

Food and Drug Administration

PAT - A Framework for **Innovative Pharmaceutical** Development, Manufacturing and Quality Assurance

Ali Afnan, Ph.D. Office of Pharmaceutical Science, CDER, FDA FDA/RPSGB Guidance Workshop 14th December 2004 RPSGB, London, UK

An Enabling Framework

- For innovation in development, manufacturing and quality assurance by
 - removing "regulatory fear/uncertainty"
 - utilizing science & risk-based approach to regulatory requirements and oversight
 - providing a flexible and less burdensome regulatory approach for well understood processes
 - creating an environment that facilitates rationale science, risk, and business decisions

A system for:

- designing, analyzing, and controlling manufacturing
- timely measurements (i.e., during processing)
- critical quality and performance attributes
- raw and in-process materials
- processes

The goal of PAT is to <u>understand</u> and <u>control</u> the manufacturing process

Scientific principles and tools supporting innovation

- > PAT Principles
 - Process Understanding
 - Risk-Based Approach
 - Regulatory Strategy to accommodate innovation
 - Real Time Release
- > PAT Tools
 - Multivariate Tools for Design, Data Acquisition and Analysis
 - Process Analyzers
 - Process Control Tools
 - Continuous Improvement and Knowledge Management Tools

- > Integrated Approach
 - PAT Team approach to Review and Inspection
 - Joint training and certification of staff

PAT

Ensure appropriate control of all relevant critical attributes of in-process materials (e.g., using process endpoints) to allow the process to manage the inherent variability of material attributes that can impact the quality of the output

PAT Framework

PAT goals are achieved through

- > Dynamic Processes that manage variability
- Using validated controls

What is a **PAT** application?

- Is this a PAT submission?
- PAT principles and tools:
 - Are the systems for design, measurement, control, continuous improvement and knowledge management acceptable?
 - Is the approach to risk management (assessment and mitigation) acceptable?
 - Is the strategy for integrating systems acceptable?
 - Is the strategy for real time release acceptable?
- Is the proposed regulatory process acceptable?

Process Understanding?

- A process is well understood when:
 - all critical sources of variability are identified and explained
 - variability is managed by the process
 - product quality attributes can be accurately and reliably predicted
- Accurate and Reliable predictions reflect process understanding
- Process Understanding inversely proportional to risk

Process Understanding - Validation

- Can provide a high assurance of quality on every batch and provide alternative, effective mechanisms to achieve validation
 - process validation can be enhanced
 - possibly continuous quality assurance where a process is continually monitored, evaluated, and adjusted
 - ⇒ using validated in-process measurements, tests, controls, and process endpoints
 - A process is controlled using validated controls

FDA PAT guidance and Qualification

A focus on process understanding can reduce the burden for validating systems, providing more options for qualifying and justifying systems intended to measure and control biological, physical, and/or chemical attributes of materials.

FDA PAT guidance and Qualification

Risk-based approaches are suggested for validation of PAT software systems. The recommendations provided by other FDA guidances such as *General Principles of Software Validation* should be considered. Other useful information can be obtained from consensus standards, such as ASTM.

PAT: Risk-Managed Approach to Regulatory Scrutiny

- Expect an inverse relationship between the level of process understanding and the risk of producing a poor quality product
- ➤ Well understood process → less restrictive regulatory approaches to manage change
- > Focus on process understanding can facilitate risk-managed regulatory decisions and innovation

Real Time Release (RTR)

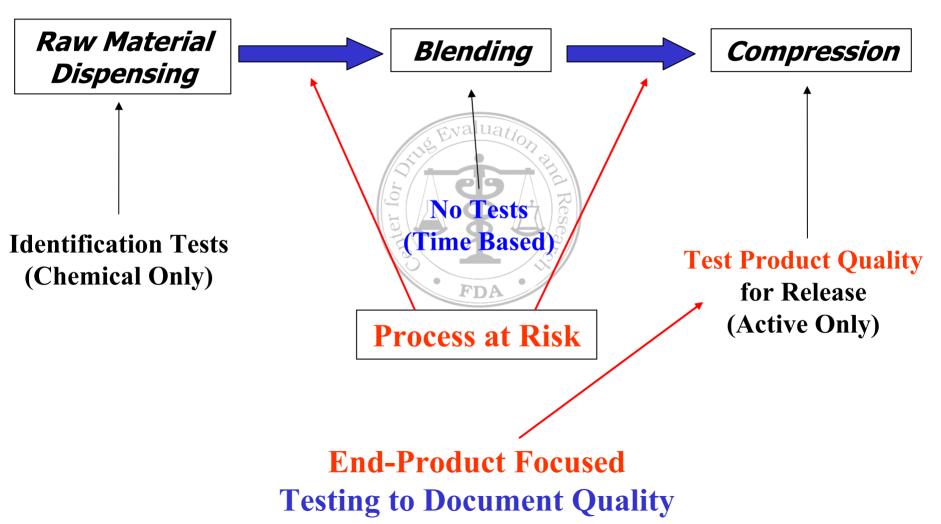
- > Process understanding, control strategies, plus on-, in-, or at-line measurement of critical attributes
 - that relate to product quality
- provide a scientific risk-based approach to real time quality assurance.

Real Time Release (RTR)

- With real time quality assurance, the desired quality attributes
 - Are ensured through continuous assessment during manufacture.
- Data from production batches can serve to validate the process and reflect the total system design concept
 - supporting validation with each manufacturing batch.

Real Time Release (RTR)

Is the ability to evaluate and ensure the acceptable quality of in-process and/or final product based on process data.

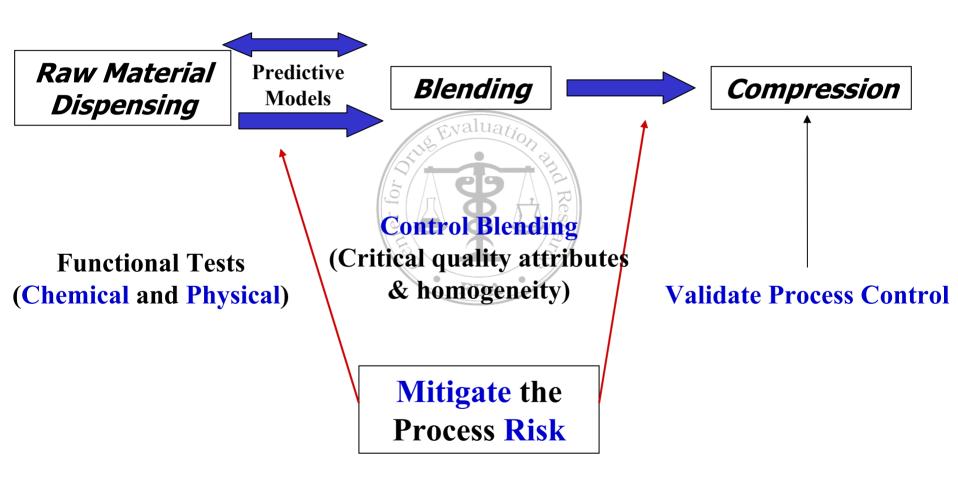

Real Time Release

- > Typically, a valid combination of
 - material attributes
 - ⇒ assessed using direct and/or indirect process measurements.
 - process controls
- > serve as the basis for real time release of the final product
- demonstrating each batch conforms to established regulatory quality attributes.

PAT Regulatory Process

- > A flexible process
 - generally starts with a <u>scientific proposal</u> by a sponsor followed by discussions with PAT team
 - to ensure clear understating of scientific principles and the type of information and knowledge necessary to support the proposed application
- This discussion may lead to a regulatory submission (e.g., a supplement or a comparability protocol)
 - the guidance provides for other flexible options
- Evaluation/assessment of the submission and a team approach for ensuring all aspects are addressed and followed by a team based inspection

How can PAT help? Example: Current Tablet Production


Current Tablet Production: Testing to Document Quality

- > What is the Product Test?
 - Typically 30 Tablets/batch (1,000,000)
- What process Information does this provide?
 - None. Testing is Product focused.
- > Will we see "failures"?
 - Expect number of "failing" tablets/batch, even though 30 tablets/batch "pass"
 - 4% of batches may fail, even though not different from a "passing" batch
- Does this facilitate process understanding and control?
 - No

"Novel Technology" Approach: Still Testing to Document Quality

- > What is the Product Test?
 - Test every tablet (all 1,000,000)
- What process Information does this provide?
 - None. Testing is still Product focused.
 - Better estimate of Variability in Final Product
- > Why the variability? FDA
 - ?
 - Change acceptance criteria?
 - **⇒** Allow some outside 75%-125%
- > Facilitate process understanding and control?
 - No

PAT Approach Example: Tablet Production

Process Focused

PAT Approach: Quality by Design

Focus on Process Understanding

- > What parameters are critical to Product Quality?
 - Experimental Design
- > How do we measure/ monitor these parameters?
 - Appropriate Instrumentation
- How do we control these parameters throughout the process?

A system for:

- b designing, analyzing, and controlling manufacturing
- timely measurements (i.e., during processing)
- > critical quality and performance attributes
- raw and in-process materials
- processes

The goal of PAT is to <u>understand</u> and <u>control</u> the manufacturing process

Forthcoming Guidance Workshops

Brussels, Belgium

February 22, 2005

Mumbai, India

February 25, 2005

www.ispe.org