

Rationale to include Japanese encephalitis among diseases qualifying under FDAAA section 524

Theodore Tsai MD MPH FIDSA

Novartis Vaccines

Cambridge, MA

U NOVARTIS

- Novartis is a marketing and distribution partner of Intercell, licensing applicant for an inactivated JE vaccine
- Consultant
 - PATH (Program for Appropriate Technology in Health) to promote implementation of JE vaccination in developing Asian countries

Qualifying criteria for tropical disease applications under section 524

Product for prevention or treatment of

- Listed neglected tropical diseases
- Other infectious disease for which
 - There is no significant market in developed nations
 - That disproportionately affects poor and marginalized populations

Japanese encephalitis viral transmission cycle

- Mosquitoborne flaviviral encephalitis
- Humans are infected incidentally dead-end hosts
- Disease cannot be eradicated
- Human vaccination is the only effective means for control

NOVARTIS

Japanese encephalitis can have devastating clinical consequences

- Between 1 in 300 and 1 in 1000 infections lead to clinical disease¹⁻²
- Acute encephalitis that is fatal in ~30% of cases⁴⁻⁷
- Up to 50% of survivors have persistent neurological sequelae^{5,6}
- No specific therapy is available

1. Grossman RA et al. Am J Epidemiol 1973; 98: 133-149. **2.** Southam CM. J Infect Dis 1956; 99: 163-169. **3.** Umenai T et al. Bull World Health Organ 1985; 63: 625-631. **4.** Burke DS et al. Am J Trop Med Hyg 1985; 34: 1203-1210. **5.** Hoke CH et al. J Infect Dis 1992; 165: 631-637. **6.** Schneider RJ et al. Southeast Asian J Trop Med Public Health 1974; 5: 560-568. **7.** Simpson T & Meiklejohn G. Am J Trop Med Hyg 1947; 27: 727-731.

Japanese encephalitis: long-term neuropsychological sequelae contribute to a hidden burden of disease

- 6-27 year follow up (~15y) and case-control study of JE cases, Shanghai
- 22% had a neurological deficit OR 6.30, 95% CI, 1.24-31.9 vs. non-JE cases
- 18% were severely retarded; 6% were incapacitated in activities of daily living

FIGURE 2. Neurologic deficits in JE and non-JE encephalitis cases 6–27 years after index hospitalization compared with findings in normal controls.

Neurologic abnormalities, cognitive function, and ADL scores at follow-up of JE patients, post-non-JE encephalitis patients, and neighborhood controls

Examination	(N = 78)	Post-non-JE encephalitis (N = 71)	Neighborhood control (N = 78)		
Abnormal neurologic					
findings (%)	17 (21.8)	2 (2.8)‡	0(0)		
MMSE§ score < 21 (%)	8 (10.3)	$1(1.4)^{*}$	$0(0)^{\dagger}$		
IQ#					
> 84 (%)	43 (55.1)	52 (73.2)‡	66 (84.6)‡		
70–84 (%) 28%	6 (7.7)	1(1.4)	1 (1.3)		
< 70 (%) 18%	11 (14.1)	0 (0)	0 (0)		
ADL					
< 21 (%)	66 (84.6)	71 (100)†	78 (100)‡		
21-60 (%)	7 (9.0)	0 (0)	0 (0)		
61–80 (%)	5 (6.4)	0 (0)	0 (0)		

* P < 0.05; † P < 0.01; ‡ P < 0.001 for comparison of cited group with the JE group. § MMSE, Mini-Mental State Examinations. IQ was determined for 60 JE and 53 post non-JE encephalitis patients and for 67 neighborhood controls.

U NOVARTIS 7

Ding D et al. Am J Trop Med Hyg; 2007; 77:528-33.

JE is a significant cause of morbidity and mortality throughout Asia

	~30,0	00 cases/year	~10	~10,000-15,000 deaths/year			
Count	ry	Total deaths	Deaths/100,000	Total DALYs	DALYs/100,000		
Bangla	desh	700	0.5	24,000	17		
Cambo	dia	100	0.7	4000	32		
PR Chi	na	2500	0.2	281,000	22		
India		6900	0.7	226,000	22		
Indone	sia	200	0.1	23,000	11		
Japan		0	0	0	0		
North M	Korea	100	0.5	6000	28		
South I	Korea	NA NA		6000	13		
Lao PD	R	100	2.3	5000	84		
Malays	ia	0	0	2000	9		
Myanm	ar	400	0.7	13,000	27		
Nepal		200	0.7	5000	22		
Pakista	n	2400	2400 1.6 82,000		55		
Papua	New Guinea	100	1	2000	41		
Philipp	Philippines NA		NA	8000	10		
Singap	japore Na		NA	260	6		
Sri Lan	ka	Na	Na NA 1000		7		
Thailan	d	Na	Na NA 5000 8		8		
Vietnan	n	200	0.2	11,000	14		
Totals		13,900	-	699,260	-		

Data for 2002. DALYs: disability-adjusted life years

1. Adapted from World Health Organization. Global Burden of Disease 2002 Estimates for the World Health Report 2004

8

JE incidence is highest in rural areas

Cx tritaeniorhychus are abundant in rural areas
Larval stages are adapted to rice paddies
Adults feed on pigs, other vertebrates.

Inequity in healthcare, China

Rural populations disproportionately have been left out of healthcare gains

- Improved life expectancy has been slower to occur in poor than in rich provinces
- Child mortality rates remain higher in rural than in urban areas

Figure 2: Disparities in child malnutrition between urban and rural area of China 2002¹⁰ Data are prevalence with 95% CI.

Figure 4: Trends in mortality in children age less than 5 years by socioeconomic conditions of areas of residence, 1996–2004¹⁰

Rural 1=most affluent rural. Rural 2=better-off rural. Rural 3=poor rural. Rural 4=poorest rural. Rating based on a deprivation index combining socioeconomic indicators of the areas.

Tang S et al Lancet 2008; 372:1493-1501 Figure 6: Pere

Figure 6: Percentage of population with access to clean water and sanitation in different areas in 2003⁴⁷

Vaccine Portfolio Development Process FOUNDATION – WHO DISEASE PRIORITIZATION (Nov. 2007)

Vacaina Investment Strategy Project June 11, 2009

Qualifying criteria for tropical disease applications under section 524

Product for prevention or treatment of

- Listed neglected tropical diseases
- Other infectious disease for which
 - There is no significant market in developed nations
 - That disproportionately affects poor and marginalized populations

Decline in Japanese encephalitis with introduction of routine childhood vaccination, Japan

UNOVARTIS 15

Arai S et al. Japan J Infect Dis 2008;61:333-8

Life Cycle of an Immunization Program

┤Ⅲ

adapted from: Chen RT et al. The Vaccine Adverse Event Reporting System (VAERS). Vaccine 1994;12:542-50

UNOVARTIS 16

Japan: In Last 30 Years, More Vaccines Have Been Removed from Recommendation than Added

- Japanese encephalitis
 - Introduced 1956
 - Acute Disseminated EncephaloMyelitis cases vaccination made voluntary, 2005
- MMR
 - Introduced -1989
 - Aseptic meningitis cases vaccine withdrawn 1993
 - MR reintroduced 2005
- Influenza (school age children)
 - Introduced 1976
 - Vaccine associated illness 1979, low disease incidence
 - Made voluntary, 1994
- DTwP
 - Neurological deaths recommendations suspended, 1975

UNOVARTIS

Reinstated, 1975

Japanese encephalitis vaccine demand in U.S. is limited

Vaccine doses distributed, as reported to CDC Biologicals Surveillance						
Vaccine	2000	2001	2002	2003	2004	2005
MPSV4	1,296,864	1,424,442	1,414,499	1,768,664	1,512,084	677,060
MCV4	0	0	0	0	0	3,108,168
PCV7	13,663,100	15,256,865	11,314,990	15,076,530	15,624,972	17,365,055
JE	139,708	104,643	132,643	109,574	105,971	108,487
Rabies	155,822	200,752	189,330	185,447	273,341	-33

JE vaccine is distributed principally to the military

- No JE vaccine is licensed in Europe
 - Available for compassionate use few doses distributed

Product for prevention or treatment of

- Other infectious disease for which
 - There is no significant market in developed nations
 - Routine vaccine recommendation withdrawn in Japan
 - Travel/military vaccine demand few doses used in U.S., Europe
 - That disproportionately affects poor and marginalized populations
 - Significant regional burden of disease
 - Affects 13 GAVI eligible countries and China
 - Disproportionately affects rural-dwelling children
 - Need prioritized by GAVI, WHO using systematic evaluation scheme included among other diseases currently listed as section 524qualified

Vaccine remains unavailable in the majority of countries where JE is endemic

- In 13 GAVI eligible countries
 - Limited vaccine distribution in Vietnam, Sri Lanka, Nepal, India
 - No systematic vaccination in Cambodia, Laos, Myanmar, Pakistan, Timor Leste, Indonesia, Papua New Guinea, Bangladesh, Bhutan
- Insufficient volume of licensed vaccines for regional needs
 - Available vaccines are distributed principally in countries of manufacture
- Available vaccines have shortcomings
 - Inactivated mouse brain safety concerns, expense, BIKEN has discontinued production
 - Live attenuated SA₁₄-14-2 vaccine
 - Safety database poorly characterized
 - Unknown safety in HIV infected children
 - Unknown level/duration of viremia, potential for vectorborne transmission
 - Unknown impact of dengue immunity on vaccine take

Principal Licensed JE vaccines

Date	Туре	JE virus strain	Countries with widespread use
1930's	Inactivated mouse-brain derived vaccine e.g. (JE-VAX [®]) ^{1,2}	Nakayama or Beijing	Japan, Republic of Korea, Taiwan, and Thailand; some areas of Malaysia, Sri Lanka, and Viet Nam
1967	Inactivated, primary- hamster-kidney (PHK) cell-culture-derived vaccine (licensed in PR China ^{1,2})	Beijing P-3	China
1989	Live, attenuated, PHK cell-culture-derived vaccine (licensed in PR China ^{1,2})	SA 14-14-2	China (licensed for use in India, Nepal, Republic of Korea, and Sri Lanka)

Update Post-licensure Clinical Development IC51 for SB

STUDIES PLANNED FOR INITIAL PEDIATRIC LICENSURE

No/Phase	Dose	Age* (years)	N Total/ N IC51	Location	Objectives	Execution
IC51-221 Phase 2	2 x 6 µg, days 0, 28 2 x 3 µg, days 0, 28	≥ 1 to < 3	60/ 48	India	Safety, Immunogenicity and Dose confirmation	Biological E completed
IC51-321 Phase 3	2 x 6 µg**, days 0, 28	≥1 to < 3 ≥ 3 to < 18	468/234	SE-Asia	Immunogenicity and Safety compared to JenceVac	Start Q2/Q3 2009
IC51-322 Phase 3	2 x 6 µg**, days 0, 28	≥ 1 to < 3 ≥ 3 to < 18	50-100***	U.S./EU	Immunogenicity and Safety, non endemic	Start Q2/Q3 2009
IC51-323 Phase 3	2 x 6 µg**, days 0, 28	≥1 to < 3 ≥ 3 to < 18	1,150***	SE-Asia	Safety compared to active comparator	Start Q2/Q3 2009
 * Lower age limit subject to confirmation ** 2 x 3 mcg < 3 years of age as of study IC51-221 *** Size of safety database awaits confirmation 						

CONFIDENTIAL

Roadmap Pediatric Development

* Preliminary timelines, tbd after final agreement from regulatory authorities

PAGE 24

CONFIDENTIAL