's EES-6 laboratory. EES-6 analyzed groundwater samples using techniques specified in the EPA SW-846 Manual. Total carbonate alkalinity was measured through standard titration techniques. Ion chromatography was the analytical method for bromide, chloride, fluoride, nitrate, nitrite, oxalate, chlorate, phosphate, and sulfate. Total sulfide was determined by ion selective electrode, with a detection limit of 0.010 ppm. ICPOES was used to analyze calcium, magnesium, potassium, silica, and sodium. ICPMS was used to analyze aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, cesium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, rubidium, selenium, silver, thallium, thorium, tin, vanadium, uranium, and zinc. The precision limits (analytical error) for major ions and trace elements were generally less than ±10% using ICPOES and ICPMS. Total organic carbon was measured using a total carbon–organic carbon analyzer.

2.9.2 Field Parameters

Field parameters were measured 13 times from 9:00 to 10:15 a.m. on May 14, 2008, during pumping of R-14 screen (Table 2.9-2). Field parameters were recorded at 5-min intervals from 9:00 to 9:45 a.m. and at 10-min intervals from 9:45 to 10:15 a.m. Field pH varied from 7.75 to 8.12; T varied from 19.7°C to 24.2°C during this sampling event. SC generally decreased from 124 to 120 μ S/cm, and DO varied from 2.4 to 3.3 mg/L. Turbidity measurements varied from 50.9 to 1.13 NTUs, with three measurements exceeding 5 NTUs during the initial 10 min of pumping (Table 2.9-2). Noncorrected ORP measurements generally decreased from +370 to +101 mV during pumping. Field ORP was used along with analytical results (DO, nitrate, manganese, iron, sulfide, and sulfate) to evaluate the redox state of groundwater.

2.9.3 Analytical Results

Analytical results of groundwater samples collected during postrehabilitation testing at R-14 screen 1 are provided in Appendix A, Table A-2 Several samples were not collected for anion analyses and are denoted by "—" in Table A-2. Calcium and sodium are the dominant cations present in the regional aquifer at R-14 screen 1 (Table A-2). Dissolved concentrations of calcium and sodium do not exceed maximum background concentrations of 41.70 and 32.90 mg/L, respectively, for regional aquifer groundwater (LANL 2007, 095817). Dissolved concentrations of calcium varied slightly from 10.6 to 10.7 mg/L, and dissolved concentrations of sodium varied from 10.0 to 10.5 mg/L during pumping. Dissolved concentrations of chloride varied from 1.99 to 2.31 mg/L, not exceeding the maximum background of 5.95 mg/L (LANL 2007, 095817). Concentrations of total carbonate alkalinity varied slightly from 78.0 to 79.0 mg CaCO₃/L in nonfiltered samples and are less than the maximum background of 152 mg CaCO₃/L (LANL 2007, 095817). Dissolved concentrations of sulfate varied from 3.05 to 3.60 mg/L during sampling (Table A-2). Dissolved sulfate concentrations at R-14 screen 1 are less than the maximum background concentration of 8.63 mg/L for this anion (LANL 2007, 095817).

Concentrations of total sulfide were less than analytical detection (0.010 ppm), suggesting that sulfate reduction was not significant at R-14 screen 1. Noncorrected positive ORP and DO measurements (Table 2.9-2) and stable sulfate concentrations (Table A-2) also suggest that the groundwater is not sufficiently reduced to enhance stability of dissolved sulfide species at R-14 screen 1. Concentrations of TOC varied from 0.71 to 0.90 mgC/L during the pumping test, also suggesting that groundwater is relatively oxidizing at R-14 screen 1. Dissolved concentrations of nitrate(N) varied from 0.25 to 0.29 ppm during pumping (Table A-2).

Dissolved concentrations of barium, ranging from 0.048 to 0.053 mg/L at R-14 screen 1, are within background distributions for regional aquifer groundwater (0.0049 to 0.115 mg/L) (LANL 2007, 095817). Dissolved concentrations of uranium range from 0.0007 to 0.0008 ppm (Table A-2) and are less than the maximum background of 0.0025 mg/L for this element (LANL 2007, 095817). Uranium(VI) for the most

part is the stable oxidation state of this element at R-14 screen 1, based on similar concentrations of uranium in sample pairs for filtered and nonfiltered aliquots. Uranium(VI) complexes, including $UO_2(CO_3)_2^{2-}$ and $UO_2(CO_3)_3^{4-}$, are mobile in oxidizing groundwater under basic pH conditions (Langmuir 1997, 056037) characteristic of R-14 screen 1. During sampling, dissolved concentrations of manganese range from 0.006 to 0.015 mg/L and dissolved iron concentrations are less than analytical detection (0.010 mg/L) (Table A-2). Dissolved concentrations of manganese do not exceed the maximum background value of 0.124 mg/L (LANL 2007, 095817).

2.9.4 Updated Well Screen Analysis, Postrehabilitation

Analytical results obtained from sampling of well R-14 screen 1 were evaluated for representativeness and reliability, following geochemical protocols established by the Laboratory (2007, 096330) and approved by NMED (2007, 098182). Groundwater samples collected and analyzed from well R-14 screen 1 during the February 2008 pumping test had an average score of 97%, based on 33 and 34 criteria (LANL 2008, 101462). Dissolved iron (17 samples) above-background concentrations caused the samples to fail one redox criterion of the well screen analysis for the February 2008 pumping test samples (LANL 2008, 101462). Corrosion of a mild-steel discharge pipe contributed to concentrations above background of dissolved and total iron.

Results of the well screen analysis using analytical results obtained during the May 2008 postrehabilitation sampling are provided in Table B-2. Four primary groundwater samples were selected for the analysis: nonfiltered samples included GW14-08-12941 and GW14-08-12942; filtered samples included GW14-08-12948 and GW14-08-12949. The first set of samples was collected at 9:45 a.m., and the second set was collected at the conclusion of pumping at 10:15 a.m. on May 14, 2008. Groundwater samples analyzed from well R-14 screen 1 during this sampling event had scores of 100%, based on 34 criteria (Table B-2), which is an additional improvement over the previous average scores before and during well rehabilitation.

Well screen tests for four criteria were not applicable in the updated analysis because the samples were not analyzed for perchlorate, acetone, TKN, and ammonia.

3.0 SUMMARY AND CONCLUSIONS

There were no deviations from the NMED-approved work plan, although a delay in installation of the permanent submersible pump resulted from the Threatened and Endangered Species Act exclusion from the area around R-14. R-14 was outfitted with a single environmentally retrofitted 4-in. submersible pump with a 1-in. stainless-pump column. A dedicated, 1-in.-diameter PVC transducer tube was installed with and banded to the pump column.

Screen 2 was successfully isolated and abandoned in accordance with guidance in the Compliance Order on Consent.

The specific capacity test performed on February 28, 2008, yielded a specific capacity of 1.60 gal./min/ft after redevelopment at screen 1. This represented a 47% increase over the specific capacity of 1.09 gal./min/ft measured before well development and confirmed that the well redevelopment procedures were effective, despite poor operation of the submersible jetting pump.

On February 29, 2008, extensive pumping of screen 1 yielded a specific capacity of 1.43 gal./min. The reduction in specific capacity at the greater discharge rate, from 1.60 to 1.43 gal./min/ft, was attributable to increased turbulent flow associated with increased flow velocities at the greater discharge rate.

The water quality of screen 1 was very good even before redevelopment of screen 1, but it improved as a result of redevelopment activities. This conclusion is based on the following observations and data.

- Screen 1 turbidity values were less than 2 NTUs throughout the February 2008 pumping test.
- Major cations and anions at screen 1, such as Ca, Cl, Na, NO₃(N), and SO₄ and TOC, are within background values established for regional aquifer groundwater.
- The elevated, above-background concentration of iron in February 2008 probably resulted from the presence of particulate HFO, smaller than 0.45 µm (filter size), within the regional aquifer.
 Secondary effects of elevated iron may have been produced from discharge pipe corrosion during sampling.
- Groundwater samples analyzed from well R-14 screen 1 during the February 2008 test have an
 average well screen analysis score of 97%; each test had a score of 97%. The average well
 screen score for the 2004–2007 characterization sampling was 90% when the nonpurging
 Westbay sampling system was in use. Concentrations of dissolved iron in 17 samples that
 exceeded Laboratory background levels caused samples to fail one criterion of the 2008 well
 screen analysis.
- Samples in which Westbay equipment was used generally had lower concentrations of total
 carbonate alkalinity, TOC, and dissolved chloride, iron, manganese, nitrate(N), sulfate, strontium,
 uranium, and zinc compared with concentrations collected during the February 2008 test
 (Table A-1). Well rehabilitation involving energetic purging or pumping of screen 1 allowed
 groundwater outside of the filter pack to be sampled, providing more representative groundwater
 samples.

The dedicated pump installed at R-14 screen 1 in May 2008 provides reliable and consistent groundwater samples that are most likely representative of oxidizing, predrilling conditions (LANL 2008, 101462). Residual drilling fluid effects are not present in the groundwater samples collected in 2008 from R-14 screen 1, based on reliable and representative concentrations of major ions, trace metals, and TOC (Table A-2). Concentrations of these analytes are within background values established for regional aquifer groundwater. Higher total and dissolved concentrations of iron measured during the February 2008 pumping test resulted from a corroded mild-steel discharge pipe, but when the dedicated stainless-steel sampling system was used in May, the iron concentrations were in the background range.

Groundwater samples analyzed from screen 1 during the February 2008 pumping test had an average well screen analysis score of 97%. Groundwater samples analyzed from well R-14 screen 1 during May 2008 postrehabilitation sampling had an average well screen analysis score of 100%.

4.0 REFERENCES

The following list includes all documents cited in this report. Parenthetical information following each reference provides the author(s), publication date, and ER ID number. This information is also included in text citations. ER ID numbers are assigned by the Environmental Programs Directorate's Records Processing Facility (RPF) and are used to locate the document at the RPF and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau; the U.S. Department of Energy–Los Alamos Site Office; EPA, Region 6; and the Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- Langmuir, D., 1997. *Aqueous Environmental Geochemistry*, Prentice Hall, Inc., Upper Saddle River, New Jersey. (Langmuir 1997, 056037)
- LANL (Los Alamos National Laboratory), May 2007. "Groundwater Background Investigation Report, Revision 3," Los Alamos National Laboratory document LA-UR-07-2853, Los Alamos, New Mexico. (LANL 2007, 095817)
- LANL (Los Alamos National Laboratory), May 2007. "Well Screen Analysis Report, Revision 2,"
 Los Alamos National Laboratory document LA-UR-07-2852, Los Alamos, New Mexico. (LANL 2007, 096330)
- LANL (Los Alamos National Laboratory), May 2007. "2007 Interim Facility-Wide Groundwater Monitoring Plan," Los Alamos National Laboratory document LA-UR-07-3271, Los Alamos, New Mexico. (LANL 2007, 096665)
- LANL (Los Alamos National Laboratory), July 2007. "Work Plan for R-Well Rehabilitation and Replacement, Revision 2," Los Alamos National Laboratory document LA-UR-07-5087, Los Alamos, New Mexico. (LANL 2007, 098119)
- LANL (Los Alamos National Laboratory), March 2008. "Well R-14 Rehabilitation and Conversion Summary Report," Los Alamos National Laboratory document LA-UR-08-1539, Los Alamos, New Mexico. (LANL 2008, 101462)
- NMED (New Mexico Environment Department), August 20, 2007. "Approval of the Workplan for R-Well Rehabilitation and Replacement, Revision 2," New Mexico Environment Department letter to D. Gregory (DOE LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED HWB), Santa Fe, New Mexico. (NMED 2007, 098182)
- NMED (New Mexico Environment Department), April 22, 2008. "Approval with Direction, Well R-14 Rehabilitation and Conversion Summary Report," New Mexico Environment Department letter to D. Gregory (DOE-LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2008, 101309)

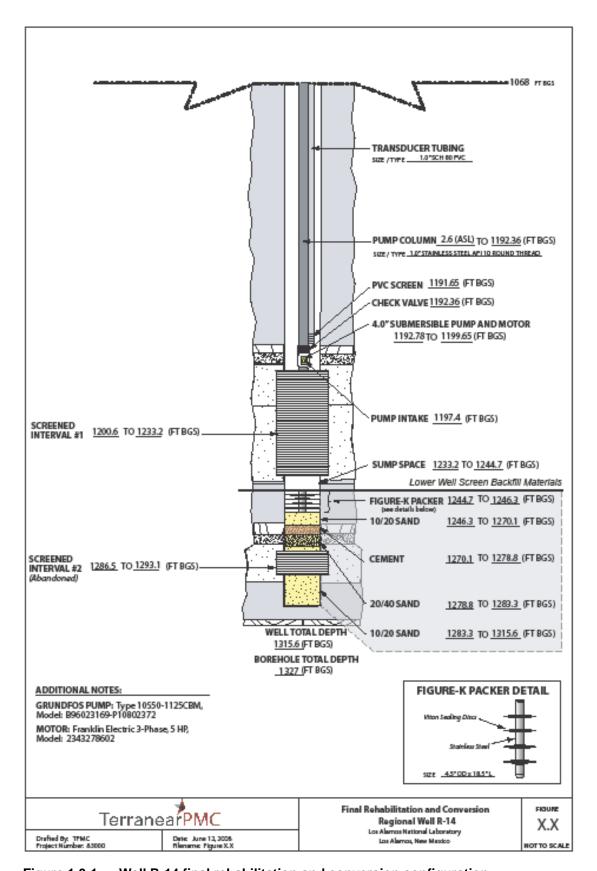


Figure 1.0-1 Well R-14 final rehabilitation and conversion configuration

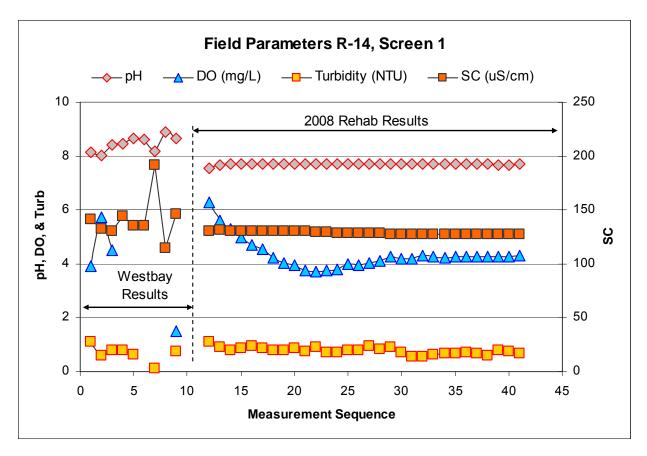


Figure 2.8-1 Field parameters measured at R-14 screen 1 from 2004 to 2007 using the Westbay sampling system and measured during the February 29, 2008, pumping test

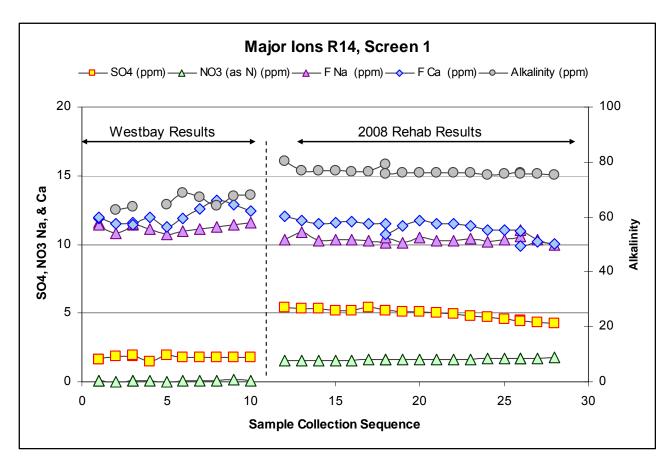


Figure 2.8-2 Sample sequence versus dissolved concentrations of total carbonate alkalinity (mgCaCO₃/L), sodium (Na), calcium (Ca), sulfate (SO₄), and nitrate(N) (NO₃–N) at R-14 screen 1 from 2004 to 2007 using the Westbay sampling system and from the February 29, 2008, pumping test

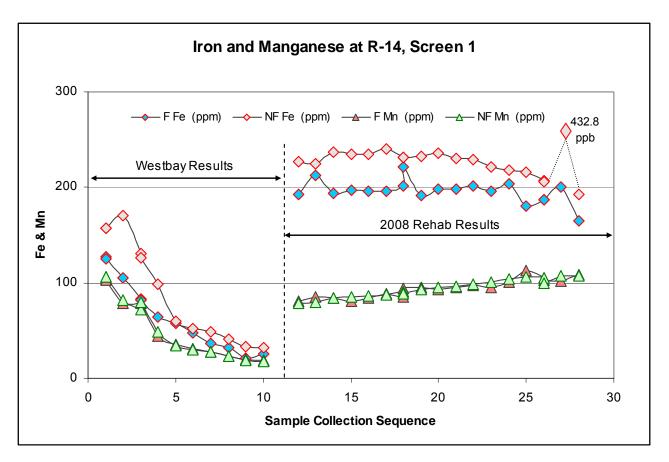


Figure 2.8-3 Sample sequence versus dissolved and total concentrations of iron (Fe) and manganese (Mn) during characterization sampling from 2004 to 2007 using the Westbay sampling system and during the February 29, 2008, pumping test

Table 2.2-1 Video Log Observations

	Depth to		
	Тор	Bottom	Remarks
SWL	1181 ft 5 in.	n/a*	Composite
Screen 1	1200 ft 1 in.	1231 ft 10 in.	Pipe-based; visibility very good; screen interval clean
Screen 2	1285 ft 4 in.	1291 ft 6 in.	Pipe-based; visibility very good; screen interval clean
TD	1311 ft 11 in.	n/a	Sediment in bottom of sump

^{*}n/a = Not applicable.

Table 2.3-1
R-14 Screen 1 and 2 Pumping Results, February 2008

Date	Zone	Pumping Rate (gal./min)	Drawdown (ft)	Specific Capacity (gal./min/ft)					
Predevelopment I	Predevelopment Data								
2/12/2008	Screens 1 & 2	3.45	2.62	1.32					
2/12/2008	Screen 1	3.36	3.08	1.09					
2/13/2008	Screen 2	3.58	20.7	0.17					
Postdevelopment	Postdevelopment Data								
2/28/2008	Screen 1	3.23	2.02	1.60					
2/29/2008	Screen 1	11.0	7.7	1.43					

Table 2.8-1
Sample Collection Objectives and Measured Constituents for the R-14
Well Rehabilitation and Conversion Project, February 2008

Process/Step	Purpose	Sample Collection	Field Parameters	Frequency/Number of Samples
Remove Westbay System	Prepare well for rehabilitation	None	None	None
Video Well	Assess screen condition, determine composite SWL before redevelopment	DVD and VHS recording	None	None
Pump Screen 1 and Screen 2 from Isolated Screens to Evaluate Screen Performance	Measure specific capacity; assess flow rate and drawdown during sustained pumping of each zone	None	Measure flow rate and drawdown	None

Table 2.8-1 (continued)

Process/Step	Purpose	Sample Collection	Field Parameters	Frequency/Number of Samples	
Jet and Simultaneously Pump Screen 1	Redevelop screen 1	None	None	None	
Swab Screen 1	Redevelop screen 1	None	None	None	
Abandon Screen 2	Isolate screen 2 from screen 1	None	None	None	
Pump Screen 1 to Evaluate Groundwater Chemistry and Screen Performance	Measure specific capacity and assess water quality from screen 1 during sustained pumping	Collect performance suite (see notes below)	Flow rate and drawdown, pH, ORP, T, SC, DO, and turbidity	Every 5 min for first 30 min; 10 min for next 30 min; 30 min for a minimum of 3 h; each hour until end of specific capacity test (25 performance suite samples per screen). Paperwork for additional samples will be ordered if rehabilitation activities are extended.	
Install K-Packer and Submersible Pump Sample System	Long-term sampling	None	None	None	
Performance Measurement, <i>after</i> Submersible Pump Installment	Test effects of rehabilitation	Sample 1 mo after installation; full suite analysis, followed by semiannual monitoring, per "2007 Interim Facility-Wide Groundwater Monitoring Plan" (LANL 2007, 096665) requirements and schedule	pH, ORP, T, SC, DO, turbidity	Refer to the "2007 Interim Facility-Wide Groundwater Monitoring Plan" (LANL 2007, 096665) for analytes and sampling schedule	

Notes: Performance suite: Sulfide (not filtered), total organic carbon (not filtered), metals and cations (filtered and nonfiltered), alkalinity (nonfiltered), and anions (including perchlorate, filtered) from EES-6 laboratory. Full analytical suite: Refer to the "2007 Interim Facility-Wide Groundwater Monitoring Plan" (LANL 2007, 096665) watershed analytical suites (volatile organic compounds, semivolatile organic compounds, general inorganics [including alkalinity], metals, radionuclides, tritium, stable isotopes of hydrogen, oxygen, and nitrogen). Full analytical suite samples to be collected after installation of the dedicated sampling system.

19

Table 2.8-2
Field Parameters Measured at R-14
Screen 1 from February 2004 to February 2008

Sample Collection System	Sample Collection Date	Sample Collection Time	pH (SU) ^a	Temp (° C)	SC (µS/cm)	DO (mg/L)	Turbidity (NTU)	ORPb (mV)	Cumulative Volume Purged ^c (gal.)	Pumping Rate (gal./min)
_	2/9/2004	14:00	8.13	18.1	141.4	3.9	1.1	411.5	≈5	<0.1
Westbay Sampling System	5/11/2005	8:43	8.03	16.5	132.0	5.7	0.6	na ^d	≈5	<0.1
Sys	1/24/2006	9:39	8.40	18.9	130.1	4.5	0.8	na	≈5	<0.1
ing	6/26/2006	11:17	8.44	21.7	144.0	na	0.8	na	≈5	<0.1
ld m	10/23/2006	10:30	8.67	20.5	135.0	na	0.6	na	≈5	<0.1
/ Sa	10/23/2006	10:23	8.61	na	135.0	na	na	na	≈5	<0.1
tbay	3/1/2007	14:33	8.18	15.3	191.3	na	0.1	na	≈5	<0.1
Ves	6/5/2007	8:58	8.9	na	114.8	na	na	na	≈5	<0.1
_	8/14/2007	11:06	8.66	24.8	146.0	1.5	0.75	na	≈5	<0.1
	2/29/2008	9:35	7.53	23.8	130.3	6.3	1.1	83 ^a	729.0	10.7
	2/29/2008	9:40	7.66	23.6	131.1	5.6	0.9	28 ^a	919.3	10.7
	2/29/2008	9:45	7.69	23.6	130.9	5.3	0.8	20 ^a	972.8	10.7
e m	2/29/2008	9:50	7.70	23.6	130.9	5.0	0.9	12 ^a	1031.0	10.8
syst fort	2/29/2008	9:55	7.71	23.6	130.7	4.7	0.9	13 ^a	1089.8	10.8
ng S n Ef	2/29/2008	10:00	7.71	23.6	130.5	4.5	0.9	1 ^{2a}	1149.0	10.9
nplii ation	2/29/2008	10:10	7.71	23.6	130.4	4.2	0.8	8 ^b	1260.9	10.9
San	2/29/2008	10:20	7.71	23.6	130.4	4.1	0.8	5 ^b	1372.1	10.9
m shak	2/29/2008	10:30	7.71	23.4	130.2	3.9	0.9	3 ^b	1482.4	10.9
-Pui	2/29/2008	10:40	7.71	23.6	130.1	3.8	0.8	-11 ^b	1585.6	10.8
Packer-Pump Sampling System (Well Rehabilitation Effort)	2/29/2008	10:50	7.71	23.6	129.9	3.7	0.9	-19 ^b	1686.4	10.7
Pac (2/29/2008	11:20	7.72	24.0	129.9	3.8	0.7	24 ^b	1997.6	10.7
	2/29/2008	11:50	7.70	24.3	128.6	3.8	0.7	-13 ^b	2306.9	10.7
	2/29/2008	12:20	7.70	24.1	128.6	4.0	0.8	-11 ^b	2632.2	10.9
	2/29/2008	12:50	7.70	23.7	128.5	4.0	0.8	-27 ^b	3008.4	10.9

Table 2.8-2 (continued)

Sample Collection System	Sample Collection Date	Sample Collection Time	pH (SU) ^a	Temp (° C)	SC (µS/cm)	DO (mg/L)	Turbidity (NTU)	ORPb (mV)	Cumulative Volume Purged ^c (gal.)	Pumping Rate (gal./min)
	2/29/2008	13:20	7.70	23.6	128.5	4.0	1.0	-26 ^b	3341.5	10.9
	2/29/2008	13:50	7.69	23.7	128.5	4.1	0.8	-25 ^b	3675.8	11.0
	2/29/2008	14:20	7.69	23.7	127.5	4.3	0.9	-19 ^b	4015.0	11.0
E -	2/29/2008	14:50	7.69	23.7	127.5	4.2	0.7	-18 ^b	4336.2	10.9
cker-Pump Sampling System (Well Rehabilitation Effort)	2/29/2008	15:06	7.69	23.7	127.5	4.2	0.6	109	4503.2	10.9
ng S	2/29/2008	15:11	7.69	23.6	127.3	4.3	0.6	118	4553.6	10.9
atio.	2/29/2008	15:16	7.69	23.7	127.4	4.3	0.6	110	4608.2	10.9
San	2/29/2008	15:21	7.69	23.6	127.2	4.2	0.7	96	4662.8	10.8
m shak	2/29/2008	15:26	7.69	23.6	127.3	4.3	0.7	103	4674.2	10.7
-Pu	2/29/2008	15:31	7.70	23.7	127.0	4.3	0.7	121	4684.6	10.6
Packer-Pump (Well Rehal	2/29/2008	15:36	7.70	23.7	127.1	4.3	0.7	116	4694.0	10.5
Pac (2/29/2008	15:41	7.69	23.7	127.1	4.3	0.6	107	4698.0	10.4
	2/29/2008	15:46	7.68	23.6	127.4	4.3	0.8	111	4700.8	10.8
	2/29/2008	15:51	7.66	23.8	127.6	4.3	0.8	109	4935.6	10.8
	2/29/2008	15:56	7.69	23.7	127.0	4.3	0.7	112	4989.6	10.8

^a SU = Standard unit.

^b ORP measurements were not reliable during initial sample collection on 2/29/2008 because of faulty probe.

^c Cumulative volume purged during each sampling event; Westbay values are approximate.

^d na = Not available.

Table 2.9-1

Data Quality Objectives: Process and Sampling for the R-14

Well Rehabilitation Performance Measures May 2008

Process/Step	Purpose	Sample Collection	Field Parameters	Frequency/Number of Samples
Pump R-14 screen 1 (postrehabilitation)	To evaluate screen performance with new sampling system in place	Sequential sampling through time (t = 0, 30, 60, 120, 180, 240, 300 min) and filtration through different membranes (0.45, 0.22, 0.02 µm) throughout pumping	pH, ORP, T, SC, DO, turbidity, and ferrous iron	Every 30 min for the first hour then every hour until pumping is terminated

Note: Performance suite: Sulfide (not filtered), total organic carbon (not filtered), metals and cations (filtered and nonfiltered), alkalinity (nonfiltered), and anions.

Table 2.9-2
Field Parameters Measured at R-14 Screen 1 on May 14, 2008

Time (yr-mo-d-h)	pH (SU) ^a	Temperature (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)
0805140900	7.79	19.7	124	b	50.9	+370
0805140905	8.12	22.9	124	3.3	13.4	+265
0805140910	8.08	23.4	124	2.6	5.64	+217
0805140915	7.99	23.8	123	2.4	4.24	+164
0805140920	7.93	23.9	122	2.4	2.69	+136
0805140925	7.90	24.0	122	2.4	2.24	+134
0805140930	7.87	23.9	121	2.4	2.04	+111
0805140935	7.84	24.0	121	2.5	1.18	+103
0805140940	7.83	24.0	121	2.5	1.37	+102
0805140945	7.81	24.0	121	2.8	1.13	+101
0805140955	7.78	24.1	120	2.6	1.97	+103
0805141005	7.75	24.2	120	2.7	1.55	+107
0805141015	7.75	24.1	120	2.7	1.62	+109

a SU = Standard unit.

b — = Not measured.

Analytical Data Results

	Date	Time				QA/QC		Ag rslt	stdev	Al rsit	stdev	As rslt		B rslt		Ba rslt	
Sample ID	Collected	Collected	Date Received	ER/RRES-WQH	Field Prep	Туре	Comment	(ppm)	(Ag)	(ppm)	(AI)	(ppm)	stdev (As)	(ppm)	stdev (B)	(ppm)	stdev (Ba)
GW14-08-10725	02/29/08	9:35	2/29/2008	08-730	NF	CS	NA ^a	0.001	NA	0.022	0.001	0.0010	0.0000	0.013	0.000	0.056	0.001
GW14-08-10726	02/29/08	9:40	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.020	0.002	0.0010	0.0000	0.013	0.000	0.056	0.002
GW14-08-10729	02/29/08	9:45	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.016	0.001	0.0010	0.0001	0.028	0.000	0.051	0.002
GW14-08-10730	02/29/08	9:50	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.017	0.003	0.0011	0.0000	0.023	0.000	0.055	0.001
GW14-08-10731	02/29/08	9:55	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.020	0.002	0.0011	0.0001	0.020	0.000	0.059	0.001
GW14-08-10732	02/29/08	10:00	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.015	0.001	0.0010	0.0000	0.019	0.000	0.055	0.000
GW14-08-10733	02/29/08	10:10	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.016	0.001	0.0010	0.0000	0.016	0.000	0.056	0.002
GW14-08-10734	02/29/08	10:20	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.027	0.003	0.0011	0.0001	0.016	0.000	0.056	0.000
GW14-08-10735	02/29/08	10:30	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.021	0.001	0.0010	0.0000	0.015	0.000	0.054	0.000
GW14-08-10736	02/29/08	10:40	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.015	0.000	0.0011	0.0000	0.014	0.000	0.058	0.002
GW14-08-10737	02/29/08	10:50	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.015	0.001	0.0011	0.0001	0.054	0.001	0.053	0.001
GW14-08-10738	02/29/08	11:20	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.013	0.001	0.0010	0.0000	0.030	0.001	0.058	0.001
GW14-08-10739	02/29/08	11:50	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.014	0.001	0.0010	0.0000	0.022	0.001	0.056	0.000
GW14-08-10740	02/29/08	12:20	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.016	0.001	0.0009	0.0000	0.018	0.000	0.051	0.000
GW14-08-10741	02/29/08	12:50	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.011	0.002	0.0011	0.0002	0.016	0.000	0.058	0.007
GW14-08-10742	02/29/08	13:50	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.014	0.002	0.0010	0.0000	0.015	0.001	0.052	0.004
GW14-08-10743	02/29/08	14:50	2/29/2008	08-730	NF	CS	NA	0.001	NA	0.013	0.000	0.0010	0.0000	0.013	0.001	0.054	0.004
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	08-712	NF	EQB	NA	0.001	NA	0.023	0.001	0.0002	NA	0.017	0.001	0.003	0.000
GW14-08-10778	02/28/08	n/a	2/28/2008	08-712	NF	EQB	NA	0.001	NA	0.103	0.005	0.0005	0.0000	0.011	0.000	0.017	0.000
GW14-08-10779	02/29/08	10:20	2/29/2008	08-730	NF	FB	NA	0.001	NA	0.002	0.000	0.0002	NA	0.017	0.000	0.001	NA
GW14-08-10780	02/29/08	10:10	2/29/2008	08-730	NF	FD#1	NA	0.001	NA	0.019	0.001	0.0010	0.0000	0.024	0.000	0.054	0.003
GW14-08-10781	02/29/08	12:50	2/29/2008	08-730	NF	FD#2	NA	0.001	NA	0.014	0.000	0.0010	0.0000	0.019	0.000	0.054	0.001
GW14-08-10727	02/29/08	9:35	2/29/2008	08-731	F	CS	NA	0.001	NA	0.009	0.000	0.0010	0.0000	0.012	0.000	0.055	0.000
GW14-08-10728	02/29/08	9:40	2/29/2008	08-731	F	CS	NA	0.001	NA	0.009	0.000	0.0010	0.0000	0.039	0.000	0.054	0.001
GW14-08-10785	02/29/08	9:45	2/29/2008	08-731	F	CS	NA	0.001	NA	0.011	0.001	0.0010	0.0000	0.017	0.000	0.055	0.001
GW14-08-10786	02/29/08	9:50	2/29/2008	08-731	F	CS	NA	0.001	NA	0.010	0.001	0.0009	0.0000	0.016	0.000	0.054	0.001
GW14-08-10787	02/29/08	9:55	2/29/2008	08-731	F	CS	NA	0.001	NA	0.007	0.000	0.0010	0.0000	0.015	0.000	0.055	0.001
GW14-08-10788	02/29/08	10:00	2/29/2008	08-731	F	CS	NA	0.001	NA	0.012	0.000	0.0010	0.0001	0.013	0.000	0.055	0.002
GW14-08-10789	02/29/08	10:10	2/29/2008	08-731	F	CS	NA	0.001	NA	0.010	0.000	0.0010	0.0000	0.013	0.000	0.052	0.003
GW14-08-10790	02/29/08	10:20	2/29/2008	08-731	F	CS	NA	0.001	NA	0.008	0.000	0.0010	0.0000	0.012	0.000	0.056	0.001
GW14-08-10791	02/29/08	10:30	2/29/2008	08-731	F	CS	NA	0.001	NA	0.007	0.000	0.0010	0.0000	0.050	0.001	0.055	0.002
GW14-08-10792	02/29/08	10:40	2/29/2008	08-731	F	CS	NA	0.001	NA	0.007	0.000	0.0010	0.0000	0.028	0.000	0.056	0.000
GW14-08-10793	02/29/08	10:50	2/29/2008	08-731	F	CS	NA	0.001	NA	0.008	0.000	0.0010	0.0000	0.020	0.000	0.054	0.001
GW14-08-10794	02/29/08	11:20	2/29/2008	08-731	F	CS	NA	0.001	NA	0.006	0.000	0.0009	0.0001	0.016	0.000	0.051	0.003
GW14-08-10795	02/29/08	11:50	2/29/2008	08-731	F	CS	NA	0.001	NA	0.008	0.000	0.0010	0.0001	0.015	0.000	0.056	0.003
GW14-08-10796	02/29/08	12:20	2/29/2008	08-731	F	CS	NA	0.001	NA	0.009	0.000	0.0010	0.0000	0.014	0.000	0.056	0.002
GW14-08-10797	02/29/08	12:50	2/29/2008	08-731	F	CS	NA	0.001	NA	0.012	0.000	0.0010	0.0000	0.014	0.000	0.056	0.001
GW14-08-10798	02/29/08	13:50	2/29/2008	08-731	F	CS	NA	0.001	NA	0.008	0.000	0.0010	0.0000	0.013	0.000	0.055	0.000
GW14-08-10799	02/29/08	14:50	2/29/2008	08-731	F	CS	NA	0.001	NA	0.008	0.000	0.0010	0.0001	0.013	0.000	0.055	0.000
GW14-08-10833	02/28/08	n/a	2/28/2008	08-711	F	EQB	NA	0.001	NA	0.004	0.000	0.0002	NA	0.005	0.000	0.001	NA
GW14-08-10834	02/28/08	n/a	2/28/2008	08-711	F	EQB	NA	0.001	NA	0.011	0.000	0.0002	NA	0.005	0.000	0.001	NA
GW14-08-10836	02/29/08	10:10	2/29/2008	08-731	F	FD#1	NA	0.001	NA	0.010	0.001	0.0010	0.0000	0.012	0.000	0.057	0.003
GW14-08-10837	02/29/08	12:50	2/29/2008	08-731	F	FD#2	NA	0.001	NA	0.006	0.000	0.0010	0.0000	0.051	0.001	0.055	0.001
GVV 14-00-10037	02/29/00	12.30	2/23/2000	00-731	l"	ΓU#Z	INA	0.001	INA	0.000	0.000	0.0010	0.0000	0.031	0.001	0.000	0.001

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

	5.			5 "				T00 1				0 1 1				010.4()	
Sample ID	Date	Time	Data Bassiyad	Be rslt	otdov (Bo)	Br/) nnm	D=() (II)	TOC rslt	TOC (II)	Ca rslt	otdov (Co)	Cd rslt	otalov (Cal)	CI() nnm	CI/ \ /II\	CIO4(-)	CIO4() (II)
Sample ID	Collected	Collected	Date Received	(ppm)	stdev (Be)	Br(-) ppm	Br(-) (U)	(ppm)	TOC (U)	(ppm)	stdev (Ca)	(ppm)	stdev (Cd)	CI(-) ppm	CI(-) (U)	ppm	CIO4(-) (U)
GW14-08-10725	02/29/08	9:35	2/29/2008	0.001	NA NA	NA NA	NA NA	1.13	NA	12.0	0.0	0.001	NA NA	NA NA	NA NA	NA	NA NA
GW14-08-10726	02/29/08	9:40	2/29/2008	0.001	NA NA	NA NA	NA NA	0.99 1.03	NA NA	12.0 12.0	0.0	0.001	NA NA	NA NA	NA NA	NA NA	NA NA
GW14-08-10729 GW14-08-10730	02/29/08 02/29/08	9:45 9:50	2/29/2008 2/29/2008	0.001 0.001	NA NA	NA NA	NA NA	0.99	NA NA	11.9	0.0	0.001	NA NA	NA NA	NA NA	NA NA	NA NA
GW14-08-10730 GW14-08-10731	02/29/08	9:55	2/29/2008	0.001	NA NA	NA NA	NA NA	0.99	NA NA	11.9	0.1	0.001	NA NA	NA NA	NA NA	NA NA	NA NA
GW14-08-10731 GW14-08-10732	02/29/08	10:00	2/29/2008	0.001	NA NA	NA NA	NA NA	0.89	NA NA	11.8	0.1	0.001	NA NA	NA NA	NA NA	NA NA	NA NA
GW14-08-10732 GW14-08-10733	02/29/08	10:10	2/29/2008	0.001	NA NA	NA NA	NA NA	0.89	NA NA	11.5	0.1	0.001	NA NA	NA NA	NA	NA NA	NA NA
GW14-08-10733	02/29/08	10:10	2/29/2008	0.001	NA NA	NA NA	NA NA	0.93	NA NA	11.5	0.1	0.001	NA NA	NA NA	NA	NA NA	NA NA
GW14-08-10735	02/29/08	10:30	2/29/2008	0.001	NA NA	NA	NA	0.85	NA	11.4	0.0	0.001	NA NA	NA NA	NA NA	NA	NA NA
GW14-08-10736	02/29/08	10:40	2/29/2008	0.001	NA NA	NA	NA	0.82	NA	11.1	0.1	0.001	NA NA	NA	NA	NA	NA NA
GW14-08-10737	02/29/08	10:50	2/29/2008	0.001	NA NA	NA	NA	0.83	NA	11.2	0.1	0.001	NA NA	NA	NA	NA	NA NA
GW14-08-10738	02/29/08	11:20	2/29/2008	0.001	NA NA	NA	NA	NA	NA	11.0	0.1	0.001	NA	NA NA	NA	NA	NA NA
GW14-08-10739	02/29/08	11:50	2/29/2008	0.001	NA NA	NA	NA	NA	NA	10.9	0.0	0.001	NA NA	NA NA	NA	NA	NA NA
GW14-08-10740	02/29/08	12:20	2/29/2008	0.001	NA	NA	NA	NA NA	NA	10.7	0.1	0.001	NA	NA	NA	NA	NA NA
GW14-08-10741	02/29/08	12:50	2/29/2008	0.001	NA	NA	NA	NA NA	NA	10.5	0.0	0.001	NA	NA NA	NA	NA	NA NA
GW14-08-10742	02/29/08	13:50	2/29/2008	0.001	NA	NA	NA	NA NA	NA	10.5	0.0	0.001	NA	NA NA	NA	NA	NA NA
GW14-08-10743	02/29/08	14:50	2/29/2008	0.001	NA	NA	NA	NA	NA	10.3	0.1	0.001	NA	NA	NA	NA	NA
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0.001	NA	NA	NA	0.42	NA	0.47	0.01	0.001	NA	NA	NA	NA	NA
GW14-08-10778	02/28/08	n/a	2/28/2008	0.001	NA	NA	NA	0.57	NA	1.00	0.01	0.001	NA	NA	NA	NA	NA
GW14-08-10779	02/29/08	10:20	2/29/2008	0.001	NA	NA	NA	NA	NA	0.01	NA	0.001	NA	NA	NA	NA	NA
GW14-08-10780	02/29/08	10:10	2/29/2008	0.001	NA	NA	NA	NA	NA	11.2	0.0	0.001	NA	NA	NA	NA	NA
GW14-08-10781	02/29/08	12:50	2/29/2008	0.001	NA	NA	NA	NA	NA	10.8	0.0	0.001	NA	NA	NA	NA	NA
GW14-08-10727	02/29/08	9:35	2/29/2008	0.001	NA	0.01	NA	NA	NA	12.1	0.0	0.001	NA	3.04	NA	NA	NA
GW14-08-10728	02/29/08	9:40	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.7	0.1	0.001	NA	3.07	NA	NA	NA
GW14-08-10785	02/29/08	9:45	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.5	0.0	0.001	NA	3.09	NA	NA	NA
GW14-08-10786	02/29/08	9:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.6	0.0	0.001	NA	2.96	NA	NA	NA
GW14-08-10787	02/29/08	9:55	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.6	0.0	0.001	NA	3.00	NA	NA	NA
GW14-08-10788	02/29/08	10:00	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.5	0.1	0.001	NA	3.23	NA	NA	NA
GW14-08-10789	02/29/08	10:10	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.5	0.1	0.001	NA	3.03	NA	NA	NA
GW14-08-10790	02/29/08	10:20	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.3	0.0	0.001	NA	3.01	NA	NA	NA
GW14-08-10791	02/29/08	10:30	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.7	0.0	0.001	NA	2.99	NA	NA	NA
GW14-08-10792	02/29/08	10:40	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.5	0.0	0.001	NA	3.01	NA	NA	NA
GW14-08-10793	02/29/08	10:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.5	0.0	0.001	NA	2.94	NA	NA	NA
GW14-08-10794	02/29/08	11:20	2/29/2008	0.001	NA	0.01	U	NA	NA	11.3	0.0	0.001	NA	2.95	NA	NA	NA
GW14-08-10795	02/29/08	11:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.0	0.0	0.001	NA	3.00	NA	NA	NA
GW14-08-10796	02/29/08	12:20	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.0	0.1	0.001	NA	2.92	NA	NA	NA
GW14-08-10797	02/29/08	12:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	11.0	0.0	0.001	NA	2.93	NA	NA	NA
GW14-08-10798	02/29/08	13:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	10.2	0.1	0.001	NA	2.94	NA	NA	NA
GW14-08-10799	02/29/08	14:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	10.0	0.0	0.001	NA	3.01	NA	NA	NA
GW14-08-10833	02/28/08	n/a	2/28/2008	0.001	NA	0.01	U	NA	NA	0.42	0.01	0.001	NA	0.24	NA	NA	NA
GW14-08-10834	02/28/08	n/a	2/28/2008	0.001	NA	0.01	U	NA	NA	0.26	0.00	0.001	NA	0.07	NA	NA	NA
GW14-08-10836	02/29/08	10:10	2/29/2008	0.001	NA	0.01	NA	NA	NA	10.8	0.0	0.001	NA	3.03	NA	NA	NA
GW14-08-10837	02/29/08	12:50	2/29/2008	0.001	NA	0.01	NA	NA	NA	9.88	0.00	0.001	NA	2.92	NA	NA	NA

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

	Data	T:		On male		Alk-CO ₃ rslt	ALK CO	On male		On male		O. malf				Fo malé	
Sample ID	Date Collected	Time Collected	Date Received	Co rslt (ppm)	stdev (Co)	(ppm)	ALK-CO₃ (U)	Cr rslt (ppm)	stdev (Cr)	Cs rslt (ppm)	stdev (Cs)	Cu rslt (ppm)	stdev (Cu)	F(-) ppm	F(-) (U)	Fe rslt (ppm)	stdev (Fe)
GW14-08-10725	02/29/08	9:35	2/29/2008	0.001	NA	0.8	U ^b	0.002	0.000	0.001	NA	0.002	0.000	NA	NA	0.23	0.00
GW14-08-10725 GW14-08-10726	02/29/08	9:40	2/29/2008	0.001	NA NA	0.8	U	0.002	0.000	0.001	NA NA	0.002	0.000	NA NA	NA NA	0.23	0.00
GW14-08-10729	02/29/08	9:45	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA NA	0.002	0.000	NA	NA	0.24	0.00
GW14-08-10729 GW14-08-10730	02/29/08	9:50	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA NA	0.002	0.000	NA	NA NA	0.23	0.00
GW14-08-10731	02/29/08	9:55	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	NA NA	NA NA	0.24	0.00
GW14-08-10731	02/29/08	10:00	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	NA NA	NA	0.24	0.00
GW14-08-10733	02/29/08	10:10	2/29/2008	0.001	NA NA	0.8	Ü	0.002	0.000	0.001	NA NA	0.001	NA	NA NA	NA	0.23	0.00
GW14-08-10734	02/29/08	10:20	2/29/2008	0.001	NA	0.8	Ü	0.002	0.000	0.001	NA	0.002	0.000	NA NA	NA	0.23	0.00
GW14-08-10735	02/29/08	10:30	2/29/2008	0.001	NA	0.8	Ü	0.002	0.000	0.001	NA	0.001	0.000	NA NA	NA	0.24	0.00
GW14-08-10736	02/29/08	10:40	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	NA NA	NA	0.23	0.00
GW14-08-10737	02/29/08	10:50	2/29/2008	0.001	NA	0.8	Ü	0.003	0.000	0.001	NA	0.002	0.000	NA	NA	0.23	0.00
GW14-08-10738	02/29/08	11:20	2/29/2008	0.001	NA	0.8	U	0.003	0.000	0.001	NA	0.001	NA	NA	NA	0.22	0.00
GW14-08-10739	02/29/08	11:50	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.001	NA	NA	NA	0.22	0.00
GW14-08-10740	02/29/08	12:20	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.001	0.000	NA	NA	0.22	0.00
GW14-08-10741	02/29/08	12:50	2/29/2008	0.001	NA	0.8	U	0.005	0.001	0.001	NA	0.001	NA	NA	NA	0.21	0.00
GW14-08-10742	02/29/08	13:50	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	NA	NA	0.43	0.00
GW14-08-10743	02/29/08	14:50	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	NA	NA	0.19	0.00
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0.001	NA	0.8	U	0.001	0.000	0.001	NA	0.002	0.000	NA	NA	0.2	0.0
GW14-08-10778	02/28/08	n/a	2/28/2008	0.001	NA	0.8	Ü	0.002	0.000	0.001	NA	0.003	0.000	NA	NA	11.4	0.0
GW14-08-10779	02/29/08	10:20	2/29/2008	0.001	NA	0.8	U	0.001	NA	0.001	NA	0.001	NA	NA	NA	0.01	NA
GW14-08-10780	02/29/08	10:10	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.004	0.000	NA	NA	0.23	0.00
GW14-08-10781	02/29/08	12:50	2/29/2008	0.001	NA	0.8	U	0.002	0.000	0.001	NA	0.011	0.000	NA	NA	0.21	0.00
GW14-08-10727	02/29/08	9:35	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.003	0.000	0.32	NA	0.19	0.00
GW14-08-10728	02/29/08	9:40	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	0.000	0.31	NA	0.21	0.00
GW14-08-10785	02/29/08	9:45	2/29/2008	0.003	0.000	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	0.38	NA	0.19	0.00
GW14-08-10786	02/29/08	9:50	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	0.000	0.31	NA	0.20	0.00
GW14-08-10787	02/29/08	9:55	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	NA	0.32	NA	0.20	0.00
GW14-08-10788	02/29/08	10:00	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.003	0.000	0.39	NA	0.20	0.00
GW14-08-10789	02/29/08	10:10	2/29/2008	0.001	0.000	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	0.37	NA	0.20	0.00
GW14-08-10790	02/29/08	10:20	2/29/2008	0.004	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	0.000	0.37	NA	0.19	0.00
GW14-08-10791	02/29/08	10:30	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	NA	0.32	NA	0.20	0.00
GW14-08-10792	02/29/08	10:40	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	NA	0.37	NA	0.20	0.00
GW14-08-10793	02/29/08	10:50	2/29/2008	0.003	0.000	0.8	U	0.002	0.000	0.001	NA	0.008	0.000	0.37	NA	0.20	0.00
GW14-08-10794	02/29/08	11:20	2/29/2008	0.003	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	0.000	0.34	NA	0.20	0.00
GW14-08-10795	02/29/08	11:50	2/29/2008	0.003	0.000	0.8	U	0.002	0.000	0.001	NA	0.011	0.000	0.38	NA	0.20	0.00
GW14-08-10796	02/29/08	12:20	2/29/2008	0.006	0.000	0.8	U	0.002	0.000	0.001	NA	0.002	0.000	0.29	NA	0.18	0.00
GW14-08-10797	02/29/08	12:50	2/29/2008	0.001	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	0.000	0.32	NA	0.19	0.00
GW14-08-10798	02/29/08	13:50	2/29/2008	0.002	0.000	0.8	U	0.003	0.000	0.001	NA	0.001	0.000	0.29	NA	0.20	0.00
GW14-08-10799	02/29/08	14:50	2/29/2008	0.002	0.000	0.8	U	0.002	0.000	0.001	NA	0.001	NA	0.29	NA	0.17	0.00
GW14-08-10833	02/28/08	n/a	2/28/2008	0.001	0.000	0.8	U	0.001	NA	0.001	NA	0.001	NA	0.01	NA	0.01	NA
GW14-08-10834	02/28/08	n/a	2/28/2008	0.001	NA	0.8	U	0.001	NA	0.001	NA	0.002	0.000	0.01	U	0.05	0.00
GW14-08-10836	02/29/08	10:10	2/29/2008	0.004	0.000	0.8	U	0.0020	0.0001	0.001	NA	0.002	0.000	0.32	NA	0.22	0.00
GW14-08-10837	02/29/08	12:50	2/29/2008	0.003	0.000	0.8	U	0.0020	0.0001	0.001	NA	0.001	NA	0.30	NA	0.19	0.00

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

				Alk-	ALK-												
	Date	Time		CO ₃ +HCO ₃	CO ₃ +HCO ₃	Hg rslt		K rslt		Li rslt		Mg rslt		Mn rslt		Mo rslt	
Sample ID	Collected	Collected	Date Received	rslt (ppm)	(U)	(ppm)	stdev (Hg)	(ppm)	stdev (K)	(ppm)	stdev (Li)	(ppm)	stdev (Mg)	(ppm)	stdev (Mn)	(ppm)	stdev (Mo)
GW14-08-10725	02/29/08	9:35	2/29/2008	80.3	NA	0.00005	NA	2.13	0.03	0.020	0.000	2.69	0.02	0.078	0.004	0.001	NA
GW14-08-10726	02/29/08	9:40	2/29/2008	76.7	NA	0.00005	NA	2.13	0.02	0.021	0.000	2.73	0.03	0.079	0.003	0.001	NA
GW14-08-10729	02/29/08	9:45	2/29/2008	76.8	NA	0.00005	NA	2.15	0.01	0.020	0.001	2.83	0.01	0.084	0.000	0.001	NA
GW14-08-10730	02/29/08	9:50	2/29/2008	76.8	NA	0.00005	NA	2.11	0.01	0.021	0.002	2.82	0.01	0.085	0.001	0.001	NA
GW14-08-10731	02/29/08	9:55	2/29/2008	76.3	NA	0.00005	NA	2.07	0.00	0.021	0.000	2.84	0.01	0.087	0.000	0.001	NA
GW14-08-10732	02/29/08	10:00	2/29/2008	76.4	NA	0.00005	NA	2.06	0.02	0.020	0.000	2.81	0.02	0.088	0.000	0.001	NA
GW14-08-10733	02/29/08	10:10	2/29/2008	79.1	NA	0.00005	NA	2.08	0.00	0.020	0.000	2.87	0.01	0.090	0.000	0.001	NA
GW14-08-10734	02/29/08	10:20	2/29/2008	76.2	NA	0.00005	NA	2.06	0.01	0.021	0.001	2.87	0.01	0.093	0.000	0.001	NA
GW14-08-10735	02/29/08	10:30	2/29/2008	76.2	NA	0.00005	NA	2.04	0.00	0.020	0.000	2.88	0.01	0.095	0.001	0.001	NA
GW14-08-10736	02/29/08	10:40	2/29/2008	76.1	NA	0.00005	NA	1.98	0.02	0.021	0.000	2.86	0.01	0.096	0.000	0.001	NA
GW14-08-10737	02/29/08	10:50	2/29/2008	76.1	NA	0.00005	NA	2.21	0.01	0.020	0.001	2.90	0.02	0.098	0.001	0.001	NA
GW14-08-10738	02/29/08	11:20	2/29/2008	76.0	NA	0.00005	NA	2.11	0.01	0.020	0.001	2.94	0.01	0.101	0.001	0.001	NA
GW14-08-10739	02/29/08	11:50	2/29/2008	75.4	NA	0.00005	NA	2.00	0.01	0.021	0.001	2.97	0.01	0.104	0.001	0.001	NA
GW14-08-10740	02/29/08	12:20	2/29/2008	75.8	NA	0.00005	NA	1.97	0.01	0.019	0.000	2.95	0.01	0.107	0.001	0.001	NA
GW14-08-10741	02/29/08	12:50	2/29/2008	76.1	NA	0.00005	NA	1.89	0.02	0.021	0.002	2.88	0.01	0.105	0.001	0.001	NA
GW14-08-10742	02/29/08	13:50	2/29/2008	75.6	NA	0.00005	NA	1.91	0.02	0.020	0.000	2.96	0.02	0.108	0.001	0.001	NA
GW14-08-10743	02/29/08	14:50	2/29/2008	75.3	NA NA	0.00005	NA	1.89	0.00	0.020	0.001	2.97	0.02	0.108	0.001	0.001	NA
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0	U	0.00005	NA	0.03	0.00	0.001	NA	0.05	0.02	0.004	0.000	0.001	NA
GW14-08-10778	02/28/08	n/a	2/28/2008	0	Ü	0.00005	NA	0.01	NA	0.001	NA	0.12	0.00	0.042	0.001	0.001	NA
GW14-08-10779	02/29/08	10:20	2/29/2008	0	Ü	0.00005	NA	0.01	NA	0.001	NA	0.01	NA	0.001	NA	0.001	NA
GW14-08-10780	02/29/08	10:10	2/29/2008	75.7	NA	0.00005	NA	1.99	0.02	0.020	0.000	2.64	0.01	0.089	0.001	0.001	NA
GW14-08-10781	02/29/08	12:50	2/29/2008	75.8	NA	0.00005	NA	1.93	0.01	0.020	0.000	2.81	0.01	0.100	0.001	0.001	NA
GW14-08-10727	02/29/08	9:35	2/29/2008	76.9	NA	0.00005	NA	2.13	0.01	0.021	0.000	2.72	0.00	0.081	0.000	0.001	NA
GW14-08-10728	02/29/08	9:40	2/29/2008	76.7	NA	0.00005	NA	2.14	0.03	0.021	0.000	2.79	0.01	0.085	0.000	0.001	NA
GW14-08-10785	02/29/08	9:45	2/29/2008	76.9	NA	0.00005	NA	2.06	0.01	0.020	0.000	2.62	0.01	0.084	0.000	0.001	NA
GW14-08-10786	02/29/08	9:50	2/29/2008	76.7	NA	0.00005	NA	2.05	0.02	0.020	0.000	2.67	0.01	0.081	0.001	0.001	NA
GW14-08-10787	02/29/08	9:55	2/29/2008	76.6	NA	0.00005	NA	2.03	0.01	0.020	0.000	2.67	0.02	0.085	0.001	0.001	NA
GW14-08-10788	02/29/08	10:00	2/29/2008	76.7	NA	0.00005	NA	2.01	0.01	0.020	0.000	2.68	0.01	0.088	0.002	0.001	NA
GW14-08-10789	02/29/08	10:10	2/29/2008	76.4	NA	0.00005	NA	1.99	0.01	0.020	0.000	2.68	0.01	0.085	0.001	0.001	NA
GW14-08-10790	02/29/08	10:20	2/29/2008	76.3	NA	0.00005	NA	1.98	0.02	0.020	0.000	2.68	0.03	0.095	0.003	0.001	NA
GW14-08-10791	02/29/08	10:30	2/29/2008	76.2	NA	0.00005	NA	2.19	0.02	0.021	0.000	2.75	0.02	0.092	0.001	0.001	NA
GW14-08-10792	02/29/08	10:40	2/29/2008	76.0	NA	0.00005	NA	2.09	0.00	0.020	0.000	2.75	0.00	0.096	0.002	0.001	NA
GW14-08-10793	02/29/08	10:50	2/29/2008	76.2	NA	0.00005	NA	2.10	0.01	0.021	0.000	2.77	0.01	0.098	0.005	0.001	NA
GW14-08-10794	02/29/08	11:20	2/29/2008	76.1	NA	0.00005	NA	2.11	0.01	0.021	0.000	2.85	0.01	0.095	0.001	0.001	NA
GW14-08-10795	02/29/08	11:50	2/29/2008	75.7	NA	0.00005	NA	2.03	0.01	0.021	0.000	2.81	0.01	0.101	0.003	0.001	NA
GW14-08-10796	02/29/08	12:20	2/29/2008	75.9	NA	0.00005	NA	2.05	0.01	0.021	0.000	2.88	0.00	0.113	0.003	0.001	NA
GW14-08-10797	02/29/08	12:50	2/29/2008	75.6	NA	0.00005	NA	2.10	0.01	0.022	0.000	3.00	0.01	0.105	0.005	0.001	NA
GW14-08-10798	02/29/08	13:50	2/29/2008	75.7	NA	0.00005	NA	1.91	0.01	0.021	0.000	2.94	0.01	0.102	0.000	0.001	NA
GW14-08-10799	02/29/08	14:50	2/29/2008	75.9	NA	0.00005	NA	1.83	0.02	0.020	0.000	2.85	0.03	0.108	0.004	0.001	NA
GW14-08-10833	02/28/08	n/a	2/28/2008	0	U	0.00005	NA	0.01	NA	0.001	NA	0.03	0.00	0.002	0.000	0.001	NA
GW14-08-10834	02/28/08	n/a	2/28/2008	NA	U	0.00005	NA	0.01	NA	0.001	NA	0.02	0.00	0.002	0.000	0.001	NA
GW14-08-10836	02/29/08	10:10	2/29/2008	76.4	NA	0.00005	NA	1.97	0.02	0.022	0.000	2.78	0.03	0.094	0.001	0.001	NA
GW14-08-10837	02/29/08	12:50	2/29/2008	75.9	NA	0.00005	NA	2.20	0.03	0.020	0.000	2.95	0.00	0.103	0.002	0.001	NA
CVV 14 00 10007	02/20/00	12.00	2/20/2000	70.0	14/7	0.00000	1 1/7	2.20	0.00	0.020	0.000	2.00	0.00	0.100	0.002	0.001	14/1

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

	Date	Time		Na rslt		Ni rslt								C2O4 rslt		Pb rslt
Sample ID	Collected	Collected	Date Received	(ppm)	stdev (Na)	(ppm)	stdev (Ni)	NO2(ppm)	NO2-N rslt	NO2-N (U)	NO3 ppm	NO3-N rslt	NO3-N (U)	(ppm)	C2O4 (U)	(ppm)
GW14-08-10725	02/29/08	9:35	2/29/2008	10.3	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0004
GW14-08-10726	02/29/08	9:40	2/29/2008	10.3	0.1	0.003	0.000	NA	NA	NA	NA	NA	NA	NA NA	NA	0.0008
GW14-08-10729	02/29/08	9:45	2/29/2008	10.9	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0005
GW14-08-10730	02/29/08	9:50	2/29/2008	10.9	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10731	02/29/08	9:55	2/29/2008	10.8	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0005
GW14-08-10732	02/29/08	10:00	2/29/2008	10.7	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0004
GW14-08-10733	02/29/08	10:10	2/29/2008	10.8	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10734	02/29/08	10:20	2/29/2008	10.8	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0005
GW14-08-10735	02/29/08	10:30	2/29/2008	10.8	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0004
GW14-08-10736	02/29/08	10:40	2/29/2008	10.6	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0005
GW14-08-10737	02/29/08	10:50	2/29/2008	10.9	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10738	02/29/08	11:20	2/29/2008	10.7	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10739	02/29/08	11:50	2/29/2008	10.7	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10740	02/29/08	12:20	2/29/2008	10.6	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10741	02/29/08	12:50	2/29/2008	10.2	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0002
GW14-08-10742	02/29/08	13:50	2/29/2008	10.3	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10743	02/29/08	14:50	2/29/2008	10.2	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0003
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0.23	0.00	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0031
GW14-08-10778	02/28/08	n/a	2/28/2008	0.28	0.00	0.008	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0026
GW14-08-10779	02/29/08	10:20	2/29/2008	0.01	NA	0.001	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0002
GW14-08-10780	02/29/08	10:10	2/29/2008	10.1	0.1	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0006
GW14-08-10781	02/29/08	12:50	2/29/2008	10.1	0.0	0.001	0.000	NA	NA	NA	NA	NA	NA	NA	NA	0.0004
GW14-08-10727	02/29/08	9:35	2/29/2008	10.4	0.0	0.001	0.000	0.01	0.003	U	1.53	0.346	NA	0.01	U	0.0004
GW14-08-10728	02/29/08	9:40	2/29/2008	10.9	0.0	0.002	0.000	0.01	0.003	U	1.54	0.348	NA	0.01	U	0.0006
GW14-08-10785	02/29/08	9:45	2/29/2008	10.3	0.0	0.001	0.000	0.01	0.003	U	1.55	0.349	NA	0.01	U	0.0005
GW14-08-10786	02/29/08	9:50	2/29/2008	10.4	0.0	0.001	0.000	0.01	0.003	U	1.54	0.347	NA	0.01	U	0.0003
GW14-08-10787	02/29/08	9:55	2/29/2008	10.3	0.1	0.001	0.000	0.01	0.003	U	1.55	0.349	NA	0.01	U	0.0003
GW14-08-10788	02/29/08	10:00	2/29/2008	10.2	0.1	0.001	0.000	0.01	0.003	U	1.62	0.367	NA	0.01	U	0.0004
GW14-08-10789	02/29/08	10:10	2/29/2008	10.1	0.0	0.001	0.000	0.01	0.003	U	1.60	0.360	NA	0.01	U	0.0004
GW14-08-10790	02/29/08	10:20	2/29/2008	10.1	0.1	0.001	0.000	0.01	0.003	U	1.61	0.363	NA	0.01	U	0.0002
GW14-08-10791	02/29/08	10:30	2/29/2008	10.5	0.0	0.001	0.000	0.01	0.003	U	1.62	0.365	NA	0.01	U	0.0002
GW14-08-10792	02/29/08	10:40	2/29/2008	10.2	0.0	0.001	0.000	0.01	0.003	U	1.65	0.372	NA	0.01	U	0.0002
GW14-08-10793	02/29/08	10:50	2/29/2008	10.3	0.0	0.001	0.000	0.01	0.003	U	1.62	0.366	NA	0.01	U	0.0004
GW14-08-10794	02/29/08	11:20	2/29/2008	10.4	0.1	0.001	0.000	0.01	0.003	U	1.66	0.375	NA	0.01	U	0.0003
GW14-08-10795	02/29/08	11:50	2/29/2008	10.2	0.1	0.001	0.000	0.01	0.003	U	1.70	0.383	NA	0.01	U	0.0004
GW14-08-10796	02/29/08	12:20	2/29/2008	10.3	0.1	0.001	0.000	0.01	0.003	U	1.69	0.381	NA	0.01	U	0.0002
GW14-08-10797	02/29/08	12:50	2/29/2008	10.5	0.0	0.001	0.000	0.01	0.003	U	1.70	0.385	NA	0.01	U	0.0002
GW14-08-10798	02/29/08	13:50	2/29/2008	10.3	0.0	0.001	0.000	0.01	0.003	U	1.71	0.386	NA	0.01	U	0.0003
GW14-08-10799	02/29/08	14:50	2/29/2008	9.97	0.11	0.001	0.000	0.01	0.003	U	1.75	0.395	NA	0.01	U	0.0002
GW14-08-10833	02/28/08	n/a	2/28/2008	0.13	0.00	0.001	NA	0.01	0.003	U	0.12	0.028	NA	0.01	U	0.0002
GW14-08-10834	02/28/08	n/a	2/28/2008	0.27	0.00	0.005	0.000	0.01	0.003	U	0.01	0.003	NA	0.01	U	0.0014
GW14-08-10836	02/29/08	10:10	2/29/2008	10.5	0.1	0.001	0.000	0.01	0.003	U	1.60	0.361	NA	0.01	U	0.0004
GW14-08-10837	02/29/08	12:50	2/29/2008	11.1	0.1	0.001	0.000	0.01	0.003	U	1.69	0.381	NA	0.01	U	0.0002

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

	_																
	Date	Time		(1 (51)		PO4(-3)	PO4(-3)	Rb rslt	(1 (51)	S2- rslt	00 (11)	Sb rslt	(01)	Se rslt		Si rslt	
Sample ID	Collected	Collected	Date Received	stdev (Pb)	pH	rslt (ppm)	(U)	(ppm)	stdev (Rb)	(ppm)	S2- (U)	(ppm)	stdev (Sb)	(ppm)	stdev (Se)	(ppm)	stdev (Si)
GW14-08-10725	02/29/08	9:35	2/29/2008	0.0000	7.76	NA	NA	0.007	0.000	0.01	NA	0.001	NA	0.001	NA	35.7	0.3
GW14-08-10726	02/29/08	9:40	2/29/2008	0.0000	7.69	NA	NA	0.007	0.000	0.01	NA	0.001	NA	0.001	NA	36.3	0.2
GW14-08-10729	02/29/08	9:45	2/29/2008	0.0000	7.68	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	36.9	0.2
GW14-08-10730	02/29/08	9:50	2/29/2008	0.0000	7.74	NA	NA	0.007	0.000	0.01	U	0.001	NA	0.001	NA	37.2	0.3
GW14-08-10731	02/29/08	9:55	2/29/2008	0.0000	7.70	NA	NA	0.007	0.000	0.01	U	0.001	NA	0.001	NA	37.4	0.1
GW14-08-10732	02/29/08	10:00	2/29/2008	0.0000	7.74	NA	NA	0.007	0.000	0.01	U	0.001	NA	0.001	NA	36.8	0.0
GW14-08-10733	02/29/08	10:10	2/29/2008	0.0000	7.75	NA	NA	0.007	0.000	0.01	U	0.001	NA	0.001	NA	37.2	0.3
GW14-08-10734	02/29/08	10:20	2/29/2008	0.0000	7.76	NA	NA	0.007	0.000	0.01	U	0.001	NA	0.001	NA	37.1	0.3
GW14-08-10735	02/29/08	10:30	2/29/2008	0.0000	7.77	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	37.1	0.2
GW14-08-10736	02/29/08	10:40	2/29/2008	0.0000	7.75	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	36.7	0.2
GW14-08-10737	02/29/08	10:50	2/29/2008	0.0000	7.66	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	36.8	0.3
GW14-08-10738	02/29/08	11:20	2/29/2008	0.0000	7.69	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	36.6	0.2
GW14-08-10739	02/29/08	11:50	2/29/2008	0.0000	7.66	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	36.7	0.3
GW14-08-10740	02/29/08	12:20	2/29/2008	0.0000	7.73	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	36.6	0.2
GW14-08-10741	02/29/08	12:50	2/29/2008	0.0000	7.73	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	35.4	0.1
GW14-08-10742	02/29/08	13:50	2/29/2008	0.0000	7.72	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	35.9	0.2
GW14-08-10743	02/29/08	14:50	2/29/2008	0.0000	7.73	NA	NA	0.005	0.000	0.01	U	0.001	NA	0.001	NA	35.9	0.3
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0.0000	6.29	NA	NA	0.001	NA	0.01	U	0.001	NA	0.001	NA	0.08	0.00
GW14-08-10778	02/28/08	n/a	2/28/2008	0.0001	6.59	NA	NA	0.001	NA	0.01	U	0.001	NA	0.001	NA	2.51	0.02
GW14-08-10779	02/29/08	10:20	2/29/2008	NA	5.06	NA	NA	0.001	NA	0.01	U	0.001	NA	0.001	NA	0.01	NA
GW14-08-10780	02/29/08	10:10	2/29/2008	0.0000	7.76	NA	NA	0.007	0.000	0.01	U	0.001	NA	0.001	NA	34.8	0.2
GW14-08-10781	02/29/08	12:50	2/29/2008	0.0000	7.80	NA	NA	0.006	0.000	0.01	U	0.001	NA	0.001	NA	35.6	0.3
GW14-08-10727	02/29/08	9:35	2/29/2008	0.0000	7.71	0.26	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	35.9	0.4
GW14-08-10728	02/29/08	9:40	2/29/2008	0.0000	7.70	0.27	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	36.8	0.4
GW14-08-10785	02/29/08	9:45	2/29/2008	0.0000	7.73	0.26	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	34.9	0.3
GW14-08-10786	02/29/08	9:50	2/29/2008	0.0000	7.71	0.26	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.6	0.2
GW14-08-10787	02/29/08	9:55	2/29/2008	0.0000	7.72	0.25	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.7	0.2
GW14-08-10788	02/29/08	10:00	2/29/2008	0.0000	7.77	0.25	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	35.3	0.3
GW14-08-10789	02/29/08	10:10	2/29/2008	0.0000	7.77	0.25	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.4	0.3
GW14-08-10790	02/29/08	10:20	2/29/2008	0.0000	7.79	0.25	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	35.0	0.2
GW14-08-10791	02/29/08	10:30	2/29/2008	0.0000	7.79	0.25	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.7	0.3
GW14-08-10792	02/29/08	10:40	2/29/2008	0.0000	7.80	0.24	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	35.4	0.3
GW14-08-10793	02/29/08	10:50	2/29/2008	0.0000	7.65	0.23	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	35.5	0.2
GW14-08-10794	02/29/08	11:20	2/29/2008	0.0000	7.71	0.23	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	36.3	0.3
GW14-08-10795	02/29/08	11:50	2/29/2008	0.0000	7.64	0.23	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.5	0.1
GW14-08-10796	02/29/08	12:20	2/29/2008	0.0000	7.71	0.22	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.8	0.3
GW14-08-10797	02/29/08	12:50	2/29/2008	0.0000	7.73	0.22	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	36.9	0.3
GW14-08-10798	02/29/08	13:50	2/29/2008	0.0000	7.72	0.21	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.7	0.0
GW14-08-10799	02/29/08	14:50	2/29/2008	0.0000	7.76	0.21	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	34.3	0.4
GW14-08-10833	02/28/08	n/a	2/28/2008	NA	6.96	0.01	U	0.001	NA	NA	NA	0.001	NA	0.001	NA	0.1	0.0
GW14-08-10834	02/28/08	n/a	2/28/2008	0.0000	6.20	0.01	U	0.001	NA	NA	NA	0.001	NA	0.001	NA	0.4	0.0
GW14-08-10836	02/29/08	10:10	2/29/2008	0.0000	7.90	0.23	NA	0.007	0.000	NA	NA	0.001	NA	0.001	NA	35.9	0.3
GW14-08-10837	02/29/08	12:50	2/29/2008	0.0000	7.79	0.20	NA	0.006	0.000	NA	NA	0.001	NA	0.001	NA	35.9	0.5

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

	Date	Time		SiO2 rslt	stdev	Sn rslt		SO4(-2)		Sr rslt		Th rslt		Ti rslt		TI rslt	
Sample ID	Collected		Date Received	(ppm)	(SiO2)	(ppm)	stdev (Sn)	` ′	SO4(-2) (U)	(ppm)	stdev (Sr)	(ppm)	stdev (Th)	(ppm)	stdev (Ti)	(ppm)	stdev (TI)
GW14-08-10725	02/29/08	9:35	2/29/2008	76.4	0.6	0.001	NA	NA	NA	0.075	0.001	0.001	NA	0.002	NA	0.001	NA NA
GW14-08-10726	02/29/08	9:40	2/29/2008	77.6	0.4	0.001	NA NA	NA	NA NA	0.076	0.001	0.001	NA	0.002	NA NA	0.001	NA NA
GW14-08-10729	02/29/08	9:45	2/29/2008	79.0	0.5	0.001	NA	NA	NA NA	0.071	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10730	02/29/08	9:50	2/29/2008	79.6	0.5	0.001	NA NA	NA	NA NA	0.078	0.007	0.001	NA	0.002	NA	0.001	NA
GW14-08-10731	02/29/08	9:55	2/29/2008	80.0	0.2	0.001	NA	NA	NA	0.076	0.002	0.001	NA	0.002	NA	0.001	NA
GW14-08-10732	02/29/08	10:00	2/29/2008	78.8	0.0	0.001	NA	NA	NA	0.071	0.003	0.001	NA	0.002	NA	0.001	NA
GW14-08-10733	02/29/08	10:10	2/29/2008	79.7	0.7	0.001	NA	NA	NA	0.077	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10734	02/29/08	10:20	2/29/2008	79.4	0.6	0.001	NA	NA	NA	0.074	0.002	0.001	NA	0.002	NA	0.001	NA
GW14-08-10735	02/29/08	10:30	2/29/2008	79.4	0.5	0.001	NA	NA	NA	0.073	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10736	02/29/08	10:40	2/29/2008	78.6	0.5	0.001	NA	NA	NA	0.075	0.004	0.001	NA	0.002	NA	0.001	NA
GW14-08-10737	02/29/08	10:50	2/29/2008	78.8	0.6	0.001	NA	NA	NA	0.071	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10738	02/29/08	11:20	2/29/2008	78.4	0.5	0.001	NA	NA	NA	0.074	0.004	0.001	NA	0.002	NA	0.001	NA
GW14-08-10739	02/29/08	11:50	2/29/2008	78.6	0.6	0.001	NA	NA	NA	0.071	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10740	02/29/08	12:20	2/29/2008	78.2	0.5	0.001	NA	NA	NA	0.065	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10741	02/29/08	12:50	2/29/2008	75.8	0.3	0.001	NA	NA	NA	0.073	0.007	0.001	NA	0.002	NA	0.001	NA
GW14-08-10742	02/29/08	13:50	2/29/2008	76.8	0.3	0.001	NA	NA	NA	0.065	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10743	02/29/08	14:50	2/29/2008	76.7	0.7	0.001	NA	NA	NA	0.064	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0.2	0.0	0.001	NA	NA	NA	0.002	0.000	0.001	NA	0.002	0.001	0.001	NA
GW14-08-10778	02/28/08	n/a	2/28/2008	5.4	0.0	0.001	NA	NA	NA	0.005	0.000	0.001	NA	0.005	0.000	0.001	NA
GW14-08-10779	02/29/08	10:20	2/29/2008	0.02	NA	0.001	NA	NA	NA	0.001		0.001	NA	0.002	0.002	0.001	NA
GW14-08-10780	02/29/08	10:10	2/29/2008	74.4	0.5	0.001	NA	NA	NA	0.070	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10781	02/29/08	12:50	2/29/2008	76.2	0.7	0.001	NA	NA	NA	0.068	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10727	02/29/08	9:35	2/29/2008	76.8	0.8	0.001	NA	5.40	NA	0.076	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10728	02/29/08	9:40	2/29/2008	78.8	0.8	0.001	NA	5.33	NA	0.075	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10785	02/29/08	9:45	2/29/2008	74.8	0.6	0.001	NA	5.30	NA	0.071	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10786	02/29/08	9:50	2/29/2008	76.2	0.4	0.001	NA	5.20	NA	0.073	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10787	02/29/08	9:55	2/29/2008	76.4	0.4	0.001	NA	5.16	NA	0.073	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10788	02/29/08	10:00	2/29/2008	75.6	0.7	0.001	NA	5.44	NA	0.072	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10789	02/29/08	10:10	2/29/2008	75.7	0.6	0.001	NA	5.16	NA	0.072	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10790	02/29/08	10:20	2/29/2008	74.9	0.5	0.001	NA	5.09	NA	0.071	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10791	02/29/08	10:30	2/29/2008	76.5	0.6	0.001	NA	5.09	NA	0.073	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10792	02/29/08	10:40	2/29/2008	75.7	0.5	0.001	NA	5.03	NA	0.072	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10793	02/29/08	10:50	2/29/2008	76.0	0.5	0.001	NA	4.91	NA	0.072	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10794	02/29/08	11:20	2/29/2008	77.7	0.7	0.001	NA	4.82	NA	0.074	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10795	02/29/08	11:50	2/29/2008	76.0	0.2	0.001	NA	4.72	NA	0.070	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10796	02/29/08	12:20	2/29/2008	76.5	0.7	0.001	NA	4.55	NA	0.070	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10797	02/29/08	12:50	2/29/2008	78.9	0.5	0.001	NA	4.46	NA	0.072	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10798	02/29/08	13:50	2/29/2008	76.5	0.1	0.001	NA	4.31	NA	0.067	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10799	02/29/08	14:50	2/29/2008	73.4	0.9	0.001	NA	4.24	NA	0.063	0.001	0.001	NA	0.002	NA	0.001	NA
GW14-08-10833	02/28/08	n/a	2/28/2008	0.2	0.0	0.001	NA	0.37	NA	0.001	0.000	0.001	NA	0.002	0.000	0.001	NA
GW14-08-10834	02/28/08	n/a	2/28/2008	0.9	0.0	0.001	NA	0.17	NA	0.001	0.000	0.001	NA	0.002	NA	0.001	NA
GW14-08-10836	02/29/08	10:10	2/29/2008	76.9	0.6	0.001	NA	5.17	NA	0.075	0.003	0.001	NA	0.002	NA	0.001	NA
GW14-08-10837	02/29/08	12:50	2/29/2008	76.7	1.0	0.001	NA	4.43	NA	0.068	0.001	0.001	NA	0.002	NA	0.001	NA

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

	Date	Time		U rslt		V rslt		Zn rslt					
Sample ID	Collected	Collected	Date Received	(ppm)	stdev (U)	(ppm)	stdev (V)	(ppm)	stdev (Zn)	TDS (ppm)	Cations	Anions	Balance
GW14-08-10725	02/29/08	9:35	2/29/2008	0.0010	0.0000	0.006	0.000	0.007	0.000	185	1.33	1.34	-0.01
GW14-08-10726	02/29/08	9:40	2/29/2008	0.0010	0.0000	0.006	0.000	0.013	0.000	183	1.34	1.29	0.02
GW14-08-10729	02/29/08	9:45	2/29/2008	0.0009	0.0000	0.007	0.000	0.006	0.000	185	1.37	1.29	0.03
GW14-08-10730	02/29/08	9:50	2/29/2008	0.0009	0.0001	0.007	0.001	0.005	0.000	185	1.36	1.29	0.03
GW14-08-10731	02/29/08	9:55	2/29/2008	0.0010	0.0000	0.007	0.000	0.006	0.000	185	1.36	1.28	0.03
GW14-08-10732	02/29/08	10:00	2/29/2008	0.0009	0.0000	0.006	0.000	0.006	0.000	184	1.35	1.28	0.03
GW14-08-10733	02/29/08	10:10	2/29/2008	0.0010	0.0000	0.007	0.000	0.004	0.000	188	1.35	1.33	0.01
GW14-08-10734	02/29/08	10:20	2/29/2008	0.0010	0.0000	0.007	0.000	0.005	0.000	184	1.34	1.28	0.02
GW14-08-10735	02/29/08	10:30	2/29/2008	0.0010	0.0000	0.007	0.000	0.005	0.000	184	1.34	1.28	0.02
GW14-08-10736	02/29/08	10:40	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	183	1.31	1.28	0.01
GW14-08-10737	02/29/08	10:50	2/29/2008	0.0010	0.0000	0.007	0.000	0.005	0.000	183	1.34	1.28	0.02
GW14-08-10738	02/29/08	11:20	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	183	1.32	1.27	0.02
GW14-08-10739	02/29/08	11:50	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	182	1.31	1.26	0.02
GW14-08-10740	02/29/08	12:20	2/29/2008	0.0010	0.0001	0.007	0.000	0.004	0.000	182	1.30	1.27	0.01
GW14-08-10741	02/29/08	12:50	2/29/2008	0.0011	0.0001	0.008	0.001	0.004	0.000	179	1.26	1.28	0.00
GW14-08-10742	02/29/08	13:50	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	180	1.27	1.27	0.00
GW14-08-10743	02/29/08	14:50	2/29/2008	0.0011	0.0001	0.007	0.001	0.004	0.000	179	1.26	1.26	0.00
GW14-08-10777	02/28/08	n/a ^c	2/28/2008	0.0002	NA	0.001		0.024	0.001	2	0.04	0.03	0.17
GW14-08-10778	02/28/08	n/a	2/28/2008	0.0003	0.0000	0.003	0.000	0.052	0.001	19	0.08	0.03	0.45
GW14-08-10779	02/29/08	10:20	2/29/2008	0.0002	NA	0.001	NA	0.001	NA	1	0.00	0.03	-0.85
GW14-08-10780	02/29/08	10:10	2/29/2008	0.0011	0.0000	0.007	0.000	0.010	0.000	177	1.28	1.27	0.00
GW14-08-10781	02/29/08	12:50	2/29/2008	0.0012	0.0000	0.007	0.000	0.006	0.000	179	1.26	1.27	0.00
GW14-08-10727	02/29/08	9:35	2/29/2008	0.0010	0.0000	0.006	0.000	0.005	0.000	193	1.34	1.53	-0.07
GW14-08-10728	02/29/08	9:40	2/29/2008	0.0010	0.0000	0.006	0.000	0.011	0.000	195	1.35	1.53	-0.06
GW14-08-10785	02/29/08	9:45	2/29/2008	0.0010	0.0000	0.006	0.000	0.006	0.000	190	1.30	1.54	-0.08
GW14-08-10786	02/29/08	9:50	2/29/2008	0.0010	0.0000	0.006	0.000	0.004	0.000	191	1.31	1.52	-0.08
GW14-08-10787	02/29/08	9:55	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	191	1.31	1.52	-0.07
GW14-08-10788	02/29/08	10:00	2/29/2008	0.0011	0.0000	0.007	0.000	0.006	0.000	191	1.30	1.54	-0.08
GW14-08-10789	02/29/08	10:10	2/29/2008	0.0010	0.0000	0.007	0.000	0.005	0.000	190	1.29	1.52	-0.08
GW14-08-10790	02/29/08	10:20	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	189	1.28	1.52	-0.08
GW14-08-10791	02/29/08	10:30	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	191	1.33	1.52	-0.06
GW14-08-10792	02/29/08	10:40	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	190	1.31	1.51	-0.07
GW14-08-10793	02/29/08	10:50	2/29/2008	0.0011	0.0000	0.007	0.000	0.006	0.000	190	1.31	1.51	-0.07
GW14-08-10794	02/29/08	11:20	2/29/2008	0.0011	0.0000	0.007	0.000	0.005	0.000	192	1.32	1.51	-0.07
GW14-08-10795	02/29/08	11:50	2/29/2008	0.0012	0.0001	0.007	0.001	0.008	0.000	189	1.29	1.50	-0.08
GW14-08-10796	02/29/08	12:20	2/29/2008	0.0012	0.0000	0.007	0.000	0.005	0.000	190	1.30	1.50	-0.07
GW14-08-10797	02/29/08	12:50	2/29/2008	0.0012	0.0000	0.007	0.000	0.005	0.000	192	1.32	1.49	-0.06
GW14-08-10798	02/29/08	13:50	2/29/2008	0.0012	0.0000	0.007	0.000	0.007	0.000	188	1.26	1.49	-0.08
GW14-08-10799	02/29/08	14:50	2/29/2008	0.0012	0.0000	0.007	0.000	0.005	0.000	185	1.23	1.49	-0.10
GW14-08-10833	02/28/08	n/a	2/28/2008	0.0002	NA	0.001	NA	0.003	0.000	2	0.03	0.04	-0.20
GW14-08-10834	02/28/08	n/a	2/28/2008	0.0002	NA	0.001	NA	0.021	0.000	3	0.03	0.03	-0.10
GW14-08-10836	02/29/08	10:10	2/29/2008	0.0010	0.0001	0.007	0.000	0.005	0.000	191	1.28	1.52	-0.09
GW14-08-10837	02/29/08	12:50	2/29/2008	0.0011	0.0000	0.007	0.000	0.004	0.000	190	1.28	1.50	-0.08

^aNA = Not analyzed.

^bU = Undetected.

^cn/a = Not applicable.

						Specific Conductance		Dissolved	Turbidity	Aa relt		
Sample ID	Date Collected	Date Received	ER/RRES-WQH	TEMP C	рН	(uS/cm)	ORP (mV)	Oxygen (mg/L)	(NTU)	Ag rslt (ppm)	stdev (Ag)	Al rslt (ppm)
GW14-08-12948 F	200805140945	5/14/2008	08-1153	24	7.81	120.7	101	2.5	1.13	0.001	U ^a	0.001
GW14-08-12955 F	200805140945	5/14/2008	08-1151		_	_	_	_		0.001	U	0.001
GW14-08-12962 F	200805140945	5/14/2008	08-1150		_	_	_	_		0.001	U	0.003
GW14-08-12949 F	200805141015	5/14/2008	08-1153	24.1	7.75	120	109	2.7	1.62	0.001	U	0.001
GW14-08-12956 F	200805141015	5/14/2008	08-1151	_	_	_	_	_	_	0.001	U	0.001
GW14-08-12963 F	200805141015	5/14/2008	08-1150	_	_	_	_	_	_	0.001	U	0.003
GW14-08-12971 F	200805141015	5/14/2008	08-1153	_	_	_	_	_	_	0.001	U	0.001
GW14-08-12941 NF	200805140945	5/14/2008	08-1152		_	_	_	_		0.001	U	0.004
GW14-08-12942 NF	200805141015	5/14/2008	08-1152		_	_	_	_	1	0.001	U	0.003
GW14-08-12969 NF	200805141015	5/14/2008	08-1152		_	_	_	_	1	0.001	U	0.003
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152		_	_	_	_		0.001	U	0.001

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

					As rslt				Ba rslt	stdev	Be rslt			
Sample ID	Date Collected	Date Received	ER/RRES-WQH	stdev (AI)	(ppm)	stdev (As)	B rslt (ppm)	stdev (B)	(ppm)	(Ba)	(ppm)	stdev (Be)	Br(-) ppm	Br(-) (U)
GW14-08-12948 F	200805140945	5/14/2008	08-1153	0.000	0.0013	0.0000	0.0140	0.0004	0.052	0.000	0.001	b	0.04	_
GW14-08-12955 F	200805140945	5/14/2008	08-1151	U	0.0014	0.0001	0.0137	0.0001	0.052	0.001	0.001	_	_	_
GW14-08-12962 F	200805140945	5/14/2008	08-1150	0.000	0.0013	0.0000	0.0218	0.0003	0.047	0.000	0.001	_	_	_
GW14-08-12949 F	200805141015	5/14/2008	08-1153	U	0.0012	0.0001	0.0139	0.0008	0.053	0.001	0.001	_	0.06	_
GW14-08-12956 F	200805141015	5/14/2008	08-1151	U	0.0013	0.0000	0.0413	0.0007	0.053	0.000	0.001	_	_	_
GW14-08-12963 F	200805141015	5/14/2008	08-1150	0.000	0.0013	0.0000	0.0165	0.0005	0.048	0.000	0.001	_	_	_
GW14-08-12971 F	200805141015	5/14/2008	08-1153	U	0.0013	0.0000	0.0147	0.0002	0.053	0.001	0.001	_	0.07	_
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	0.000	0.0013	0.0000	0.0154	0.0004	0.052	0.000	0.001	_	_	_
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	0.000	0.0014	0.0000	0.0147	0.0002	0.052	0.000	0.001	_	_	_
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	0.000	0.0012	0.0000	0.0144	0.0002	0.050	0.001	0.001	_	_	_
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	U	0.0002	U	0.0037	0.0003	0.001	U	0.001	_	0.01	_

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

Sample ID	Date Collected	Date Received	ER/RRES-WQH	TOC rslt (ppm)	Ca rslt (ppm)	stdev (Ca)	Cd rslt (ppm)	CI(-) ppm	CIO4(-) ppm	Co rsit (ppm)	stdev (Co)	Alk-CO3 rslt (ppm)
GW14-08-12948 F	200805140945	5/14/2008	08-1153		10.6	0.0	0.001	1.99	Not Analyzed	0.001	U	_
GW14-08-12955 F	200805140945	5/14/2008	08-1151	_	10.6	0.0	0.001	_	Not Analyzed	0.001	U	_
GW14-08-12962 F	200805140945	5/14/2008	08-1150	_	10.6	0.0	0.001	_	Not Analyzed	0.001	U	_
GW14-08-12949 F	200805141015	5/14/2008	08-1153	_	10.6	0.0	0.001	2.31	Not Analyzed	0.001	U	_
GW14-08-12956 F	200805141015	5/14/2008	08-1151	_	10.6	0.0	0.001	_	Not Analyzed	0.004	0.000	_
GW14-08-12963 F	200805141015	5/14/2008	08-1150	_	10.7	0.0	0.001	_	Not Analyzed	0.001	U	_
GW14-08-12971 F	200805141015	5/14/2008	08-1153	_	10.6	0.0	0.001	2.14	Not Analyzed	0.001	U	_
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	0.90	10.6	0.0	0.001	_	Not Analyzed	0.001	U	0.8
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	0.71	10.5	0.1	0.001	_	Not Analyzed	0.001	U	0.8
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	0.89	10.6	0.0	0.001	_	Not Analyzed	0.001	U	0.8
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	0.37	0.05	0.01	0.001	0.03	Not Analyzed	0.001	U	0.8

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

							Cr 6+ rslt	Cs rslt				Fe rslt	
Sample ID	Date Collected	Date Received	ER/RRES-WQH	ALK-CO3 (U)	Cr rslt (ppm)	stdev (Cr)	(ppm)	(ppm)	stdev (Cs)	Cu rslt (ppm)	F(-) ppm	(ppm)	stdev (Fe)
GW14-08-12948 F	200805140945	5/14/2008	08-1153	_	0.003	0.000	_	0.001	U	0.001	0.2	0.01	U
GW14-08-12955 F	200805140945	5/14/2008	08-1151	_	0.003	0.000		0.001	U	0.001		0.01	U
GW14-08-12962 F	200805140945	5/14/2008	08-1150	_	0.003	0.000		0.001	U	0.001		0.01	U
GW14-08-12949 F	200805141015	5/14/2008	08-1153	_	0.003	0.000	_	0.001	U	0.001	0.2	0.01	U
GW14-08-12956 F	200805141015	5/14/2008	08-1151	_	0.003	0.000	_	0.001	U	0.001	_	0.01	U
GW14-08-12963 F	200805141015	5/14/2008	08-1150	_	0.003	0.000	_	0.001	U	0.001	_	0.01	U
GW14-08-12971 F	200805141015	5/14/2008	08-1153	_	0.003	0.000	_	0.001	U	0.001	0.2	0.01	0.00
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	U	0.003	0.000	_	0.001	U	0.001	_	0.03	0.00
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	U	0.003	0.000	_	0.001	U	0.001	_	0.02	0.00
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	U	0.003	0.000	_	0.001	U	0.001	_	0.02	0.00
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	U	0.001	_		0.001	U	0.001	0.02	0.01	U

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

					ALK-								
				Alk-CO3+HCO3 rslt	CO3+HCO3	Hg rslt	K rslt		Li rslt		Mg rslt		Mn rslt
Sample ID	Date Collected	Date Received	ER/RRES-WQH	(ppm)	(U)	(ppm)	(ppm)	stdev (K)	(ppm)	stdev (Li)	(ppm)	stdev (Mg)	(ppm)
GW14-08-12948 F	200805140945	5/14/2008	08-1153		_	0.00005	1.84	0.00	0.021	0.000	2.99	0.02	0.007
GW14-08-12955 F	200805140945	5/14/2008	08-1151	_	_	0.00005	1.88	0.01	0.022	0.000	3.02	0.01	0.007
GW14-08-12962 F	200805140945	5/14/2008	08-1150	_	_	0.00005	2.03	0.01	0.021	0.000	3.01	0.02	0.006
GW14-08-12949 F	200805141015	5/14/2008	08-1153	_	_	0.00005	1.87	0.01	0.020	0.000	2.98	0.00	0.007
GW14-08-12956 F	200805141015	5/14/2008	08-1151	_	_	0.00005	2.06	0.01	0.022	0.000	2.92	0.01	0.015
GW14-08-12963 F	200805141015	5/14/2008	08-1150	_	_	0.00005	1.96	0.02	0.021	0.000	2.93	0.01	0.008
GW14-08-12971 F	200805141015	5/14/2008	08-1153	_	_	0.00005	1.92	0.01	0.021	0.000	2.94	0.01	0.007
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	79.0	_	0.00005	1.84	0.01	0.020	0.000	3.00	0.01	0.007
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	78.4	_	0.00005	1.83	0.00	0.021	0.000	2.94	0.01	0.008
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	78.0	_	0.00005	1.84	0.00	0.020	0.000	2.80	0.01	0.008
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	0	U	0.00005	0.02	0.00	0.001	U	0.01	U	0.001

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

					Mo rslt							
Sample ID	Date Collected	Date Received	ER/RRES-WQH	stdev (Mn)	(ppm)	stdev (Mo)	Na rslt (ppm)	stdev (Na)	Ni rslt (ppm)	stdev (Ni)	NO2(ppm)	NO2-N rslt
GW14-08-12948 F	200805140945	5/14/2008	08-1153	0.000	0.001	0.000	10.1	0.1	0.001	U	0.01	0.003
GW14-08-12955 F	200805140945	5/14/2008	08-1151	0.000	0.001	0.000	10.2	0.1	0.001	U		_
GW14-08-12962 F	200805140945	5/14/2008	08-1150	0.000	0.001	0.000	10.5	0.1	0.001	U		_
GW14-08-12949 F	200805141015	5/14/2008	08-1153	0.000	0.001	0.000	10.2	0.0	0.001	U	0.01	0.003
GW14-08-12956 F	200805141015	5/14/2008	08-1151	0.000	0.001	0.000	10.4	0.1	0.001	0.000	_	_
GW14-08-12963 F	200805141015	5/14/2008	08-1150	0.000	0.001	0.000	10.1	0.0	0.001	U	_	_
GW14-08-12971 F	200805141015	5/14/2008	08-1153	0.000	0.001	0.000	10.0	0.0	0.001	U	0.01	0.003
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	0.000	0.001	0.000	10.0	0.1	0.001	U	_	_
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	0.000	0.001	0.000	10.0	0.1	0.001	U	_	_
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	0.000	0.001	0.000	9.64	0.02	0.001	U	_	_
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	U	0.001	U	0.24	0.00	0.001	U	0.01	0.003

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

						C2O4 rslt		Pb rslt			PO4(-3) rslt	
Sample ID	Date Collected	Date Received	ER/RRES-WQH	NO3 ppm	NO3-N rslt	(ppm)	C2O4 (U)	(ppm)	stdev (Pb)	рН	(ppm)	Rb rslt (ppm)
GW14-08-12948 F	200805140945	5/14/2008	08-1153	1.12	0.25	0.01	_	0.0002	U	_	0.41	0.006
GW14-08-12955 F	200805140945	5/14/2008	08-1151	_	_	_	_	0.0002	U	_	_	0.006
GW14-08-12962 F	200805140945	5/14/2008	08-1150	_	_	_	_	0.0002	U	_	_	0.006
GW14-08-12949 F	200805141015	5/14/2008	08-1153	1.27	0.29	0.01	_	0.0002	U	_	0.33	0.006
GW14-08-12956 F	200805141015	5/14/2008	08-1151	_	_	_	_	0.0002	U	_	_	0.006
GW14-08-12963 F	200805141015	5/14/2008	08-1150	_	_	_	_	0.0002	U	_	_	0.006
GW14-08-12971 F	200805141015	5/14/2008	08-1153	1.24	0.28	0.01	_	0.0002	U	_	0.33	0.006
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	_	_	_	_	0.0002	U	7.57	_	0.006
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	_	_	_	_	0.0002	U	7.38	_	0.006
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	_	_	_	_	0.0002	U	7.63	_	0.006
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	0.01	0.00	0.01	_	0.0002	U	5.44	0.03	0.001

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

					S2- rslt		Sb rslt					
Sample ID	Date Collected	Date Received	ER/RRES-WQH	stdev (Rb)	(ppm)	S2- (U)	(ppm)	Se rslt (ppm)	stdev (Se)	Si rslt (ppm)	stdev (Si)	SiO2 rslt (ppm)
GW14-08-12948 F	200805140945	5/14/2008	08-1153	0.000	_	_	0.001	0.001	_	35.6	0.3	76.2
GW14-08-12955 F	200805140945	5/14/2008	08-1151	0.000	_	_	0.001	0.001	_	36.6	0.1	78.3
GW14-08-12962 F	200805140945	5/14/2008	08-1150	0.000	_		0.001	0.001		36.2	0.6	77.6
GW14-08-12949 F	200805141015	5/14/2008	08-1153	0.000			0.001	0.001		36.4	0.2	77.8
GW14-08-12956 F	200805141015	5/14/2008	08-1151	0.000	_	_	0.001	0.001	_	35.4	0.2	75.8
GW14-08-12963 F	200805141015	5/14/2008	08-1150	0.000	_	_	0.001	0.001	_	35.4	0.3	75.7
GW14-08-12971 F	200805141015	5/14/2008	08-1153	0.000	_	_	0.001	0.001	_	35.5	0.2	76.0
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	0.000	0.01	U	0.001	0.001	_	36.0	0.2	77.0
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	0.000	0.01	U	0.001	0.001	_	35.4	0.1	75.7
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	0.000	0.01	U	0.001	0.001	_	33.7	0.1	72.2
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	U	0.01	U	0.001	0.001		0.11	0.00	0.24

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

				stdev			SO4(-2)	Sr rsit		Th rslt			
Sample ID	Date Collected	Date Received	ER/RRES-WQH	(SiO2)	Sn rslt (ppm)	stdev (Sn)	rsit (ppm)	(ppm)	stdev (Sr)	(ppm)	Ti rslt (ppm)	TI rslt (ppm)	U rslt (ppm)
GW14-08-12948 F	200805140945	5/14/2008	08-1153	0.7	0.001	_	3.6	0.054	0.000	0.001	0.002	0.001	0.0007
GW14-08-12955 F	200805140945	5/14/2008	08-1151	0.1	0.001	_	_	0.055	0.000	0.001	0.002	0.001	0.0007
GW14-08-12962 F	200805140945	5/14/2008	08-1150	1.3	0.001	_	_	0.054	0.000	0.001	0.002	0.001	0.0007
GW14-08-12949 F	200805141015	5/14/2008	08-1153	0.3	0.001	_	3.05	0.055	0.000	0.001	0.002	0.001	0.0008
GW14-08-12956 F	200805141015	5/14/2008	08-1151	0.4	0.001	_	_	0.053	0.000	0.001	0.002	0.001	0.0008
GW14-08-12963 F	200805141015	5/14/2008	08-1150	0.5	0.001	_	_	0.054	0.000	0.001	0.002	0.001	0.0007
GW14-08-12971 F	200805141015	5/14/2008	08-1153	0.4	0.001	_	3.14	0.054	0.000	0.001	0.002	0.001	0.0008
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	0.4	0.001	_	_	0.054	0.001	0.001	0.002	0.001	0.0008
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	0.3	0.001	_	_	0.054	0.000	0.001	0.002	0.001	0.0008
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	0.3	0.001	_	_	0.052	0.000	0.001	0.002	0.001	0.0008
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	0.00	0.001	_	0.4	0.001	U	0.001	0.002	0.001	0.0002

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

Sample ID	Date Collected	Date Received	ER/RRES-WQH	stdev (U)	V rslt (ppm)	stdev (V)	Zn rslt (ppm)	stdev (Zn)	TDS (ppm)	Cations	Anions	Balance
GW14-08-12948 F	200805140945	5/14/2008	08-1153	0.0000	0.007	0.000	0.002	0.000	109	1.27	_	_
GW14-08-12955 F	200805140945	5/14/2008	08-1151	0.0000	0.007	0.000	0.005	0.000	104	1.28	_	_
GW14-08-12962 F	200805140945	5/14/2008	08-1150	0.0000	0.007	0.000	0.001	U	104	1.29	_	_
GW14-08-12949 F	200805141015	5/14/2008	08-1153	0.0000	0.006	0.000	0.002	0.000	111	1.27	_	_
GW14-08-12956 F	200805141015	5/14/2008	08-1151	0.0000	0.007	0.000	0.006	0.000	102	1.28	_	_
GW14-08-12963 F	200805141015	5/14/2008	08-1150	0.0000	0.007	0.000	0.001	U	102	1.27	_	_
GW14-08-12971 F	200805141015	5/14/2008	08-1153	0.0000	0.007	0.000	0.002	0.000	102	1.26	_	_
GW14-08-12941 NF	200805140945	5/14/2008	08-1152	0.0000	0.006	0.000	0.003	0.000	183	1.26	1.32	-0.02
GW14-08-12942 NF	200805141015	5/14/2008	08-1152	0.0000	0.007	0.000	0.002	0.000	180	1.25	1.31	-0.02
GW14-08-12969 NF	200805141015	5/14/2008	08-1152	0.0000	0.007	0.000	0.002	0.000	176	1.23	1.31	-0.03
GW14-08-12970 NF, B	200805141015	5/14/2008	08-1152	U	0.001	U	0.001	U	2	0.01	0.04	-0.45

^aU = Undetected.

b— = Sample request not taken; sample not collected for analysis.

Appendix B

Evaluation of Water Quality Using Well Screen Analysis Methodology

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Tritium (pCi/L)	Modern water?	3H plume?	Field pH	Low pH?	High pH?	Test Gen-1	Alkalinity (mg/L CaCO3)	Test Gen-2	Turbidity (NTU)	Test Gen-3	Acetone (ug/L)	Test B1	NH3-N (mg/L)	Test B2	TKN (mg/L)	Test B3	TOC (mg/L)	Lab Qual Code	Test B4	Ba ug/L	Test D3	Test E1		Test E2a
						pCi/L	pCi/L		SU	SU			mg/L		NTU		ug/L		mg/L		mg/L			mg/L		ug/L	ug/L		mg/L
						>UL	>UL		>LL	<ul< th=""><th></th><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<>			<ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<>		<ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<>		<ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<></th></ul<></th></ul<></th></ul<>		<ul< th=""><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<></th></ul<></th></ul<>		<ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<></th></ul<>			<ul< th=""><th></th><th>>LL</th><th><ul< th=""><th></th><th>>LL</th></ul<></th></ul<>		>LL	<ul< th=""><th></th><th>>LL</th></ul<>		>LL
						1	17		6.4	9.0			157		5		5		0.05		0.46			1.37		1.4	57		4.3
R-14	1205	1	29-Feb-08	1	n/a ^a	n/a	n/a	7.53 Fld	Yes	Yes	Р	77 F	Р	1.12	Р	ND	ND	ND	ND	ND	ND	1.1	UF	Р	55	Р	Р	12.1	Yes
R-14	1205	1	29-Feb-08	5	n/a	n/a	n/a	7.71 Fld	Yes	Yes	Р	77 F	Р	0.94	Р	ND	ND	ND	ND	ND	ND	0.9	UF	Р	55	Р	Р	11.6	Yes
R-14	1205	1	29-Feb-08	11	n/a	n/a	n/a	7.71 Fld	Yes	Yes	Р	76 F	Р	0.89	Р	ND	ND	ND	ND	ND	ND	0.8	UF	Р	54	Р	Р	11.5	Yes
R-14	1205	1	29-Feb-08	17	n/a	n/a	n/a	7.70 Fld	Yes	Yes	Р	76 F	Р	0.82	Р	ND	ND	ND	ND	ND	ND	n/a	n/a	n/a	55	Р	Р	10.0	Yes

^an/a = Not applicable.

b— = Sample request not taken; sample not collected for analysis.

Well	0	Port Depth (ft)	Scr#	Sample Collection Date	Event	Test E2b	Test E2	CI mg/L	Test A1	F mg/L	Test A2	Mg mg/L	Test E3	NO3-N mg/L		Test C10		Test C3	DO	Test C11	CIO4 ug/L	Test Gen-4	Test C7	PO4-P	UOM	Test A6	Na mg/L	Molar Ratio Na/Cl	Test A4	SO4 mg/L	Test C1	Test A5
						mg/L	Within		mg/L		mg/L		mg/L			mg/L		mV		mg/L			ug/L	Threshold		mg/L P			mg/L		mg/L	mg/L
						<ul< th=""><th>range</th><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th></th><th>>LL</th><th>as P</th><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<>	range		<ul< th=""><th></th><th><ul< th=""><th></th><th><ul< th=""><th></th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th></th><th>>LL</th><th>as P</th><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""></ul<></th></ul<></th></ul<></th></ul<></th></ul<></th></ul<>		<ul< th=""><th></th><th><ul< th=""><th></th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th></th><th>>LL</th><th>as P</th><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""></ul<></th></ul<></th></ul<></th></ul<></th></ul<>		<ul< th=""><th></th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th>>LL</th><th></th><th></th><th>>LL</th><th>as P</th><th></th><th><ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""></ul<></th></ul<></th></ul<></th></ul<>			>LL		>LL		>LL			>LL	as P		<ul< th=""><th></th><th></th><th><ul< th=""><th></th><th>>LL</th><th><ul< th=""></ul<></th></ul<></th></ul<>			<ul< th=""><th></th><th>>LL</th><th><ul< th=""></ul<></th></ul<>		>LL	<ul< th=""></ul<>
						42			3.6		0.57		4.2		0. 89	0.01		0		2		0.5	0.22	0.34		0.08			25		1.7	7.2
R-14	1 '	1205	1	29-Feb-08	1	Yes	Р	3.0	Р	0.32	Р	2.72	Р	0.346	Р	Р	83	Р	6.3	Р	< 5	DL	DL	0.26	mg/L as PO4	Р	10.4	5.3	Р	5.4	Р	Р
R-14	1 '	1205	1	29-Feb-08	5	Yes	Р	3.0	Р	0.32	Р	2.67	Р	0.349	Р	Р	13	Р	4.5	Р	< 5	DL	DL	0.25	mg/L as PO4	Р	10.3	5.3	Р	5.2	Р	Р
R-14	1 '	1205	1	29-Feb-08	11	Yes	Р	2.9	Р	0.37	Р	2.77	Р	0.366	Р	Р	n/a	n/a	3.7	Р	<5	DL	DL	0.23	mg/L as PO4	P	10.3	5.5	Р	4.9	Р	Р
R-14	1 '	1205	1	29-Feb-08	17	Yes	Р	3.0	Р	0.29	Р	2.85	Р	0.395	Р	Р	n/a	n/a	4.1	Р	<5	DL	DL	0.21	mg/L as PO4	Р	10.0	5.1	Р	4.2	Р	Р

^an/a = Not applicable.

b— = Sample request not taken; sample not collected for analysis.

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Sulfide	Test C2	B ug/L	Test A1		Test Gen 6	Test C9	Cr (NF) ug/L	Test F3	Ratio Cr (NF/F)	Test F4		Test C5	Fe (NF) ug/L		Ratio Fe(NF/F)			Test C6		Test F5	Sr ug/L	Test D2		U ug/L	Test C8	Test D1
						mg/L					ug/L		ug/L		Ratio		ug/L		ug/L		Ratio		ug/L		ug/L		_	ug/L			
						<ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td>>LL</td><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td><ul< td=""><td>>LL</td><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td>>LL</td><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>	>LL		<ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td><ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td><ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td>>LL</td><td><ul< td=""><td></td><td>>LL</td><td></td></ul<></td></ul<>		>LL	<ul< td=""><td></td><td>>LL</td><td></td></ul<>		>LL	
						0.01		38.77		5.75	0.39		10		5		147		1270		10		124		50		44	540		0.06	0.06
R-14	1205	1	29-Feb-08	1	0.01	Р	12	Р	2.0	Р	Р	2.0	Р	1.0	Р	190	Fail	230	Yes	1.2	Р	81	Р	1	Р	76	Р	Р	1.0	Р	Р
R-14	1205	1	29-Feb-08	5	0.01	Р	15	Р	2.0	Р	Р	2.0	Р	1.0	Р	200	Fail	240	Yes	1.2	Р	85	Р	1	Р	73	Р	Р	1.1	Р	Р
R-14	1205	1	29-Feb-08	11	0.01	Р	16	Р	2.0	Р	Р	3.0	Р	1.5	Р	200	Fail	230	Yes	1.2	Р	98	Р	1	Р	72	Р	Р	1.1	Р	Р
R-14	1205	1	29-Feb-08	17	0.01	Р	13	Р	2.0	Р	Р	2.0	Р	1.0	Р	170	Fail	190	Yes	1.1	Р	108	Р	1	Р	63	Р	Р	1.2	Р	Р

^an/a = Not applicable.

b— = Sample request not taken; sample not collected for analysis.

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Test E5	V ug/L	Test C4	Zn ug/L	Test D4	Tests Passed	Tests Failed	Total Tests with P/Fail Outcome	% Pass	Is 3H detected?	Category C			Genera	al Indicato	ors		
					ug/L				ug/L						Redox Indicators	Mod water	Gen-1	Gen-2	Gen-3	Gen-4	Gen-5	Gen-6
					<ul< td=""><td></td><td>>LL</td><td></td><td>>LL</td><td></td><td></td><td></td><td></td><td></td><td>Fe/Mn</td><td>3H</td><td>In pH</td><td>Alk</td><td>Turb</td><td>CIO4</td><td>NO3-N</td><td>Cr</td></ul<>		>LL		>LL						Fe/Mn	3H	In pH	Alk	Turb	CIO4	NO3-N	Cr
					1.9		2.27		0.4						Fe	UL=1	range	UL=52	UL=5	UL=0.5	UL=0.89	UL=5.75
R-14	1205	1	29-Feb-08	1	Р	6	Р	5	Р	33	1	34	97	n/a ^a	Fe	ND	Р	Р	Р	DL	Р	Р
R-14	1205	1	29-Feb-08	5	Р	7	Р	5	Р	33	1	34	97	n/a	Fe	ND	Р	Р	Р	DL	Р	Р
R-14	1205	1	29-Feb-08	11	Р	7	Р	6	Р	32	1	33	97	n/a	Fe	ND	Р	Р	Р	DL	Р	Р
R-14	1205	1	29-Feb-08	17	Р	7	Р	5	Р	32	1	33	97	n/a	Fe	ND	Р	Р	Р	DL	Р	Р

^an/a = Not applicable.

b— = Sample request not taken; sample not collected for analysis.

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event		ļ		jory A Indicator	s		(Catego Organic In				Category Redox (SO				Catego Redox (ory C3 (NO3)	
					A1	A2	А3	A4	A5	A6	B1	B2	B3	B4	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	D1
					В	CI	Na	SO4	F	PO4	Ace	NH3	TKN	TOC	SO4	S	ORP	٧	Fe	Mn	CIO4	U	Cr	NO3-N	DO	U
					UL=39	UL=3.6	UL=24.	UL=7.2	UL=0.	UL=3.4	5	0.05	0.35	1.37	LL=1.65	UL=0.0	LL=0	LL=2.27	UL=14	UL=124	LL=0.2	LL=0.06	LL=0.3	LL=0.0	LL=2	LL=0.0
R-14	1205	1	29-Feb-08	1	Р	Р	Р	Р	Р	Р	ND	ND	ND	Р	Р	Р	Р	Р	Р	Р	DL	Р	Р	Р	Р	Р
R-14	1205	1	29-Feb-08	5	Р	Р	Р	Р	Р	Р	ND	ND	ND	Р	Р	Р	Р	Р	Р	Р	DL	Р	Р	Р	Р	Р
R-14	1205	1	29-Feb-08	11	Р	Р	Р	Р	Р	Р	ND	ND	ND	Р	Р	Р	Fail	Р	Р	Р	DL	Р	Р	Р	Р	Р
R-14	1205	1	29-Feb-08	17	Р	Р	Р	Р	Р	Р	ND	ND	ND	Р	Р	Р	Fail	Р	Р	Р	DL	Р	Р	Р	Р	Р

an/a = Not applicable.

⁼ Sample request not taken; sample not collected for analysis.

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event		ategory dsorptio				С		egory E te Mineral	ogy				egory F Corrosic	on		Categorie	es under \	Which Drill	ing Flags	are to be	Assigned
					D2	D3	D4	E1	E2a	E2b	E2	E3	E4	E5	F1	F2	F3	F4	F5						ł
					Sr	Ва	Zn	Ва	Ca	Ca	Ca	Mg	Sr	J	FeT	FeR	CrT	CrR	Ni	Α	В	С	D	Е	F
					LL=44	LL=4.	LL=0.4	UL=57	LL=4.3	UL=42	ln	UL=4.2	UL=540	UL=1.90	UL=500	UL=10	UL=10	UL=5	UL=5						
R-14	1205	1	29-Feb-08	1	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	_b	-	Fe	1	_	_
R-14	1205	1	29-Feb-08	5	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	_	1	Fe	1	_	_
R-14	1205	1	29-Feb-08	11	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	_	_	Fe	_	_	_
R-14	1205	1	29-Feb-08	17	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	_	_	Fe	_	_	_

an/a = Not applicable.

⁼ Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Tritium (pCi/L)	Modern Water?	3H Plume?	Field pH	Low pH?	High pH?	Test Gen 1	Alkalinity (mg/L CaCO3)	Test Gen- 2	Turbidity (NTU)	Test Gen- 3
						pCi/L >UL 1	pCi/L >UL 17		SU >LL 6.4	SU <ul 9.0</ul 			mg/L <ul 157</ul 		NTU <ul 5</ul
R-14	1205	1	5-May-08	1	ND	No	No	7.81	Yes	Yes	Р	79	Р	1.13	Р
R-14	1205	1	5-May-08	2	ND	No	No	7.75	Yes	Yes	Р	78	Р	1.62	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Acetone (ug/L)	Test B1	NH3-N (mg/L)	Test B2	TKN (mg/L)	Test B3	TOC (mg/L)	Test B4	Ba ug/L	Test D3	Test E1	Ca mg/L
						ug/L <ul 5</ul 		mg/L <ul 0.05</ul 		mg/L <ul 0.46</ul 		mg/L <ul 1.37</ul 		ug/L >LL 1.4	ug/L <ul 57</ul 	
R-14	1205	1	5-May-08	1	ND	ND	ND	ND	ND	ND	0.9	Р	52	Р	Р	10.6
R-14	1205	1	5-May-08	2	ND	ND	ND	ND	ND	ND	0.71	Р	53	Р	Р	10.6

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Test E2a	Test E2b	Test E2	CI mg/L	Test A1	F mg/L	Test A2	Mg mg/L	Test E3	NO3-N mg/L	Test Gen-5	Test C10	ORP	Test C3
					mg/L >LL 4.3	mg/L <ul 42</ul 	Within range		mg/L <ul 3.6</ul 		mg/L <ul 0.57</ul 		mg/L <ul 4.2</ul 		<ul 0. 89</ul 	mg/L >LL 0.01		mV >LL 0
R-14	1205	1	5-May-08	1	No	Yes	Р	1.99	Р	0.20	Р	3.0	Р	0.253	Р	Р	101	Р
R-14	1205	1	5-May-08	2	No	Yes	Р	2.31	Р	0.20	Р	3.0	Р	0.287	Р	Р	109	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr #	Sample Collection Date	Event	DO	Test C11	CIO4 ug/L	Test Gen-4	Test C7	PO4-P	Test A6	Na mg/L	Molar Ratio Na/Cl	Test A4	SO4 mg/L	Test C1
						mg/L			ug/L	Threshold	mg/L P			mg/L		mg/L
						>LL		<ul< td=""><td>>LL</td><td>as P</td><td><ul< td=""><td></td><td></td><td><ul< td=""><td></td><td>>LL</td></ul<></td></ul<></td></ul<>	>LL	as P	<ul< td=""><td></td><td></td><td><ul< td=""><td></td><td>>LL</td></ul<></td></ul<>			<ul< td=""><td></td><td>>LL</td></ul<>		>LL
						2		0.5	0.22	0.34	0.08			25		1.7
R-14	1205	1	5-May-08	1	2.5	Р	ND	ND	ND	0.41	Р	10.1	7.8	Р	3.60	Р
R-14	1205	1	5-May-08	2	2.7	Р	ND	ND	ND	0.33	Р	10.2	6.8	Р	3.05	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Test A5	Sulfide	Test C2	B ug/L	Test A1	Cr (F) ug/L	Lab Qual Code	Test Gen-6	Test C9	Cr (NF) ug/L	Lab Qual Code	Test F3	Ratio Cr (NF/F)	F4
					mg/L <ul< td=""><td></td><td>mg/L <ul< td=""><td></td><td><ul< td=""><td></td><td></td><td><ul< td=""><td>ug/L >LL</td><td></td><td></td><td>ug/L <ul< td=""><td></td><td>Ratio <ul< td=""></ul<></td></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		mg/L <ul< td=""><td></td><td><ul< td=""><td></td><td></td><td><ul< td=""><td>ug/L >LL</td><td></td><td></td><td>ug/L <ul< td=""><td></td><td>Ratio <ul< td=""></ul<></td></ul<></td></ul<></td></ul<></td></ul<>		<ul< td=""><td></td><td></td><td><ul< td=""><td>ug/L >LL</td><td></td><td></td><td>ug/L <ul< td=""><td></td><td>Ratio <ul< td=""></ul<></td></ul<></td></ul<></td></ul<>			<ul< td=""><td>ug/L >LL</td><td></td><td></td><td>ug/L <ul< td=""><td></td><td>Ratio <ul< td=""></ul<></td></ul<></td></ul<>	ug/L >LL			ug/L <ul< td=""><td></td><td>Ratio <ul< td=""></ul<></td></ul<>		Ratio <ul< td=""></ul<>
					7.2		0.01		38.77			5.75	0.39			10		5
R-14	1205	1	5-May-08	1	Р	<0.01	Р	14	Р	3.00	U ^a	Р	Р	3	U	Р	1	NA
R-14	1205	1	5-May-08	2	Р	<0.01	Р	13.9	Р	3.00	U	Р	Р	3	U	Р	1	NA

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr #	Sample Collection Date	Event	Fe (F) ug/L	Test C5	Fe (NF) ug/L	Test F1	Ratio Fe(NF/F)	Test F2	Mn (F) ug/L	Test C6	Ni (F) ug/L	Lab Qual Code	Test F5	Sr ug/L	Test D2
			2,00			ug/L <ul 147</ul 		ug/L <ul 1270</ul 		Ratio <ul 10</ul 		ug/L <ul 124</ul 			ug/L <ul 50</ul 		ug/L >LL 44
R-14	1205	1	5-May-08	1	10	Р	30	Yes	3.00	Р	7	Р	<1	U	Р	54	Р
R-14	1205	1	5-May-08	2	10	Р	20	Yes	2.00	Р	7	Р	<1	U	Р	55	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Test E3	U ug/L	Test C8	Test D1	Test E5	V ug/L	Test C4	Zn ug/L	Test D4	Tests Passed	Tests Failed	Total tests with P/Fail Outcome	
					ug/L <ul 540</ul 		ug/L >LL 0.06	ug/L >LL 0.06	ug/L <ul 1.9LL 2.27		ug/L >LL 0.4				
R-14	1205	1	5-May-08	1	Р	0.7	Р	Р	Р	7	Р	2	Р	34	0	34	100
R-14	1205	1	5-May-08	2	Р	0.8	Р	Р	Р	6	Р	2	Р	34	0	34	100

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Is 3H Detected?		(Genera	ıl Indicat	tors		
						Mod Water	Gen-1	Gen-	Gen-3	Gen-4	Gen-5	Gen-6
						3H In pH Alk Turb CIO4 NO3-N Cr					Cr	
						UL=1	range	UL=5	UL=5	UL=0.5	UL=0.89	UL=5.75
R-14	1205	1	5-May-08	1	No	No	Р	Р	Р	DL	Р	Р
R-14	1205	1	5-May-08	2	No	No	Р	Р	Р	DL	Р	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event		In	•	ory A Indicato	rs		0	Catego rganic Ir	•	s		Category Redox (So	
					A1	A2	А3	A4	A5	A6	B1	B2	B3	B4	C1	C2	C3
					В	CI	Na	SO4	F	PO4	Ace	NH3	TKN	TOC	SO4	S	ORP
					UL=39	UL=3.6	UL=24.	UL=7.2	UL=0.	UL=3.4	5	0.05	0.35	1.37	LL=1.65	UL=0.0	LL=0
R-14	1205	1	5-May-08	1	Р	Р	Р	Р	Р	Р	ND	ND	ND	Р	Р	Р	Р
R-14	1205	1	5-May-08	2	Р	Р	Р	Р	Р	Р	ND	ND	ND	Р	Р	Р	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr #	Sample Collection Date	Event			Catego Redox (•				jory C3 k (NO3)			Category Adsorptic	
					C4	C5	C6	C7	C8	C9	C10	C11	D1	D2	D3	D4
					٧	Fe	Mn	CIO4	U	Cr	NO3-N	DO	U	Sr	Ва	Zn
					LL=2.27	UL=14	UL=124	LL=0.2	LL=0.06	LL=0.3	LL=0.0	LL=2	LL=0.0	LL=44	LL=4.9	LL=0.4
R-14	1205	1	5-May-08	1	Р	Р	Р	DL	Р	Р	Р	Р	Р	Р	Р	Р
R-14	1205	1	5-May-08	2	Р	Р	Р	DL	Р	Р	Р	Р	Р	Р	Р	Р

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event			Ca		egory E te Minera	alogy				egory F Corrosio	n		Cate	gories a
					E1	E2a	E2b	E2	E3	E4	E5	F1	F2	F3	F4	F5		
					Ва	Ca	Ca	Ca	Mg	Sr	U	FeT	FeR	CrT	CrR	Ni	Α	В
					UL=57	LL=4.3	UL=42	ln	UL=4.2	UL=540	UL=1.90	UL=500	UL=10	UL=10	UL=5	UL=5	1	
R-14	1205	1	5-May-08	1	Р	Р	Р	Р	Р	Р	Р	Yes	Р	Р	Р	Р	_b	_
R-14	1205	1	5-May-08	2	Р	Р	Р	Р	Р	Р	Р	Yes	Р	Р	Р	Р	_	_

^aU = Undetected. ^b— = Sample request not taken; sample not collected for analysis.

Table B-2 Results of Well Screen Analysis for R-14 (Screen 1) **During the Pumping Test Conducted in May 2008**

Well	Port Depth (ft)	Scr#	Sample Collection Date	Event	Under W		_	Flags
					С	D	E	F
R-14	1205	1	5-May-08	1	_	_	_	_
R-14	1205	1	5-May-08	2	_	_	_	_

 $^{^{}a}$ U = Undetected. b — = Sample request not taken; sample not collected for analysis.

Westbay Retrieval Report

Westbay Instruments Inc. 3480 Gilmore Way, Suite 110 Burnaby, BC V5G 4Y1 Canada Tel. (604) 430-4272 Fax (604) 430-3538

RETRIEVAL REPORT

Westbay System Monitoring Well: R-14 Los Alamos, NM

Prepared for:

Terranear PMC 1911 Central Ave, 2nd Floor Los Alamos, NM 87544-2385 USA

Prepared by:
Westbay Instruments Inc.
WB777

February 20, 2008

CONTENTS:

		Page
1.	INTRODUCTION	1
2.	WESTBAY CASING RETRIEVAL	1
	2.1 Pre-Deflation Profile	1
	2.2 Deflation of Westbay Packers	1
	2.3 Retrieval of Westbay Casing Components	2

APPENDIX

APPENDIX: R-14 Retrieval

1. Introduction

This report and the attached Appendix document the technical services carried out by Westbay Instruments Inc. under Terranear PMC, LLC (TPMC) Task Order No. 003 dated January 30, 2008, under Subcontract Agreement No. 0001. The Westbay MP55 System completion previously installed in LANL well R-14 was retrieved.

Westbay technical services representative Mr. Dave Larssen was on site for the retrieval tasks from February 5 to 10, 2008. The work was supervised by Mr. S. White of TPMC. This report documents the retrieval tasks and related QA checks.

2. Westbay Casing Retrieval

The monitoring well had previously been installed as indicated below. The well installation was described in a Westbay Installation Report dated February 20, 2003.

(Note: all depths are with respect to ground surface. The monitoring well depth reference point was ground level as defined by a brass survey marker set in a concrete pad at the well.

Table 1, Summary of MP Well Installation

Monitoring	Installation	Westbay Casing	No.	No.	Open Hole Depth
Well No.	Date	Length (ft)	Screens	Packers	to Water (ft)
R-14	2003	1311	2	8	Approx. 1190 ft

The Westbay casing was retrieved according to the procedure described in the following sections.

2.1 Pre-Deflation Profile

A pre-deflation pressure profile was carried out at the well prior to deflating the packers to confirm the proper operation and position of measurement ports and to confirm the present water levels inside and outside the well. The data confirmed that the ports operated properly. The data for the pre-deflation profile are shown on Figure 1 in the Appendix and on the pre-deflation Field Data and Calculation Sheet.

Based on the information from this profile it was determined that the water level inside the Westbay System casing (about 1114 ft) was near the water level in the two (2) screened intervals (about 1178 ft). Therefore, the water level did not require adjustment before the procedure for deflation of the packers could begin.

2.2 Deflation of the Westbay Packers

The Westbay Model 0625 Packer Tool was deployed in the well on February 8 and 9, 2008. Drinking water purchased locally was used for operation of the packer deflation equipment. All of the packers

in the well were successfully deflated. After deflation the packer valves were left in the Open position. The field data for deflation of each packer are shown on the MP55 Packer Deflation Field Records and Packer Deflation graphs in the Appendix.

2.3 Retrieval of Westbay Casing Components

Prior to retrieval of the Westbay System a post-deflation profile of fluid levels was measured. The head differences observed across each packer in the pre-deflation profile (Figure 1 in the Appendix) were no longer present. The fluid pressure distribution was hydrostatic at an approximate depth of 1177 ft below ground level, thus indicating that none of the packers were sealed inside the well.

The bottom Westbay Pumping Port at 1293.8 ft depth was opened to allow the water levels inside and outside the Westbay casing to equilibrate.

The Westbay System casing was lifted from the well. The tensile load applied to the Westbay casing was measured by means of a load gauge provided by Westbay. The retrieved Westbay System items and the load during lifting were recorded on a Casing Retrieval Log. The maximum applied lifting load was 2400 lb, comparable to the maximum load during original installation of 2250 lb. A copy of the log is included in the Appendix.

All of the installed Westbay System casing components were successfully retrieved from the well. A list of the retrieved items is shown on the second page of the Casing Retrieval Log.

Each retrieved casing component was set aside on a rack. Plastic protective caps supplied by Westbay were put on each end for protection against damage during handling. Decontamination, cleaning, inspection, packaging and transport to LANL storage were to be done by others after demobilization of the Westbay representative from the site.

During retrieval, the following items were observed to be damaged:

- 1. Bottom end of component No. 54 had a broken shear wire in the coupling. The casing end was cut off with a saw.
- 2. Bottom end of component No. 2 had a broken shear wire in the coupling. The casing end was cut off with a saw.
- 3. The bottom packer (MP5, Packer No. 8) had a displaced element clamp on the bottom. The packer likely cannot be re-used without rebuilding.

APPENDIX 1

Monitoring Well R-14 Retrieval

Casing Retrieval Log	- 16 pages
Figure 1, Pre-Deflation Pressure Profile (February 7, 2008)	- 1 page
Pre-deflation Piezometric Pressure/Levels	, page
Field Data and Calculation Sheet (February 7, 2008)	- 2 pages
Figure 2, Post Deflation Pressure Profile (February 9, 2008)	- 1 page
Post Deflation Piezometric Pressure/Levels	. pugo
Field Data and Calculation Sheet (February 9, 2008)	- 2 pages
Packer Deflation Records	- 21 pages

Casing Retrieval Log

Company: Los Alamos National Lab

Well: R14 Site: LANL

Project: Hydrogeology Study

Job No: WB777 Author: DL/GG

Well Information

Reference Datum:

Ground Level

Elevation of Datum: 0.00 ft.

MP Casing Top: 0.00 ft.

MP Casing Length: 1310.97 ft.

Borehole Depth: 1327.00 ft. Borehole Inclination: vertical Borehole Diameter: 4.50 in.

Well Description:
PlasticMP55
Other References:

Pipe-based wire-wrapped screens. BF and screens: LANL As-Built 10-18-02

File Information

File Name: 777_R14.WWD

Report Date: Sun Feb 03 11:49:01 2008

File Date: Jan 20 10:06:08 2003

Comments

RETRIEVAL DATE = FEB 10,200 + PIDES CUT WHELE NOTED BELAUSE	8.
* PIPES CUT WHELE NOTED BELAUSE	SHEAR WIRES BROKE
* Bottom PACKER - element clamps dame	eged, likely during
deflation. Packer not re-usable	as-is.

Log Information

Borehole condition confirmed.

MP well design & preparation.

MP well design checked.

MP well and borehole approved to install.

(method)	Date:	
By:	Date:	
Ву:	Date:	
Bv:	Date:	

Job No: WB777 Well: R14

Legend

(Qty) MP Components

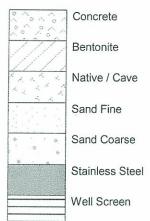
(Library - WD Library 7/27/00)

- (2) 0603 MP55 End Plug
- (3) 0601M10 MP55 Casing, 1.0 m, PVC
- (124) 0601M30 MP55 Casing, 3.0 m, PVC
 - (9) 0601M15 MP55 Casing, 1.5 m, PVC
 - (8) 0612 MP55 Packer, Stiffened, SS
- (132) 0602 MP55 Regular Coupling

8

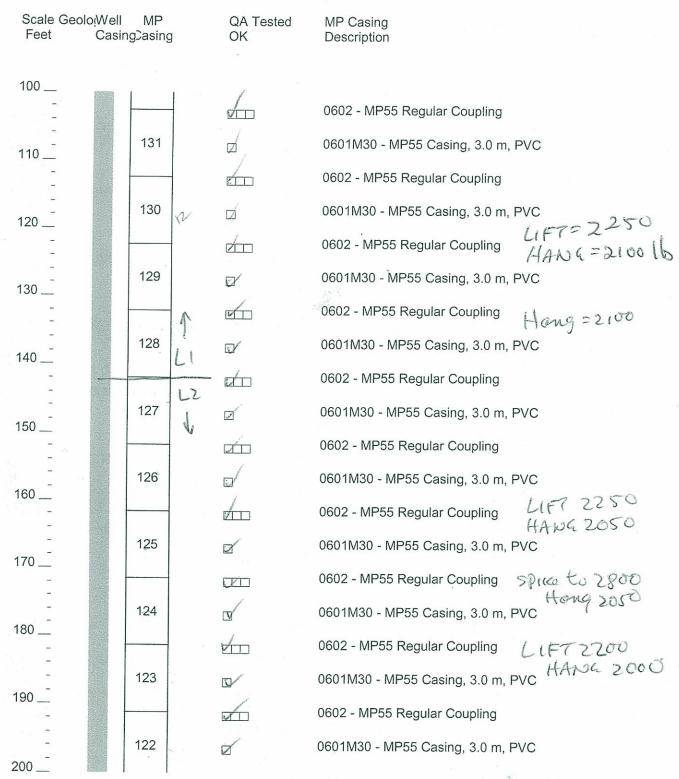
(12) 0605 - MP55 Measurement Port

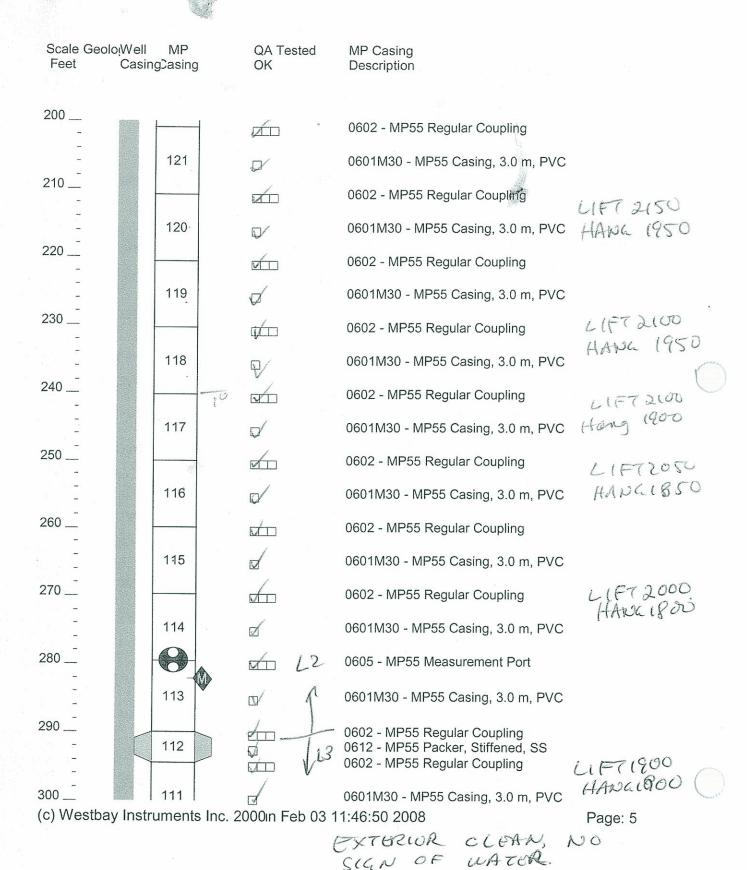
- (2) 0607 MP55 Hydraulic Pumping Port
- (7) 0608 MP55 Magnetic Location Collar


Geology

Conglomerate

Lava, Basaltic

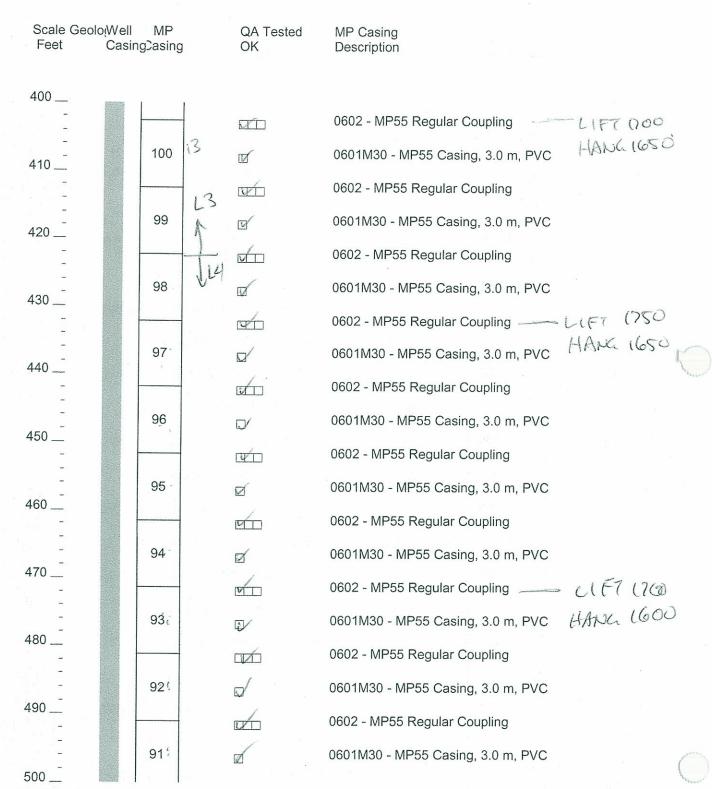

Backfill/Casing

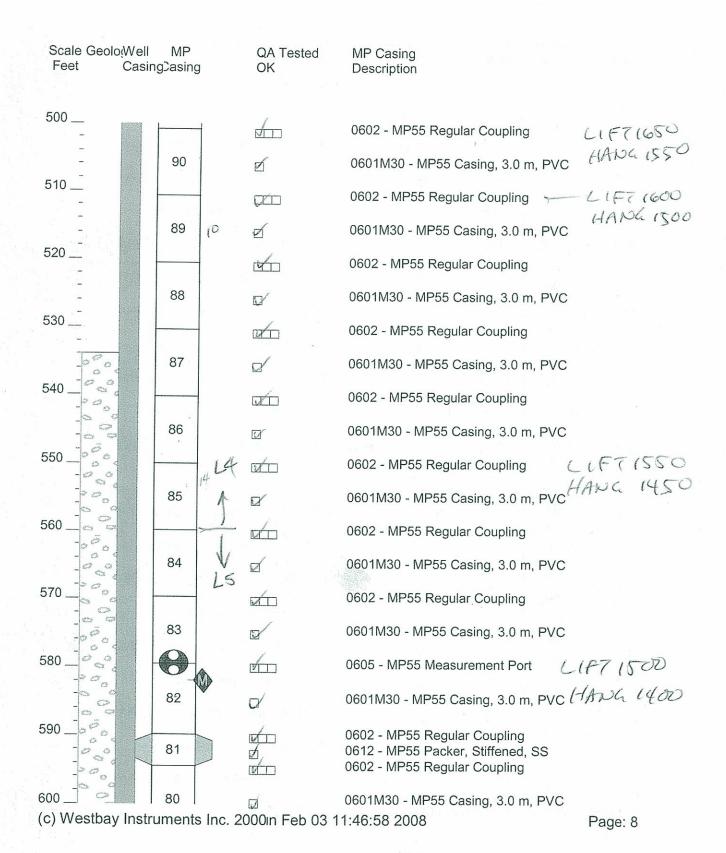


al Log ational I		Job No: WB777 TARTING NOTE Well: R14
	- TOP :	ESS ROSTRICTED BY SURFACE CASING UP, SHEAR WIRE SCIPPED. ARING.
P sing	QA Tested OK	Description AND RE-1702
-3	5 mm	START LIFTING.
Company of the Compan	2	-LOAD-2400
2	\mathbf{Z}'	0601M30 - MP55 Casing, 3.0 m, PVC thank to 2302
1		0602 - MP55 Regular Coupling 0601M15 - MP55 Casing, 1.5 m, PVC ~loo lb friction 0602 - MP55 Regular Coupling — Local = 2200
0	Ø/	0601M30 - MP55 Casing, 3.0 m, PVC
	SC Seed.	0602 - MP55 Regular Coupling 2200 6
9	<u> </u>	0601M30 - MP55 Casing, 3.0 m, PVC
	4	0602 - MP55 Regular Coupling LOAD = 2200
8	T	0601M30 - MP55 Casing, 3.0 m, PVC
		0602 - MP55 Regular Coupling 2200 (S
7	Ø	0601M30 - MP55 Casing, 3.0 m, PVC
	Ø_	0602 - MP55 Regular Coupling
6	e e	0601M30 - MP55 Casing, 3.0 m, PVC
	M	0602 - MP55 Regular Coupling 2150 (6
5	d	0601M30 - MP55 Casing, 3.0 m, PVC
		0602 - MP55 Regular Coupling 2300 (144) 0601M30 - MP55 Casing, 3.0 m, PVC
4	Ø	0601M30 - MP55 Casing, 3.0 m, PVC 150 Nave9
		0602 - MP55 Regular Coupling
3	o o	0601M30 - MP55 Casing, 3.0 m, PVC
	<u> </u>	0602 - MP55 Regular Coupling
2	V	0601M30 - MP55 Casing, 3.0 m, PVC
	entional Pring 3 2 1 0 9 8 7 6 4 3	entional Lab - Top - Acce - Cup 7 QA Tested OK 3 5 10 9 6 7 6 7 7 8 8 7 8 8 8 9 10 10 10 10 10 10 10 10 10

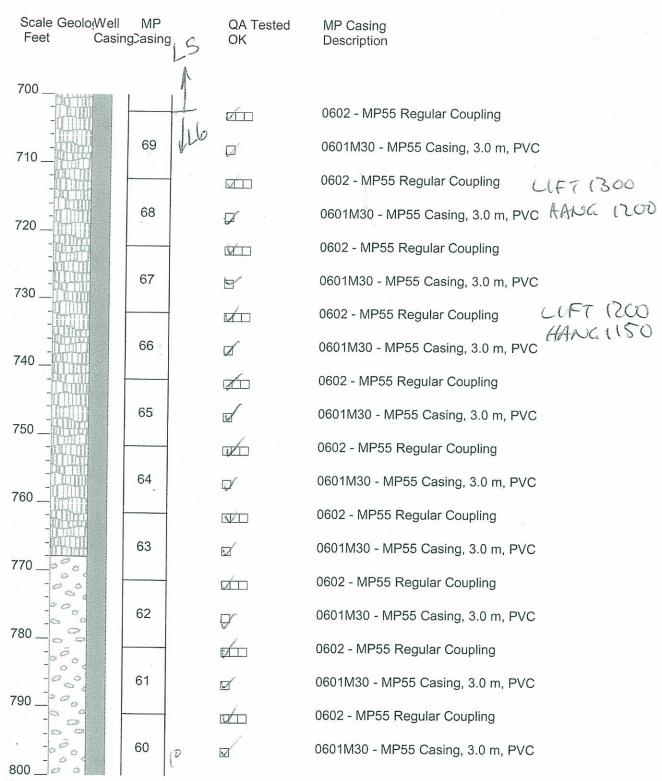
(c) Westbay Instruments Inc. 2000in Feb 03 11:46:50 2008

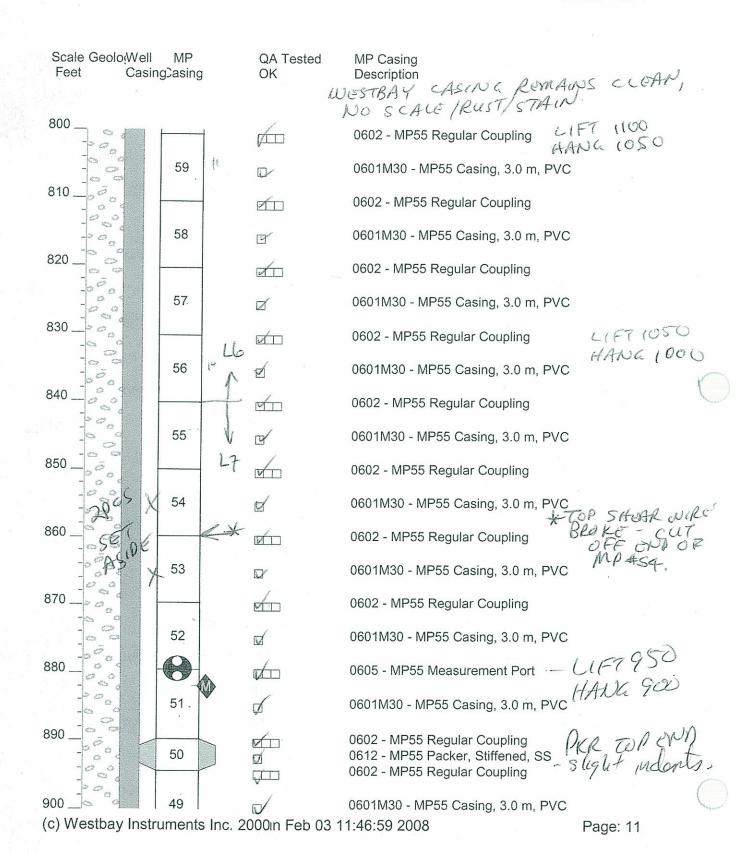
Page: 3

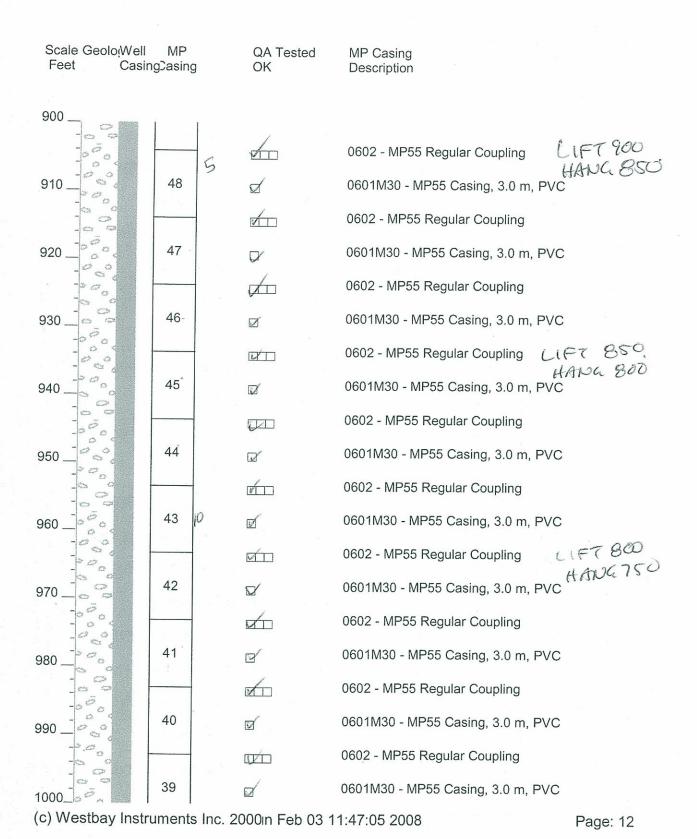


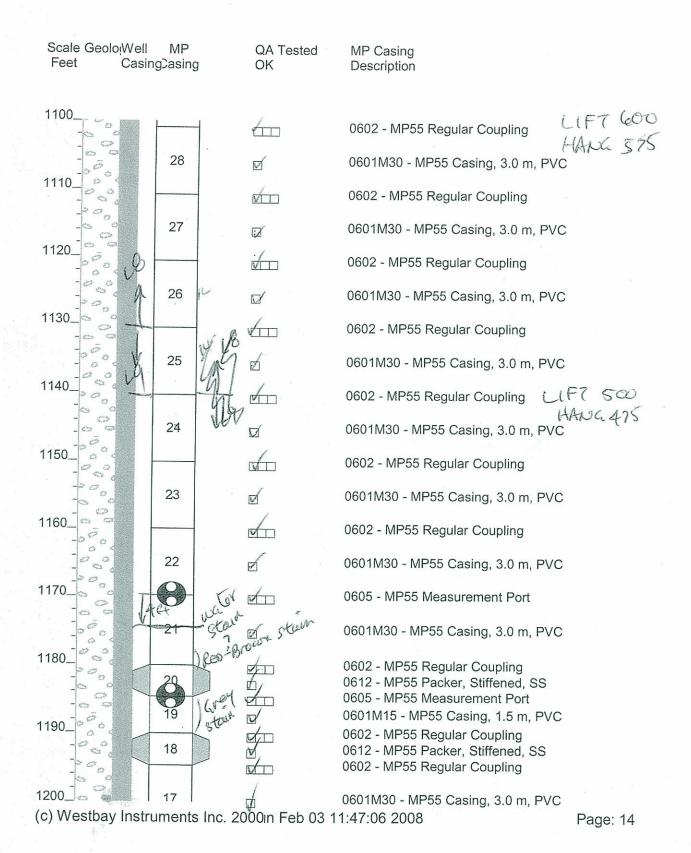

Job No: WB777 Well: R14


Page: 6


Scale Geole Feet		MP ngCasing	QA Tested OK	MP Casing Description
300	NAME OF TAXABLE PARTY.	1 7		
			L	0602 - MP55 Regular Coupling LIFT (900 HANC (750
310		110 3	É	0601M30 - MP55 Casing, 3.0 m, PVC
			M-D .	0602 - MP55 Regular Coupling
320		109		0601M30 - MP55 Casing, 3.0 m, PVC
<u> </u>			who i	0602 - MP55 Regular Coupling
330		108	2	0601M30 - MP55 Casing, 3.0 m, PVC
			ø l	0602 - MP55 Regular Coupling
340		107		0601M30 - MP55 Casing, 3.0 m, PVC
-1			6	0602 - MP55 Regular Coupling
350		106.	Ø	0601M30 - MP55 Casing, 3.0 m, PVC
7				0602 - MP55 Regular Coupling L(F7 (P50 HANG 700
360		105		0601M30 - MP55 Casing, 3.0 m, PVC
- -			MO.	0602 - MP55 Regular Coupling
370		104		0601M30 - MP55 Casing, 3.0 m, PVC
			M	0602 - MP55 Regular Coupling LIFT 1800
380		103 0	Ø	0601M30 - MP55 Casing, 3.0 m, PVC
-			TO TO	0602 - MP55 Regular Coupling
390		102		0601M30 - MP55 Casing, 3.0 m, PVC
- -			of the second	0602 - MP55 Regular Coupling CLF7 (700
400		101	∞	0602 - MP55 Regular Coupling (157 1700) 0601M30 - MP55 Casing, 3.0 m, PVC


(c) Westbay Instruments Inc. 2000in Feb 03 11:46:50 2008





Job No: WB777 Well: R14

Scale Geolo/Well MP **QA** Tested MP Casing Feet CasingCasing OK Description 1000 HANG 700 0602 - MP55 Regular Coupling VÍD 38 0601M30 - MP55 Casing, 3.0 m, PVC 1010. á 0602 - MP55 Regular Coupling 37 0601M30 - MP55 Casing, 3.0 m, PVC 1020_ 0602 - MP55 Regular Coupling 36 0601M30 - MP55 Casing, 3.0 m, PVC Ø 1030_ LIF7 700 0602 - MP55 Regular Coupling WII HANG 650 35 0601M30 - MP55 Casing, 3.0 m, PVC 1040_ 0602 - MP55 Regular Coupling WID 34 0601M30 - MP55 Casing, 3.0 m, PVC V 1050 0602 - MP55 Regular Coupling И́П LIF7 33 0601M30 - MP55 Casing, 3.0 m, PVC 1060 LIF7 650 0602 - MP55 Regular Coupling W HANG 600 32 0601M30 - MP55 Casing, 3.0 m, PVC na/n 0602 - MP55 Regular Coupling 31 0601M30 - MP55 Casing, 3.0 m, PVC 1080 0602 - MP55 Regular Coupling V D 30 0601M30 - MP55 Casing, 3.0 m, PVC d 1090. 0602 - MP55 Regular Coupling V 10 29 0601M30 - MP55 Casing, 3.0 m, PVC W

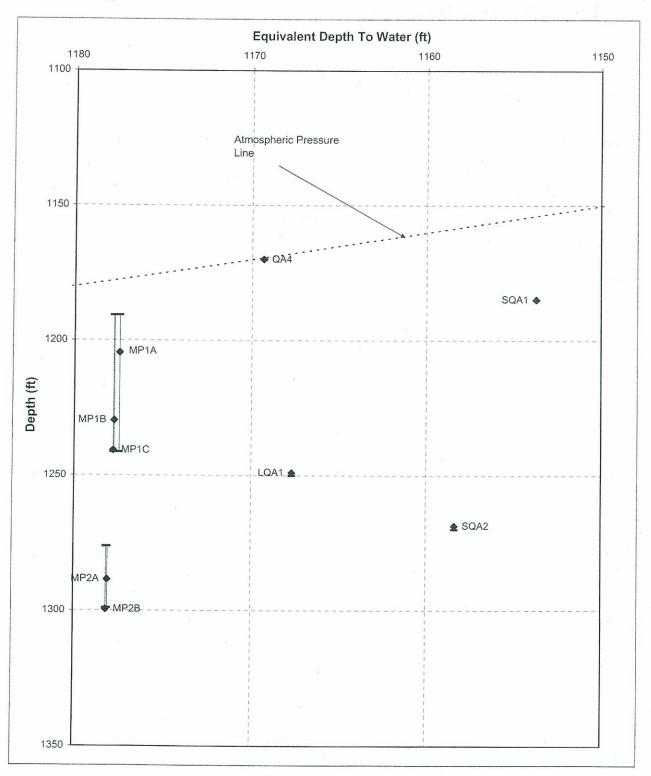
1100

Job No: WB777 Well: R14

Page: 15

Scale GeolowWell MP **QA** Tested MP Casing Feet CasingCasing OK Description 1200. 0605 - MP55 Measurement Port 1210 16 0601M30 - MP55 Casing, 3.0 m, PVC 0602 - MP55 Regular Coupling 15 0601M15 - MP55 Casing, 1.5 m, PVC 1220 0602 - MP55 Regular Coupling 14 0601M30 - MP55 Casing, 3.0 m, PVC 1230 0605 - MP55 Measurement Port VIII 0601M15 - MP55 Casing, 1.5 m, PVC 0 0607 - MP55 Hydraulic Pumping Port M 0601M15 - MP55 Casing, 1.5 m, PVC 1240. 0605 - MP55 Measurement Port 0601M10 - MP55 Casing, 1.0 m, PVC W 0602 - MP55 Regular Coupling LIFT210 0612 - MP55 Packer, Stiffened, SS HANG 200 0605 - MP55 Measurement Port 1250 9 0601M30 - MP55 Casing, 3.0 m, PVC 1260. 0602 - MP55 Regular Coupling 8 0601M15 - MP55 Casing, 1.5 m, PVC J 0602 - MP55 Regular Coupling 0612 - MP55 Packer, Stiffened, SS d 0605 - MP55 Measurement Port 1270 VI 0601M15 - MP55 Casing, 1.5 m, PVC N Bottom 0602 - MP55 Regular Coupling 5 0612 - MP55 Packer, Stiffened, SS 0602 - MP55 Regular Coupling 1280_ HITE 0601M30 - MP55 Casing, 3.0 m, PVC 0605 - MP55 Measurement Port 1290 0601M15 - MP55 Casing, 1.5 m, PVC 0607 - MP55 Hydraulic Pumping Port 0601M15 - MP55 Caşing, 1.5 m, PVC broke. www

(c) Westbay Instruments Inc. 2000in Feb 03 11:47:06 2008


Job No: WB777

Well: R14

Pre-Deflation Profile Monitoring Well: R14

Figure: 1
Profile Date: Feb 7, 2008
Comments: All Zones

Client: TPMC/LANL Site: Los Alamos Datum: ground surface Plot By: Dete: 20 Febor Date: Date:

Westbay Project : WB777 File: R14 Profile plots - Retrieval.xls

Westbay Piezometric Pressures/Levels

Field Data and Calculation Sheet

Well No.: Rtz Ric	RIG
Datum: Gし	Probe T
Elev. G.S.:	Serial
Height of Westbay above G.S.:	Probe Ra
Elev. top of Westbay Casing:	Westbay Casing T
Reference Elevation:	
Borehole angle: VEC7.	2

calculated using borehole angle and deviation data to calculate zone piezometric level (Dz).

Note: "Port position" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be

100001 Sow 305 Type: 611 No.: nge: ype:

Ames ON FOR 2008 500 PMC 2 Date: Client: Operator: Job No.: Location: Weather:

Ambient Reading (Patm) (pressure, temperature, time) / (23) (24)

Tatm Mr. DSI		Comments															
	Piez, Level)) () (Dz = Do - H		1178.19			1.28.1	***************************************		1158.5			1167.7	•	1171.8 8,1711		
	Pressure Head Outside Port	Outside Port () H = (P2-Patm)/w			56.												
	Probe Temp.	Time H:M:S	9411	(14)		1150	isi		hSII	1155		(15)	1158		222/6 1200	120(
	Probe Temp.		21.84 1146	22,07		22.54	21 22.61		22,83 1154	59,23 78,66 22,84115S		22,82 (15)	46,67 70,13 22,91 1158		22276	54 22,73 1201	
	adings	Inside Casing (P1)		19.97	,		187,21			78,66			70,(3			46,54	
	Fluid Pressure Readings	Outside Casing (P2)	91.98 64.06	64.05 91.97		87.20 59.32	59,32 87	•	78.67 59.29	59,23		70.13 46.76	(2,0)		66,53 38,68	38,68 GG.	
		Inside Casing (P1)	8676			87.20		1	78,67			70.13			(66,53		
	True Port	da maar				£ .		•				4				(Paga	
* 1.4 3 4.7	Port Position Port Position	(£ 4)	1299.7		and the second	1.88.7			1268.9			1249.1		71.75	(240,9		
	Port Position	(F)	MP2B 1299.5 1299.7			MP2A 1288-5 1288.7			SQA2 1268,7 1268.9		-	-QA1 1248.9 1249.1			MPIC (240,6 1240.9		
	DO TO		MOZB			MPZA			SaAZ			15/07			MPIC		

Notes:

 $w = 0.433 \text{ psi/ft (1.422psi/m) of H}_2\text{O}$ H = pressure head of water in zone

 $Dz = \text{piezometric level in zone} \\ Dp = \text{true depth of measurement port}$

Patm = atmospheric pressure

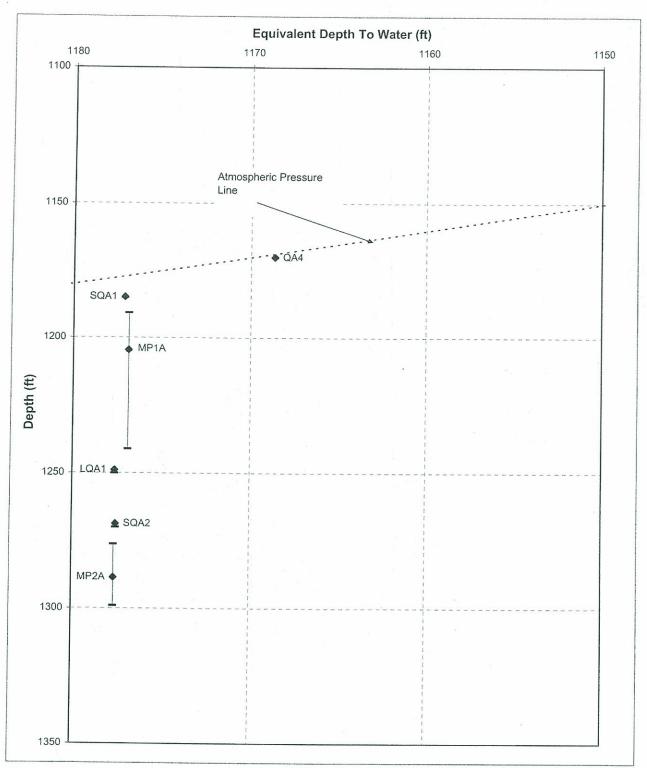
Schumberger water services

Westbay Piezometric Pressures/Levels

Date: CTFUS 2009 Client: TDMC Job No.: LOB 777 Location: Weather: Weather: Operator: Operator: Finish: Finish: Patm psi	
	Piez. Level Outside Port
7 28 SS	Probe Temp. Time H:M:S Outside Bod /
3057 100 pg M PSS	Time H-M-S
Probe Type: SOS 7 Serial No.: SOS 7 Probe Range: / DO DS Westbay Casing Type: M PSC) needs to be ometric level (D2).	Probe Temp.
Well No.: Potton: Datum: Elev. G.S.: Height of Westbay above G.S.: Elev. top of Westbay Casing: Reference Elevation: Borehole angle: Note: "Port position" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be calculated using borehole angle and deviation data to calculate zone piezometric level (I	Fluid Pressure Readings
R14	True Port
Well No.: POLUM: Datum: Elev. G.S.: Westbay above G.S.: P of Westbay Casing: Reference Elevation: Borehole angle: Ion" in angled boreholes refer to position alculated using borehole angle and deviat	Port Position Port Position True Port From Log From Cable Depth "Do"
Well No.: Datum: Elev. G.S.: Height of Westbay above G.S.: Elev. top of Westbay Casing: Reference Elevation: Borehole angle: : "Port position" in angled boreholes refe	Port Position From Log
Height c Elev. 1	Port No.

Comments								END
Pressure Head Outside Port () H = (P2-Patm)/w		3.55)	9,201	1187	790	08%	2001	064
Probe Temp. Time H:M:S Ou	1203	3 02) (5	22,50 1207	22.38 1214	21 (218	1/2	21.20 1232 20.48 1236	752)
Fluid Pressure Readings Inside Casing Outside Inside Casing (°° (P1) Casing (P2)		50,95 23.17 22,59	23.7 50,95 22,50 42,41 24.98 22,	36,00 11,72	36,00	11.60 11.79 2	11.54 20-4x 11.06 21.	11,68 11,52-2029
From Log From Cable Depth "Dp" (MP18 1229,6 1229,9	MP1A 12045 1204.9	0.2811 8.4811	t.0(11 8.8911 1-48)			2A1 280,8 279,9	
Port No.	Sidw	Mp/A	SOAI	740	0A3	CAB	NA I	

 $w = 0.433 \text{ psi/ tt} (1.422 \text{psi/m}) \text{ of H}_2\text{O}$ H = prescure head of water in zone


Dz = piezometric level in zone
Dp = true depth of measurement port

Patm = atmospheric pressure

Post Deflation Profile Monitoring Well: R14

Figure: 2 Profile Date: Feb 9, 2008 Comments: All Zones

Client: TPMC/LANL Site: Los Alamos Datum: ground surface Plot By: Date: 20 feb 08
Checked By: Date: Date:

Westbay Project : WB777 File: R14 Profile plots - Retrieval.xls

Westbay Piezometric Pressures/Levels Post DeFLATION

Field Data and Calculation Sheet

09 Pers 2008

Date: Client: Job No.: Location: Weather: Operator:

000 Jones.

> Sund

Well No.: RL	工工	
Datum:	らし	Probe Typ
Elev. G.S.:		Serial No
Height of Westbay above G.S.:		Probe Rang
Elev. top of Westbay Casing:		Westbay Casing Type
Reference Elevation:		
Borehole angle:		

40

calculated using borehole angle and deviation data to calculate zone piezometric level (Dz).

Note: "Port position" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be

MOS 3000 SWS

Ambient Reading (P_{aty)} (pressure, temperature, time) Start: 1/166/13, 26/14qg Finish: 1/2/2

		Comments															
Piez. Level	Outside Port ((/ /) atm)/w Dz = Do - H	-		X 1177.7	-	N77°6		9.2211		(77.0		1(7),		7787		
	Time H:M:S			20.85 1505	21.16 1506 110,8		21,98 1509	22.20 1570	22,36 1512	22,37 1513	22,36 1516	8151 8	0251 1722	125/ 11	22,02 1523	h7518	
	Probe Temp.	Inside Casing (P1)			11.15 19,69 21.11			51,17 53,32 22		42.55 44.76 22,		23.62 25,58 22,25 (S/g)	20%	1251 11'22 40'21 Bb.41	22,0	12.21 12.15 21.98 1524	
rt Fluid Pressure Readings		Inside Casing Outside (P1)	62.56	(2,03 59.7)	1,98		53,31 51,17	S	44,78 42,5S	42.0	25,59 23,56	23,0	学院 90℃	14.9	12.15 12.21	12,7	
Port Position Port Position True Po	From Cable Depth "Dp"	() ()	C-1921-0,183.	1288,5 1288,5		3. X	1.392)		(1249,0		1204,8		0.1887.0		1:021		
	Port No. From Log	()	MPSA HEAT	1288,5		熱	SOM2 1268.7 1268.7		COP) 1248,9 1249,0		MP 1A 1209,5 1204,8		SQA 1184,8 1185,0		ORTH (1189) 1170.		

Notes:

 $w = 0.433 \text{ psi/ft} (1.422 \text{psi/m}) \text{ of H}_2\text{O}$ H = preseure head of water in zone

Dz = piezometric level in zone Dp = true depth of measurement port

Patm = atmospheric pressure

Schlumberger Water Services

אספר אפאראטאל Westbay Piezometric Pressures/Levels

Sheet
alculation
and C
Data
Field

POST SOLD STORY	Client Color	DANO.	OOD INC.	Washer	Vycaulel.	Operator:	Ambient Reading (P _{atm}) (pressure, temperature, time)	Start: Finish:
84 74	Probe Type:	Serial No.:	Probe Range:	Westbay Casing Type:				on along drillhole. True depth (Dp) needs to be
Well No.:	Datum:	Elev. G.S.:	Height of Westbay above G.S.:	Elev. top of Westbay Casing:	Reference Elevation:	Borehole angle:		Note: "Fort position" in angled boreholes refer to position along drillhole. True depth (Dp) needs to be

calculated using borehole angle and deviation data to calculate zone piezometric level (Dz).

	Г	- Control of the Cont	-	-	<u> </u>	1	1	1	Т	1	T-	T	T	T	T	T	
P _{atm} psi		Comments															
	Piez. Level)) Dz = Dn - H	DRY														
	Pressure Head	Outside Port ()															
		(°C) Time H:M:S	1528	1523		1533	De 1534		1539	1540							
÷	Probe Temp.	(0,)	18.16	21,70		21,27	21,06		18.81	19.77	-						
	Jings	Inside Casing (P1)		12,07 R,07			1184			11.89							
	Fluid Pressure Readings	Outside Casing (P2)	12,07	12,07		20,21	18.00 1184		11.92	11.90							
	Fluid	Inside Casing (P1)	12,07 (D,C)			11,97		. '	11,86	67							
	True Port	Deptin Dp. ()							20 T 10 T								
	Port Position		880,2			579.9			781.5	: 17 /			iaj.			16	
	Port Position		QA3 878 880,2			QA2 580,2579.9			JAI 280,8 281.2								
	t od		QA3			0A2			QA!							*	

Patm = atmospheric pressure

Dz = piezometric level in zone Dp = true depth of measurement port

 $w = 0.433 \text{ psi/ ft (1.422psi/m) of } H_2O$ H = pressure head of water in zone

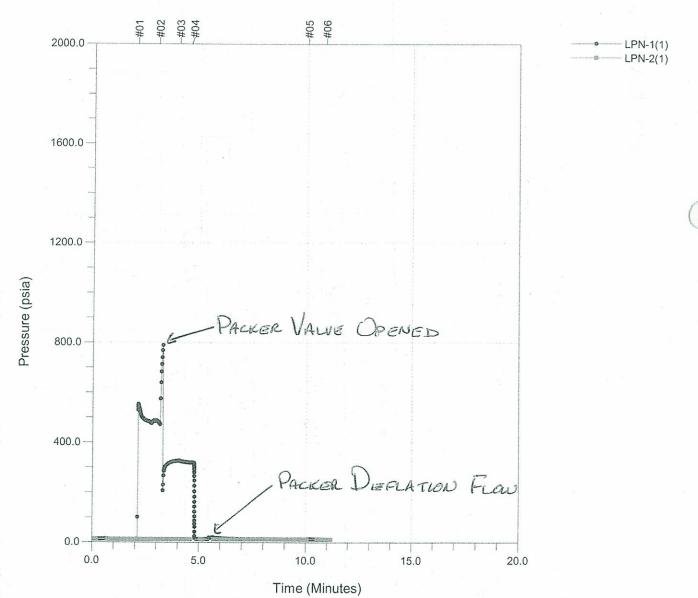
Packer Deflation

Company: Terranear PMC

Site: Los Alamos

Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P1 Packer Depth:

Date: 20 PBB 08

Checked By:_____ Date:

TZero: Sat Feb 09 22:00:00 2008

Report Date: Tue Feb 19 17:31:49 2008

R14_P1D.WDF

Page	-4	
rage	of	ı

MP55 Packer Inflation Field Record

Project: 777 Clier	nt: TPMC	By: DL		Date: 09	FEB	2008
Location: Los Alamos Well	No. RIY	Borehole Dia	meter:		V 200000 III	
Packer No. Pl Dept	th: 29/1	Computer Da	ta File:	RI4-P	D	.WDF
Inf-Tool No. 232S Vent	Tool No. 2653	Volume Pum	ped:	Vol Retur	ned	
H-B Valve: (P _H) Offse	et (P _V)	Confirm Ven	ting (Vent	Tool Data) (Y/N)	
Vent Tool Pressure (Shoe Out,	P _o)	Final Inf'n Vol	: <u> </u>	Final Press	:	(P _F)
Comments:		Calc'd Eleme	nt Pressu	re (P _F +P _V - P ₀	o)	
		Confirm Pkr \	/alve Clos	sed (Yes/No):		

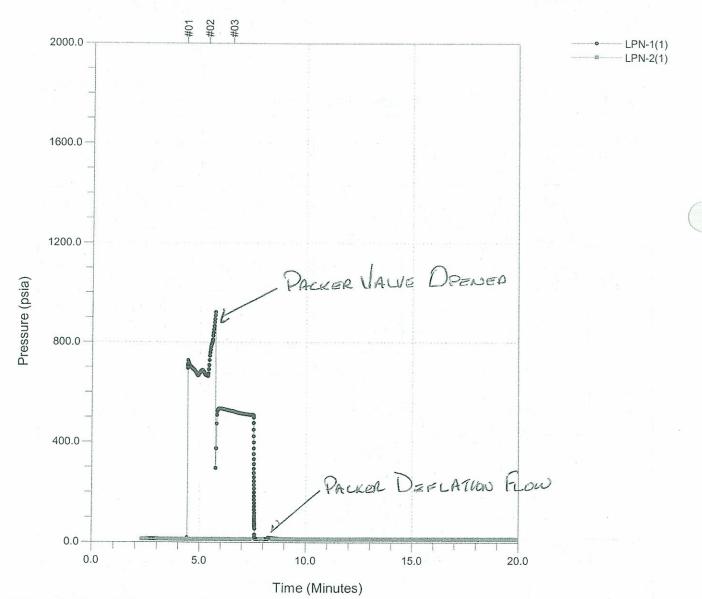
500 ft lose lengthpumping Information I = Inflate, O = Off, C = Close

·						
Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	TIE=OFF Text
0	0	11,5	11,9	1400		Start logging stoe out
0	0	11.9	11.9	1401		Pump to 1000
0.25	1000	11.9	11,9	1402	1	TIE = INF
		,				PA to SSO Han Slow V
0.25	950	480	11.9	1403	2	Pg to 780 Than
						sharply & to 200
6.3	700	320	11.9	403:10	3	TIE = OFF / VONT
0.	0	320	11.9	1404:30	4	THE SHOE IN/ CLOSE/ SHOE OUT.
			``		,	
		17.8	11.9	1405:45		Observe TIE-PV
		16:17		1406		as lacker vents
		15.13		1406:15		thre tool.
		14.11		1406:30		
		12,9		1407		
		12,4		1408		
		12.3	1.0	1409		
00	0	12-2	11.9	1410	5	SHOE IN
0.1	0	11,5	11.9	1411	6	END /
						CORCLUSION
						- PKT Valve open
						-Per defleted.
					1	

Packer Deflation

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P2 Packer Depth:

Plot By: D Date: 20 Feb 2009

Checked By:_____ Date:____

TZero: Sat Feb 09 21:06:40 2008

Report Date: Tue Feb 19 17:34:32 2008

R14 P2D.WDF

Page	of	
-		*****

MP55 Packer Deflation Field Record

Project: 777 Client: TPMC	By: DC Date: 09 F68 200 3
Location: Les Alamos Well No. RIU	Borehole Diameter:
Packer No. P2 Depth: 590 5	Computer Data File: R14_P2D.WDF
Inf-Tool No. 2325 Vent Tool No. 2653	Volume Pumped: Vol Returned
H-B Valve: (P _H) Offset (P _V)	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe Out, Po)	Final Inf'n Vol: Final Press:(P _F)
Comments:	Calc'd Element Pressure (P _F +P _V - P _O)
	Confirm Pkr Valve Closed (Yes/No):

Pumping Information

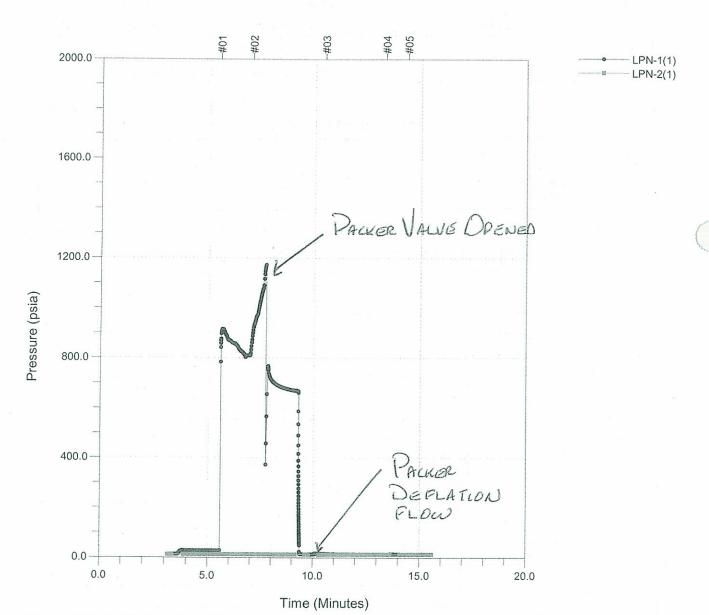
Software Reminder
I = Inflate, O = Off, C = Close

			ru	mping intori	mation	T = Intlate, O = Off, C = Close
Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text
0	0	11.7	11,9	1309	-	START LOG /THE SHOEDUT
0	0	12.0	1,9	1310		Pun 60 (000
0.4	1000	12.0	- G	· · · · · · · · · · · · · · · · · · ·	, week	PA700, stable.
0.4	970	669	12.0	1312	2	Pump slowly
						to 250, rise to 50
0.5	(200¥	532	(20	13/3	3	TIE-OFF/VENT
	to 900				Y	Para itai atai
0:1	0	SIY	12,0	314		SHOE IN/CLOSE/SHOOO
		14,9	120	1315		
		13,5	12,0	1316:30		PKR VENTS THE LOOK
		*		*		LuwcH.
0:4	0	12.2	120	1330	- Company	SHOE IN/TLE 20FF
1.0	0	11.7	12.1	(33)	.5	eno
						CONCLUSION:
		***************************************				> PKr Valve U opa
						> PKY is deflated

Packer Deflation

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P3 Packer Depth:

Plot By: DL Date: 20 Feb 200P

Checked By:_____ Date:____

TZero: Sat Feb 09 20:26:40 2008

Report Date: Tue Feb 19 17:35:40 2008

R14_P3D.WDF

Dage		
Page	of	

MP55 Packer Deflation Field Record

Project: WB 777	Client: TPMC	By:	Date: 09 Feb 200			
Location: Los Alamos		Borehole Diameter:_				
***************************************		Computer Data File:_	R14-P30 .WDF			
Inf-Tool No. 2325	Vent Tool No. 2653	Volume Pumped:	Vol Returned			
H-B Valve: (P _H) (Offset (P _V)	Confirm Venting (Ve	nt Tool Data) (Y/N)			
Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol:	Final Press:(P _F)			
Comments:		Calc'd Element Pressure (P _F +P _V - P _O)				
,		Confirm Pkr Valve Cl	osed (Yes/No):			

Pumping Information

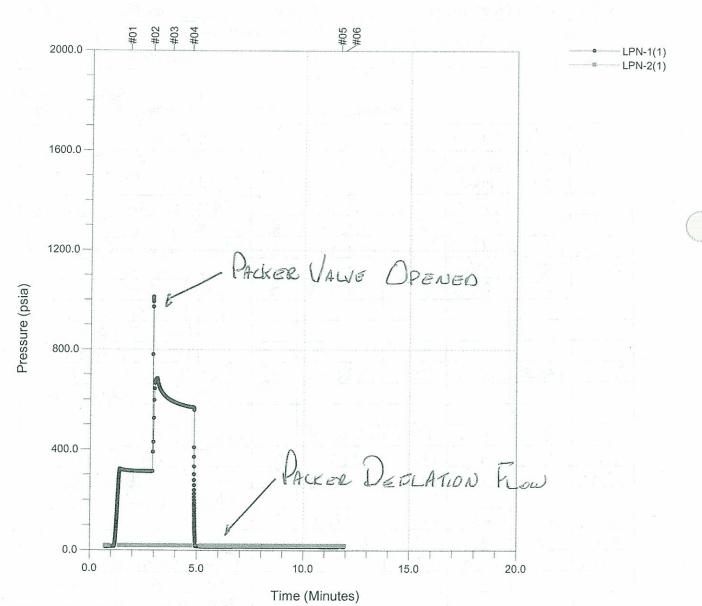
Software Reminder

			Pu	mping Infor	matior	1 = Inflate, O = Off, C = Close
Volume	Pressure			Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	TIE=OFF Text
0	0	11.7	12.1	1230	#1000mm	START LOGGING / SHOE OU
0	0	26.3	12-1	1231	3,	Pump 20 1000
0.6	1000	26,2		12.32	ĺ	TIE= INF. P1 to 950
0.6	950	840	121	1233	112	wor open.
0.6	950	808	121	1233:30	2	Purp Slowly
						@ 1250 see,
						sharp drop there
						rise Tie=OFF
0.9	1400	690	121	1234:40	Z	VENT, SHOE IN
,	A11-1000					TIE=C, SHOE OUT
0.1	0	11,7	12.1	1236:20		SHOE OUT
0-1	0	15.5	12,1	1237	2	See × ducer PV
0.1	0	14.9	12-1	(237:15		as pkr deflates
						Three tool.
011	0	13.6	12,1	1237:30		
0.(0	13.1	1201	1238		
1,0	0	12,6	1211	1238:30		Conclusion:
						PKT is deflating
				24 21		PKr valve is open.
01	0	12,5	12.1	1240	4	SHOO N
15 -					ŧ.	
0-1	0	11,8	12-1	1241	S	END See Douncy
						Pressure as per we

Packer Deflation

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P4
Packer Depth:

Plot By: DL Date: 20 Feb 2008

Checked By:_____ Date:____

TZero: Sat Feb 09 20:03:20 2008

Report Date: Tue Feb 19 17:37:19 2008

R14 P4D.WDF

Dogo		
Page	ot	

MP55 Packer Deflation Field Record

Project: WB777	Client: TPMC	By: Date: 09 F&B 2008
Location: Los Alcenio	SWell No. RIG	Borehole Diameter:
Packer No.	Depth:	Computer Data File: RI4_P4D .WDF
Inf-Tool No. 2325	Vent Tool No. 2653	Volume Pumped:Vol Returned
H-B Valve: (P _H)	Offset (P _V).	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Sho	e Out, Po)	Final Inf'n Vol: Final Press: (P _F)
Comments:		Calc'd Element Pressure (P _F +P _V - P _O)
		Confirm Pkr Valve Closed (Yes/No):

Pumping Information

Software Reminder

I = Inflate, O = Off, C = Close

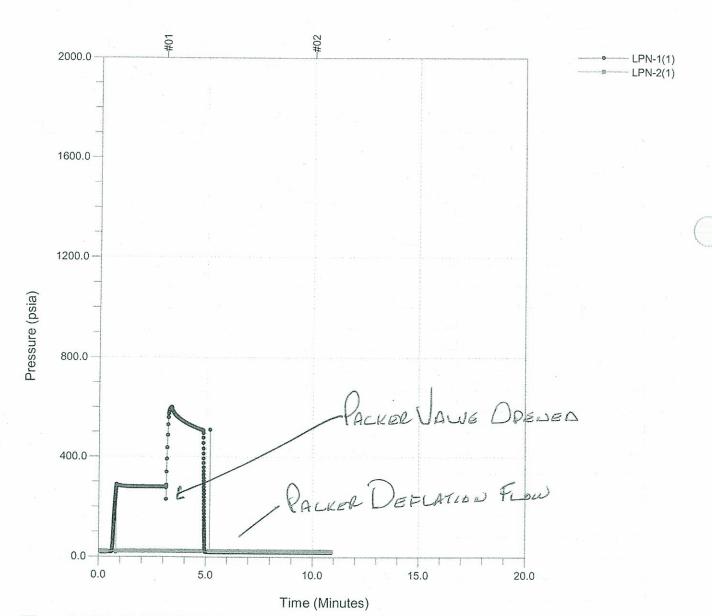
					100		
Volume	Pressure			Clock		Comments	
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)	1	Tag No.	TIE = OFFETEXT	
0	0	13.6	18.4	1204		Start logging SHOE Car	
والله			,			- See squeezep	
0	0	318	18.4	1205	- Valence	Puno To 1000	
0.6	1000	30	4.81	1206	2	TIE = SNF	
						ph to 1000, down	
	- 15K	RUP	ていき	OPEN	g.	to soo Then climb	
						TUE = OFF	
0.6	700	609	18.4	1207	3	VENT LINE	
0.5		574	18.4	1208	4	SHOE IN	
0.2	<u>D</u>	14,0	18.7	1708.30	· ·		
COTT	0	14.1	18.8	1209			
01	0	14,2	- 18.9	1216		DP= 19.0-18.4=0.6051	
0 1	0	14,2	19,0	"2" \		=1.0. Q water	
0.1	D	-14.2	190	1212			
						CONCLUSION:	
						PKr valvers open	
						and lar is deflator	
						U	
Oil	0	142	19,0	1215	5	END	

01

Packer Deflation

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P5 Packer Depth:

Plot By: DC Date: 20 Feb 2008

Checked By:_____ Date:____

TZero: Sat Feb 09 19:50:00 2008

Report Date: Tue Feb 19 17:38:23 2008

R14_P5D.WDF

Page	of	

Project: WB777	Client: TPMC	By: DL Date: 09 FEB 2 co 8
Location: Los Alemos	Well No. R14	Borehole Diameter:
Packer No. <u>QS</u>	Depth: 1190,2 C+	Computer Data File: R14-P5D .WDF
Inf-Tool No. 2325	Vent Tool No. 2653	Volume Pumped: Vol Returned
H-B Valve: (P _H)	Offset (P _V)	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol: Final Press:(P _F)
Comments:		Calc'd Element Pressure (P _F +P _V - P _O)
		Confirm Pkr Valve Closed (Yes/No):

Pumping Information

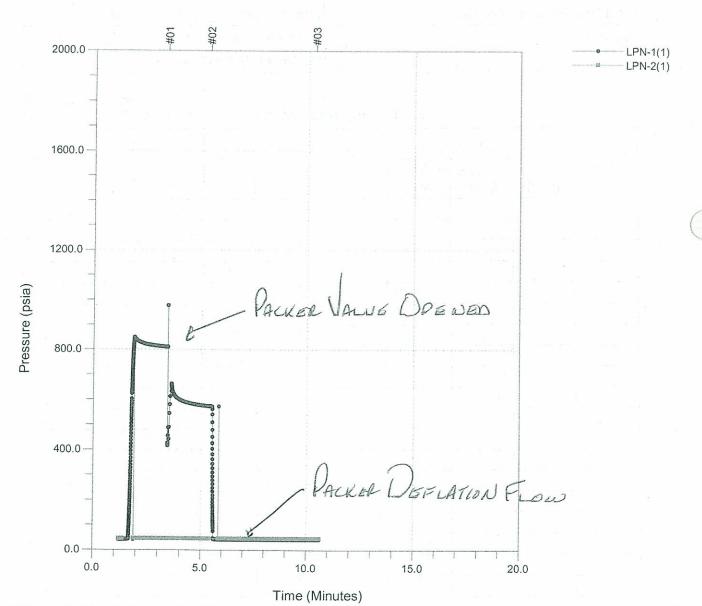
Software Reminder

I = Inflate, O = Off, C = Close

				mping imon		1 - Innate, O - On, C - Close
Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	TIE=OFE-Text
0	0	17.6	22,3	50		TIE SHOE OUT/START LOCK
				-		- Small squeeze to 28
0	0_	583	22.3			Pup to lood
0.6	1000	279	22.3	1153	() delamine	TIE = INF
	*****************************					See Paren slightly
	****			•		then ruse
0,6	600	547	213	1153:30	P	TUE = OFF / VENT
0.2	0	515	22.3	1154:30	1	TIE SHOE IN
ひっと	0	17.8	22.5	1155		J.
0.2	0	17.9	22.7	1155:30		see p-rise on encs
0.2	0	180	22,8	1156		as pur deflecter.
	~~~					is Pur value is open
0.2	0	181	22.9	1/57		
						DP= 22.9-22.3=0,6ps1
						= 1.02,
02	0	181	22,9	1200	22	- en
		-	•			
						CONCLUSION
						-> PKr value open
						and pkr dellate
				Q.		

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P6
Packer Depth:

Plot By: DC Date: 20 Feb 2008

Checked By:_____ Date:____



TZero: Sat Feb 09 19:31:40 2008

Report Date: Tue Feb 19 17:40:02 2008

R14_P6D.WDF

Page	of	



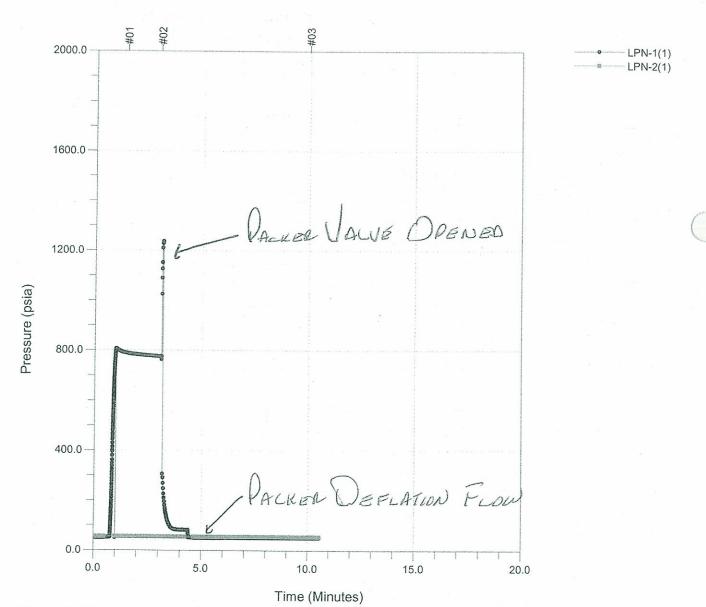
Project: WB777		By: De Date: 09 FC\$ 2000
Location: Los Alamos	Well No. RIG	Borehole Diameter:
Packer No. P6	Depth: 244,3	Computer Data File: RI4-P6D .WDF
Inf-Tool No. 2325	Vent Tool No. 2653	Volume Pumped: Vol Returned_
H-B Valve: (P _H )	Offset (P _V )	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe	e Out, Po)	Final Inf'n Vol: Final Press:(P _F )
Comments:		Calc'd Element Pressure (P _F +P _V - P _O )
		Confirm Pkr Valve Closed (Yes/No):

#### Pumping Information

			Pul	mping intor	matio	<b>n</b> I = Inflate, O = Off, C = Close
Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	TIE = OFF Text
0	0	41.3	45.9	1133		TIE SHOE OUT / STARTLOGGING
		673.4 . I			5	-See Squeete P
0	0	834	45,9	1134		- Pump to 1000
0.6	(000)	812	45.9	1135	/_	TUEINE
						P1 to 100, drop to 450
	10	A week				then dimb.
0.6	650	594	46.0	1(32:50		TIE=OFF. / VENT
0.1	0	S 76	46.9	1(37	,5	SHOEIN
0.1		41,4	46.2	1137:30		See ens PA as
0.1	0	41.6	46,4	1138:50		exer defletes.
0.1	0	41,7	46.5	139		V
						NP=465-45,9=06ps
						= 1,01
	-				~~~~	- transport
	area.		4 5 Å am			SO PURVALUE IS OFFIN
1.0	0	41,7	46.5	1142	3	END
	- 1		1			

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment: Second Deflation

Packer: P7
Packer Depth:

Plot By: DL Date: 20 Feb 200F

Checked By:_____ Date:____



TZero: Sat Feb 09 19:15:00 2008

Report Date: Tue Feb 19 17:42:46 2008

R14_P7D2.WDF

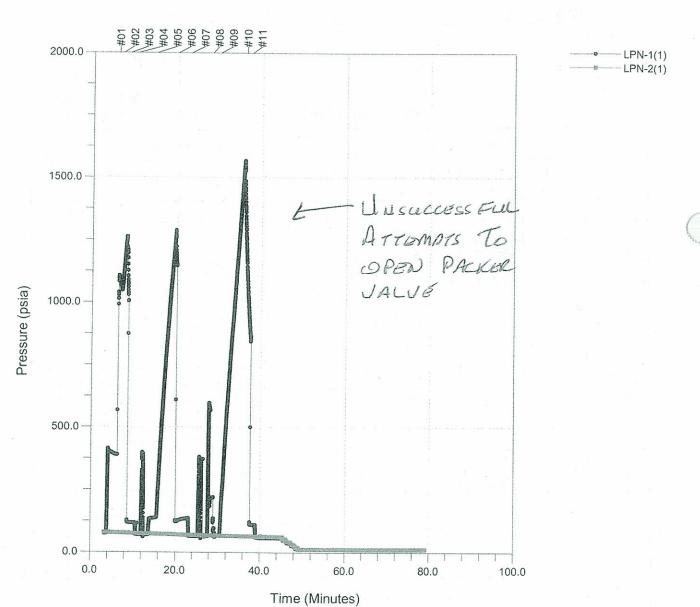
_	
Page	of
. ~9~	



DECOND I	DEFLATION			,
Project: WB 777	Client: TPMC	By: DL	Date: Felo 9/	08
Location: Los Alamos	Well No. RIH	Borehole Diameter:		
Packer No. P7	Depth: 1264-1	Computer Data File:	R14-P702	WDF
	Vent Tool No. 2653	Volume Pumped:	Vol Returned	
		Confirm Venting (Ve	nt Tool Data) (Y/N)	
Vent Tool Pressure (Shoe	Out, P ₀ )	Final Inf'n Vol:	Final Press:	_ (P _F )
Comments:		Calc'd Element Press	sure (P _F +P _V - P _O )	
	A	Confirm Pkr Valve Cl	osed (Yes/No):	

### Pumping Information I = Inflate, O = Off, C = Close

Volume		Pressure		Clock	Tie:	= OFF Comments	
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text	
0	0	49.82	54.50	1115		TIE Shoe out Start record	ding
		-				- Soe Squeede ().	•
0	0	7971	54,5	1116		- Soe Squeede P. Pump to 1000	
0,5	1000	779	54.5	1118	21	TIE=INF	
						See p 1/20 than	
						digues shoots to 1200	
0.5	100	82.4	54.5	1119		See p 1 to 1290 than down sharply to L200 TIC=OFF / SHOE IN/VEN	27
						7 31,00 1.700	1.
0.4	0	50.1	54.8	1121		* O.Al lost from hose.	
0.4	0	50.2	549	1122		* Rise in ml = 54.9-54.5=0.4	PS(
				7.00		=0.70	Ч
	****					=0.72. 3. ret trom PKI = 0.32	
	-					02 101 101 101 1013 X	
0.4	0	50,2	54.9	1125	3	See an more orce	
	,		0 13/	1120	<u> </u>	16 MD 126	
					- 2	See no more rise in MP WC.	
						2,40	
						Constanti Dualla	-
					- 1	CONCLUSION: PER VALVE	7
						(S OF 00	
1 1						1.07	


Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14

WB project: WB777 Comment: First Deflation Packer: P7 Packer Depth:

Plot By: DC Date: 20 Feb 2003

Checked By:_____ Date:____



TZero: Fri Feb 08 22:00:00 2008

Report Date: Tue Feb 19 17:41:09 2008

R14_P7D.WDF

Page	of	



Project: WB777		By: DC Date: 08 FCh	
Location: Los Alan	Well No. RIY	Borehole Diameter: 4-5	
Packer No. P7	Depth:_(264-/	Computer Data File: R14-P70	.WDF
Inf-Tool No	Vent Tool No	Volume Pumped: Vol Returned	
H-B Valve: (P _H )	Offset (P _V )	Confirm Venting (Vent Tool Data) (Y/N)	
Vent Tool Pressure (S	Shoe Out, Po)	Final Inf'n Vol: Final Press:	(P _F )
Comments:		Calc'd Element Pressure (P _F +P _V - P _O )	
		Confirm Pkr Valve Closed (Yes/No):	

## Pumping Information I = Inflate, O = Off, C = Close

Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	TIE=OFF Text
0	0	73.7	78.4	1403		stoe out.
0	0	407	77.8	1404		Dunp to 1000
1.0	1000	388	76.9	1406	. (	TIE > INF.
	3			1		no p-drop pur value
						not open-
1,0	950	1067	76.3	1407	5	
105	111197	P		1.5 12 0.5		
103	1400	1200	75.4	1408:45	3	Seo p. drop. Steppeap
1.5	1400	117	74.9	ulla		TIE-OFF.
10 3	1 400		14.1	146	,•••	Vent Line.
0.2	0	116	74,6	14/0:30	4	TIE SHOE IN
		69.3	74,0	1411:30		SHOE OUT.
		391	73.6	1412	7_	
9		68.6	. 73.2	1413		See squeeze? Shoe IN TIO-INT
		100	0		- 479	Shoe out
		132	72,79	1414	ar .	1
0	0	135	72,5	1415	5	Prus sharply - volent ope
0	e	1:00				Prue sharply - value not ope
0:3	550	490	715	1416-,30		
1,5	900	825	70.9	1417:50		
	1300	1190	70.3	1419 .: 30	10	See p-drop Judie open?
1.9	1500	/300	70.05	1420	6	
						TLE=OFF. PV to (27)

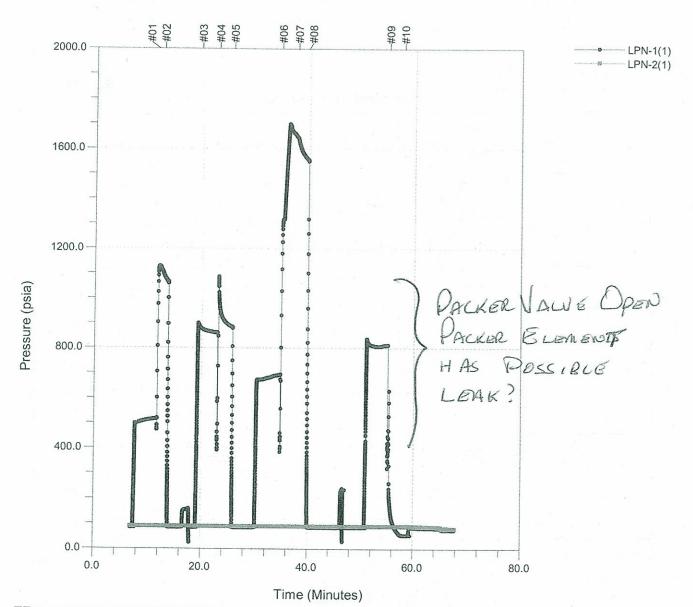
	7
Page _	of



Project:_		Wel	l No	Pac	cker No.		
			Pui	mping Infor	mation	Software Reminder  I = Inflate, O = Off, C = Close	
Volume		Pressure	rent ji na	Clock		Comments	
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text	
1,9	1300	130	69.5	1421:30		Vont line.	
0	Ľo.	135	68.8	1473	7	TIE SHOE N	
0	0	63.7	68.4	1424	,	6 6	
6	0	63.13	67.9	14550		see we decline in	
		and macC				pulps and a second	
		379	67.7	11125.30		SHOE out	
		5/1	0/0 (	1425:30		See squeeze	
						Shoe out.	
		596	66,8	1428	8	TIG = INF	
		218	66.5	1429		CYCLE TIE Z-0-C	
		1 2 2					
0	0	65.2	66.0	1430	9	Pung Stocky	
0.5	500	447	65.4	1431:40		P Rise Sharply.	
1,0	1150	1107	65.0	1432:40			
2.0	1500	12400	64.6	11175-13		702	
2.1	1600	1480	64.1	1436	10	See Panoto 430	
7 1	, 2 - 3	,100		11/0	10	See Pann to 1430 stop pund, observe	
2./	1100	934	63.7	1437:30	1.00	T.10=0 FE	
2-1	1000	110	63,5	1438		Vont live.	
0.81	_0	108	63.4	1439	1 1/11	SHOO IN	
0.7	0	58,2	63.0	1439:40			
			- 1	3.5			

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-14


WB project: WB777

Comment:

Packer: P8
Packer Depth:

Plot By: DL Date: 20 Feb 2008

Checked By:_____ Date:__



TZero: Fri Feb 08 20:53:20 2008

Report Date: Tue Feb 19 17:44:40 2008

R14_P8D.WDF

Page	of
1 age	



Project: WB777	Client: TPMC	By: DL Date: 08 Feb 2008
Location: Los Aumeos	Well No. R14	Borehole Diameter: 4 ½
Packer No. PB	Depth: 1274 -1	Computer Data File: R14 - P8D .WDF
Inf-Tool No. 位2325	Vent Tool No	Volume Pumped:Vol Returned
H-B Valve: (P _H )	Offset (P _V ).	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol: Final Press: (P _F )
Comments:		Calc'd Element Pressure (P _F +P _V - P ₀ )
	-	Confirm Pkr Valve Closed (Yes/No):

PACIFIC STD TIME Pumping Information

Software Reminder

I = Inflate, O = Off, C = Close

***************************************	Tamping information 1- limate, 0-on, 0-close						
Volume		Pressure		Clock		Comments	
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text	
0	0	84.0	88.9	1300	140.	Start logging Show out	
0	6	495	88,9	1301		Dump to 1500psi.	
2.2	1500		88,9	1305	(	Tie > INE Mershe value pas	
2.2	1150	1114	889	1306	2	Vent line	
				1307		TIE = O SHOE W	
0.4	0	84.2	89,06	1309	3	- not see much water rise in	
						mp? Tie-SHOO out	
			6) 0				
0,4	0	153	89,06	1310,90		- very low squeeze?	
						Shoe in , See "suction?"	
			n 0 (	10		Suspect PKI value unt of son	
0.4	0	84.37	29.06	1312		Stop out.	
0.4	100	894	89.06	1313	4	Punp to 4500 2000	
2.8	1700	861	89.06	1316	8	see sharp drup to	
				-		approx350, then climb.	
2.8	1500	920	0010	12:2:2()		Siespect pro value oper	
2.08	0	890	89,12	1317:30	65	TO DOFF, Vent	
901:013		010	89.18	1319	103	TIE SHOE IN	
			89,25	1319:40		622 11 542	
			89.31	1320	*	- See W.L. rise in My.	
0,7		84.6	89,31	1322		NO SQUEZE PLEVOLE IS OF	
		0 (20	047	1300		- C/10 - 017	
0.7	0	673.4	89,25	1325		Soe squere, Irradie	
40.0	TO SELECT	121	- 1 2 3	1 260 1		suc sylver c	



Project:	Well No	Packer No	Date:

Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text
0.7	0	673.4	89.25	1325		Pump to 1700
3.25	1800	1300	89.25	1328	6	TUSSINF. Se driptoges
	. 000				100 V3891	Then (ise.
	1750	1650	89.25	1330		p 400 to 1680
11	1700	1650	59.25	1331	7	VONT LINE, THE-OFF
1,5	0	1560	89,25	1333	8	TUE SHOW IN
1.5	0	84.65	\$9.43	1333:40		The same of the sa
1.5	0	84.68	89.49	1335:30		N= 88.48-88.25=0,24ps1
						- the vol seems small.
						- the vol seems small.
				13		
				1339		TIE SHOT OUT AFTER RE-LAKEN
				,		Squeeze=233psi Shoe-in- see juction Exbelieve PKI velve potopa
						Shoe-in- See justimy
				121616		
1.4	0	318	0.9.9	1344		The shoe our
	750	81	89.49	1395	9	Puop 9
4.1 1	130	811	89.55	1348	7	see voruble p, drop.
						to the
		- V.J.				No p-rise on oms, o water
						going into per.
						Caro Van La Carolina
						See p diep was below Presole may he per barret?
4.(	50	56.4	09-	1351	10	TIG-ATT
2 1	50	534	89.49		10	TIC=OFF
4.1	20	83,49	88.33	1352		See Pinsido dun.
		03,71	20:03	1553		See Pinside dup.
8						DER likely burst
4-1	0	(6)	87.59	1356		I'm likery walls

Page	of
rage	01



Project: いらフフフ	Client: TPm C	By: DC	Date: Feb 9/0	28
Location: Los Algres	Well No. RI4	Borehole Diameter:		
Packer No. P8	Depth: 1274.1 Ft.	Computer Data File:_	RI4P8CL	WDF
Inf-Tool No. 2325	Vent Tool No	Volume Pumped:	Vol Returned	
H-B Valve: (P _H )	Offset (P _V ).	Confirm Venting (Ven	nt Tool Data) (Y/N)	
Vent Tool Pressure (Sho	e Out, Po)	Final Inf'n Vol:	Final Press:	_ (P _F )
Comments:		Calc'd Element Press	ure (P _F +P _V - P ₀ )	
	1 24 (	Confirm Pkr Valve Clo	osed (Yes/No):	

CLOCIC (S ON MTN STD Pumping Information I = Inflate, O = Off, C = Close

2009	1300	1. 4. 1.	I ui	mping into	matio	1 - Inflate, 0 - Off, 0 - Close
Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)	1.0 E	Tag No.	Text
Ð	0	53.67	58.60	1056		Stor our, start loggi.
0	0	53.1	58,5	1057	1	Dung to 200
0.6	800	53.1	58.5	1100	5	710=C
0.6	760	53.7	58.5	1100:15	-	
0.6	760	53.7	585	1101	3	Vent line.
0.	0	53.7	58.5	1162	4	SHOE IN TIE= I.
0,	0	53,7	58.5	1103	5	Start purp to add
1;0	0	54,2	58.96	1169:25		Start pump to add water to MP - test 1 stable.
1.0		54,2	58.96		(1,44)	stable.
1.0	C	542	39,0	1107		DP= 58.9-58.5 = 0.4ps 1 = 0.92 water
1,0	ى	54.2	59.0	1108		=0.92 water
.12				7100		= Vol pumped
		-3-1	4-		-	
			Section 1			- P Stable for 5 min.
		3 22				= PKI valve (leak) 19
						closed.
	712.14					
1.0	0	842	59.0	1109	6	END
				- 3		
. 1						
	14.1 W	3-6-4				1-11-1-1
1.					J	
		12.1				
1			Dr. T.			

## **Appendix D**

Video Logging (on DVD included with this document)